1
|
Solomon BD, Cheatham M, de Guimarães TAC, Duong D, Haendel MA, Hsieh TC, Javanmardi B, Johnson B, Krawitz P, Kruszka P, Laurent T, Lee NC, McWalter K, Michaelides M, Mohnike K, Pontikos N, Guillen Sacoto MJ, Shwetar YJ, Ustach VD, Waikel RL, Woof W. Perspectives on the Current and Future State of Artificial Intelligence in Medical Genetics. Am J Med Genet A 2025:e64118. [PMID: 40375359 DOI: 10.1002/ajmg.a.64118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/14/2025] [Accepted: 05/02/2025] [Indexed: 05/18/2025]
Abstract
Artificial intelligence (AI) is rapidly transforming numerous aspects of daily life, including clinical practice and biomedical research. In light of this rapid transformation, and in the context of medical genetics, we assembled a group of leaders in the field to respond to the question about how AI is affecting, and especially how AI will affect, medical genetics. The authors who contributed to this collection of essays intentionally represent different areas of expertise, career stages, and geographies, and include diverse types of clinicians, computer scientists, and researchers. The individual pieces cover a wide range of areas related to medical genetics; we expect that these pieces may provide helpful windows into the ways in which AI is being actively studied, used, and considered in medical genetics.
Collapse
Affiliation(s)
- Benjamin D Solomon
- Medical Genomics Unit, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Morgan Cheatham
- Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Thales A C de Guimarães
- Moorfields Eye Hospital National Health Service Foundation Trust, London, UK
- University College London Institute of Ophthalmology, London, UK
- National Institute for Health and Care Research Moorfields Biomedical Research Centre, London, UK
| | - Dat Duong
- Medical Genomics Unit, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Melissa A Haendel
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Tzung-Chien Hsieh
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Behnam Javanmardi
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | | | - Peter Krawitz
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | | | | | - Ni-Chung Lee
- Department of Pediatrics and Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | | | - Michel Michaelides
- Moorfields Eye Hospital National Health Service Foundation Trust, London, UK
- University College London Institute of Ophthalmology, London, UK
- National Institute for Health and Care Research Moorfields Biomedical Research Centre, London, UK
| | - Klaus Mohnike
- Children's Hospital, Otto-von-Guericke-University, Magdeburg, Germany
| | - Nikolas Pontikos
- Moorfields Eye Hospital National Health Service Foundation Trust, London, UK
- University College London Institute of Ophthalmology, London, UK
- National Institute for Health and Care Research Moorfields Biomedical Research Centre, London, UK
| | | | - Yousif J Shwetar
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Rebekah L Waikel
- Medical Genomics Unit, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - William Woof
- University College London Institute of Ophthalmology, London, UK
- National Institute for Health and Care Research Moorfields Biomedical Research Centre, London, UK
| |
Collapse
|
2
|
Mak CCY, Klinkhammer H, Choufani S, Reko N, Christman AK, Pisan E, Chui MMC, Lee M, Leduc F, Dempsey JC, Sanchez-Lara PA, Bombei HM, Bernat JA, Faivre L, Mau-Them FT, Palafoll IV, Canham N, Sarkar A, Zarate YA, Callewaert B, Bukowska-Olech E, Jamsheer A, Zankl A, Willems M, Duncan L, Isidor B, Cogne B, Boute O, Vanlerberghe C, Goldenberg A, Stolerman E, Low KJ, Gilard V, Amiel J, Lin AE, Gordon CT, Doherty D, Krawitz PM, Weksberg R, Hsieh TC, Chung BHY. Artificial intelligence-driven genotype-epigenotype-phenotype approaches to resolve challenges in syndrome diagnostics. EBioMedicine 2025; 115:105677. [PMID: 40280028 DOI: 10.1016/j.ebiom.2025.105677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Decisions to split two or more phenotypic manifestations related to genetic variations within the same gene can be challenging, especially during the early stages of syndrome discovery. Genotype-based diagnostics with artificial intelligence (AI)-driven approaches using next-generation phenotyping (NGP) and DNA methylation (DNAm) can be utilized to expedite syndrome delineation within a single gene. METHODS We utilized an expanded cohort of 56 patients (22 previously unpublished individuals) with truncating variants in the MN1 gene and attempted different methods to assess plausible strategies to objectively delineate phenotypic differences between the C-Terminal Truncation (CTT) and N-Terminal Truncation (NTT) groups. This involved transcriptomics analysis on available patient fibroblast samples and AI-assisted approaches, including a new statistical method of GestaltMatcher on facial photos and blood DNAm analysis using a support vector machine (SVM) model. FINDINGS RNA-seq analysis was unable to show a significant difference in transcript expression despite our previous hypothesis that NTT variants would induce nonsense mediated decay. DNAm analysis on nine blood DNA samples revealed an episignature for the CTT group. In parallel, the new statistical method of GestaltMatcher objectively distinguished the CTT and NTT groups with a low requirement for cohort number. Validation of this approach was performed on syndromes with known DNAm signatures of SRCAP, SMARCA2 and ADNP to demonstrate the effectiveness of this approach. INTERPRETATION We demonstrate the potential of using AI-based technologies to leverage genotype, phenotype and epigenetics data in facilitating splitting decisions in diagnosis of syndromes with minimal sample requirement. FUNDING The specific funding of this article is provided in the acknowledgements section.
Collapse
Affiliation(s)
- Christopher C Y Mak
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Hannah Klinkhammer
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany; Institute for Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Sanaa Choufani
- Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Nikola Reko
- Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Angela K Christman
- Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA
| | - Elise Pisan
- Laboratory of Embryology and Genetics of Human Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Institut Imagine, Université Paris Cité, Paris, 75015, France
| | - Martin M C Chui
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Mianne Lee
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Fiona Leduc
- CHU Lille, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Lille, F-59000, France
| | - Jennifer C Dempsey
- Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA
| | - Pedro A Sanchez-Lara
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Pediatrics, Guerin Children's at Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Hannah M Bombei
- Division of Medical Genetics and Genomics, Stead Family Department of Pediatrics, University of Iowa Hospitals, Iowa City, IA, USA
| | - John A Bernat
- Division of Medical Genetics and Genomics, Stead Family Department of Pediatrics, University of Iowa Hospitals, Iowa City, IA, USA
| | - Laurence Faivre
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, FHU TRANSLAD, Institut GIMI, Hôpital d'Enfants, CHU Dijon-Bourgogne, Dijon, France; Equipe GAD INSERM UMR1231, Université de Bourgogne Franche Comté, Dijon, France
| | - Frederic Tran Mau-Them
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, FHU TRANSLAD, Institut GIMI, Hôpital d'Enfants, CHU Dijon-Bourgogne, Dijon, France; UF 6254 Innovation en diagnostic Génomique des Maladies Rares, Centre Hospitalier Universitaire de Dijon, Dijon, France
| | - Irene Valenzuela Palafoll
- Department of Clinical and Molecular Genetics, University Hospital Vall d'Hebron and Medicine Genetics Group, Valle Hebron Research Institute, Barcelona, Spain
| | - Natalie Canham
- Liverpool Centre for Genomic Medicine, Liverpool Women's Hospital, Crown Street, Liverpool, UK
| | - Ajoy Sarkar
- Department of Clinical Genetics, Nottingham University Hospitals National Health Service Trust, Nottingham, NG5 1PB, UK
| | - Yuri A Zarate
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, 72701, USA; Division of Genetics and Metabolism, University of Kentucky, Lexington, KY, USA
| | - Bert Callewaert
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Ewelina Bukowska-Olech
- Department of Laboratory Diagnostics, Poznan University of Medical Sciences, Poznan, Poland
| | - Aleksander Jamsheer
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland; Diagnostyka GENESIS, Center for Medical Genetics in Poznan, Poland
| | - Andreas Zankl
- Department of Clinical Genetics, The Children's Hospital at Westmead, Sydney, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; Garvan Institute of Medical Research, Sydney, Australia
| | - Marjolaine Willems
- Unité INSERM U 1051, Département de Génétique Médicale, CHRU de Montpellier, Montpellier, France
| | - Laura Duncan
- Department of Pediatrics at Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bertrand Isidor
- Service de Génétique Médicale and L'institut du Thorax, CHU Nantes, Nantes Université, CNRS, INSERM, Nantes, France
| | - Benjamin Cogne
- Medical Genetics Service, Nantes University Hospital Center, Nantes, France
| | - Odile Boute
- CHU Lille, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Lille, F-59000, France
| | - Clémence Vanlerberghe
- CHU Lille, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Lille, F-59000, France
| | - Alice Goldenberg
- Normandie Univ, UNIROUEN, Inserm U1245, CHU Rouen, Department of Genetics and Reference Center for Developmental Disorders, FHU G4 Génomique, Rouen, F-76000, France
| | | | - Karen J Low
- Centre for Academic Child Health, Bristol Medical School, University of Bristol, UK; Department of Clinical Genetics, UHBW NHS Trust, Bristol, UK
| | - Vianney Gilard
- Department of Pediatric Neurosurgery, Rouen University Hospital, Rouen, 76000, France
| | - Jeanne Amiel
- Laboratory of Embryology and Genetics of Human Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Institut Imagine, Université Paris Cité, Paris, 75015, France
| | - Angela E Lin
- Medical Genetics, Mass General for Children, Boston, MA, 02114, USA
| | - Christopher T Gordon
- Laboratory of Embryology and Genetics of Human Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Institut Imagine, Université Paris Cité, Paris, 75015, France
| | - Dan Doherty
- Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA
| | - Peter M Krawitz
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Rosanna Weksberg
- Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada; Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, M5G 1X8, Canada.
