1
|
Sigal A, Neher RA, Lessells RJ. The consequences of SARS-CoV-2 within-host persistence. Nat Rev Microbiol 2025; 23:288-302. [PMID: 39587352 DOI: 10.1038/s41579-024-01125-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 11/27/2024]
Abstract
SARS-CoV-2 causes an acute respiratory tract infection that resolves in most people in less than a month. Yet some people with severely weakened immune systems fail to clear the virus, leading to persistent infections with high viral titres in the respiratory tract. In a subset of cases, persistent SARS-CoV-2 replication results in an accelerated accumulation of adaptive mutations that confer escape from neutralizing antibodies and enhance cellular infection. This may lead to the evolution of extensively mutated SARS-CoV-2 variants and introduce an element of chance into the timing of variant evolution, as variant formation may depend on evolution in a single person. Whether long COVID is also caused by persistence of replicating SARS-CoV-2 is controversial. One line of evidence is detection of SARS-CoV-2 RNA and proteins in different body compartments long after SARS-CoV-2 infection has cleared from the upper respiratory tract. However, thus far, no replication competent virus has been cultured from individuals with long COVID who are immunocompetent. In this Review, we consider mechanisms of viral persistence, intra-host evolution in persistent infections, the connection of persistent infections with SARS-CoV-2 variants and the possible role of SARS-CoV-2 persistence in long COVID. Understanding persistent infections may therefore resolve much of what is still unclear in COVID-19 pathophysiology, with possible implications for other emerging viruses.
Collapse
Affiliation(s)
- Alex Sigal
- The Lautenberg Center for Immunology and Cancer Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
- Africa Health Research Institute, Durban, South Africa.
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Richard A Neher
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Richard J Lessells
- KwaZulu-Natal Research Innovation & Sequencing Platform, School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| |
Collapse
|
2
|
Bolis M, Uceda Renteria S, Alagna L, Liparoti A, Passerini BZ, Pastena A, Parisi A, Callegaro A, Bandera A, Muscatello A, Alteri C. SARS-CoV-2 genomic evolution during a severe and long-lasting omicron infection under antiviral therapy. BMC Infect Dis 2025; 25:359. [PMID: 40082784 PMCID: PMC11907959 DOI: 10.1186/s12879-025-10740-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 03/03/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Prolonged SARS-CoV-2 infection observed in immunocompromised individuals even in the presence of antiviral treatment provides opportunities for viruses to evolve in immune escape and drug-resistant variants. CASE PRESENTATION A 72-year-old male with IgG4-related disease was admitted to the Emergency Department of a city Hospital in Milan and then transferred to Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico in December 2023, due to respiratory distress due to SARS-CoV-2 infection diagnosed in November 2023. After 117 days since the onset of the infection, and two cycles of sotrovimab/remdesivir combined therapy, the clinical improvement allowed the hospital discharge, notwithstanding the persistent SARS-CoV-2 positivity. Fifteen days later, the patient was re-admitted to the hospital due to worsening clinical conditions. After a third cycle of sotrovimab/remdesivir combined therapy prolonged with nirmatrelvir/ritonavir, nasopharyngeal load dropped and clinical conditions improved, ending with a successful discharge. SARS-CoV-2 whole genome sequences, obtained at six time-points of infection, showed an FL.1.5.1 recombinant form infection and a genetic distance of median (IQR) 0.00052 (0.00041-0.00066) similar to the genetic distance observed among the 43 contemporaneous FL.1.5.1 recombinant forms (p = 0.098). De novo SNPs were observed at all time points, with a peak (n = 70) at day 133 of infection, corresponding to the time of the second hospitalization. Six non-synonymous mutations (three in the RdRp and three in the spike protein, four of them known to be associated with drug resistance) appeared transiently, after the third and fourth course of sotrovimab 500 mg/remdesivir combination. Five de novo SNPs, three of them in the spike protein, were fixed over the long-lasting infection. The spike N856K, associated with reduced fusogenicity and infectivity in Omicron BA.1, was completely replaced by constitutive N at day 136. CONCLUSIONS This clinical case confirms the intra-host evolution dynamics of SARS-CoV-2 in an immunocompromised, prolonged-infected individual, involving positions associated with drug resistance and fusogenic traits of SARS-CoV-2. These results underscore the importance of the early detection of SARS-CoV-2 infection in immunocompromised individuals, and its rapid containment using highly effective treatment, to limit serious complications and the risk of new and potentially concerning viral variants emergence.
Collapse
Affiliation(s)
- Matteo Bolis
- Infectious Diseases Unit, IRCCS Ca' Granda Ospedale Maggiore Policlinico Foundation, Milan, Italy
| | - Sara Uceda Renteria
- Microbiology and Virology Unit, IRCCS Ca' Granda Ospedale Maggiore Policlinico Foundation, Milan, Italy
| | - Laura Alagna
- Infectious Diseases Unit, IRCCS Ca' Granda Ospedale Maggiore Policlinico Foundation, Milan, Italy
| | - Arianna Liparoti
- Infectious Diseases Unit, IRCCS Ca' Granda Ospedale Maggiore Policlinico Foundation, Milan, Italy
| | | | - Andrea Pastena
- Infectious Diseases Unit, IRCCS Ca' Granda Ospedale Maggiore Policlinico Foundation, Milan, Italy
| | - Alessandra Parisi
- Residency in Microbiology and Virology School, University of Milan, Milan, Italy
| | - Annapaola Callegaro
- Microbiology and Virology Unit, IRCCS Ca' Granda Ospedale Maggiore Policlinico Foundation, Milan, Italy
| | - Alessandra Bandera
- Infectious Diseases Unit, IRCCS Ca' Granda Ospedale Maggiore Policlinico Foundation, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milano, Milan, Italy
| | - Antonio Muscatello
- Infectious Diseases Unit, IRCCS Ca' Granda Ospedale Maggiore Policlinico Foundation, Milan, Italy
| | - Claudia Alteri
- Microbiology and Virology Unit, IRCCS Ca' Granda Ospedale Maggiore Policlinico Foundation, Milan, Italy.
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy.
| |
Collapse
|
3
|
Jones LR. Intra-host variability of SARS-CoV-2: Patterns, causes and impact on COVID-19. Virology 2025; 603:110366. [PMID: 39724740 DOI: 10.1016/j.virol.2024.110366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Intra-host viral variability is related to pathogenicity, persistence, drug resistance, and the emergence of new clades. This work reviews the large amount of data on SARS-CoV-2 intra-host variability accumulated to date, addressing known and potential implications in COVID-19 and the emergence of VOCs and lineage-defining mutations. Topics covered include the distribution of intra-host polymorphisms across the genome, the corresponding mutational signatures, their patterns of emergence and extinction throughout infection, and the processes governing their abundance, frequency, and type (synonymous, nonsynonymous, indels, nonsense). Besides, evidence is reviewed that the virus can replicate and mutate in isolation at different anatomical compartments, which may imply that what we have learned from respiratory samples could be part of a broader picture.
Collapse
Affiliation(s)
- Leandro R Jones
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Rivadavia 1917, C1083ACA Ciudad Autónoma de Buenos Aires, Argentina; Laboratorio de Virología y Genética Molecular (LVGM), Facultad de Ciencias Naturales y Ciencias de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, Belgrano 160, Trelew, CP, 9100, Argentina.
| |
Collapse
|
4
|
Rouzine IM. Evolutionary Mechanisms of the Emergence of the Variants of Concern of SARS-CoV-2. Viruses 2025; 17:197. [PMID: 40006952 PMCID: PMC11861269 DOI: 10.3390/v17020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/21/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
The evolutionary origin of the variants of concern (VOCs) of SARS-CoV-2, characterized by a large number of new substitutions and strong changes in virulence and transmission rate, is intensely debated. The leading explanation in the literature is a chronic infection in immunocompromised individuals, where the virus evolves before returning into the main population. The present article reviews less-investigated hypotheses of VOC emergence with transmission between acutely infected hosts, with a focus on the mathematical models of stochastic evolution that have proved to be useful for other viruses, such as HIV and influenza virus. The central message is that understanding the acting factors of VOC evolution requires the framework of stochastic multi-locus evolution models, and that alternative hypotheses can be effectively verified by fitting results of computer simulation to empirical data.
Collapse
Affiliation(s)
- Igor M Rouzine
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia
| |
Collapse
|
5
|
Schmidt H, Schick L, Podlech J, Renzaho A, Lieb B, Diederich S, Hankeln T, Plachter B, Kriege O. Adaptive evolution of SARS-CoV-2 during a persistent infection for 521 days in an immunocompromised patient. NPJ Genom Med 2025; 10:4. [PMID: 39820045 PMCID: PMC11739519 DOI: 10.1038/s41525-025-00463-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 01/09/2025] [Indexed: 01/19/2025] Open
Abstract
Immunocompromised patients struggle to adequately clear viral infections, offering the virus the opportunity to adapt to the immune system in the host. Here we present a case study of a patient undergoing allogeneic hematopoietic stem cell transplantation with a 521-day follow-up of a SARS-CoV-2 infection with the BF.7.21 variant. Virus samples from five time points were submitted to whole genome sequencing. Between the first detection of SARS-CoV-2 infection and its clearance, the patient's virus population acquired 34 amino acid substitutions and 8 deletions in coding regions. With 11 amino acid substitutions in the receptor binding domain of the virus' spike protein, substitutions were 15 times more abundant than expected for a random distribution in this highly functional region. Amongst them were the substitutions S:K417T, S:N440S, S:K444R, S:V445A, S:G446N, S:L452Q, S:N460K, and S:E484V at positions that are notorious for their resistance-mediating effects. The substitution patterns found indicate ongoing adaptive evolution.
Collapse
Affiliation(s)
- Hanno Schmidt
- Sequencing Consortium, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
- Institute of Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
- Institute for Quantitative and Computational Biosciences, Johannes Gutenberg-University Mainz, Mainz, Germany.
| | - Lea Schick
- Third Department of Medicine-Hematology, Internal Oncology, and Pneumology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jürgen Podlech
- Institute of Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Angélique Renzaho
- Sequencing Consortium, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute of Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Bettina Lieb
- Sequencing Consortium, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- StarSEQ GmbH, Mainz, Germany
| | - Stefan Diederich
- Sequencing Consortium, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Thomas Hankeln
- Sequencing Consortium, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute of Organismal and Molecular Evolutionary Biology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Bodo Plachter
- Sequencing Consortium, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute of Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Oliver Kriege
- Third Department of Medicine-Hematology, Internal Oncology, and Pneumology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
6
|
Parry RH, Lytras S, Petrone ME, Wille M, Crits-Christoph A, Gifford RJ, Saito A, Smura T, Peacock TP. No evidence that mutations in SARS-CoV-2 variants of concern derive from homologous fragments in gut microbiota. J Virol 2024; 98:e0146824. [PMID: 39494907 DOI: 10.1128/jvi.01468-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/05/2024] [Indexed: 11/05/2024] Open
Abstract
Understanding the origin and evolution of mutations in SARS-CoV-2 variants of concern (VOCs) is a critical area of research. B. Cao, X. Wang, W. Yin, Z. Gao, and B. Xia (mBio 15:e03187-23, 2024, https://doi.org/10.1128/mbio.03187-23) proposed that these mutations originated from bacterial sequences incorporated into the viral genome through stochastic template-switching by the viral RNA-dependent RNA polymerase (RdRp). Their analysis suggested that 62% of the viral mutation fragments (VMFs) in key SARS-CoV-2 proteins were identical to bacterial protein sequences. Given the implications of this finding, we re-examined the methods employed and argue that they resulted in false-positive findings. Specifically, the short query length of VMFs, seven amino acids, leads to spurious matches in large protein databases, as indicated by high BLAST Expect values. Furthermore, we analyzed the nucleotide sequence of VMFs, revealing no unique homology between SARS-CoV-2 and bacterial sequences. Consequently, the evidence does not support the hypothesis that bacterial sequences contribute to the evolution of SARS-CoV-2 VOCs. Instead, the emergence of these variants is more plausibly attributed to factors intrinsic to viral replication and evolution, such as the error-prone nature of RdRp, intrahost diversity, and recombination of related viral sublineages.
