1
|
Rao VN, Coelho CH. Public antibodies: convergent signatures in human humoral immunity against pathogens. mBio 2025; 16:e0224724. [PMID: 40237455 PMCID: PMC12077206 DOI: 10.1128/mbio.02247-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
The human humoral immune system has evolved to recognize a vast array of pathogenic threats. This ability is primarily driven by the immense diversity of antibodies generated by gene rearrangement during B cell development. However, different people often produce strikingly similar antibodies when exposed to the same antigen-known as public antibodies. Public antibodies not only reflect the immune system's ability to consistently select for optimal B cells but can also serve as signatures of the humoral responses triggered by infection and vaccination. In this Minireview, we examine and compare public antibody identification methods, including the identification criteria used based on V(D)J gene usage and similarity in the complementarity-determining region three sequences, and explore the molecular features of public antibodies elicited against common pathogens, including viruses, protozoa, and bacteria. Finally, we discuss the evolutionary significance and potential applications of public antibodies in informing the design of germline-targeting vaccines, predicting escape mutations in emerging viruses, and providing insights into the process of affinity maturation. The ongoing discovery of public antibodies in response to emerging pathogens holds the potential to improve pandemic preparedness, accelerate vaccine design efforts, and deepen our understanding of human B cell biology.
Collapse
Affiliation(s)
- Vishal N. Rao
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Camila H. Coelho
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
2
|
Fraser DD, Singh D, Cela E, Patel MA, Assaf M, Quintero M, Knauer M, Miller MR, Bellini M, Li A, Hahn P, Hrek M, Cruz-Aguado J. Neutralizing antibodies to SARS-CoV-2 variants of concern: a pediatric surveillance study. Sci Rep 2025; 15:11588. [PMID: 40185990 PMCID: PMC11971435 DOI: 10.1038/s41598-025-95956-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 03/25/2025] [Indexed: 04/07/2025] Open
Abstract
Knowledge regarding the pediatric immune response to SARS-CoV-2 infection and/or vaccination remains limited, particularly for the variants of concern (VOC). Our objective was to evaluate the neutralizing antibody response against SARS-CoV-2 VOC in the naturally infected and/or vaccinated pediatric population. Participants aged 5-12 years who presented to either an outpatient clinic or emergency room were eligible for participation in this study. Participants were divided into four groups based on infection and vaccination status. Plasma was tested using immunoassays targeting anti-SARS-CoV-2 IgG, spike protein, and nucleocapsid. A total of 619 participants met study inclusion. Natural infection was identified in 189/619 children (31%), 284/619 were vaccinated (46%) and 69/619 were both naturally infected and vaccinated (11%). Participants that were vaccinated had received one (n = 169/619; 27%) or two (n = 115/619; 19%) vaccine doses. The median time between the 1st and 2nd vaccine doses was 56 days, interquartile range 50-56. A general upward trend in antibody positivity was observed across all VOC as the study proceeded over a 5-month period. Omicron antibody responses were lower than those of other VOC, both in relation to the percentage of positive cases and over time. Neither asthma nor diabetes altered antibody responses, but antibody titres were reduced for a variety of VOC in those children receiving immunotherapy or with leukopenia. This study demonstrated decreased neutralizing antibody responses against the Omicron variant, regardless of past infection or vaccination status. These findings emphasize the need for continued neutralizing antibody surveillance.
Collapse
Affiliation(s)
- Douglas D Fraser
- Pediatrics, Western University, London, ON, Canada.
- Physiology and Pharmacology, Western University, London, ON, Canada.
- Clinical Neurological Sciences, Western University, London, ON, Canada.