| | - Tzung-Chien Hsieh
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.
| | - Brian H Y Chung
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
3
|
Nieto-Patlán A, Ross J, Mohan S, Paczosa MK, Soliman R, Sarmento O, Aliu E, Thiyagarajan L, Chandra A, Picard C, Warnatz K, Jolles S, Lesmana H, Maglione PJ, Platt CD, Sediva A, Sullivan KE, Zhang K, Raval F, Tangye SG, Abraham RS. Curation of gene-disease relationships in primary antibody deficiencies using the ClinGen validation framework. J Allergy Clin Immunol 2025; 155:1647-1663. [PMID: 39826876 DOI: 10.1016/j.jaci.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/01/2025] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND The Clinical Genome Resource (ClinGen) is an international collaborative effort among scientists and clinicians, diagnostic and research laboratories, and the patient community. Using a standardized framework, ClinGen has established guidelines to classify gene-disease relationships as definitive, strong, moderate, and limited on the basis of available scientific and clinical evidence. When the genetic and functional evidence for a gene-disease relationship has conflicting interpretations or contradictory evidence, they can be disputed or refuted. OBJECTIVE We assessed genes related to primary antibody deficiencies. METHODS The ClinGen Antibody Deficiencies Gene Curation Expert Panel, using the ClinGen framework, classified genes related to primary antibody deficiency that primarily affect B-cell development and/or function, and that account for the largest proportion of inborn errors of immunity or primary immunodeficiencies. RESULTS The expert panel curated a total of 65 genes associated with humoral immune defects to validate 74 gene-disease relationships. Of these, 40 were classified as definitive, 1 as strong, 16 as moderate, 15 as limited, and 2 as disputed. The curation process involved reviewing 490 patient records and 3546 associated human phenotype ontology entries. The 3 most frequently observed terms related to primary antibody deficiency were decreased circulating antibody level, pneumonia, and lymphadenopathy. CONCLUSIONS These curations (publicly available at ClinicalGenome.org) represent the first effort to provide a comprehensive genetic and phenotypic revision of genetic disorders affecting humoral immunity, as reviewed and approved by experts in the field.
Collapse
Affiliation(s)
- Alejandro Nieto-Patlán
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Department of Allergy, Immunology and Rheumatology, Center for Human Immunobiology, Texas Children's Hospital, Houston, Tex; Departamento de Genética, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Justyne Ross
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Shruthi Mohan
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC
| | | | - Rasha Soliman
- Queen Mary University of London, London, United Kingdom
| | | | - Ermal Aliu
- Milton S. Hershey Medical Center, Hershey, Pa
| | - Lavvina Thiyagarajan
- Sydney Children's Hospitals Network, Sydney, Australia; School of Clinical Medicine, University of New South Wales, Sydney, Australia
| | - Anita Chandra
- Department of Clinical Immunology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom; Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Capucine Picard
- Université Paris Cité, Paris, France; Study Center for Primary Immunodeficiencies, Necker-Enfants Malades Hospital, Assistance Publique Hôpitaux de Paris (APHP), Paris, France; Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Institut Imagine, Paris, France
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - Stephen Jolles
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, United Kingdom
| | - Harry Lesmana
- Department of Medical Genetics and Genomics, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio; Department of Pediatric Hematology, Oncology and BMT, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Paul J Maglione
- Department of Medicine, Boston University Chobanian, and Avedisian School of Medicine, Boston, Mass
| | | | - Anna Sediva
- Motol University Hospital and the 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Kejian Zhang
- GoBroad Healthcare Group, GoBroad Clinical Research Center, Boren Hospital, Beijing, China
| | | | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
| | | |
Collapse
|
4
|
Adam NB, Amemiya AR, Wallace SE, Mahon CT, Mirzaa GM, Adam MP. Evaluation of Targeted Therapies Currently Available for Congenital Genetic Conditions Indexed in GeneReviews. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2025:e32137. [PMID: 40099848 DOI: 10.1002/ajmg.c.32137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/13/2025] [Accepted: 03/01/2025] [Indexed: 03/20/2025]
Abstract
In this study, we propose a definition of targeted therapy and use GeneReviews, a peer-reviewed, online point-of-care resource for primarily constitutional (or rare congenital mosaic) genetic conditions, to compile a list of primarily heritable genetic disorders for which such targeted therapy is available. This study aims to give a high-level view of the types of targeted therapies and the proportion of congenital genetic disorders for which a targeted therapy is available. We propose that a targeted therapy is one that addresses the underlying molecular mechanism of the disorder and/or can alter the disease course (including by providing a cure in some instances) but may not be an obvious treatment option without knowledge of the patient's underlying genetic condition. For the purposes of this study, a treatment meeting one or both of these criteria was categorized as targeted. This means that the clinician might not consider the specific treatment option unless the patient was known to have the genetic diagnosis. This definition does not include therapies based on symptoms alone, which does not rely on the clinician being aware of a patient's genetic diagnosis. As most of the congenital genetic conditions in this study are rare and often diagnosed in a pediatric age group, determining efficacy for the specific use of most of the targeted therapies is not possible, although any drug or medication in the Management section of GeneReviews is approved by the Food and Drug Administration (FDA), with rare exceptions for drugs approved by the European Medicines Agency (EMA) of the European Union (EU) but not yet FDA approved. Of 790 GeneReviews chapters on primarily constitutional genetic conditions included in this study, 176 chapters representing over 255 genes meet the definition of having a targeted therapy.