Collapse
Affiliation(s)
- Rhys H Parry
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Spyros Lytras
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Mary E Petrone
- Sydney Infectious Diseases Institute, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Michelle Wille
- Centre for Pathogen Genomics, Department of Microbiology and Immunology, University of Melbourne, at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | | | - Robert J Gifford
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- Centre for Epidemic Response and Innovation, Stellenbosch University, Stellenbosch, South Africa
| | - Akatsuki Saito
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Teemu Smura
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Thomas P Peacock
- The Pirbright Institute, Pirbright, Woking, United Kingdom
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
7
|
Romano CM, da Silva VGL, da Silva LS, Aranda CS, de Oliveira CM, Siqueira MMT, Pereira EC, Resende PC, Bellei NCJ, Levi JE, de Moraes-Pinto MI. Long-term chronic infection of a young immunocompromised patient by the SARS-CoV-2 P.2 VOI. Rev Inst Med Trop Sao Paulo 2024; 66:e69. [PMID: 39699425 PMCID: PMC11654138 DOI: 10.1590/s1678-9946202466069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/30/2024] [Indexed: 12/20/2024] Open
Abstract
An immunocompromised patient was infected by the SARS-CoV-2 variant of interest named Zeta (P.2) in February 2021. More than one year later, he suffered from symptomatic COVID-19 and sequencing revealed the same variant, which accumulated 23 substitutions. This case illustrates intra-host evolution of a particular SARS-CoV-2 variant, highlighting the importance of genomic surveillance of immunocompromised patients.
Collapse
Affiliation(s)
- Camila Malta Romano
- Universidade de São Paulo, Faculdade de Medicina, Instituto de Medicina Tropical de São Paulo, Laboratório de Virologia (LIM-52), São Paulo, São Paulo, Brazil
| | | | | | | | | | - Marilda Mendonça Teixeira Siqueira
- Fiocruz, Instituto Oswaldo Cruz, Laboratório de Virus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elisa Cavalcante Pereira
- Fiocruz, Instituto Oswaldo Cruz, Laboratório de Virus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paola Cristina Resende
- Fiocruz, Instituto Oswaldo Cruz, Laboratório de Virus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - José Eduardo Levi
- Universidade de São Paulo, Faculdade de Medicina, Instituto de Medicina Tropical de São Paulo, Laboratório de Virologia (LIM-52), São Paulo, São Paulo, Brazil
- Dasa, São Paulo, São Paulo, Brazil
| | - Maria Isabel de Moraes-Pinto
- Universidade Federal de São Paulo, Departamento de Pediatria, São Paulo, São Paulo, Brazil
- Dasa, São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Manrique JM, Maffia‐Bizzozero S, Delpino MV, Quarleri J, Jones LR. Multi-Organ Spread and Intra-Host Diversity of SARS-CoV-2 Support Viral Persistence, Adaptation, and a Mechanism That Increases Evolvability. J Med Virol 2024; 96:e70107. [PMID: 39654307 PMCID: PMC11656291 DOI: 10.1002/jmv.70107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/29/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024]
Abstract
Intra-host diversity is an intricate phenomenon related to immune evasion, antiviral resistance, and evolutionary leaps along transmission chains. SARS-CoV-2 intra-host variation has been well-evidenced from respiratory samples. However, data on systemic dissemination and diversification are relatively scarce and come from immunologically impaired patients. Here, the presence and variability of SARS-CoV-2 were assessed among 71 tissue samples obtained from multiple organs including lung, intestine, heart, kidney, and liver from 15 autopsies with positive swabs and no records of immunocompromise. The virus was detected in most organs in the majority of autopsies. All organs presented intra-host single nucleotide variants (iSNVs) with low, moderate, and high abundances. The iSNV abundances observed within different organs indicate that the virus can mutate at one host site and subsequently spread to other parts of the body. In agreement with previous data from respiratory samples, our lung samples presented no more than 10 iSNVs each. But interestingly, when analyzing different organs we were able to detect between 11 and 45 iSNVs per case. Our results indicate that SARS-CoV-2 can replicate, and evolve in a compartmentalized manner, in different body sites, which agrees with the "viral reservoir" theory. We elaborate on how compartmentalized evolution in multiple organs may contribute to SARS-CoV-2 evolving so rapidly despite the virus having a proofreading mechanism.
Collapse
Affiliation(s)
- Julieta M. Manrique
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Ciudad Autónoma de Buenos AiresArgentina
- Laboratorio de Virología y Genética Molecular (LVGM), Facultad de Ciencias Naturales y Ciencias de la SaludUniversidad Nacional de la Patagonia San Juan BoscoTrelewChubutArgentina
| | | | - M. Victoria Delpino
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Ciudad Autónoma de Buenos AiresArgentina
- Laboratorio de Inmunopatología ViralInstituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Ciencias MédicasUniversidad de Buenos AiresBuenos AiresArgentina
| | - Jorge Quarleri
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Ciudad Autónoma de Buenos AiresArgentina
- Laboratorio de Inmunopatología ViralInstituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Ciencias MédicasUniversidad de Buenos AiresBuenos AiresArgentina
| | - Leandro R. Jones
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Ciudad Autónoma de Buenos AiresArgentina
- Laboratorio de Virología y Genética Molecular (LVGM), Facultad de Ciencias Naturales y Ciencias de la SaludUniversidad Nacional de la Patagonia San Juan BoscoTrelewChubutArgentina
| |
Collapse
|
9
|
Zehr JD, Kosakovsky Pond SL, Shank SD, McQueary H, Grenier JK, Whittaker GR, Stanhope MJ, Goodman LB. Positive selection, genetic recombination, and intra-host evolution in novel equine coronavirus genomes and other members of the Embecovirus subgenus. Microbiol Spectr 2024; 12:e0086724. [PMID: 39373506 PMCID: PMC11542594 DOI: 10.1128/spectrum.00867-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/24/2024] [Indexed: 10/08/2024] Open
Abstract
There are several examples of coronaviruses in the Betacoronavirus subgenus Embecovirus that have jumped from an animal to the human host. Studying how evolutionary factors shape coronaviruses in non-human hosts may provide insight into the coronavirus host-switching potential. Equids, such as horses and donkeys, are susceptible to equine coronaviruses (ECoVs). With increased testing prevalence, several ECoV genome sequences have become available for molecular evolutionary analyses, especially those from the United States of America (USA). To date, no analyses have been performed to characterize evolution within coding regions of the ECoV genome. Here, we obtain and describe four new ECoV genome sequences from infected equines from across the USA presenting clinical symptoms of ECoV, and infer ECoV-specific and Embecovirus-wide patterns of molecular evolution. Within two of the four data sets analyzed, we find evidence of intra-host evolution within the nucleocapsid (N) gene, suggestive of quasispecies development. We also identify 12 putative genetic recombination events within the ECoV genome, 11 of which fall in ORF1ab. Finally, we infer and compare sites subject to positive selection on the ancestral branch of each major Embecovirus member clade. Specifically, for the two currently identified human coronavirus (HCoV) embecoviruses that have spilled from animals to humans (HCoV-OC43 and HCoV-HKU1), we find that there are 42 and 2 such sites, respectively, perhaps reflective of the more complex ancestral evolutionary history of HCoV-OC43, which involves several different animal hosts.IMPORTANCEThe Betacoronavirus subgenus Embecovirus contains coronaviruses that not only pose a health threat to animals and humans, but also have jumped from animal to human host. Equids, such as horses and donkeys are susceptible to equine coronavirus (ECoV) infections. No studies have systematically examined evolutionary patterns within ECoV genomes. Our study addresses this gap and provides insight into intra-host ECoV evolution from infected horses. Further, we identify and report natural selection pattern differences between two embecoviruses that have jumped from animals to humans [human coronavirus OC43 and HKU1 (HCoV-OC43 and HCoV-HKU1, respectively)], and hypothesize that the differences observed may be due to the different animal host(s) that each virus circulated in prior to its jump into humans. Finally, we contribute four novel, high-quality ECoV genomes to the scientific community.
Collapse
Affiliation(s)
- Jordan D. Zehr
- Department of Biology,
Institute for Genomics and Evolutionary Medicine, Temple
University, Philadelphia,
Pennsylvania, USA
- James A. Baker
Institute for Animal Health, College of Veterinary Medicine, Cornell
University, Ithaca,
New York, USA
| | - Sergei L. Kosakovsky Pond
- Department of Biology,
Institute for Genomics and Evolutionary Medicine, Temple
University, Philadelphia,
Pennsylvania, USA
| | - Stephen D. Shank
- Department of Biology,
Institute for Genomics and Evolutionary Medicine, Temple
University, Philadelphia,
Pennsylvania, USA
| | - Holly McQueary
- James A. Baker
Institute for Animal Health, College of Veterinary Medicine, Cornell
University, Ithaca,
New York, USA
| | - Jennifer K. Grenier
- Cornell Institute of
Biotechnology, Transcriptional Regulation and Expression
Facility, Ithaca,
New York, USA
| | - Gary R. Whittaker
- Department of Public
and Ecosystem Health, College of Veterinary Medicine, Cornell
University, Ithaca,
New York, USA
| | - Michael J. Stanhope
- Department of Public
and Ecosystem Health, College of Veterinary Medicine, Cornell
University, Ithaca,
New York, USA
| | - Laura B. Goodman
- James A. Baker
Institute for Animal Health, College of Veterinary Medicine, Cornell
University, Ithaca,
New York, USA
- Department of Public
and Ecosystem Health, College of Veterinary Medicine, Cornell
University, Ithaca,
New York, USA
| |
Collapse
|
10
|
Forster R, Griffen A, Daily JP, Kelly L. Community-level variability in Bronx COVID-19 hospitalizations associated with differing population immunity during the second year of the pandemic. Virus Evol 2024; 10:veae090. [PMID: 39610653 PMCID: PMC11604118 DOI: 10.1093/ve/veae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024] Open
Abstract
The Bronx, New York, exhibited unique peaks in the number of coronavirus disease 2019 (COVID-19) cases and hospitalizations compared to national trends. To determine which features of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus might underpin this local disease epidemiology, we conducted a comprehensive analysis of the genomic epidemiology of the four dominant strains of SARS-CoV-2 (Alpha, Iota, Delta, and Omicron) responsible for COVID-19 cases in the Bronx between March 2020 and January 2023. Genomic analysis revealed similar viral fitness for Alpha and Iota variants in the Bronx despite nationwide data showing higher cases of Alpha. However, Delta and Omicron variants had increased fitness within the borough. While the transmission dynamics of most variants in the Bronx corresponded with mutational fitness-based predictions of transmissibility, the Delta variant presented as an exception. Epidemiological modeling confirms Delta's advantages of higher transmissibility in Manhattan and Queens, but not the Bronx; wastewater analysis suggests underdetection of cases in the Bronx. The Alpha variant had slightly faster growth but a lower carrying capacity compared to Iota and Delta in all four boroughs, suggesting stronger limitations on Alpha's growth in New York City (NYC). The founder effect of Iota varied between higher vaccinated and lower vaccinated boroughs with longer delay, shorter duration, and lower fitness of the Alpha variant in lower vaccinated boroughs. Amino acid changes in T-cell and antibody epitopes revealed Delta and Iota having larger antigenic variability and antigenic profiles distant from local previously circulating lineages compared to Alpha. In concert with transmission modeling, our data suggest that the limited spread of Alpha may be due to a lack of adaptation to immunity in NYC. Overall, our study demonstrates that localized analyses and integration of orthogonal community-level datasets can provide key insights into the mechanisms of transmission and immunity patterns associated with regional COVID-19 incidence and disease severity that may be missed when analyzing broader datasets.