- Children's Health Research Institute, London, ON, Canada.
| | - Devika Singh
- Pediatrics, Western University, London, ON, Canada
| | - Enis Cela
- Physiology and Pharmacology, Western University, London, ON, Canada
- Children's Health Research Institute, London, ON, Canada
| | - Maitray A Patel
- Epidemiology and Biostatistics, Western University, London, ON, Canada
| | - Maysaa Assaf
- Pediatrics, Western University, London, ON, Canada
| | | | - Michael Knauer
- Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Michael R Miller
- Pediatrics, Western University, London, ON, Canada
- Children's Health Research Institute, London, ON, Canada
| | | | - Angela Li
- Diagnostics Biochem Canada Inc, London, ON, Canada
| | - Paul Hahn
- Diagnostics Biochem Canada Inc, London, ON, Canada
| | - Marta Hrek
- Diagnostics Biochem Canada Inc, London, ON, Canada
| | | |
Collapse
|
3
|
Wasdin PT, Johnson NV, Janke AK, Held S, Marinov TM, Jordaan G, Vandenabeele L, Pantouli F, Gillespie RA, Vukovich MJ, Holt CM, Kim J, Hansman G, Logue J, Chu HY, Andrews SF, Kanekiyo M, Sautto GA, Ross TM, Sheward DJ, McLellan JS, Abu-Shmais AA, Georgiev IS. Generation of antigen-specific paired chain antibody sequences using large language models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.20.629482. [PMID: 40027781 PMCID: PMC11870394 DOI: 10.1101/2024.12.20.629482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The traditional process of antibody discovery is limited by inefficiency, high costs, and low success rates. Recent approaches employing artificial intelligence (AI) have been developed to optimize existing antibodies and generate antibody sequences in a target-agnostic manner. In this work, we present MAGE (Monoclonal Antibody GEnerator), a sequence-based Protein Language Model (PLM) fine-tuned for the task of generating paired human variable heavy and light chain antibody sequences against targets of interest. We show that MAGE can generate novel and diverse antibody sequences with experimentally validated binding specificity against SARS-CoV-2, an emerging avian influenza H5N1, and respiratory syncytial virus A (RSV-A). MAGE represents a first-in-class model capable of designing human antibodies against multiple targets with no starting template.
Collapse
Affiliation(s)
- Perry T. Wasdin
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center; Nashville, TN, USA
- Center for Computational Microbiology and Immunology, Vanderbilt University Medical Center; Nashville, TN, 37232, USA
- Vanderbilt Center for Antibody Therapeutics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nicole V. Johnson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712 USA
| | - Alexis K. Janke
- Vanderbilt Center for Antibody Therapeutics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sofia Held
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Toma M. Marinov
- Center for Computational Microbiology and Immunology, Vanderbilt University Medical Center; Nashville, TN, 37232, USA
- Vanderbilt Center for Antibody Therapeutics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Gwen Jordaan
- Vanderbilt Center for Antibody Therapeutics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Léna Vandenabeele
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Fani Pantouli
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, 34987 FL, USA
| | - Rebecca A. Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Matthew J. Vukovich
- Vanderbilt Center for Antibody Therapeutics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Clinton M. Holt
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center; Nashville, TN, USA
- Center for Computational Microbiology and Immunology, Vanderbilt University Medical Center; Nashville, TN, 37232, USA
- Vanderbilt Center for Antibody Therapeutics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeongryeol Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712 USA
| | - Grant Hansman
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD, Australia
| | - Jennifer Logue
- Division of Allergy and Infectious Diseases, University of Washington School of Medicine, Seattle, WA
| | - Helen Y. Chu
- Division of Allergy and Infectious Diseases, University of Washington School of Medicine, Seattle, WA
| | - Sarah F. Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Giuseppe A. Sautto
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, 34987 FL, USA
| | - Ted M. Ross
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, 34987 FL, USA
| | - Daniel J. Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712 USA
| | - Alexandra A. Abu-Shmais
- Vanderbilt Center for Antibody Therapeutics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ivelin S. Georgiev
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center; Nashville, TN, USA
- Center for Computational Microbiology and Immunology, Vanderbilt University Medical Center; Nashville, TN, 37232, USA
- Vanderbilt Center for Antibody Therapeutics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN
- Department of Computer Science, Vanderbilt University, Nashville, TN
- Center for Structural Biology, Vanderbilt University, Nashville, TN