Collapse
Affiliation(s)
| | | | - Stephanie E Wallace
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Seattle Children's Hospital, Seattle, Washington, USA
| | - Caitlin T Mahon
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Ghayda M Mirzaa
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Seattle Children's Hospital, Seattle, Washington, USA
| | - Margaret P Adam
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Seattle Children's Hospital, Seattle, Washington, USA
| |
Collapse
|
5
|
Hespe S, Waddell A, Asatryan B, Owens E, Thaxton C, Adduru ML, Anderson K, Brown EE, Hoffman-Andrews L, Jordan E, Josephs K, Mayers M, Peters S, Stafford F, Bagnall RD, Bronicki L, Callewaert B, Chahal CAA, James CA, Jarinova O, Landstrom AP, McNally EM, Murray B, Muiño-Mosquera L, Parikh V, Reuter C, Walsh R, Wayburn B, Ware JS, Ingles J. Genes Associated With Hypertrophic Cardiomyopathy: A Reappraisal by the ClinGen Hereditary Cardiovascular Disease Gene Curation Expert Panel. J Am Coll Cardiol 2025; 85:727-740. [PMID: 39971408 PMCID: PMC12079304 DOI: 10.1016/j.jacc.2024.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 02/21/2025]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is an inherited cardiac condition affecting ∼1 in 500 and exhibits marked genetic heterogeneity. Previously published in 2019, 57 HCM-associated genes were curated providing the first systematic evaluation of gene-disease validity. OBJECTIVES The authors report work by the Clinical Genome Resource Hereditary Cardiovascular Disease (HCVD) Gene Curation Expert Panel (GCEP) to reappraise the clinical validity of previously curated and new putative HCM genes. METHODS The Clinical Genome Resource systematic gene curation framework was used to reclassify the gene-disease relationships for HCM and related syndromic entities involving left ventricular hypertrophy. Genes previously curated were included if their classification was not definitive, and if the time since curation was >2 to 3 years. New genes with literature assertions for HCM were included for initial evaluation. Existing genes were curated for new inheritance patterns where evidence existed. Curations were presented on twice monthly calls, with the HCVD GCEP composed of 29 individuals from 21 institutions across 6 countries. RESULTS Thirty-one genes were recurated and an additional 5 new potential HCM-associated genes were curated. Among the recurated genes, 17 (55%) genes changed classification: 1 limited and 4 disputed (from no known disease relationship), 9 disputed (from limited), and 3 definitive (from moderate). Among these, 3 (10%) genes had a clinically relevant upgrade, including TNNC1, a 9th sarcomere gene with definitive HCM association. With new evidence, 2 genes were curated for multiple inheritance patterns (TRIM63, disputed for autosomal dominant but moderate for autosomal recessive; ALPK3, strong for autosomal dominant and definitive for recessive). CSRP3 was curated for a semidominant mode of inheritance (definitive). Nine (29%) genes were downgraded to disputed, further discouraging clinical reporting of variants in these genes. Five genes recently reported to cause HCM were curated: RPS6KB1 and RBM20 (limited), KLHL24 and MT-TI (moderate), and FHOD3 (definitive). CONCLUSIONS We report 29 genes with definitive, strong, or moderate evidence of causation for HCM or isolated left ventricular hypertrophy, including sarcomere, sarcomere-associated, and syndromic conditions.
Collapse
Affiliation(s)
- Sophie Hespe
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, New South Wales, Australia
| | - Amber Waddell
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Babken Asatryan
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Emma Owens
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Courtney Thaxton
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Kailyn Anderson
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Emily E Brown
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Lily Hoffman-Andrews
- Division of Cardiovascular Medicine, Department of Medicine, Center for Inherited Cardiovascular Disease, Perelman School of Medicine at the University of Pennsylvania, Perelman Center for Advanced Medicine, Philadelphia, Pennsylvania, USA
| | - Elizabeth Jordan
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Katherine Josephs
- National Heart and Lung Institute and MRC Laboratory of Medical Science, Imperial College London, London, United Kingdom
| | - Megan Mayers
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stacey Peters
- Department of Cardiology and Genomic Medicine, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Fergus Stafford
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, New South Wales, Australia
| | - Richard D Bagnall
- Bioinformatics and Molecular Genetics at Centenary Institute, University of Sydney, Sydney, New South Wales, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Lucas Bronicki
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada; Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Bert Callewaert
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - C Anwar A Chahal
- Center for Inherited Cardiovascular Diseases, WellSpan Health, Lancaster, Pennsylvania, USA; Mayo Clinic, Rochester, Minnesota, USA; Barts Heart Centre, London, United Kingdom; William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Cynthia A James
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Olga Jarinova
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada; Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Andrew P Landstrom
- Department of Pediatrics and Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Elizabeth M McNally
- Center for Genetic Medicine, Department of Medicine (Cardiology), Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Brittney Murray
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Laura Muiño-Mosquera
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Division of Pediatric Cardiology, Department of Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Victoria Parikh
- Stanford Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Chloe Reuter
- Stanford Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Roddy Walsh
- Amsterdam University Medical Centre, University of Amsterdam, Heart Center, Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Bess Wayburn
- Clinical Genomics, Ambry Genetics, Aliso Viejo, California, USA
| | - James S Ware
- National Heart and Lung Institute and MRC Laboratory of Medical Science, Imperial College London, London, United Kingdom; Hammersmith Hospital, Imperial College Healthcare NHS Foundation Trust, London, United Kingdom; Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Jodie Ingles
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, New South Wales, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
6
|
Tshering KC, DiStefano MT, Oza AM, Ajuyah P, Webb R, Edoh E, Broeren E, Ratliff J, Gitau V, Paris K, Aburyyan A, Alexander J, Albano V, Bai D, Booth KTA, Buonfiglio PI, Charfeddine C, Dalamón V, Castillo ID, Moreno-Pelayo MA, Duzkale H, Dorshorst B, Faridi R, Kenna M, Lewis MA, Luo M, Lu Y, Mkaouar R, Matsunaga T, Nara K, Pandya A, Redfield S, Roux I, Schimmenti LA, Schrauwen I, Shaaban S, Shen J, Vona B, Smith RJ, Rehm HL, Azaiez H, Abou Tayoun AN, Amr SS. ClinGen recuration of hearing loss-associated genes demonstrates significant changes in gene-disease validity over time. Genet Med 2025; 27:101392. [PMID: 39987489 DOI: 10.1016/j.gim.2025.101392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/09/2025] [Accepted: 02/13/2025] [Indexed: 02/25/2025] Open
Abstract
PURPOSE The Clinical Genome Resource (ClinGen) Hearing Loss Gene Curation Expert Panel was assembled in 2016 and has since curated 174 gene-disease relationships (GDRs) using ClinGen's semiquantitative framework. ClinGen mandates the timely recuration of all GDRs classified as Disputed, Limited, Moderate, and Strong every 2 to 3 years. METHODS Thirty-five GDRs met the criteria for recuration within 2 years of original curation. Previous evidence was reevaluated using the latest curation guidelines, and a comprehensive literature review was performed to obtain new evidence. Recurations were approved by the Gene Curation Expert Panel and published on the ClinGen website (www.clinicalgenome.org). RESULTS Eight of 35 GDRs (22%) changed their classification. Two Moderate and 5 Strong GDRs were upgraded to Definitive because of new case evidence. One Strong was subsumed under another Definitive GDR after evaluation of the lumping/splitting of disease entities. Twenty-seven of 35 patients remained unchanged, with little to no new evidence reported. CONCLUSION Genes classified as Moderate and Strong were likely to build evidence and change their classification over time, whereas Limited were unlikely to gain evidence. These findings highlight the critical role of recuration in ensuring that genetic tests and research studies incorporate the most recent evidence into their efforts.
Collapse
Affiliation(s)
| | - Marina T DiStefano
- The Broad Institute of MIT and Harvard, Cambridge, MA; Laboratory for Molecular Medicine, Mass General Brigham Personalized Medicine, Cambridge, MA
| | - Andrea M Oza
- The Broad Institute of MIT and Harvard, Cambridge, MA
| | - Pamela Ajuyah
- The Broad Institute of MIT and Harvard, Cambridge, MA
| | - Ryan Webb
- The Broad Institute of MIT and Harvard, Cambridge, MA
| | - Enyonam Edoh
- The Broad Institute of MIT and Harvard, Cambridge, MA
| | - Ellie Broeren
- The Broad Institute of MIT and Harvard, Cambridge, MA
| | - Julie Ratliff
- The Broad Institute of MIT and Harvard, Cambridge, MA
| | - Vanessa Gitau
- The Broad Institute of MIT and Harvard, Cambridge, MA
| | - Kelley Paris
- The Broad Institute of MIT and Harvard, Cambridge, MA
| | - Amal Aburyyan
- Department of Medicine, University of Washington, Seattle, WA
| | | | - Victoria Albano
- Department of Otolaryngology & Communication Enhancement, Boston Children's Hospital, Boston, MA
| | - Donglin Bai
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Kevin T A Booth
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN; Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Paula I Buonfiglio
- Laboratorio de Fisiología y Genética de la Audición. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Cherine Charfeddine
- Laboratory of Biomedical Genomics and Oncogenetics, Institute Pasteur of Tunis, University of Tunis El Manar, Tunis, Tunisia; Université de la Manouba, Institut de Biotechnologie de Sidi-Thabet, Ariana, Tunisia
| | - Viviana Dalamón
- Laboratorio de Fisiología y Genética de la Audición. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ignacio Del Castillo
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (CB06/07/0048; CIBERER-ISCIII), Madrid, Spain
| | - Miguel Angel Moreno-Pelayo
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (CB06/07/0048; CIBERER-ISCIII), Madrid, Spain
| | | | | | - Rabia Faridi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD
| | - Margaret Kenna
- Department of Otolaryngology & Communication Enhancement, Boston Children's Hospital, Boston, MA
| | - Morag A Lewis
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, London, United Kingdom
| | - Minjie Luo
- Division of Genomic Diagnostics, The Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Yu Lu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Rahma Mkaouar
- Laboratory of Biomedical Genomics and Oncogenetics, Institute Pasteur of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Tatsuo Matsunaga
- Division of Hearing and Balance Research, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Kiyomitsu Nara
- Division of Hearing and Balance Research, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Arti Pandya
- Division of Genetics and Metabolism, Department of Pediatrics, UNC School of Medicine, Chapel Hill, NC
| | - Shelby Redfield
- Department of Medicine, University of Washington, Seattle, WA
| | - Isabelle Roux
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD
| | - Lisa A Schimmenti
- Departments of Clinical Genomics, Mayo Clinic Enterprise, Rochester, MN
| | - Isabelle Schrauwen
- Department of Translational Neurosciences, University of Arizona College of Medicine Phoenix, Phoenix, AZ
| | - Sherin Shaaban
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT; ARUP Laboratories, Salt Lake City, UT
| | - Jun Shen
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Barbara Vona
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany; Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Richard J Smith
- Molecular Otolaryngology and Renal Research Laboratories (MORL), Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, IA
| | - Heidi L Rehm
- The Broad Institute of MIT and Harvard, Cambridge, MA; Laboratory for Molecular Medicine, Mass General Brigham Personalized Medicine, Cambridge, MA
| | - Hela Azaiez
- Molecular Otolaryngology and Renal Research Laboratories (MORL), Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, IA
| | - Ahmad N Abou Tayoun
- Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai Health, Dubai, United Arab Emirates; Center for Genomic Discovery, Mohammed Bin Rashid University, Dubai Health, Dubai, United Arab Emirates
| | - Sami S Amr
- Laboratory for Molecular Medicine, Mass General Brigham Personalized Medicine, Cambridge, MA.