Collapse
Affiliation(s)
- Ryan Forster
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Anthony Griffen
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Johanna P Daily
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
- Department of Medicine (Infectious Diseases), Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Libusha Kelly
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| |
Collapse
|
11
|
Bashor L, Gallichotte EN, Galvan M, Erbeck K, Croft L, Stache K, Stenglein M, Johnson JG, Pabilonia K, VandeWoude S. SARS-CoV-2 within-host population expansion, diversification and adaptation in zoo tigers, lions and hyenas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.620075. [PMID: 39484504 PMCID: PMC11527109 DOI: 10.1101/2024.10.24.620075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
SARS-CoV-2 rapidly adapts to new hosts following cross-species transmission; this is highly relevant as novel within-host variants have emerged following infection of susceptible wild and domestic animal species. Furthermore, SARS-CoV-2 transmission from animals (e.g., white-tailed deer, mink, domestic cats, and others) back to humans has also been observed, documenting the potential of novel animal-derived variants to infect humans. We investigated SARS-CoV-2 evolution and host-specific adaptation during an outbreak in Amur tigers (Panthera tigris altaica), African lions (Panthera leo), and spotted hyenas (Crocuta crocuta) at Denver Zoo in late 2021. SARS-CoV-2 genomes from longitudinal samples collected from 16 individuals were evaluated for within-host variation and genomic signatures of selection. The outbreak was likely initiated by a single spillover of a rare Delta sublineage subsequently transmitted from tigers to lions to hyenas. Within-host virus populations rapidly expanded and diversified. We detected signatures of purifying and positive selection, including strong positive selection in hyenas and in the nucleocapsid (N) gene in all animals. Four candidate species-specific adaptive mutations were identified: N A254V in lions and hyenas, and ORF1a E1724D, spike T274I, and N P326L in hyenas. These results reveal accelerated SARS-CoV-2 adaptation following host shifts in three non-domestic species in daily contact with humans.
Collapse
Affiliation(s)
- Laura Bashor
- Dept. of Microbiology, Immunology and Pathology, Colorado State University
| | | | - Michelle Galvan
- Dept. of Microbiology, Immunology and Pathology, Colorado State University
| | - Katelyn Erbeck
- Colorado State University Veterinary Diagnostic Laboratories
| | | | | | - Mark Stenglein
- Dept. of Microbiology, Immunology and Pathology, Colorado State University
| | | | | | - Sue VandeWoude
- Dept. of Microbiology, Immunology and Pathology, Colorado State University
| |
Collapse
|
12
|
Rodríguez-Horta E, Strahan J, Dinner AR, Barton JP. Chronic infections can generate SARS-CoV-2-like bursts of viral evolution without epistasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.06.616878. [PMID: 39416020 PMCID: PMC11482859 DOI: 10.1101/2024.10.06.616878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Multiple SARS-CoV-2 variants have arisen during the first years of the pandemic, often bearing many new mutations. Several explanations have been offered for the surprisingly sudden emergence of multiple mutations that enhance viral fitness, including cryptic transmission, spillover from animal reservoirs, epistasis between mutations, and chronic infections. Here, we simulated pathogen evolution combining within-host replication and between-host transmission. We found that, under certain conditions, chronic infections can lead to SARS-CoV-2-like bursts of mutations even without epistasis. Chronic infections can also increase the global evolutionary rate of a pathogen even in the absence of clear mutational bursts. Overall, our study supports chronic infections as a plausible origin for highly mutated SARS-CoV-2 variants. More generally, we also describe how chronic infections can influence pathogen evolution under different scenarios.
Collapse
Affiliation(s)
- Edwin Rodríguez-Horta
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, USA
- Group of Complex Systems and Statistical Physics, Department of Theoretical Physics, Physics Faculty, University of Havana, Cuba
| | - John Strahan
- Department of Chemistry and James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA
| | - Aaron R. Dinner
- Department of Chemistry and James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA
| | - John P. Barton
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, USA
| |
Collapse
|
13
|
Schoefbaenker M, Günther T, Lorentzen EU, Romberg ML, Hennies MT, Neddermeyer R, Müller MM, Mellmann A, Bojarzyn CR, Lenz G, Stelljes M, Hrincius ER, Vollenberg R, Ludwig S, Tepasse PR, Kühn JE. Characterisation of the antibody-mediated selective pressure driving intra-host evolution of SARS-CoV-2 in prolonged infection. PLoS Pathog 2024; 20:e1012624. [PMID: 39405332 PMCID: PMC11508484 DOI: 10.1371/journal.ppat.1012624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/25/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024] Open
Abstract
Neutralising antibodies against the SARS-CoV-2 spike (S) protein are major determinants of protective immunity, though insufficient antibody responses may cause the emergence of escape mutants. We studied the humoral immune response causing intra-host evolution in a B-cell depleted, haemato-oncologic patient experiencing clinically severe, prolonged SARS-CoV-2 infection with a virus of lineage B.1.177.81. Following bamlanivimab treatment at an early stage of infection, the patient developed a bamlanivimab-resistant mutation, S:S494P. After five weeks of apparent genetic stability, the emergence of additional substitutions and deletions within the N-terminal domain (NTD) and the receptor binding domain (RBD) of S was observed. Notably, the composition and frequency of escape mutations changed in a short period with an unprecedented dynamic. The triple mutant S:Delta141-4 E484K S494P became dominant until virus elimination. Routine serology revealed no evidence of an antibody response in the patient. A detailed analysis of the variant-specific immune response by pseudotyped virus neutralisation test, surrogate virus neutralisation test, and immunoglobulin-capture enzyme immunoassay showed that the onset of an IgM-dominated antibody response coincided with the appearance of escape mutations. The formation of neutralising antibodies against S:Delta141-4 E484K S494P correlated with virus elimination. One year later, the patient experienced clinically mild re-infection with Omicron BA.1.18, which was treated with sotrovimab and resulted in an increase in Omicron-reactive antibodies. In conclusion, the onset of an IgM-dominated endogenous immune response in an immunocompromised patient coincided with the appearance of additional mutations in the NTD and RBD of S in a bamlanivimab-resistant virus. Although virus elimination was ultimately achieved, this humoral immune response escaped detection by routine diagnosis and created a situation temporarily favouring the rapid emergence of various antibody escape mutants with known epidemiological relevance.
Collapse
Affiliation(s)
| | - Theresa Günther
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| | - Eva Ulla Lorentzen
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| | | | - Marc Tim Hennies
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| | - Rieke Neddermeyer
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| | | | - Alexander Mellmann
- Institute of Hygiene, University Hospital Muenster, University of Muenster, Muenster, Germany
| | | | - Georg Lenz
- Department of Medicine A, Haematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Matthias Stelljes
- Department of Medicine A, Haematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | | | - Richard Vollenberg
- Department of Medicine B for Gastroenterology, Hepatology, Endocrinology and Clinical Infectiology, University Hospital Muenster, Muenster, Germany
| | - Stephan Ludwig
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| | - Phil-Robin Tepasse
- Department of Medicine B for Gastroenterology, Hepatology, Endocrinology and Clinical Infectiology, University Hospital Muenster, Muenster, Germany
| | - Joachim Ewald Kühn
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| |
Collapse
|
14
|
El Moussaoui M, Bontems S, Meex C, Hayette MP, Lejeune M, Hong SL, Dellicour S, Moutschen M, Cambisano N, Renotte N, Bours V, Darcis G, Artesi M, Durkin K. Intrahost evolution leading to distinct lineages in the upper and lower respiratory tracts during SARS-CoV-2 prolonged infection. Virus Evol 2024; 10:veae073. [PMID: 39399151 PMCID: PMC11470753 DOI: 10.1093/ve/veae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/18/2024] [Accepted: 08/29/2024] [Indexed: 10/15/2024] Open
Abstract
Accumulating evidence points to persistent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in immunocompromised individuals as a source of novel lineages. While intrahost evolution of the virus in chronically infected patients has previously been reported, existing knowledge is primarily based on samples from the nasopharynx. In this study, we investigate the intrahost evolution and genetic diversity that accumulated during a prolonged SARS-CoV-2 infection with the Omicron BF.7 sublineage, which is estimated to have persisted for >1 year in an immunosuppressed patient. Based on the sequencing of eight samples collected at six time points, we identified 87 intrahost single-nucleotide variants, 2 indels, and a 362-bp deletion. Our analysis revealed distinct viral genotypes in the nasopharyngeal (NP), endotracheal aspirate, and bronchoalveolar lavage samples. This suggests that NP samples may not offer a comprehensive representation of the overall intrahost viral diversity. Our findings not only demonstrate that the Omicron BF.7 sublineage can further diverge from its already exceptionally mutated state but also highlight that patients chronically infected with SARS-CoV-2 can develop genetically specific viral populations across distinct anatomic compartments. This provides novel insights into the intricate nature of viral diversity and evolution dynamics in persistent infections.
Collapse
Affiliation(s)
- Majdouline El Moussaoui
- Department of Infectious Diseases and General Internal Medicine, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Sebastien Bontems
- Department of Microbiology, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Cecile Meex
- Department of Microbiology, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Marie-Pierre Hayette
- Department of Microbiology, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Marie Lejeune
- Department of Hematology, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Samuel L Hong
- Department of Microbiology, Immunology and Transplantation, Laboratory for Clinical and Epidemiological Virology, Rega Institute, KU Leuven, 49 Herestraat, Leuven 3000, Belgium
| | - Simon Dellicour
- Department of Microbiology, Immunology and Transplantation, Laboratory for Clinical and Epidemiological Virology, Rega Institute, KU Leuven, 49 Herestraat, Leuven 3000, Belgium
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, 50 Avenue Franklin Roosevelt, Bruxelles 1050, Belgium
| | - Michel Moutschen
- Department of Infectious Diseases and General Internal Medicine, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Nadine Cambisano
- Department of Human Genetics, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
- Laboratory of Human Genetics, GIGA Institute, University of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Nathalie Renotte
- Department of Human Genetics, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
- Laboratory of Human Genetics, GIGA Institute, University of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Vincent Bours
- Department of Human Genetics, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
- Laboratory of Human Genetics, GIGA Institute, University of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Gilles Darcis
- Department of Infectious Diseases and General Internal Medicine, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Maria Artesi
- Department of Human Genetics, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
- Laboratory of Human Genetics, GIGA Institute, University of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Keith Durkin
- Department of Human Genetics, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
- Laboratory of Human Genetics, GIGA Institute, University of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| |
Collapse
|
15
|
Ko SH, Radecki P, Belinky F, Bhiman JN, Meiring S, Kleynhans J, Amoako D, Guerra Canedo V, Lucas M, Kekana D, Martinson N, Lebina L, Everatt J, Tempia S, Bylund T, Rawi R, Kwong PD, Wolter N, von Gottberg A, Cohen C, Boritz EA. Rapid intra-host diversification and evolution of SARS-CoV-2 in advanced HIV infection. Nat Commun 2024; 15:7240. [PMID: 39174553 PMCID: PMC11341811 DOI: 10.1038/s41467-024-51539-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 08/12/2024] [Indexed: 08/24/2024] Open
Abstract
Previous studies have linked the evolution of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genetic variants to persistent infections in people with immunocompromising conditions, but the processes responsible for these observations are incompletely understood. Here we use high-throughput, single-genome amplification and sequencing (HT-SGS) to sequence SARS-CoV-2 spike genes from people with HIV (PWH, n = 22) and people without HIV (PWOH, n = 25). In PWOH and PWH with CD4 T cell counts (i.e., CD4 counts) ≥ 200 cells/μL, we find that most SARS-CoV-2 genomes sampled in each person share one spike sequence. By contrast, in people with advanced HIV infection (i.e., CD4 counts < 200 cells/μL), HT-SGS reveals a median of 46 distinct linked groupings of spike mutations per person. Elevated intra-host spike diversity in people with advanced HIV infection is detected immediately after COVID-19 symptom onset, and early intra-host spike diversity predicts SARS-CoV-2 shedding duration among PWH. Analysis of longitudinal timepoints reveals rapid fluctuations in spike sequence populations, replacement of founder sequences by groups of new haplotypes, and positive selection at functionally important residues. These findings demonstrate remarkable intra-host genetic diversity of SARS-CoV-2 in advanced HIV infection and suggest that adaptive intra-host SARS-CoV-2 evolution in this setting may contribute to the emergence of new variants of concern.