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37237 USA
| |
Collapse
|
4
|
Vukovich MJ, Shiakolas AR, Lindenberger J, Richardson RA, Bass LE, Barr M, Liu Y, Go EP, Park CS, May AJ, Sammour S, Kambarami C, Huang X, Janowska K, Edwards RJ, Mansouri K, Spence TN, Abu-Shmais AA, Manamela NP, Richardson SI, Leonard SEW, Gripenstraw KR, Setliff I, Saunders KO, Bonami RH, Ross TM, Desaire H, Moore PL, Parks R, Haynes BF, Sheward DJ, Acharya P, Sautto GA, Georgiev IS. Isolation and characterization of IgG3 glycan-targeting antibodies with exceptional cross-reactivity for diverse viral families. PLoS Pathog 2024; 20:e1012499. [PMID: 39292703 PMCID: PMC11410209 DOI: 10.1371/journal.ppat.1012499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/13/2024] [Indexed: 09/20/2024] Open
Abstract
Broadly reactive antibodies that target sequence-diverse antigens are of interest for vaccine design and monoclonal antibody therapeutic development because they can protect against multiple strains of a virus and provide a barrier to evolution of escape mutants. Using LIBRA-seq (linking B cell receptor to antigen specificity through sequencing) data for the B cell repertoire of an individual chronically infected with human immunodeficiency virus type 1 (HIV-1), we identified a lineage of IgG3 antibodies predicted to bind to HIV-1 Envelope (Env) and influenza A Hemagglutinin (HA). Two lineage members, antibodies 2526 and 546, were confirmed to bind to a large panel of diverse antigens, including several strains of HIV-1 Env, influenza HA, coronavirus (CoV) spike, hepatitis C virus (HCV) E protein, Nipah virus (NiV) F protein, and Langya virus (LayV) F protein. We found that both antibodies bind to complex glycans on the antigenic surfaces. Antibody 2526 targets the stem region of influenza HA and the N-terminal domain (NTD) region of SARS-CoV-2 spike. A crystal structure of 2526 Fab bound to mannose revealed the presence of a glycan-binding pocket on the light chain. Antibody 2526 cross-reacted with antigens from multiple pathogens and displayed no signs of autoreactivity. These features distinguish antibody 2526 from previously described glycan-reactive antibodies. Further study of this antibody class may aid in the selection and engineering of broadly reactive antibody therapeutics and can inform the development of effective vaccines with exceptional breadth of pathogen coverage.
Collapse
Affiliation(s)
- Matthew J. Vukovich
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Andrea R. Shiakolas
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jared Lindenberger
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Robert A. Richardson
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, United States of America
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, United States of America
| | - Lindsay E. Bass
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Maggie Barr
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Yanshun Liu
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Eden P. Go
- Department of Chemistry, University of Kansas, Lawrence, Kansas, United States of America
| | - Chan Soo Park
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Aaron J. May
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Salam Sammour
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Chipo Kambarami
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Xiao Huang
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Katarzyna Janowska
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Robert J. Edwards
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Katayoun Mansouri
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Taylor N. Spence
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Alexandra A. Abu-Shmais
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Nelia P. Manamela
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Simone I. Richardson
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Sabina E. W. Leonard
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Kathryn R. Gripenstraw
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Ian Setliff
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Kevin O. Saunders
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Rachel H. Bonami
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Ted M. Ross
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, United States of America
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, United States of America
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Heather Desaire
- Department of Chemistry, University of Kansas, Lawrence, Kansas, United States of America
| | - Penny L. Moore
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Robert Parks
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
- Department of Medicine and Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Daniel J. Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Giuseppe A. Sautto
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, United States of America
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, United States of America
| | - Ivelin S. Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Computer Science, Vanderbilt University, Nashville, Tennessee, United States of America