| |
Collapse
|
7
|
Stark Z, Byrne AB, Sampson MG, Lennon R, Mallett AJ. A guide to gene-disease relationships in nephrology. Nat Rev Nephrol 2025; 21:115-126. [PMID: 39443743 DOI: 10.1038/s41581-024-00900-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2024] [Indexed: 10/25/2024]
Abstract
The use of next-generation sequencing technologies such as exome and genome sequencing in research and clinical care has transformed our understanding of the molecular architecture of genetic kidney diseases. Although the capability to identify and rigorously assess genetic variants and their relationship to disease has advanced considerably in the past decade, the curation of clinically relevant relationships between genes and specific phenotypes has received less attention, despite it underpinning accurate interpretation of genomic tests. Here, we discuss the need to accurately define gene-disease relationships in nephrology and provide a framework for appraising genetic and experimental evidence critically. We describe existing international programmes that provide expert curation of gene-disease relationships and discuss sources of discrepancy as well as efforts at harmonization. Further, we highlight the need for alignment of disease and phenotype terminology to ensure robust and reproducible curation of knowledge. These collective efforts to support evidence-based translation of genomic sequencing into practice across clinical, diagnostic and research settings are crucial for delivering the promise of precision medicine in nephrology, providing more patients with timely diagnoses, accurate prognostic information and access to targeted treatments.
Collapse
Affiliation(s)
- Zornitza Stark
- ClinGen, Boston, MA, USA.
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
- Australian Genomics, Melbourne, Victoria, Australia.
| | - Alicia B Byrne
- ClinGen, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Matthew G Sampson
- ClinGen, Boston, MA, USA
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA
- Department of Paediatrics, Harvard Medical School, Boston, MA, USA
| | - Rachel Lennon
- ClinGen, Boston, MA, USA
- Wellcome Centre for Cell-Matrix Research, The University of Manchester, Manchester, UK
- Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester, UK
| | - Andrew J Mallett
- ClinGen, Boston, MA, USA.
- Townsville Hospital and Health Service, Townsville, Queensland, Australia.
- College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia.
- Institute for Molecular Bioscience and Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
8
|
Broeren E, Gitau V, Byrne A, Ajuyah P, Balzotti M, Berg J, Bluske K, Bowen BM, Brown MP, Buchanan A, Burns B, Burns NJ, Chandrasekhar A, Chawla A, Chong J, Chopra M, Clause A, DiStefano M, DiTroia S, Elnagheeb M, Girod A, Goel H, Golden-Grant K, Ha T, Hamosh A, Huang J, Hughes M, Jamuar S, Kam S, Kesari A, Koh AL, Lassiter R, Leigh S, Lemire G, Lim JY, Malhotra A, McCurry H, Milewski B, Moosa S, Murray S, Owens E, Palmer E, Palus B, Patel M, Rajkumar R, Ratliff J, Raymond FL, Assis BDRR, Sajan S, Schlachetzki Z, Schmidt S, Stark Z, Strom S, Taylor J, Thaxton C, Thrush D, Toro S, Tshering K, Vasilevsky N, Wayburn B, Webb R, O’Donnell-Luria A, Coffey AJ. The ClinGen Syndromic Disorders Gene Curation Expert Panel: Assessing the Clinical Validity of 111 Gene-Disease Relationships. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.19.24317561. [PMID: 39606380 PMCID: PMC11601709 DOI: 10.1101/2024.11.19.24317561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Purpose The Clinical Genome Resource (ClinGen) Gene Curation Expert Panels (GCEPs) have historically focused on specific organ systems or phenotypes; thus, the ClinGen Syndromic Disorders GCEP (SD-GCEP) was formed to address an unmet need. Methods The SD-GCEP applied ClinGen's framework to evaluate the clinical validity of genes associated with rare syndromic disorders. 111 Gene-Disease Relationships (GDRs) associated with 100 genes spanning the clinical spectrum of syndromic disorders were curated. Results From April 2020 through March 2024, 38 precurations were performed on genes with multiple disease relationships and were reviewed to determine if the disorders were part of a spectrum or distinct entities. 14 genes were lumped into a single disease entity and 24 were split into separate entities, of which 11 were curated by the SD-GCEP. A full review of 111 GDRs for 100 genes followed, with 78 classified as Definitive, 9 as Strong, 15 as Moderate, and 9 as Limited highlighting where further data are needed. All diseases involved two or more organ systems, while the majority (88/111 GDRs, 79.2%) had five or more organ systems affected. Conclusion The SD-GCEP addresses a critical gap in gene curation efforts, enabling inclusion of genes for syndromic disorders in clinical testing and contributing to keeping pace with the rapid discovery of new genetic syndromes.