Collapse
Affiliation(s)
- Sung Hee Ko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pierce Radecki
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Frida Belinky
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jinal N Bhiman
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- SAMRC Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Susan Meiring
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Jackie Kleynhans
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Daniel Amoako
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- Department of Integrative Biology and Bioinformatics, College of Biological Sciences, University of Guelph, Ontario, Canada
| | - Vanessa Guerra Canedo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Margaret Lucas
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dikeledi Kekana
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Neil Martinson
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
- Johns Hopkins University, Center for TB Research, Baltimore, MD, USA
| | - Limakatso Lebina
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Josie Everatt
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Stefano Tempia
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tatsiana Bylund
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicole Wolter
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Anne von Gottberg
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Cheryl Cohen
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Eli A Boritz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
16
|
O’Toole Á, Aziz A, Maloney D. Publication-ready single nucleotide polymorphism visualization with snipit. Bioinformatics 2024; 40:btae510. [PMID: 39137137 PMCID: PMC11349183 DOI: 10.1093/bioinformatics/btae510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/29/2024] [Accepted: 08/12/2024] [Indexed: 08/15/2024] Open
Abstract
SUMMARY Snipit is an analysis and visualization tool designed for summarizing single nucleotide polymorphisms in sequences in comparison to a reference sequence. This tool efficiently catalogues nucleotide and amino acid differences, enabling clear comparisons through customizable, publication-ready figures. With features such as configurable colour palettes, customizable record sorting, and the ability to output figures in multiple formats, snipit offers a user-friendly interface for researchers across diverse disciplines. In addition, snipit includes a specialized recombi-mode for illustrating recombination patterns, which can highlight otherwise often difficult-to-detect relationships between sequences. AVAILABILITY AND IMPLEMENTATION Snipit is an open-source python-based tool that is hosted on GitHub under a GNU-GPL 3.0 licence (https://github.com/aineniamh/snipit). It can be installed from PyPi using pip. Source code and additional documentation can be found on the GitHub repository.
Collapse
Affiliation(s)
- Áine O’Toole
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, EH93FL, United Kingdom
| | - Ammar Aziz
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital, Parkville, Victoria, VIC 3052, Australia
| | - Daniel Maloney
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, EH93FL, United Kingdom
| |
Collapse
|
17
|
Bonetti Franceschi V, Volz E. Phylogenetic signatures reveal multilevel selection and fitness costs in SARS-CoV-2. Wellcome Open Res 2024; 9:85. [PMID: 39132669 PMCID: PMC11316176 DOI: 10.12688/wellcomeopenres.20704.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 08/13/2024] Open
Abstract
Background Large-scale sequencing of SARS-CoV-2 has enabled the study of viral evolution during the COVID-19 pandemic. Some viral mutations may be advantageous to viral replication within hosts but detrimental to transmission, thus carrying a transient fitness advantage. By affecting the number of descendants, persistence times and growth rates of associated clades, these mutations generate localised imbalance in phylogenies. Quantifying these features in closely-related clades with and without recurring mutations can elucidate the tradeoffs between within-host replication and between-host transmission. Methods We implemented a novel phylogenetic clustering algorithm ( mlscluster, https://github.com/mrc-ide/mlscluster) to systematically explore time-scaled phylogenies for mutations under transient/multilevel selection. We applied this method to a SARS-CoV-2 time-calibrated phylogeny with >1.2 million sequences from England, and characterised these recurrent mutations that may influence transmission fitness across PANGO-lineages and genomic regions using Poisson regressions and summary statistics. Results We found no major differences across two epidemic stages (before and after Omicron), PANGO-lineages, and genomic regions. However, spike, nucleocapsid, and ORF3a were proportionally more enriched for transmission fitness polymorphisms (TFP)-homoplasies than other proteins. We provide a catalog of SARS-CoV-2 sites under multilevel selection, which can guide experimental investigations within and beyond the spike protein. Conclusions This study provides empirical evidence for the existence of important tradeoffs between within-host replication and between-host transmission shaping the fitness landscape of SARS-CoV-2. This method may be used as a fast and scalable means to shortlist large sequence databases for sites under putative multilevel selection which may warrant subsequent confirmatory analyses and experimental confirmation.
Collapse
Affiliation(s)
- Vinicius Bonetti Franceschi
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, England, W2 1PG, UK
| | - Erik Volz
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, England, W2 1PG, UK
| |
Collapse
|
18
|
Pavia G, Quirino A, Marascio N, Veneziano C, Longhini F, Bruni A, Garofalo E, Pantanella M, Manno M, Gigliotti S, Giancotti A, Barreca GS, Branda F, Torti C, Rotundo S, Lionello R, La Gamba V, Berardelli L, Gullì SP, Trecarichi EM, Russo A, Palmieri C, De Marco C, Viglietto G, Casu M, Sanna D, Ciccozzi M, Scarpa F, Matera G. Persistence of SARS-CoV-2 infection and viral intra- and inter-host evolution in COVID-19 hospitalized patients. J Med Virol 2024; 96:e29708. [PMID: 38804179 DOI: 10.1002/jmv.29708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) persistence in COVID-19 patients could play a key role in the emergence of variants of concern. The rapid intra-host evolution of SARS-CoV-2 may result in an increased transmissibility, immune and therapeutic escape which could be a direct consequence of COVID-19 epidemic currents. In this context, a longitudinal retrospective study on eight consecutive COVID-19 patients with persistent SARS-CoV-2 infection, from January 2022 to March 2023, was conducted. To characterize the intra- and inter-host viral evolution, whole genome sequencing and phylogenetic analysis were performed on nasopharyngeal samples collected at different time points. Phylogenetic reconstruction revealed an accelerated SARS-CoV-2 intra-host evolution and emergence of antigenically divergent variants. The Bayesian inference and principal coordinate analysis analysis showed a host-based genomic structuring among antigenically divergent variants, that might reflect the positive effect of containment practices, within the critical hospital area. All longitudinal antigenically divergent isolates shared a wide range of amino acidic (aa) changes, particularly in the Spike (S) glycoprotein, that increased viral transmissibility (K417N, S477N, N501Y and Q498R), enhanced infectivity (R346T, S373P, R408S, T478K, Q498R, Y505H, D614G, H655Y, N679K and P681H), caused host immune escape (S371L, S375F, T376A, K417N, and K444T/R) and displayed partial or complete resistance to treatments (G339D, R346K/T, S371F/L, S375F, T376A, D405N, N440K, G446S, N460K, E484A, F486V, Q493R, G496S and Q498R). These results suggest that multiple novel variants which emerge in the patient during persistent infection, might spread to another individual and continue to evolve. A pro-active genomic surveillance of persistent SARS-CoV-2 infected patients is recommended to identify genetically divergent lineages before their diffusion.
Collapse
Affiliation(s)
- Grazia Pavia
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Angela Quirino
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Nadia Marascio
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Claudia Veneziano
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
- Interdepartmental Center of Services (CIS), Molecular Genomics and Pathology, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Federico Longhini
- Unit of Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Andrea Bruni
- Unit of Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Eugenio Garofalo
- Unit of Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Marta Pantanella
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Michele Manno
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Simona Gigliotti
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Aida Giancotti
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Giorgio Settimo Barreca
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Francesco Branda
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Carlo Torti
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Dipartimento di Sicurezza e Bioetica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Salvatore Rotundo
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Rosaria Lionello
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Valentina La Gamba
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Lavinia Berardelli
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Sara Palma Gullì
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Enrico Maria Trecarichi
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Alessandro Russo
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Camillo Palmieri
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Carmela De Marco
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
- Interdepartmental Center of Services (CIS), Molecular Genomics and Pathology, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
- Interdepartmental Center of Services (CIS), Molecular Genomics and Pathology, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Marco Casu
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Daria Sanna
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Giovanni Matera
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| |
Collapse
|
19
|
Martínez-González B, Soria ME, Mínguez P, Lorenzo-Redondo R, Salar-Vidal L, López-García A, Esteban-Muñoz M, Durán-Pastor A, Somovilla P, García-Crespo C, de Ávila AI, Gómez J, Esteban J, Fernández-Roblas R, Gadea I, Domingo E, Perales C. SARS-CoV-2 mutant spectra as variant of concern nurseries: endless variation? Front Microbiol 2024; 15:1358258. [PMID: 38559344 PMCID: PMC10979541 DOI: 10.3389/fmicb.2024.1358258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/21/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction SARS-CoV-2 isolates of a given clade may contain low frequency genomes that encode amino acids or deletions which are typical of a different clade. Methods Here we use high resolution ultra-deep sequencing to analyze SARS-CoV-2 mutant spectra. Results In 6 out of 11 SARS-CoV-2 isolates from COVID-19 patients, the mutant spectrum of the spike (S)-coding region included two or more amino acids or deletions, that correspond to discordant viral clades. A similar observation is reported for laboratory populations of SARS-CoV-2 USA-WA1/2020, following a cell culture infection in the presence of remdesivir, ribavirin or their combinations. Moreover, some of the clade-discordant genome residues are found in the same haplotype within an amplicon. Discussion We evaluate possible interpretations of these findings, and reviewed precedents for rapid selection of genomes with multiple mutations in RNA viruses. These considerations suggest that intra-host evolution may be sufficient to generate minority sequences which are closely related to sequences typical of other clades. The results provide a model for the origin of variants of concern during epidemic spread─in particular Omicron lineages─that does not require prolonged infection, involvement of immunocompromised individuals, or participation of intermediate, non-human hosts.
Collapse
Affiliation(s)
- Brenda Martínez-González
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - María Eugenia Soria
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Campus de Cantoblanco, Madrid, Spain
| | - Pablo Mínguez
- Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Bioinformatics Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Ramón Lorenzo-Redondo
- Division of Infectious Diseases, Center for Pathogen Genomics and Microbial Evolution, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Llanos Salar-Vidal
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Alberto López-García
- Health Research Institute IIS-FJD, Fundación Jiménez Diaz University Hospital, Madrid, Spain
| | - Mario Esteban-Muñoz
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Antoni Durán-Pastor
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Pilar Somovilla
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Campus de Cantoblanco, Madrid, Spain
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid, Spain
| | - Carlos García-Crespo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Campus de Cantoblanco, Madrid, Spain
| | - Ana Isabel de Ávila
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Campus de Cantoblanco, Madrid, Spain
| | - Jordi Gómez
- Instituto de Parasitología y Biomedicina “López-Neyra” (CSIC), Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Jaime Esteban
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Ricardo Fernández-Roblas
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Ignacio Gadea
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Esteban Domingo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Campus de Cantoblanco, Madrid, Spain
| | - Celia Perales
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| |
Collapse
|
20
|
Marques AD, Graham-Wooten J, Fitzgerald AS, Sobel Leonard A, Cook EJ, Everett JK, Rodino KG, Moncla LH, Kelly BJ, Collman RG, Bushman FD. SARS-CoV-2 evolution during prolonged infection in immunocompromised patients. mBio 2024; 15:e0011024. [PMID: 38364100 PMCID: PMC10936176 DOI: 10.1128/mbio.00110-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/18/2024] Open
Abstract
Prolonged infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in immunocompromised patients provides an opportunity for viral evolution, potentially leading to the generation of new pathogenic variants. To investigate the pathways of viral evolution, we carried out a study on five patients experiencing prolonged SARS-CoV-2 infection (quantitative polymerase chain reaction-positive for 79-203 days) who were immunocompromised due to treatment for lymphoma or solid organ transplantation. For each timepoint analyzed, we generated at least two independent viral genome sequences to assess the heterogeneity and control for sequencing error. Four of the five patients likely had prolonged infection; the fifth apparently experienced a reinfection. The rates of accumulation of substitutions in the viral genome per day were higher in hospitalized patients with prolonged infection than those estimated for the community background. The spike coding region accumulated a significantly greater number of unique mutations than other viral coding regions, and the mutation density was higher. Two patients were treated with monoclonal antibodies (bebtelovimab and sotrovimab); by the next sampled timepoint, each virus population showed substitutions associated with monoclonal antibody resistance as the dominant forms (spike K444N and spike E340D). All patients received remdesivir, but remdesivir-resistant substitutions were not detected. These data thus help elucidate the trends of emergence, evolution, and selection of mutational variants within long-term infected immunocompromised individuals. IMPORTANCE SARS-CoV-2 is responsible for a global pandemic, driven in part by the emergence of new viral variants. Where do these new variants come from? One model is that long-term viral persistence in infected individuals allows for viral evolution in response to host pressures, resulting in viruses more likely to replicate efficiently in humans. In this study, we characterize replication in several hospitalized and long-term infected individuals, documenting efficient pathways of viral evolution.