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Program in Computational Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
5
|
Hills FR, Eruera AR, Hodgkinson-Bean J, Jorge F, Easingwood R, Brown SHJ, Bouwer JC, Li YP, Burga LN, Bostina M. Variation in structural motifs within SARS-related coronavirus spike proteins. PLoS Pathog 2024; 20:e1012158. [PMID: 38805567 PMCID: PMC11236199 DOI: 10.1371/journal.ppat.1012158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/10/2024] [Accepted: 03/28/2024] [Indexed: 05/30/2024] Open
Abstract
SARS-CoV-2 is the third known coronavirus (CoV) that has crossed the animal-human barrier in the last two decades. However, little structural information exists related to the close genetic species within the SARS-related coronaviruses. Here, we present three novel SARS-related CoV spike protein structures solved by single particle cryo-electron microscopy analysis derived from bat (bat SL-CoV WIV1) and civet (cCoV-SZ3, cCoV-007) hosts. We report complex glycan trees that decorate the glycoproteins and density for water molecules which facilitated modeling of the water molecule coordination networks within structurally important regions. We note structural conservation of the fatty acid binding pocket and presence of a linoleic acid molecule which are associated with stabilization of the receptor binding domains in the "down" conformation. Additionally, the N-terminal biliverdin binding pocket is occupied by a density in all the structures. Finally, we analyzed structural differences in a loop of the receptor binding motif between coronaviruses known to infect humans and the animal coronaviruses described in this study, which regulate binding to the human angiotensin converting enzyme 2 receptor. This study offers a structural framework to evaluate the close relatives of SARS-CoV-2, the ability to inform pandemic prevention, and aid in the development of pan-neutralizing treatments.
Collapse
Affiliation(s)
- Francesca R. Hills
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Alice-Roza Eruera
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - James Hodgkinson-Bean
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Fátima Jorge
- Otago Microscopy and Nano Imaging Unit, University of Otago, Dunedin, New Zealand
| | - Richard Easingwood
- Otago Microscopy and Nano Imaging Unit, University of Otago, Dunedin, New Zealand
| | - Simon H. J. Brown
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, University of Wollongong, Wollongong, New South Wales, Australia
| | - James C. Bouwer
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, University of Wollongong, Wollongong, New South Wales, Australia
| | - Yi-Ping Li
- Institute of Human Virology and Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Laura N. Burga
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Mihnea Bostina
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Otago Microscopy and Nano Imaging Unit, University of Otago, Dunedin, New Zealand
| |
Collapse
|
6
|
Abu-Shmais AA, Miller RJ, Janke AK, Wolters RM, Holt CM, Raju N, Carnahan RH, Crowe JE, Mousa JJ, Georgiev IS. Potent HPIV3-neutralizing IGHV5-51 Antibodies Identified from Multiple Individuals Show L Chain and CDRH3 Promiscuity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1450-1456. [PMID: 38488511 PMCID: PMC11018509 DOI: 10.4049/jimmunol.2300880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/21/2024] [Indexed: 04/17/2024]
Abstract
Human parainfluenza virus 3 (HPIV3) is a widespread pathogen causing severe and lethal respiratory illness in at-risk populations. Effective countermeasures are in various stages of development; however, licensed therapeutic and prophylactic options are not available. The fusion glycoprotein (HPIV3 F), responsible for facilitating viral entry into host cells, is a major target of neutralizing Abs that inhibit infection. Although several neutralizing Abs against a small number of HPIV3 F epitopes have been identified to date, relatively little is known about the Ab response to HPIV3 compared with other pathogens, such as influenza virus and SARS-CoV-2. In this study, we aimed to characterize a set of HPIV3-specific Abs identified in multiple individuals for genetic signatures, epitope specificity, neutralization potential, and publicness. We identified 12 potently neutralizing Abs targeting three nonoverlapping epitopes on HPIV3 F. Among these, six Abs identified from two different individuals used Ig heavy variable gene IGHV 5-51, with five of the six Abs targeting the same epitope. However, despite the use of the same H chain variable (VH) gene, these Abs used multiple different L chain variable genes (VL) and diverse H chain CDR 3 (CDRH3) sequences. Together, these results provide further information about the genetic and functional characteristics of HPIV3-neutralizing Abs and suggest the existence of a reproducible VH-dependent Ab response associated with VL and CDRH3 promiscuity. Understanding sites of HPIV3 F vulnerability and the genetic and molecular characteristics of Abs targeting these sites will help guide efforts for effective vaccine and therapeutic development.