Collapse
Affiliation(s)
- Eleanor Broeren
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Vanessa Gitau
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Alicia Byrne
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Pamela Ajuyah
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Marie Balzotti
- Myriad Women’s Health, Myriad Genetics, South San Francisco, CA, United States
| | - Jonathan Berg
- Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Krista Bluske
- Illumina Laboratory Services, Illumina Inc., San Diego, CA, United States
- Ambry Genetics, Aliso Viejo, CA, United States
| | - B. Monica Bowen
- Biomedical Data Science, Stanford University, Palo Alto, CA, United States
| | - Matthew P. Brown
- Illumina Laboratory Services, Illumina Inc., San Diego, CA, United States
| | - Amanda Buchanan
- Maternal-Fetal Medicine, Tufts Medical Center, Boston, MA, United States
| | - Brendan Burns
- Illumina Laboratory Services, Illumina Inc., San Diego, CA, United States
| | - Nicole J Burns
- Illumina Laboratory Services, Illumina Inc., San Diego, CA, United States
- Department of Pathology and Laboratory Medicine, Children’s Hospital Colorado, Aurora, CO, United States
| | - Anjana Chandrasekhar
- Illumina Laboratory Services, Illumina Inc., San Diego, CA, United States
- Department of Pathology and Laboratory Medicine, Children’s Hospital Colorado, Aurora, CO, United States
| | - Aditi Chawla
- Illumina Laboratory Services, Illumina Inc., San Diego, CA, United States
| | - Jessica Chong
- Pediatrics, University of Washington, Seattle, WA, United States
- Brotman-Baty Institute for Precision Medicine, Seattle, WA, United States
| | - Maya Chopra
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Boston, MA, United States
| | - Amanda Clause
- Illumina Laboratory Services, Illumina Inc., San Diego, CA, United States
- Neurology, Washington University in St. Louis, St. Louis, MO, United States
| | - Marina DiStefano
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Stephanie DiTroia
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Marwa Elnagheeb
- Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Amanda Girod
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | | | - Katie Golden-Grant
- Illumina Laboratory Services, Illumina Inc., San Diego, CA, United States
- Rady Children’s Institute for Genomic Medicine, San Diego, CA, United States
| | - Thuong Ha
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Alliance between SA Pathology and UniSA, Centre for Cancer Biology, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Ada Hamosh
- Department of Genetic Medicine, Johns Hopkins University School of Medicine Baltimore, MD, United States
| | | | - Madeline Hughes
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Saumya Jamuar
- Genetics Service, Department of Paediatric Medicine, KK Women’s and Children’s Hospital, Singapore
- SingHealth Duke-NUS Genomic Medicine Centre, Singapore
- SingHealth Duke-NUS Institute of Precision Medicine, Singapore
| | - Sylvia Kam
- Genetics Service, Department of Paediatric Medicine, KK Women’s and Children’s Hospital, Singapore
- SingHealth Duke-NUS Genomic Medicine Centre, Singapore
| | - Akanchha Kesari
- Illumina Laboratory Services, Illumina Inc., San Diego, CA, United States
| | - Ai Ling Koh
- Genetics Service, Department of Paediatric Medicine, KK Women’s and Children’s Hospital, Singapore
- SingHealth Duke-NUS Genomic Medicine Centre, Singapore
| | | | - Sarah Leigh
- Biocuration, Genomics England Ltd, London, United Kingdom
| | - Gabrielle Lemire
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, United States
- Children’s Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Jiin Ying Lim
- Genetics Service, Department of Paediatric Medicine, KK Women’s and Children’s Hospital, Singapore
- SingHealth Duke-NUS Genomic Medicine Centre, Singapore
| | - Alka Malhotra
- Illumina Laboratory Services, Illumina Inc., San Diego, CA, United States
| | - Hannah McCurry
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Becky Milewski
- Illumina Laboratory Services, Illumina Inc., San Diego, CA, United States
- Hereditary Cancer Genetic Counselor, PreventionGenetics part of Exact Sciences, Marshfield, WI, United States
| | - Shahida Moosa
- Division of Molecular Biology and Human Genetics Stellenbosch University, Cape Town, WC, South Africa
- Medical Genetics, Tygerberg Hospital, Cape Town, WC, South Africa
| | | | - Emma Owens
- Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Emma Palmer
- School of Paediatrics and Child Health, Faculty of Medicine and Health, University of New South Wales, Randwick, NSW Australia
| | - Brooke Palus
- Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Mayher Patel
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Revathi Rajkumar
- Illumina Laboratory Services, Illumina Inc., San Diego, CA, United States
| | - Julie Ratliff
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - F. Lucy Raymond
- Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
| | | | - Samin Sajan
- Cytogenetics, Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, WI, United States
- Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Zinayida Schlachetzki
- Illumina Laboratory Services, Illumina Inc., San Diego, CA, United States
- Alzheimer’s Therapeutic Research Institute (ATRI), University of Southern California, San Diego, CA, United States
| | - Sarah Schmidt
- Illumina Laboratory Services, Illumina Inc., San Diego, CA, United States
- Clinical Genomics Research and Development , Natera, Inc, Austin, TX, United States
| | - Zornitza Stark
- Australian Genomics, Melbourne, Victoria, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Samuel Strom
- Illumina Laboratory Services, Illumina Inc., San Diego, CA, United States
- Clinical Services, Fabric Genomics, Oakland, CA, United States
| | - Julie Taylor
- Illumina Laboratory Services, Illumina Inc., San Diego, CA, United States
| | - Courtney Thaxton
- Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | | | - Sabrina Toro
- Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kezang Tshering
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Nicole Vasilevsky
- Data Collaboration Center, Critical Path Institute, Tucson, AZ, United States
| | | | - Ryan Webb
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Anne O’Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, United States
| | - Alison J. Coffey
- Translational Research, Illumina Inc., Cambridge, Cambridgeshire, United Kingdom
| |
Collapse
|
9
|
Henderson DJ, Alqahtani A, Chaudhry B, Cook A, Eley L, Houyel L, Hughes M, Keavney B, de la Pompa JL, Sled J, Spielmann N, Teboul L, Zaffran S, Mill P, Liu KJ. Beyond genomic studies of congenital heart defects through systematic modelling and phenotyping. Dis Model Mech 2024; 17:dmm050913. [PMID: 39575509 PMCID: PMC11603121 DOI: 10.1242/dmm.050913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/29/2024] [Indexed: 12/01/2024] Open
Abstract
Congenital heart defects (CHDs), the most common congenital anomalies, are considered to have a significant genetic component. However, despite considerable efforts to identify pathogenic genes in patients with CHDs, few gene variants have been proven as causal. The complexity of the genetic architecture underlying human CHDs likely contributes to this poor genetic discovery rate. However, several other factors are likely to contribute. For example, the level of patient phenotyping required for clinical care may be insufficient for research studies focused on mechanistic discovery. Although several hundred mouse gene knockouts have been described with CHDs, these are generally not phenotyped and described in the same way as CHDs in patients, and thus are not readily comparable. Moreover, most patients with CHDs carry variants of uncertain significance of crucial cardiac genes, further complicating comparisons between humans and mouse mutants. In spite of major advances in cardiac developmental biology over the past 25 years, these advances have not been well communicated to geneticists and cardiologists. As a consequence, the latest data from developmental biology are not always used in the design and interpretation of studies aimed at discovering the genetic causes of CHDs. In this Special Article, while considering other in vitro and in vivo models, we create a coherent framework for accurately modelling and phenotyping human CHDs in mice, thereby enhancing the translation of genetic and genomic studies into the causes of CHDs in patients.
Collapse
Affiliation(s)
- Deborah J. Henderson
- MRC National Mouse Genetics Network, Congenital Anomalies Cluster, Harwell, OX11 0RD, UK
- Biosciences Institute, Newcastle University, Centre for Life, Newcastle upon Tyne NE1 3BZ, UK
| | - Ahlam Alqahtani
- Biosciences Institute, Newcastle University, Centre for Life, Newcastle upon Tyne NE1 3BZ, UK
| | - Bill Chaudhry
- Biosciences Institute, Newcastle University, Centre for Life, Newcastle upon Tyne NE1 3BZ, UK
| | - Andrew Cook
- University College London, Zayed Centre for Research, London WC1N 1DZ, UK
| | - Lorraine Eley
- Biosciences Institute, Newcastle University, Centre for Life, Newcastle upon Tyne NE1 3BZ, UK
| | - Lucile Houyel
- Congenital and Pediatric Cardiology Unit, M3C-Necker, Hôpital Universitaire Necker-Enfants Malades, APHP, Université Paris Cité, 149 Rue de Sèvres, 75015 Paris, France
| | - Marina Hughes
- Cardiology Department, Norfolk and Norwich University Hospital, Norwich NR4 7UY, UK
| | - Bernard Keavney
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - José Luis de la Pompa
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - John Sled
- Mouse Imaging Centre, Hospital for Sick Children, Toronto M5G 1XS, Canada. Department of Medical Biophysics, University of Toronto, Toronto M5G 1XS, Canada
| | - Nadine Spielmann
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich (GmbH), German Research Center for Environmental Health, D-85764 Neuherberg, Germany
| | - Lydia Teboul
- Mary Lyon Centre, MRC Harwell, Oxfordshire OX11 0RD, UK
| | - Stephane Zaffran
- Aix Marseille Université, INSERM, Marseille Medical Genetics, U1251, 13005 Marseille, France
| | - Pleasantine Mill
- MRC National Mouse Genetics Network, Congenital Anomalies Cluster, Harwell, OX11 0RD, UK
- MRC Human Genetics Unit, Institute for Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Karen J. Liu
- MRC National Mouse Genetics Network, Congenital Anomalies Cluster, Harwell, OX11 0RD, UK
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| |
Collapse
|
10
|
Mohan S, McNulty S, Thaxton C, Elnagheeb M, Owens E, Flowers M, Nunnery T, Self A, Palus B, Gorokhova S, Kennedy A, Niu Z, Johari M, Maiga AB, Macalalad K, Clause AR, Beckmann JS, Bronicki L, Cooper ST, Ganesh VS, Kang PB, Kesari A, Lek M, Levy J, Rufibach L, Savarese M, Spencer MJ, Straub V, Tasca G, Weihl CC. Expert panel curation of 31 genes in relation to limb girdle muscular dystrophy. Ann Clin Transl Neurol 2024; 11:2268-2276. [PMID: 39215466 PMCID: PMC11537137 DOI: 10.1002/acn3.52127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 05/30/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE Limb girdle muscular dystrophies (LGMDs) are a group of genetically heterogeneous autosomal conditions with some degree of phenotypic homogeneity. LGMD is defined as having onset >2 years of age with progressive proximal weakness, elevated serum creatine kinase levels and dystrophic features on muscle biopsy. Advances in massively parallel sequencing have led to a surge in genes linked to LGMD. METHODS The ClinGen Muscular Dystrophies and Myopathies gene curation expert panel (MDM GCEP, formerly Limb Girdle Muscular Dystrophy GCEP) convened to evaluate the strength of evidence supporting gene-disease relationships (GDR) using the ClinGen gene-disease clinical validity framework to evaluate 31 genes implicated in LGMD. RESULTS The GDR was exclusively LGMD for 17 genes, whereas an additional 14 genes were related to a broader phenotype encompassing congenital weakness. Four genes (CAPN3, COL6A1, COL6A2, and COL6A3) were split into two separate disease entities, based on each displaying both dominant and recessive inheritance patterns, resulting in curation of 35 GDRs. Of these, 30 (86%) were classified as definitive, 4 (11%) as moderate, and 1 (3%) as limited. Two genes, POMGNT1 and DAG1, though definitively related to myopathy, currently have insufficient evidence to support a relationship specifically with LGMD. INTERPRETATION The expert-reviewed assertions on the clinical validity of genes implicated in LGMDs form an invaluable resource for clinicians and molecular geneticists. We encourage the global neuromuscular community to publish case-level data that help clarify disputed or novel LGMD associations.