Collapse
Affiliation(s)
- Andrew D. Marques
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jevon Graham-Wooten
- Division of Pulmonary, Allergy, and Critical Care, Philadelphia, Pennsylvania, USA
| | | | - Ashley Sobel Leonard
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Emma J. Cook
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John K. Everett
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kyle G. Rodino
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Louise H. Moncla
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brendan J. Kelly
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ronald G. Collman
- Division of Pulmonary, Allergy, and Critical Care, Philadelphia, Pennsylvania, USA
| | - Frederic D. Bushman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
21
|
Álvarez-Herrera M, Sevilla J, Ruiz-Rodriguez P, Vergara A, Vila J, Cano-Jiménez P, González-Candelas F, Comas I, Coscollá M. VIPERA: Viral Intra-Patient Evolution Reporting and Analysis. Virus Evol 2024; 10:veae018. [PMID: 38510921 PMCID: PMC10953798 DOI: 10.1093/ve/veae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/02/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
Viral mutations within patients nurture the adaptive potential of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during chronic infections, which are a potential source of variants of concern. However, there is no integrated framework for the evolutionary analysis of intra-patient SARS-CoV-2 serial samples. Herein, we describe Viral Intra-Patient Evolution Reporting and Analysis (VIPERA), a new software that integrates the evaluation of the intra-patient ancestry of SARS-CoV-2 sequences with the analysis of evolutionary trajectories of serial sequences from the same viral infection. We have validated it using positive and negative control datasets and have successfully applied it to a new case, which revealed population dynamics and evidence of adaptive evolution. VIPERA is available under a free software license at https://github.com/PathoGenOmics-Lab/VIPERA.
Collapse
Affiliation(s)
- Miguel Álvarez-Herrera
- Institute for Integrative Systems Biology (I2SysBio, University of Valencia—CSIC), FISABIO Joint Research Unit ‘Infection and Public Health’, C/Agustín Escardino, 9, Paterna 46980, Spain
| | - Jordi Sevilla
- Institute for Integrative Systems Biology (I2SysBio, University of Valencia—CSIC), FISABIO Joint Research Unit ‘Infection and Public Health’, C/Agustín Escardino, 9, Paterna 46980, Spain
| | - Paula Ruiz-Rodriguez
- Institute for Integrative Systems Biology (I2SysBio, University of Valencia—CSIC), FISABIO Joint Research Unit ‘Infection and Public Health’, C/Agustín Escardino, 9, Paterna 46980, Spain
| | - Andrea Vergara
- Department of Clinical Microbiology, CDB, Hospital Clínic of Barcelona; University of Barcelona; ISGlobal, C. de Villarroel, 170, Barcelona 08007, Spain
- CIBER of Infectious Diseases (CIBERINFEC), Av. Monforte de Lemos, 3-5, Madrid 28029, Spain
| | - Jordi Vila
- Department of Clinical Microbiology, CDB, Hospital Clínic of Barcelona; University of Barcelona; ISGlobal, C. de Villarroel, 170, Barcelona 08007, Spain
- CIBER of Infectious Diseases (CIBERINFEC), Av. Monforte de Lemos, 3-5, Madrid 28029, Spain
| | - Pablo Cano-Jiménez
- Institute of Biomedicine of Valencia (IBV-CSIC), C/ Jaime Roig, 11, Valencia 46010, Spain
| | - Fernando González-Candelas
- Institute for Integrative Systems Biology (I2SysBio, University of Valencia—CSIC), FISABIO Joint Research Unit ‘Infection and Public Health’, C/Agustín Escardino, 9, Paterna 46980, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5, Madrid 28029, Spain
| | - Iñaki Comas
- Institute of Biomedicine of Valencia (IBV-CSIC), C/ Jaime Roig, 11, Valencia 46010, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5, Madrid 28029, Spain
| | - Mireia Coscollá
- Institute for Integrative Systems Biology (I2SysBio, University of Valencia—CSIC), FISABIO Joint Research Unit ‘Infection and Public Health’, C/Agustín Escardino, 9, Paterna 46980, Spain
| |
Collapse
|
22
|
Fournelle D, Mostefai F, Brunet-Ratnasingham E, Poujol R, Grenier JC, Gálvez JH, Pagliuzza A, Levade I, Moreira S, Benlarbi M, Beaudoin-Bussières G, Gendron-Lepage G, Bourassa C, Tauzin A, Grandjean Lapierre S, Chomont N, Finzi A, Kaufmann DE, Craig M, Hussin JG. Intra-Host Evolution Analyses in an Immunosuppressed Patient Supports SARS-CoV-2 Viral Reservoir Hypothesis. Viruses 2024; 16:342. [PMID: 38543708 PMCID: PMC10974702 DOI: 10.3390/v16030342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 05/23/2024] Open
Abstract
Throughout the SARS-CoV-2 pandemic, several variants of concern (VOCs) have been identified, many of which share recurrent mutations in the spike glycoprotein's receptor-binding domain (RBD). This region coincides with known epitopes and can therefore have an impact on immune escape. Protracted infections in immunosuppressed patients have been hypothesized to lead to an enrichment of such mutations and therefore drive evolution towards VOCs. Here, we present the case of an immunosuppressed patient that developed distinct populations with immune escape mutations throughout the course of their infection. Notably, by investigating the co-occurrence of substitutions on individual sequencing reads in the RBD, we found quasispecies harboring mutations that confer resistance to known monoclonal antibodies (mAbs) such as S:E484K and S:E484A. These mutations were acquired without the patient being treated with mAbs nor convalescent sera and without them developing a detectable immune response to the virus. We also provide additional evidence for a viral reservoir based on intra-host phylogenetics, which led to a viral substrain that evolved elsewhere in the patient's body, colonizing their upper respiratory tract (URT). The presence of SARS-CoV-2 viral reservoirs can shed light on protracted infections interspersed with periods where the virus is undetectable, and potential explanations for long-COVID cases.
Collapse
Affiliation(s)
- Dominique Fournelle
- Research Centre Montreal Heart Institute, Montréal, QC H1T 1C8, Canada; (D.F.); (F.M.); (R.P.); (J.-C.G.)
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Fatima Mostefai
- Research Centre Montreal Heart Institute, Montréal, QC H1T 1C8, Canada; (D.F.); (F.M.); (R.P.); (J.-C.G.)
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Elsa Brunet-Ratnasingham
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (E.B.-R.); (A.P.); (M.B.); (G.B.-B.); (G.G.-L.); (C.B.); (A.T.); (S.G.L.); (N.C.); (D.E.K.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Raphaël Poujol
- Research Centre Montreal Heart Institute, Montréal, QC H1T 1C8, Canada; (D.F.); (F.M.); (R.P.); (J.-C.G.)
| | - Jean-Christophe Grenier
- Research Centre Montreal Heart Institute, Montréal, QC H1T 1C8, Canada; (D.F.); (F.M.); (R.P.); (J.-C.G.)
| | - José Héctor Gálvez
- Canadian Centre for Computational Genomics, Montréal, QC H3A 0G1, Canada;
| | - Amélie Pagliuzza
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (E.B.-R.); (A.P.); (M.B.); (G.B.-B.); (G.G.-L.); (C.B.); (A.T.); (S.G.L.); (N.C.); (D.E.K.)
| | - Inès Levade
- Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, QC H9X 3R5, Canada; (I.L.)
| | - Sandrine Moreira
- Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, QC H9X 3R5, Canada; (I.L.)
| | - Mehdi Benlarbi
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (E.B.-R.); (A.P.); (M.B.); (G.B.-B.); (G.G.-L.); (C.B.); (A.T.); (S.G.L.); (N.C.); (D.E.K.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (E.B.-R.); (A.P.); (M.B.); (G.B.-B.); (G.G.-L.); (C.B.); (A.T.); (S.G.L.); (N.C.); (D.E.K.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Gabrielle Gendron-Lepage
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (E.B.-R.); (A.P.); (M.B.); (G.B.-B.); (G.G.-L.); (C.B.); (A.T.); (S.G.L.); (N.C.); (D.E.K.)
| | - Catherine Bourassa
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (E.B.-R.); (A.P.); (M.B.); (G.B.-B.); (G.G.-L.); (C.B.); (A.T.); (S.G.L.); (N.C.); (D.E.K.)
| | - Alexandra Tauzin
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (E.B.-R.); (A.P.); (M.B.); (G.B.-B.); (G.G.-L.); (C.B.); (A.T.); (S.G.L.); (N.C.); (D.E.K.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Simon Grandjean Lapierre
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (E.B.-R.); (A.P.); (M.B.); (G.B.-B.); (G.G.-L.); (C.B.); (A.T.); (S.G.L.); (N.C.); (D.E.K.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Nicolas Chomont
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (E.B.-R.); (A.P.); (M.B.); (G.B.-B.); (G.G.-L.); (C.B.); (A.T.); (S.G.L.); (N.C.); (D.E.K.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Andrés Finzi
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (E.B.-R.); (A.P.); (M.B.); (G.B.-B.); (G.G.-L.); (C.B.); (A.T.); (S.G.L.); (N.C.); (D.E.K.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Daniel E. Kaufmann
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (E.B.-R.); (A.P.); (M.B.); (G.B.-B.); (G.G.-L.); (C.B.); (A.T.); (S.G.L.); (N.C.); (D.E.K.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Centre Hospitalier de l’Université de Montréal (CHUM), Montréal, QC H2X 0C1, Canada
- Division of Infectious Diseases, Department of Medicine, University Hospital and University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Morgan Craig
- Research Centre, Centre Hospitalier UniversitaireSainte-Justine, Montréal, QC H3T 1C5, Canada;
- Département de Mathématiques et de Statistique, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Julie G. Hussin
- Research Centre Montreal Heart Institute, Montréal, QC H1T 1C8, Canada; (D.F.); (F.M.); (R.P.); (J.-C.G.)
- Département de Médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Mila-Quebec AI Institute, Montréal, QC H2S 3H1, Canada
| |
Collapse
|
23
|
Korosec CS, Wahl LM, Heffernan JM. Within-host evolution of SARS-CoV-2: how often are de novo mutations transmitted from symptomatic infections? Virus Evol 2024; 10:veae006. [PMID: 38425472 PMCID: PMC10904108 DOI: 10.1093/ve/veae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/20/2023] [Accepted: 01/12/2024] [Indexed: 03/02/2024] Open
Abstract
Despite a relatively low mutation rate, the large number of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections has allowed for substantial genetic change, leading to a multitude of emerging variants. Using a recently determined mutation rate (per site replication), as well as within-host parameter estimates for symptomatic SARS-CoV-2 infection, we apply a stochastic transmission-bottleneck model to describe the survival probability of de novo SARS-CoV-2 mutations as a function of bottleneck size and selection coefficient. For narrow bottlenecks, we find that mutations affecting per-target-cell attachment rate (with phenotypes associated with fusogenicity and ACE2 binding) have similar transmission probabilities to mutations affecting viral load clearance (with phenotypes associated with humoral evasion). We further find that mutations affecting the eclipse rate (with phenotypes associated with reorganization of cellular metabolic processes and synthesis of viral budding precursor material) are highly favoured relative to all other traits examined. We find that mutations leading to reduced removal rates of infected cells (with phenotypes associated with innate immune evasion) have limited transmission advantage relative to mutations leading to humoral evasion. Predicted transmission probabilities, however, for mutations affecting innate immune evasion are more consistent with the range of clinically estimated household transmission probabilities for de novo mutations. This result suggests that although mutations affecting humoral evasion are more easily transmitted when they occur, mutations affecting innate immune evasion may occur more readily. We examine our predictions in the context of a number of previously characterized mutations in circulating strains of SARS-CoV-2. Our work offers both a null model for SARS-CoV-2 mutation rates and predicts which aspects of viral life history are most likely to successfully evolve, despite low mutation rates and repeated transmission bottlenecks.