Collapse
Affiliation(s)
- Alexandra A. Abu-Shmais
- Vanderbilt Vaccine Center, Vanderbilt University Medical
Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and
Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rose J. Miller
- Department of Infectious Diseases, College of
Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Center for Vaccines and Immunology, College of
Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Alexis K. Janke
- Vanderbilt Vaccine Center, Vanderbilt University Medical
Center, Nashville, TN 37232, USA
| | - Rachael M. Wolters
- Vanderbilt Vaccine Center, Vanderbilt University Medical
Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and
Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Clinton M. Holt
- Vanderbilt Vaccine Center, Vanderbilt University Medical
Center, Nashville, TN 37232, USA
- Program in Chemical and Physical Biology, Vanderbilt
University Medical Center; Nashville, TN 37232, USA
| | - Nagarajan Raju
- Vanderbilt Vaccine Center, Vanderbilt University Medical
Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and
Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert H. Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical
Center, Nashville, TN 37232, USA
- Department of Pediatrics, Vanderbilt University
Medical Center, Nashville, TN 37232, USA
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical
Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and
Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pediatrics, Vanderbilt University
Medical Center, Nashville, TN 37232, USA
| | - Jarrod J. Mousa
- Department of Infectious Diseases, College of
Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Center for Vaccines and Immunology, College of
Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, Franklin
College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA
| | - Ivelin S. Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical
Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and
Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology and
Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Computer Science, Vanderbilt
University, Nashville, TN 37232, USA
- Center for Structural Biology, Vanderbilt
University, Nashville, TN 37232, USA
- Program in Computational Microbiology and
Immunology, Vanderbilt University Medical Center; Nashville, TN, 37232, USA
| |
Collapse
|
7
|
Hu Y, Hu C, Wang S, Ren L, Hao Y, Wang Z, Liu Y, Su J, Zhu B, Li D, Shao Y, Liang H. Identification of an IGHV3-53-Encoded RBD-Targeting Cross-Neutralizing Antibody from an Early COVID-19 Convalescent. Pathogens 2024; 13:272. [PMID: 38668227 PMCID: PMC11054858 DOI: 10.3390/pathogens13040272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/10/2024] [Accepted: 03/20/2024] [Indexed: 04/29/2024] Open
Abstract
Since November 2021, Omicron has emerged as the dominant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant, and its sublineages continue to appear one after another, significantly reducing the effectiveness of existing therapeutic neutralizing antibodies (NAbs). It is urgent to develop effective NAbs against circulating Omicron variants. Here, we isolated receptor binding domain (RBD)-specific single memory B cells via flow cytometry from a COVID-19 convalescent. The antibody variable region genes of the heavy chain (VHs) and light chain (VLs) were amplified and cloned into expression vectors. After antibody expression, ELISA screening and neutralizing activity detection, we obtained an IGHV3-53-encoded RBD-targeting cross-neutralizing antibody D6, whose VL originated from the IGKV1-9*01 germlines. D6 could potently neutralize circulating Omicron variants (BA.1, BA.2, BA.4/5 and BF.7), with IC50 values of less than 0.04 μg/mL, and the neutralizing ability against XBB was reduced but still effective. The KD values of D6 binding with RBD of the prototype and BA.1 were both less than 1.0 × 10-12 M. The protein structure of the D6-RBD model indicates that D6 interacts with the RBD external subdomain and belongs to the RBD-1 community. The sufficient contact and deep interaction of D6 HCDR3 and LCDR3 with RBD may be the crucial reason for its cross-neutralizing activity. The sorting and analysis of mAb D6 will provide important information for the development of anti-COVID-19 reagents.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Biosafety III Laboratory, Guangxi Medical University, Nanning 530021, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Caiqin Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shuo Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Li Ren
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yanling Hao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Zheng Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Ying Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Junwei Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Biao Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Dan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yiming Shao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Biosafety III Laboratory, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|