Collapse
Affiliation(s)
- Shruthi Mohan
- Department of GeneticsUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Shannon McNulty
- Department of GeneticsUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Courtney Thaxton
- Department of GeneticsUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Marwa Elnagheeb
- Department of GeneticsUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Emma Owens
- Department of GeneticsUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - May Flowers
- Department of GeneticsUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Teagan Nunnery
- Department of GeneticsUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Autumn Self
- Department of GeneticsUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Brooke Palus
- Department of GeneticsUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Svetlana Gorokhova
- Aix Marseille Univ, INSERM, MMG, U 1251MarseilleFrance
- Department of Medical GeneticsTimone Children's Hospital, APHMMarseilleFrance
| | - April Kennedy
- Division of Clinical Pharmacology and ToxicologyThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Zhiyv Niu
- Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesotaUSA
| | - Mridul Johari
- Harry Perkins Institute of Medical Research, Centre for Medical ResearchUniversity of Western AustraliaNedlandsWestern AustraliaAustralia
- Folkhälsan Research Center, Department of Medical and Clinical Genetics, MedicumUniversity of HelsinkiHelsinkiFinland
| | - Alassane Baneye Maiga
- Department of MedicineUniversity of Sciences, Techniques and Technologies of BamakoBamakoMali
| | - Kelly Macalalad
- Department of NeurologyWashington University School of Medicine in St. LouisSt LouisMissouriUSA
| | - Amanda R. Clause
- Department of NeurologyWashington University School of Medicine in St. LouisSt LouisMissouriUSA
| | | | - Lucas Bronicki
- Department of clinical geneticsChildren's Hospital of Eastern OntarioOttawaOntarioCanada
| | - Sandra T. Cooper
- Kids Neuroscience CentreChildren's Hospital at WestmeadWestmeadNew South WalesAustralia
- School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneyWestmeadNew South WalesAustralia
- Functional NeuromicsChildren's Medical Research InstituteWestmeadNew South WalesAustralia
| | - Vijay S. Ganesh
- Center for Mendelian GenomicsBroad Institute of MIT and HarvardCambridgeMassachusettsUSA
- Department of NeurologyBrigham and Women's HospitalBostonMassachusettsUSA
| | - Peter B. Kang
- Greg Marzolf Jr. Muscular Dystrophy Center and Department of NeurologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | | | - Monkol Lek
- Department of GeneticsYale University School of MedicineNew HavenConnecticutUSA
| | | | | | - Marco Savarese
- Folkhälsan Research Center, Department of Medical and Clinical Genetics, MedicumUniversity of HelsinkiHelsinkiFinland
| | - Melissa J. Spencer
- Department of NeurologyDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Volker Straub
- John Walton Muscular Dystrophy Research CentreNewcastle University and Newcastle Hospitals NHS Foundation TrustsNewcastle Upon TyneUK
| | - Giorgio Tasca
- John Walton Muscular Dystrophy Research CentreNewcastle University and Newcastle Hospitals NHS Foundation TrustsNewcastle Upon TyneUK
| | - Conrad C. Weihl
- Department of NeurologyWashington University School of Medicine in St. LouisSt LouisMissouriUSA
| |
Collapse
|
11
|
Wright MW, Thaxton CL, Nelson T, DiStefano MT, Savatt JM, Brush MH, Cheung G, Mandell ME, Wulf B, Ward TJ, Goehringer S, O'Neill T, Weller P, Preston CG, Keseler IM, Goldstein JL, Strande NT, McGlaughon J, Azzariti DR, Cordova I, Dziadzio H, Babb L, Riehle K, Milosavljevic A, Martin CL, Rehm HL, Plon SE, Berg JS, Riggs ER, Klein TE. Generating Clinical-Grade Gene-Disease Validity Classifications Through the ClinGen Data Platforms. Annu Rev Biomed Data Sci 2024; 7:31-50. [PMID: 38663031 PMCID: PMC12001867 DOI: 10.1146/annurev-biodatasci-102423-112456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Clinical genetic laboratories must have access to clinically validated biomedical data for precision medicine. A lack of accessibility, normalized structure, and consistency in evaluation complicates interpretation of disease causality, resulting in confusion in assessing the clinical validity of genes and genetic variants for diagnosis. A key goal of the Clinical Genome Resource (ClinGen) is to fill the knowledge gap concerning the strength of evidence supporting the role of a gene in a monogenic disease, which is achieved through a process known as Gene-Disease Validity curation. Here we review the work of ClinGen in developing a curation infrastructure that supports the standardization, harmonization, and dissemination of Gene-Disease Validity data through the creation of frameworks and the utilization of common data standards. This infrastructure is based on several applications, including the ClinGen GeneTracker, Gene Curation Interface, Data Exchange, GeneGraph, and website.