Collapse
Affiliation(s)
- Chapin S Korosec
- Modelling Infection and Immunity Lab, Mathematics and Statistics, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada
- Centre for Disease Modelling, Mathematics and Statistics, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada
| | - Lindi M Wahl
- Applied Mathematics, Western University, 1151 Richmond St, London, ON N6A 5B7, Canada
| | - Jane M Heffernan
- Modelling Infection and Immunity Lab, Mathematics and Statistics, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada
- Centre for Disease Modelling, Mathematics and Statistics, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
24
|
Ghafari M, Hall M, Golubchik T, Ayoubkhani D, House T, MacIntyre-Cockett G, Fryer HR, Thomson L, Nurtay A, Kemp SA, Ferretti L, Buck D, Green A, Trebes A, Piazza P, Lonie LJ, Studley R, Rourke E, Smith DL, Bashton M, Nelson A, Crown M, McCann C, Young GR, Santos RAND, Richards Z, Tariq MA, Cahuantzi R, Barrett J, Fraser C, Bonsall D, Walker AS, Lythgoe K. Prevalence of persistent SARS-CoV-2 in a large community surveillance study. Nature 2024; 626:1094-1101. [PMID: 38383783 PMCID: PMC10901734 DOI: 10.1038/s41586-024-07029-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 01/04/2024] [Indexed: 02/23/2024]
Abstract
Persistent SARS-CoV-2 infections may act as viral reservoirs that could seed future outbreaks1-5, give rise to highly divergent lineages6-8 and contribute to cases with post-acute COVID-19 sequelae (long COVID)9,10. However, the population prevalence of persistent infections, their viral load kinetics and evolutionary dynamics over the course of infections remain largely unknown. Here, using viral sequence data collected as part of a national infection survey, we identified 381 individuals with SARS-CoV-2 RNA at high titre persisting for at least 30 days, of which 54 had viral RNA persisting at least 60 days. We refer to these as 'persistent infections' as available evidence suggests that they represent ongoing viral replication, although the persistence of non-replicating RNA cannot be ruled out in all. Individuals with persistent infection had more than 50% higher odds of self-reporting long COVID than individuals with non-persistent infection. We estimate that 0.1-0.5% of infections may become persistent with typically rebounding high viral loads and last for at least 60 days. In some individuals, we identified many viral amino acid substitutions, indicating periods of strong positive selection, whereas others had no consensus change in the sequences for prolonged periods, consistent with weak selection. Substitutions included mutations that are lineage defining for SARS-CoV-2 variants, at target sites for monoclonal antibodies and/or are commonly found in immunocompromised people11-14. This work has profound implications for understanding and characterizing SARS-CoV-2 infection, epidemiology and evolution.
Collapse
Affiliation(s)
- Mahan Ghafari
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Department of Biology, University of Oxford, Oxford, UK.
- Pandemic Science Institute, University of Oxford, Oxford, UK.
| | - Matthew Hall
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Pandemic Science Institute, University of Oxford, Oxford, UK
| | - Tanya Golubchik
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Sydney Infectious Diseases Institute (Sydney ID), School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Daniel Ayoubkhani
- Office for National Statistics, Newport, UK
- Leicester Real World Evidence Unit, Diabetes Research Centre, University of Leicester, Leicester, UK
| | - Thomas House
- Department of Mathematics, University of Manchester, Manchester, UK
| | - George MacIntyre-Cockett
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Helen R Fryer
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Laura Thomson
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Pandemic Science Institute, University of Oxford, Oxford, UK
| | - Anel Nurtay
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Steven A Kemp
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Biology, University of Oxford, Oxford, UK
- Pandemic Science Institute, University of Oxford, Oxford, UK
| | - Luca Ferretti
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Pandemic Science Institute, University of Oxford, Oxford, UK
| | - David Buck
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Angie Green
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Amy Trebes
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Paolo Piazza
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Lorne J Lonie
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | | | | | - Darren L Smith
- The Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Matthew Bashton
- The Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Andrew Nelson
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Matthew Crown
- The Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Clare McCann
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Gregory R Young
- The Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Rui Andre Nunes Dos Santos
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Zack Richards
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Mohammad Adnan Tariq
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | | | | | - Christophe Fraser
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Pandemic Science Institute, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
- Wellcome Sanger Institute, Cambridge, UK
| | - David Bonsall
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Pandemic Science Institute, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headington, Oxford, UK
| | - Ann Sarah Walker
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- The National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at the University of Oxford, Oxford, UK
- The National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- MRC Clinical Trials Unit at UCL, UCL, London, UK
| | - Katrina Lythgoe
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Department of Biology, University of Oxford, Oxford, UK.
- Pandemic Science Institute, University of Oxford, Oxford, UK.
| |
Collapse
|
25
|
Li Y, Choudhary MC, Regan J, Boucau J, Nathan A, Speidel T, Liew MY, Edelstein GE, Kawano Y, Uddin R, Deo R, Marino C, Getz MA, Reynolds Z, Barry M, Gilbert RF, Tien D, Sagar S, Vyas TD, Flynn JP, Hammond SP, Novack LA, Choi B, Cernadas M, Wallace ZS, Sparks JA, Vyas JM, Seaman MS, Gaiha GD, Siedner MJ, Barczak AK, Lemieux JE, Li JZ. SARS-CoV-2 viral clearance and evolution varies by type and severity of immunodeficiency. Sci Transl Med 2024; 16:eadk1599. [PMID: 38266109 PMCID: PMC10982957 DOI: 10.1126/scitranslmed.adk1599] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024]
Abstract
Despite vaccination and antiviral therapies, immunocompromised individuals are at risk for prolonged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, but the immune defects that predispose an individual to persistent coronavirus disease 2019 (COVID-19) remain incompletely understood. In this study, we performed detailed viro-immunologic analyses of a prospective cohort of participants with COVID-19. The median times to nasal viral RNA and culture clearance in individuals with severe immunosuppression due to hematologic malignancy or transplant (S-HT) were 72 and 40 days, respectively, both of which were significantly longer than clearance rates in individuals with severe immunosuppression due to autoimmunity or B cell deficiency (S-A), individuals with nonsevere immunodeficiency, and nonimmunocompromised groups (P < 0.01). Participants who were severely immunocompromised had greater SARS-CoV-2 evolution and a higher risk of developing resistance against therapeutic monoclonal antibodies. Both S-HT and S-A participants had diminished SARS-CoV-2-specific humoral responses, whereas only the S-HT group had reduced T cell-mediated responses. This highlights the varied risk of persistent COVID-19 across distinct immunosuppressive conditions and suggests that suppression of both B and T cell responses results in the highest contributing risk of persistent infection.
Collapse
Affiliation(s)
- Yijia Li
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Manish C. Choudhary
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - James Regan
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julie Boucau
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Anusha Nathan
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
- Program in Health Sciences and Technology, Harvard Medical School and Massachusetts Institute of Technology, Boston, MA 02115, USA
| | - Tessa Speidel
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - May Yee Liew
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gregory E. Edelstein
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yumeko Kawano
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rockib Uddin
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rinki Deo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Caitlin Marino
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Matthew A. Getz
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Zahra Reynolds
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Mamadou Barry
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Rebecca F. Gilbert
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Dessie Tien
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Shruti Sagar
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Tammy D. Vyas
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - James P. Flynn
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah P. Hammond
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lewis A. Novack
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bina Choi
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Manuela Cernadas
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zachary S. Wallace
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jeffrey A. Sparks
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jatin M. Vyas
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Michael S. Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Gaurav D. Gaiha
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Mark J. Siedner
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Amy K. Barczak
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Jacob E. Lemieux
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jonathan Z. Li
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
26
|
Röltgen K, Boyd SD. Antibody and B Cell Responses to SARS-CoV-2 Infection and Vaccination: The End of the Beginning. ANNUAL REVIEW OF PATHOLOGY 2024; 19:69-97. [PMID: 37738512 DOI: 10.1146/annurev-pathmechdis-031521-042754] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
As the COVID-19 pandemic has evolved during the past years, interactions between human immune systems, rapidly mutating and selected SARS-CoV-2 viral variants, and effective vaccines have complicated the landscape of individual immunological histories. Here, we review some key findings for antibody and B cell-mediated immunity, including responses to the highly mutated omicron variants; immunological imprinting and other impacts of successive viral antigenic variant exposures on antibody and B cell memory; responses in secondary lymphoid and mucosal tissues and non-neutralizing antibody-mediated immunity; responses in populations vulnerable to severe disease such as those with cancer, immunodeficiencies, and other comorbidities, as well as populations showing apparent resistance to severe disease such as many African populations; and evidence of antibody involvement in postacute sequelae of infection or long COVID. Despite the initial phase of the pandemic ending, human populations will continue to face challenges presented by this unpredictable virus.
Collapse
Affiliation(s)
- Katharina Röltgen
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Scott D Boyd
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA;
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
27
|
Ko SH, Radecki P, Belinky F, Bhiman JN, Meiring S, Kleynhans J, Amoako D, Guerra Canedo V, Lucas M, Kekana D, Martinson N, Lebina L, Everatt J, Tempia S, Bylund T, Rawi R, Kwong PD, Wolter N, von Gottberg A, Cohen C, Boritz EA. Rapid Emergence and Evolution of SARS-CoV-2 Variants in Advanced HIV Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574420. [PMID: 38313289 PMCID: PMC10836083 DOI: 10.1101/2024.01.05.574420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Previous studies have linked the evolution of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genetic variants to persistent infections in people with immunocompromising conditions1-4, but the evolutionary processes underlying these observations are incompletely understood. Here we used high-throughput, single-genome amplification and sequencing (HT-SGS) to obtain up to ~103 SARS-CoV-2 spike gene sequences in each of 184 respiratory samples from 22 people with HIV (PWH) and 25 people without HIV (PWOH). Twelve of 22 PWH had advanced HIV infection, defined by peripheral blood CD4 T cell counts (i.e., CD4 counts) <200 cells/μL. In PWOH and PWH with CD4 counts ≥200 cells/μL, most single-genome spike sequences in each person matched one haplotype that predominated throughout the infection. By contrast, people with advanced HIV showed elevated intra-host spike diversity with a median of 46 haplotypes per person (IQR 14-114). Higher intra-host spike diversity immediately after COVID-19 symptom onset predicted longer SARS-CoV-2 RNA shedding among PWH, and intra-host spike diversity at this timepoint was significantly higher in people with advanced HIV than in PWOH. Composition of spike sequence populations in people with advanced HIV fluctuated rapidly over time, with founder sequences often replaced by groups of new haplotypes. These population-level changes were associated with a high total burden of intra-host mutations and positive selection at functionally important residues. In several cases, delayed emergence of detectable serum binding to spike was associated with positive selection for presumptive antibody-escape mutations. Taken together, our findings show remarkable intra-host genetic diversity of SARS-CoV-2 in advanced HIV infection and suggest that adaptive intra-host SARS-CoV-2 evolution in this setting may contribute to the emergence of new variants of concern (VOCs).
Collapse
Affiliation(s)
- Sung Hee Ko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pierce Radecki
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Frida Belinky
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jinal N. Bhiman
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- SAMRC Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Susan Meiring
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Jackie Kleynhans
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Daniel Amoako
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- Department of Integrative Biology and Bioinformatics, College of Biological Sciences, University of Guelph, Ontario, Canada
| | - Vanessa Guerra Canedo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Margaret Lucas
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dikeledi Kekana
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Neil Martinson
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
- Johns Hopkins University, Center for TB Research, Baltimore, MD 21218, USA
| | - Limakatso Lebina
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Josie Everatt
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Stefano Tempia
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tatsiana Bylund
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole Wolter
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Anne von Gottberg
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Cheryl Cohen
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Eli A. Boritz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
28
|
Lamb KD, Luka MM, Saathoff M, Orton RJ, Phan MVT, Cotten M, Yuan K, Robertson DL. Mutational signature dynamics indicate SARS-CoV-2's evolutionary capacity is driven by host antiviral molecules. PLoS Comput Biol 2024; 20:e1011795. [PMID: 38271457 PMCID: PMC10868779 DOI: 10.1371/journal.pcbi.1011795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/15/2024] [Accepted: 01/03/2024] [Indexed: 01/27/2024] Open
Abstract
The COVID-19 pandemic has been characterised by sequential variant-specific waves shaped by viral, individual human and population factors. SARS-CoV-2 variants are defined by their unique combinations of mutations and there has been a clear adaptation to more efficient human infection since the emergence of this new human coronavirus in late 2019. Here, we use machine learning models to identify shared signatures, i.e., common underlying mutational processes and link these to the subset of mutations that define the variants of concern (VOCs). First, we examined the global SARS-CoV-2 genomes and associated metadata to determine how viral properties and public health measures have influenced the magnitude of waves, as measured by the number of infection cases, in different geographic locations using regression models. This analysis showed that, as expected, both public health measures and virus properties were associated with the waves of regional SARS-CoV-2 reported infection numbers and this impact varies geographically. We attribute this to intrinsic differences such as vaccine coverage, testing and sequencing capacity and the effectiveness of government stringency. To assess underlying evolutionary change, we used non-negative matrix factorisation and observed three distinct mutational signatures, unique in their substitution patterns and exposures from the SARS-CoV-2 genomes. Signatures 1, 2 and 3 were biased to C→T, T→C/A→G and G→T point mutations. We hypothesise assignments of these mutational signatures to the host antiviral molecules APOBEC, ADAR and ROS respectively. We observe a shift amidst the pandemic in relative mutational signature activity from predominantly Signature 1 changes to an increasingly high proportion of changes consistent with Signature 2. This could represent changes in how the virus and the host immune response interact and indicates how SARS-CoV-2 may continue to generate variation in the future. Linkage of the detected mutational signatures to the VOC-defining amino acids substitutions indicates the majority of SARS-CoV-2's evolutionary capacity is likely to be associated with the action of host antiviral molecules rather than virus replication errors.
Collapse
Affiliation(s)
- Kieran D. Lamb
- Medical Research Council - University of Glasgow Centre for Virus Research, School of Infection and Immunity, Glasgow, Scotland, United Kingdom
- School of Computing Science, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Martha M. Luka
- Medical Research Council - University of Glasgow Centre for Virus Research, School of Infection and Immunity, Glasgow, Scotland, United Kingdom
- School of Computing Science, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Megan Saathoff
- Medical Research Council - University of Glasgow Centre for Virus Research, School of Infection and Immunity, Glasgow, Scotland, United Kingdom
| | - Richard J. Orton
- Medical Research Council - University of Glasgow Centre for Virus Research, School of Infection and Immunity, Glasgow, Scotland, United Kingdom
| | - My V. T. Phan
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- College of Health Solutions, Arizona State University, Phoenix, Arizona, United States of America
| | - Matthew Cotten
- Medical Research Council - University of Glasgow Centre for Virus Research, School of Infection and Immunity, Glasgow, Scotland, United Kingdom
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- College of Health Solutions, Arizona State University, Phoenix, Arizona, United States of America
- Complex Adaptive Systems Initiative, Arizona State University, Scottsdale, Arizona, United States of America
| | - Ke Yuan
- School of Computing Science, University of Glasgow, Glasgow, Scotland, United Kingdom
- School of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
- Cancer Research UK Scotland Institute, Glasgow, Scotland, United Kingdom
| | - David L. Robertson
- Medical Research Council - University of Glasgow Centre for Virus Research, School of Infection and Immunity, Glasgow, Scotland, United Kingdom
| |
Collapse
|
29
|
Lustig G, Ganga Y, Rodel HE, Tegally H, Khairallah A, Jackson L, Cele S, Khan K, Jule Z, Reedoy K, Karim F, Bernstein M, Ndung’u T, Moosa MYS, Archary D, de Oliveira T, Lessells R, Neher RA, Abdool Karim SS, Sigal A. SARS-CoV-2 infection in immunosuppression evolves sub-lineages which independently accumulate neutralization escape mutations. Virus Evol 2023; 10:vead075. [PMID: 38361824 PMCID: PMC10868398 DOI: 10.1093/ve/vead075] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/11/2023] [Accepted: 12/21/2023] [Indexed: 02/17/2024] Open
Abstract
One mechanism of variant formation may be evolution during long-term infection in immunosuppressed people. To understand the viral phenotypes evolved during such infection, we tested SARS-CoV-2 viruses evolved from an ancestral B.1 lineage infection lasting over 190 days post-diagnosis in an advanced HIV disease immunosuppressed individual. Sequence and phylogenetic analysis showed two evolving sub-lineages, with the second sub-lineage replacing the first sub-lineage in a seeming evolutionary sweep. Each sub-lineage independently evolved escape from neutralizing antibodies. The most evolved virus for the first sub-lineage (isolated day 34) and the second sub-lineage (isolated day 190) showed similar escape from ancestral SARS-CoV-2 and Delta-variant infection elicited neutralizing immunity despite having no spike mutations in common relative to the B.1 lineage. The day 190 isolate also evolved higher cell-cell fusion and faster viral replication and caused more cell death relative to virus isolated soon after diagnosis, though cell death was similar to day 34 first sub-lineage virus. These data show that SARS-CoV-2 strains in prolonged infection in a single individual can follow independent evolutionary trajectories which lead to neutralization escape and other changes in viral properties.
Collapse
Affiliation(s)
- Gila Lustig
- Centre for the AIDS Programme of Research in South Africa, 719 Umbilo Road, Durban 4001, South Africa
| | - Yashica Ganga
- Africa Health Research Institute, 719 Umbilo Road, Durban 4001, South Africa
| | - Hylton E Rodel
- Africa Health Research Institute, 719 Umbilo Road, Durban 4001, South Africa
- Division of Infection and Immunity, University College London, UCL Cruciform Building Gower Street, London WC1E 6BT, UK
| | - Houriiyah Tegally
- KwaZulu-Natal Research Innovation and Sequencing Platform, 719 Umbilo Road, Durban 4001, South Africa
- Centre for Epidemic Response and Innovation, School of Data Science and Computational Thinking, Stellenbosch University, Francie Van Zijl Drive, Cape Town 7505, South Africa
| | - Afrah Khairallah
- Africa Health Research Institute, 719 Umbilo Road, Durban 4001, South Africa
| | - Laurelle Jackson
- Africa Health Research Institute, 719 Umbilo Road, Durban 4001, South Africa
| | - Sandile Cele
- Africa Health Research Institute, 719 Umbilo Road, Durban 4001, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, 719 Umbilo Road, Durban 4001, South Africa
| | - Khadija Khan
- Africa Health Research Institute, 719 Umbilo Road, Durban 4001, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, 719 Umbilo Road, Durban 4001, South Africa
| | - Zesuliwe Jule
- Africa Health Research Institute, 719 Umbilo Road, Durban 4001, South Africa
| | - Kajal Reedoy
- Africa Health Research Institute, 719 Umbilo Road, Durban 4001, South Africa
| | - Farina Karim
- Africa Health Research Institute, 719 Umbilo Road, Durban 4001, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, 719 Umbilo Road, Durban 4001, South Africa
| | - Mallory Bernstein
- Africa Health Research Institute, 719 Umbilo Road, Durban 4001, South Africa
| | - Thumbi Ndung’u
- Africa Health Research Institute, 719 Umbilo Road, Durban 4001, South Africa
- Division of Infection and Immunity, University College London, UCL Cruciform Building Gower Street, London WC1E 6BT, UK
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, 719 Umbilo Road, Durban 4001, South Africa
- HIV Pathogenesis Programme, University of KwaZulu-Natal, 719 Umbilo Road, Durban 4001, South Africa
- Ragon Institute of MGH, MIT and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Mahomed-Yunus S Moosa
- Department of Infectious Diseases, Nelson R. Mandela School of Clinical Medicine, University of KwaZulu-Natal, 719 Umbilo Road, Durban 4001, South Africa
| | - Derseree Archary
- Centre for the AIDS Programme of Research in South Africa, 719 Umbilo Road, Durban 4001, South Africa
| | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform, 719 Umbilo Road, Durban 4001, South Africa
- Centre for Epidemic Response and Innovation, School of Data Science and Computational Thinking, Stellenbosch University, Francie Van Zijl Drive, Cape Town 7505, South Africa
- Department of Global Health, University of Washington, 3980 15th Avenue NE, Seattle, WA 98105, USA
| | - Richard Lessells
- KwaZulu-Natal Research Innovation and Sequencing Platform, 719 Umbilo Road, Durban 4001, South Africa
| | - Richard A Neher
- SIB Swiss Institute of Bioinformatics, Quartier Sorge - Bâtiment Amphipôle, Lausanne 1015, Switzerland
- Biozentrum, University of Basel, Spitalstrasse 41 4056, Basel, Switzerland
| | - Salim S Abdool Karim
- Centre for the AIDS Programme of Research in South Africa, 719 Umbilo Road, Durban 4001, South Africa
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168th Street, New York, NY 10032, United States
| | - Alex Sigal
- Centre for the AIDS Programme of Research in South Africa, 719 Umbilo Road, Durban 4001, South Africa
- Africa Health Research Institute, 719 Umbilo Road, Durban 4001, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, 719 Umbilo Road, Durban 4001, South Africa
| |
Collapse
|
30
|
Kosakovsky Pond SL, Martin D. Anti-COVID drug accelerates viral evolution. Nature 2023; 623:486-487. [PMID: 37875683 DOI: 10.1038/d41586-023-03248-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
|
31
|
Raglow Z, Surie D, Chappell JD, Zhu Y, Martin ET, Kwon JH, Frosch AE, Mohamed A, Gilbert J, Bendall EE, Bahr A, Halasa N, Talbot HK, Grijalva CG, Baughman A, Womack KN, Johnson C, Swan SA, Koumans E, McMorrow ML, Harcourt JL, Atherton LJ, Burroughs A, Thornburg NJ, Self WH, Lauring AS. SARS-CoV-2 shedding and evolution in immunocompromised hosts during the Omicron period: a multicenter prospective analysis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.22.23294416. [PMID: 37662226 PMCID: PMC10473782 DOI: 10.1101/2023.08.22.23294416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Background Prolonged SARS-CoV-2 infections in immunocompromised hosts may predict or source the emergence of highly mutated variants. The types of immunosuppression placing patients at highest risk for prolonged infection and associated intrahost viral evolution remain unclear. Methods Adults aged ≥18 years were enrolled at 5 hospitals and followed from 4/11/2022 - 2/1/2023. Eligible patients were SARS-CoV-2-positive in the previous 14 days and had a moderate or severely immunocompromising condition or treatment. Nasal specimens were tested by rRT-PCR every 2-4 weeks until negative in consecutive specimens. Positive specimens underwent viral culture and whole genome sequencing. A Cox proportional hazards model was used to assess factors associated with duration of infection. Results We enrolled 150 patients with: B cell malignancy or anti-B cell therapy (n=18), solid organ or hematopoietic stem cell transplant (SOT/HSCT) (n=59), AIDS (n=5), non-B cell malignancy (n=23), and autoimmune/autoinflammatory conditions (n=45). Thirty-eight (25%) were rRT-PCR-positive and 12 (8%) were culture-positive ≥21 days after initial SARS-CoV-2 detection or illness onset. Patients with B cell dysfunction had longer duration of rRT-PCR-positivity compared to those with autoimmune/autoinflammatory conditions (aHR 0.32, 95% CI 0.15-0.64). Consensus (>50% frequency) spike mutations were identified in 5 individuals who were rRT-PCR-positive >56 days; 61% were in the receptor-binding domain (RBD). Mutations shared by multiple individuals were rare (<5%) in global circulation. Conclusions In this cohort, prolonged replication-competent Omicron SARS-CoV-2 infections were uncommon. Within-host evolutionary rates were similar across patients, but individuals with infections lasting >56 days accumulated spike mutations, which were distinct from those seen globally.