Collapse
Affiliation(s)
- Matt W Wright
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, California, USA; ,
| | - Courtney L Thaxton
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA;
| | | | - Marina T DiStefano
- Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Matthew H Brush
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Gloria Cheung
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, California, USA; ,
| | - Mark E Mandell
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, California, USA; ,
| | - Bryan Wulf
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, California, USA; ,
| | - T J Ward
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA;
| | | | - Terry O'Neill
- Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Christine G Preston
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, California, USA; ,
| | - Ingrid M Keseler
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, California, USA; ,
| | - Jennifer L Goldstein
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA;
| | | | - Jennifer McGlaughon
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA;
| | - Danielle R Azzariti
- Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Hannah Dziadzio
- Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Lawrence Babb
- Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Kevin Riehle
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | | | | - Heidi L Rehm
- Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Sharon E Plon
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Jonathan S Berg
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA;
| | | | - Teri E Klein
- Departments of Medicine (Biomedical Informatics Research) and Genetics, Stanford University School of Medicine, Stanford, California, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, California, USA; ,
| |
Collapse
|
12
|
Hespe S, Waddell A, Asatryan B, Owens E, Thaxton C, Adduru ML, Anderson K, Brown EE, Hoffman-Andrews L, Jordan E, Josephs K, Mayers M, Peters S, Stafford F, Bagnall RD, Bronicki L, Callewaert B, Chahal CAA, James CA, Jarinova O, Landstrom AP, McNally EM, Murray B, Muiño-Mosquera L, Parikh V, Reuter C, Walsh R, Wayburn B, Ware JS, Ingles J. ClinGen Hereditary Cardiovascular Disease Gene Curation Expert Panel: Reappraisal of Genes associated with Hypertrophic Cardiomyopathy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.29.24311195. [PMID: 39132495 PMCID: PMC11312670 DOI: 10.1101/2024.07.29.24311195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Background Hypertrophic cardiomyopathy (HCM) is an inherited cardiac condition affecting ~1 in 500 and exhibits marked genetic heterogeneity. Previously published in 2019, 57 HCM-associated genes were curated providing the first systematic evaluation of gene-disease validity. Here we report work by the ClinGen Hereditary Cardiovascular Disorders Gene Curation Expert Panel (HCVD-GCEP) to reappraise the clinical validity of previously curated and new putative HCM genes. Methods The ClinGen systematic gene curation framework was used to re-classify the gene-disease relationships for HCM and related syndromic entities involving left ventricular hypertrophy. Genes previously curated were included if their classification was not definitive, and if the time since curation was >2-3 years. New genes with literature assertions for HCM were included for initial evaluation. Existing genes were curated for new inheritance patterns where evidence existed. Curations were presented on twice monthly calls, with the HCVD-GCEP composed of 29 individuals from 21 institutions across 6 countries. Results Thirty-one genes were re-curated and an additional 5 new potential HCM-associated genes were curated. Among the re-curated genes, 17 (55%) genes changed classification: 1 limited and 4 disputed (from no known disease relationship), 9 disputed (from limited), and 3 definitive (from moderate). Among these, 3 (10%) genes had a clinically relevant upgrade, including TNNC1, a 9th sarcomere gene with definitive HCM association. With new evidence, two genes were curated for multiple inheritance patterns (TRIM63, disputed for autosomal dominant but moderate for autosomal recessive; ALPK3, strong for autosomal dominant and definitive for recessive). CSRP3 was curated for a semi-dominant mode of inheritance (definitive). Nine (29%) genes were downgraded to disputed, further discouraging clinical reporting of variants in these genes. Five genes recently reported to cause HCM were curated: RPS6KB1 and RBM20 (limited), KLHL24 and MT-TI (moderate), and FHOD3 (definitive). Conclusions We report 29 genes with definitive, strong or moderate evidence of causation for HCM or isolated LVH, including sarcomere, sarcomere-associated and syndromic conditions.
Collapse
Affiliation(s)
- Sophie Hespe
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, NSW, Australia
| | - Amber Waddell
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Babken Asatryan
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emma Owens
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Courtney Thaxton
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Kailyn Anderson
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Emily E. Brown
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Lily Hoffman-Andrews
- Division of Cardiovascular Medicine, Department of Medicine, Center for Inherited Cardiovascular Disease, Perelman School of Medicine at the University of Pennsylvania, Perelman Center for Advanced Medicine, Philadelphia, PA, USA
| | - Elizabeth Jordan
- Division of Human Genetics, Department of Internal Medicine, Ohio State University, Columbus, OH, USA
| | - Katherine Josephs
- National Heart and Lung Institute and MRC Laboratory of Medical Science, Imperial College London, London, UK
| | - Megan Mayers
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stacey Peters
- Department of Cardiology and Genomic Medicine, Royal Melbourne Hospital, Melbourne, Australia
| | - Fergus Stafford
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, NSW, Australia
| | - Richard D. Bagnall
- Bioinformatics and Molecular Genetics at Centenary Institute, University of Sydney, Sydney, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Lucas Bronicki
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Genetics, Children’s Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Bert Callewaert
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - C. Anwar A. Chahal
- Center for Inherited Cardiovascular Diseases, WellSpan Health, Lancaster, Pennsylvania, USA; Mayo Clinic, Rochester, MN, USA; Barts Heart Centre, London, UK, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Cynthia A. James
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Olga Jarinova
- Department of Genetics, Children’s Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Andrew P. Landstrom
- Department of Pediatrics and Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Elizabeth M. McNally
- Center for Genetic Medicine, Dept of Medicine (Cardiology), Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Brittney Murray
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Laura Muiño-Mosquera
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Division of Pediatric Cardiology, Department of Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Victoria Parikh
- Stanford Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Chloe Reuter
- Stanford Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Roddy Walsh
- Amsterdam University Medical Centre, University of Amsterdam, Heart Center, Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Bess Wayburn
- Clinical Genomics, Ambry Genetics, Aliso Viejo, CA, USA
| | - James S. Ware
- National Heart and Lung Institute and MRC Laboratory of Medical Science, Imperial College London, London, UK
- Hammersmith Hospital, Imperial College Healthcare NHS Foundation Trust, London, UK
- Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Jodie Ingles
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Australia
| |
Collapse
|
13
|
AlAbdi L, Neuhann T, Prott EC, Schön U, Abdulwahab F, Faqeih E, Alkuraya FS. Human ABL1 deficiency syndrome (HADS) is a recognizable syndrome distinct from ABL1-related congenital heart defects and skeletal malformations syndrome. Hum Genet 2024; 143:739-745. [PMID: 38743093 DOI: 10.1007/s00439-024-02677-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024]
Abstract
Germline gain of function variants in the oncogene ABL1 cause congenital heart defects and skeletal malformations (CHDSKM) syndrome. Whether a corresponding ABL1 deficiency disorder exists in humans remains unknown although developmental defects in mice deficient for Abl1 support this notion. Here, we describe two multiplex consanguineous families, each segregating a different homozygous likely loss of function variant in ABL1. The associated phenotype is multiple congenital malformations and distinctive facial dysmorphism that are opposite in many ways to CHDSKM. We suggest that a tight balance of ABL1 activity is required during embryonic development and that both germline gain of function and loss of function variants result in distinctively different allelic congenital malformation disorders.
Collapse
Affiliation(s)
- Lama AlAbdi
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | | | - Ulrike Schön
- MGZ Medizinisch Genetisches Zentrum, Munich, Germany
| | - Firdous Abdulwahab
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Eissa Faqeih
- Section of Medical Genetics, King Fahad Medical City, Children's Specialist Hospital, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| |
Collapse
|
14
|
Mohan S, McNulty S, Thaxton C, Elnagheeb M, Owens E, Flowers M, Nunnery T, Self A, Palus B, Gorokhova S, Kennedy A, Niu Z, Johari M, Maiga AB, Macalalad K, Clause AR, Beckmann JS, Bronicki L, Cooper ST, Ganesh VS, Kang PB, Kesari A, Lek M, Levy J, Rufibach L, Savarese M, Spencer MJ, Straub V, Tasca G, Weihl CC. Expert Panel Curation of 31 Genes in Relation to Limb Girdle Muscular Dystrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592369. [PMID: 38765987 PMCID: PMC11100593 DOI: 10.1101/2024.05.03.592369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Introduction Limb girdle muscular dystrophies (LGMDs) are a group of genetically heterogeneous autosomal conditions with some degree of phenotypic homogeneity. LGMD is defined as having onset >2 years of age with progressive proximal weakness, elevated serum creatine kinase levels and dystrophic features on muscle biopsy. Advances in massively parallel sequencing have led to a surge in genes linked to LGMD. Methods The ClinGen Muscular Dystrophies and Myopathies gene curation expert panel (MDM GCEP, formerly Limb Girdle Muscular Dystrophy GCEP) convened to evaluate the strength of evidence supporting gene-disease relationships (GDR) using the ClinGen gene-disease clinical validity framework to evaluate 31 genes implicated in LGMD. Results The GDR was exclusively LGMD for 17 genes, whereas an additional 14 genes were related to a broader phenotype encompassing congenital weakness. Four genes (CAPN3, COL6A1, COL6A2, COL6A3) were split into two separate disease entities, based on each displaying both dominant and recessive inheritance patterns, resulting in curation of 35 GDRs. Of these, 30 (86%) were classified as Definitive, 4 (11%) as Moderate and 1 (3%) as Limited. Two genes, POMGNT1 and DAG1, though definitively related to myopathy, currently have insufficient evidence to support a relationship specifically with LGMD. Conclusions The expert-reviewed assertions on the clinical validity of genes implicated in LGMDs form an invaluable resource for clinicians and molecular geneticists. We encourage the global neuromuscular community to publish case-level data that help clarify disputed or novel LGMD associations.