Collapse
Affiliation(s)
- Zoe Raglow
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Diya Surie
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - James D Chappell
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yuwei Zhu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Emily T Martin
- School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Jennie H Kwon
- Department of Medicine, Washington University, St. Louis, Missouri
| | - Anne E Frosch
- Department of Medicine, Hennepin County Medical Center, Minneapolis, Minnesota
| | - Amira Mohamed
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Julie Gilbert
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Emily E Bendall
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Auden Bahr
- Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Natasha Halasa
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - H Keipp Talbot
- Departments of Medicine and Health Policy, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Carlos G Grijalva
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Adrienne Baughman
- Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kelsey N Womack
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Cassandra Johnson
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sydney A Swan
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Emilia Koumans
- Division of STD Prevention, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Meredith L McMorrow
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Jennifer L Harcourt
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Lydia J Atherton
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Ashley Burroughs
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Natalie J Thornburg
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Wesley H Self
- Vanderbilt Institute for Clinical and Translational Research and Department of Emergency Medicine and, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Adam S Lauring
- Departments of Internal Medicine and Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
32
|
Li Y, Choudhary MC, Regan J, Boucau J, Nathan A, Speidel T, Liew MY, Edelstein GE, Kawano Y, Uddin R, Deo R, Marino C, Getz MA, Reynold Z, Barry M, Gilbert RF, Tien D, Sagar S, Vyas TD, Flynn JP, Hammond SP, Novack LA, Choi B, Cernadas M, Wallace ZS, Sparks JA, Vyas JM, Seaman MS, Gaiha GD, Siedner MJ, Barczak AK, Lemieux JE, Li JZ. SARS-CoV-2 Viral Clearance and Evolution Varies by Extent of Immunodeficiency. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.31.23293441. [PMID: 37577493 PMCID: PMC10418302 DOI: 10.1101/2023.07.31.23293441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Despite vaccination and antiviral therapies, immunocompromised individuals are at risk for prolonged SARS-CoV-2 infection, but the immune defects that predispose to persistent COVID-19 remain incompletely understood. In this study, we performed detailed viro-immunologic analyses of a prospective cohort of participants with COVID-19. The median time to nasal viral RNA and culture clearance in the severe hematologic malignancy/transplant group (S-HT) were 72 and 40 days, respectively, which were significantly longer than clearance rates in the severe autoimmune/B-cell deficient (S-A), non-severe, and non-immunocompromised groups (P<0.001). Participants who were severely immunocompromised had greater SARS-CoV-2 evolution and a higher risk of developing antiviral treatment resistance. Both S-HT and S-A participants had diminished SARS-CoV-2-specific humoral, while only the S-HT group had reduced T cell-mediated responses. This highlights the varied risk of persistent COVID-19 across immunosuppressive conditions and suggests that suppression of both B and T cell responses results in the highest contributing risk of persistent infection.
Collapse
Affiliation(s)
- Yijia Li
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Manish C Choudhary
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - James Regan
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Julie Boucau
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Anusha Nathan
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Program in Health Sciences and Technology, Harvard Medical School and Massachusetts Institute of Technology, Boston, MA 02115, USA
| | - Tessa Speidel
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - May Yee Liew
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Gregory E Edelstein
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yumeko Kawano
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rockib Uddin
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rinki Deo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Caitlin Marino
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Matthew A Getz
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Zahra Reynold
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mamadou Barry
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rebecca F Gilbert
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Dessie Tien
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shruti Sagar
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tammy D Vyas
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - James P Flynn
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sarah P Hammond
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lewis A Novack
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bina Choi
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Manuela Cernadas
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zachary S Wallace
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeffrey A Sparks
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jatin M Vyas
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Gaurav D Gaiha
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Mark J Siedner
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Amy K Barczak
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Jacob E Lemieux
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jonathan Z Li
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
33
|
Fang L, Xu J, Zhao Y, Fan J, Shen J, Liu W, Cao G. The effects of amino acid substitution of spike protein and genomic recombination on the evolution of SARS-CoV-2. Front Microbiol 2023; 14:1228128. [PMID: 37560529 PMCID: PMC10409611 DOI: 10.3389/fmicb.2023.1228128] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/03/2023] [Indexed: 08/11/2023] Open
Abstract
Over three years' pandemic of 2019 novel coronavirus disease (COVID-19), multiple variants and novel subvariants have emerged successively, outcompeted earlier variants and become predominant. The sequential emergence of variants reflects the evolutionary process of mutation-selection-adaption of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Amino acid substitution/insertion/deletion in the spike protein causes altered viral antigenicity, transmissibility, and pathogenicity of SARS-CoV-2. Early in the pandemic, D614G mutation conferred virus with advantages over previous variants and increased transmissibility, and it also laid a conservative background for subsequent substantial mutations. The role of genomic recombination in the evolution of SARS-CoV-2 raised increasing concern with the occurrence of novel recombinants such as Deltacron, XBB.1.5, XBB.1.9.1, and XBB.1.16 in the late phase of pandemic. Co-circulation of different variants and co-infection in immunocompromised patients accelerate the emergence of recombinants. Surveillance for SARS-CoV-2 genomic variations, particularly spike protein mutation and recombination, is essential to identify ongoing changes in the viral genome and antigenic epitopes and thus leads to the development of new vaccine strategies and interventions.
Collapse
Affiliation(s)
- Letian Fang
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai, China
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Jie Xu
- Department of Foreign Languages, International Exchange Center for Military Medicine, Second Military Medical University, Shanghai, China
| | - Yue Zhao
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai, China
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Junyan Fan
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai, China
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Jiaying Shen
- School of Medicine, Tongji University, Shanghai, China
| | - Wenbin Liu
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai, China
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Guangwen Cao
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai, China
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| |
Collapse
|
34
|
Reuter N, Chen X, Kropff B, Peter AS, Britt WJ, Mach M, Überla K, Thomas M. SARS-CoV-2 Spike Protein Is Capable of Inducing Cell-Cell Fusions Independent from Its Receptor ACE2 and This Activity Can Be Impaired by Furin Inhibitors or a Subset of Monoclonal Antibodies. Viruses 2023; 15:1500. [PMID: 37515187 PMCID: PMC10384293 DOI: 10.3390/v15071500] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which was responsible for the COVID-19 pandemic, efficiently spreads cell-to-cell through mechanisms facilitated by its membrane glycoprotein spike. We established a dual split protein (DSP) assay based on the complementation of GFP and luciferase to quantify the fusogenic activity of the SARS-CoV-2 spike protein. We provide several lines of evidence that the spike protein of SARS-CoV-2, but not SARS-CoV-1, induced cell-cell fusion even in the absence of its receptor, angiotensin-converting enzyme 2 (ACE2). This poorly described ACE2-independent cell fusion activity of the spike protein was strictly dependent on the proteasomal cleavage of the spike by furin while TMPRSS2 was dispensable. Previous and current variants of concern (VOCs) differed significantly in their fusogenicity. The Delta spike was extremely potent compared to Alpha, Beta, Gamma and Kappa, while the Omicron spike was almost devoid of receptor-independent fusion activity. Nonetheless, for all analyzed variants, cell fusion was dependent on furin cleavage and could be pharmacologically inhibited with CMK. Mapping studies revealed that amino acids 652-1273 conferred the ACE2-independent fusion activity of the spike. Unexpectedly, residues proximal to the furin cleavage site were not of major relevance, whereas residue 655 critically regulated fusion. Finally, we found that the spike's fusion activity in the absence of ACE2 could be inhibited by antibodies directed against its N-terminal domain (NTD) but not by antibodies targeting its receptor-binding domain (RBD). In conclusion, our BSL-1-compatible DSP assay allowed us to screen for inhibitors or antibodies that interfere with the spike's fusogenic activity and may therefore contribute to both rational vaccine design and development of novel treatment options against SARS-CoV-2.
Collapse
Affiliation(s)
- Nina Reuter
- Virologisches Institut, Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Xiaohan Chen
- Virologisches Institut, Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Barbara Kropff
- Virologisches Institut, Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Antonia Sophia Peter
- Virologisches Institut, Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - William J Britt
- Departments of Pediatrics, Microbiology and Neurobiology, Children's Hospital of Alabama, School of Medicine, University of Alabama, Birmingham, AL 35233-1771, USA
| | - Michael Mach
- Virologisches Institut, Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Klaus Überla
- Virologisches Institut, Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Marco Thomas
- Virologisches Institut, Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
35
|
Brüssow H. Viral infections at the animal-human interface-Learning lessons from the SARS-CoV-2 pandemic. Microb Biotechnol 2023; 16:1397-1411. [PMID: 37338856 DOI: 10.1111/1751-7915.14269] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 06/21/2023] Open
Abstract
This Lilliput explores the current epidemiological and virological arguments for a zoonotic origin of the COVID-19 pandemic. While the role of bats, pangolins and racoon dogs as viral reservoirs has not yet been proven, a spill-over of a coronavirus infection from animals into humans at the Huanan food market in Wuhan has a much greater plausibility than alternative hypotheses such as a laboratory virus escape, deliberate genetic engineering or introduction by cold chain food products. This Lilliput highlights the dynamic nature of the animal-human interface for viral cross-infections from humans into feral white tail deer or farmed minks (reverse zoonosis). Surveillance of viral infections at the animal-human interface is an urgent task since live animal markets are not the only risks for future viral spill-overs. Climate change will induce animal migration which leads to viral exchanges between animal species that have not met in the past. Environmental change and deforestation will also increase contact between animals and humans. Developing an early warning system for emerging viral infections becomes thus a societal necessity not only for human but also for animal and environmental health (One Health concept). Microbiologists have developed tools ranging from virome analysis in key suspects such as viral reservoirs (bats, wild game animals, bushmeat) and in humans exposed to wild animals, to wastewater analysis to detect known and unknown viruses circulating in the human population and sentinel studies in animal-exposed patients with fever. Criteria need to be developed to assess the virulence and transmissibility of zoonotic viruses. An early virus warning system is costly and will need political lobbying. The accelerating number of viral infections with pandemic potential over the last decades should provide the public pressure to extend pandemic preparedness for the inclusion of early viral alert systems.
Collapse
Affiliation(s)
- Harald Brüssow
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| |
Collapse
|
36
|
Cheng Y, Ji C, Zhou HY, Zheng H, Wu A. Web Resources for SARS-CoV-2 Genomic Database, Annotation, Analysis and Variant Tracking. Viruses 2023; 15:1158. [PMID: 37243244 PMCID: PMC10222785 DOI: 10.3390/v15051158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
The SARS-CoV-2 genomic data continue to grow, providing valuable information for researchers and public health officials. Genomic analysis of these data sheds light on the transmission and evolution of the virus. To aid in SARS-CoV-2 genomic analysis, many web resources have been developed to store, collate, analyze, and visualize the genomic data. This review summarizes web resources used for the SARS-CoV-2 genomic epidemiology, covering data management and sharing, genomic annotation, analysis, and variant tracking. The challenges and further expectations for these web resources are also discussed. Finally, we highlight the importance and need for continued development and improvement of related web resources to effectively track the spread and understand the evolution of the virus.
Collapse
Affiliation(s)
- Yexiao Cheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211100, China
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
- Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Chengyang Ji
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
- Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Hang-Yu Zhou
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
- Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Heng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211100, China
| | - Aiping Wu
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
- Suzhou Institute of Systems Medicine, Suzhou 215123, China
| |
Collapse
|
37
|
Shapira G, Patalon T, Gazit S, Shomron N. Immunosuppression as a Hub for SARS-CoV-2 Mutational Drift. Viruses 2023; 15:v15040855. [PMID: 37112835 PMCID: PMC10145566 DOI: 10.3390/v15040855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
The clinical course of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is largely determined by host factors, with a wide range of outcomes. Despite an extensive vaccination campaign and high rates of infection worldwide, the pandemic persists, adapting to overcome antiviral immunity acquired through prior exposure. The source of many such major adaptations is variants of concern (VOCs), novel SARS-CoV-2 variants produced by extraordinary evolutionary leaps whose origins remain mostly unknown. In this study, we tested the influence of factors on the evolutionary course of SARS-CoV-2. Electronic health records of individuals infected with SARS-CoV-2 were paired to viral whole-genome sequences to assess the effects of host clinical parameters and immunity on the intra-host evolution of SARS-CoV-2. We found slight, albeit significant, differences in SARS-CoV-2 intra-host diversity, which depended on host parameters such as vaccination status and smoking. Only one viral genome had significant alterations as a result of host parameters; it was found in an immunocompromised, chronically infected woman in her 70s. We highlight the unusual viral genome obtained from this woman, which had an accelerated mutational rate and an excess of rare mutations, including near-complete truncating of the accessory protein ORF3a. Our findings suggest that the evolutionary capacity of SARS-CoV-2 during acute infection is limited and mostly unaffected by host characteristics. Significant viral evolution is seemingly exclusive to a small subset of COVID-19 cases, which typically prolong infections in immunocompromised patients. In these rare cases, SARS-CoV-2 genomes accumulate many impactful and potentially adaptive mutations; however, the transmissibility of such viruses remains unclear.
Collapse
|
38
|
Genomic surveillance of SARS-CoV-2 in mainland China after ending the zero-COVID policy, December 2022-January 2023. J Infect 2023; 86:e84-e86. [PMID: 36868320 PMCID: PMC9977122 DOI: 10.1016/j.jinf.2023.02.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023]
|