Collapse
Affiliation(s)
- Shruthi Mohan
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Shannon McNulty
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Courtney Thaxton
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Marwa Elnagheeb
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Emma Owens
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - May Flowers
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Teagan Nunnery
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Autumn Self
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Brooke Palus
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Svetlana Gorokhova
- Aix Marseille Univ, INSERM, MMG, U 1251, Marseille, France
- Department of Medical Genetics, Timone Children's Hospital, APHM, Marseille, France
| | | | - Zhiyv Niu
- Department of Laboratory Medicine and Pathology, Mayo Clinic
| | - Mridul Johari
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, WA, Australia
- Folkhälsan Research Center, Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Finland
| | | | | | | | | | - Lucas Bronicki
- Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Sandra T Cooper
- Kids Neuroscience Centre, Children's Hospital at Westmead; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney; Functional Neuromics, Children's Medical Research Institute, Westmead, NSW, Australia
| | - Vijay S Ganesh
- Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA
| | - Peter B Kang
- Greg Marzolf Jr. Muscular Dystrophy Center and Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | | | - Monkol Lek
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | | | | | - Marco Savarese
- Folkhälsan Research Center, Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Finland
| | | | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trusts, Newcastle Upon Tyne, UK
| | - Giorgio Tasca
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trusts, Newcastle Upon Tyne, UK
| | | |
Collapse
|
15
|
Jenkins D. How do stochastic processes and genetic threshold effects explain incomplete penetrance and inform causal disease mechanisms? Philos Trans R Soc Lond B Biol Sci 2024; 379:20230045. [PMID: 38432317 PMCID: PMC10909503 DOI: 10.1098/rstb.2023.0045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/16/2024] [Indexed: 03/05/2024] Open
Abstract
Incomplete penetrance is the rule rather than the exception in Mendelian disease. In syndromic monogenic disorders, phenotypic variability can be viewed as the combination of incomplete penetrance for each of multiple independent clinical features. Within genetically identical individuals, such as isogenic model organisms, stochastic variation at molecular and cellular levels is the primary cause of incomplete penetrance according to a genetic threshold model. By defining specific probability distributions of causal biological readouts and genetic liability values, stochasticity and incomplete penetrance provide information about threshold values in biological systems. Ascertainment of threshold values has been achieved by simultaneous scoring of relatively simple phenotypes and quantitation of molecular readouts at the level of single cells. However, this is much more challenging for complex morphological phenotypes using experimental and reductionist approaches alone, where cause and effect are separated temporally and across multiple biological modes and scales. Here I consider how causal inference, which integrates observational data with high confidence causal models, might be used to quantify the relative contribution of different sources of stochastic variation to phenotypic diversity. Collectively, these approaches could inform disease mechanisms, improve predictions of clinical outcomes and prioritize gene therapy targets across modes and scales of gene function. This article is part of a discussion meeting issue 'Causes and consequences of stochastic processes in development and disease'.
Collapse
Affiliation(s)
- Dagan Jenkins
- Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
16
|
Jefferis J, Mallett AJ. Exploring the impact and utility of genomic sequencing in established CKD. Clin Kidney J 2024; 17:sfae043. [PMID: 38464959 PMCID: PMC10921391 DOI: 10.1093/ckj/sfae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 03/12/2024] Open
Abstract
Clinical genetics is increasingly recognized as an important area within nephrology care. Clinicians require awareness of genetic kidney disease to recognize clinical phenotypes, consider use of genomics to aid diagnosis, and inform treatment decisions. Understanding the broad spectrum of clinical phenotypes and principles of genomic sequencing is becoming increasingly required in clinical nephrology, with nephrologists requiring education and support to achieve meaningful patient outcomes. Establishment of effective clinical resources, multi-disciplinary teams and education is important to increase application of genomics in clinical care, for the benefit of patients and their families. Novel applications of genomics in chronic kidney disease include pharmacogenomics and clinical translation of polygenic risk scores. This review explores established and emerging impacts and utility of genomics in kidney disease.
Collapse
Affiliation(s)
- Julia Jefferis
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Andrew J Mallett
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- Department of Renal Medicine, Townsville University Hospital, Douglas, Australia
- College of Medicine and Dentistry, James Cook University, Douglas, Australia
| |
Collapse
|
17
|
Clark KJ, Lubin EE, Gonzalez EM, Sangree AK, Layo-Carris DE, Durham EL, Ahrens-Nicklas RC, Nomakuchi TT, Bhoj EJ. NeuroTri2-VISDOT: An open-access tool to harness the power of second trimester human single cell data to inform models of Mendelian neurodevelopmental disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.578438. [PMID: 38352329 PMCID: PMC10862881 DOI: 10.1101/2024.02.01.578438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Whole exome and genome sequencing, coupled with refined bioinformatic pipelines, have enabled improved diagnostic yields for individuals with Mendelian conditions and have led to the rapid identification of novel syndromes. For many Mendelian neurodevelopmental disorders (NDDs), there is a lack of pre-existing model systems for mechanistic work. Thus, it is critical for translational researchers to have an accessible phenotype- and genotype-informed approach for model system selection. Single-cell RNA sequencing data can be informative in such an approach, as it can indicate which cell types express a gene of interest at the highest levels across time. For Mendelian NDDs, such data for the developing human brain is especially useful. A valuable single-cell RNA sequencing dataset of the second trimester developing human brain was produced by Bhaduri et al in 2021, but access to these data can be limited by computing power and the learning curve of single-cell data analysis. To reduce these barriers for translational research on Mendelian NDDs, we have built the web-based tool, Neurodevelopment in Trimester 2 - VIsualization of Single cell Data Online Tool (NeuroTri2-VISDOT), for exploring this single-cell dataset, and we have employed it in several different settings to demonstrate its utility for the translational research community.
Collapse
Affiliation(s)
- Kelly J. Clark
- Biomedical Graduate School, University of Pennsylvania, Perelman School of Medicine
- Children’s Hospital of Philadelphia
| | - Emily E. Lubin
- Biomedical Graduate School, University of Pennsylvania, Perelman School of Medicine
- Children’s Hospital of Philadelphia
| | - Elizabeth M. Gonzalez
- Biomedical Graduate School, University of Pennsylvania, Perelman School of Medicine
- Children’s Hospital of Philadelphia
| | - Annabel K. Sangree
- Biomedical Graduate School, University of Pennsylvania, Perelman School of Medicine
- Children’s Hospital of Philadelphia
| | | | | | - Rebecca C. Ahrens-Nicklas
- Children’s Hospital of Philadelphia
- Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine
| | | | - Elizabeth J. Bhoj
- Children’s Hospital of Philadelphia
- Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine
| |
Collapse
|
18
|
Mackintosh JA, Chambers DC. Telomere length and immunosuppression in non-idiopathic pulmonary fibrosis interstitial lung disease. Eur Respir J 2024; 63:2301806. [PMID: 38237995 DOI: 10.1183/13993003.01806-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/02/2023] [Indexed: 01/23/2024]
Affiliation(s)
- John A Mackintosh
- Queensland Lung Transplant Service, Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia
- School of Medicine, University of Queensland, Brisbane, Australia
| | - Daniel C Chambers
- Queensland Lung Transplant Service, Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia
- School of Medicine, University of Queensland, Brisbane, Australia
| |
Collapse
|
19
|
Schachar RJ. Fifty years of executive control research in attention-deficit/hyperactivity disorder:What we have learned and still need to know. Neurosci Biobehav Rev 2023; 155:105461. [PMID: 37949153 DOI: 10.1016/j.neubiorev.2023.105461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
For 50 years, attention-deficit/hyperactivity disorder (ADHD) has been considered a disorder of executive control (EC), the higher-order, cognitive skills that support self-regulation, goal attainment and what we generally call "attention." This review surveys our current understanding of the nature of EC as it pertains to ADHD and considers the evidence in support of eight hypotheses that can be derived from the EC theory of ADHD. This paper provides a resource for practitioners to aid in clinical decision-making. To support theory building, I draw a parallel between the EC theory of ADHD and the common gene-common variant model of complex traits such as ADHD. The conclusion offers strategies for advancing collaborative research.
Collapse
Affiliation(s)
- Russell J Schachar
- Department of Psychiatry, The Hospital for Sick Children and University of Toronto, Research Institute, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G1X8, Canada.
| |
Collapse
|
20
|
Josephs KS, Roberts AM, Theotokis P, Walsh R, Ostrowski PJ, Edwards M, Fleming A, Thaxton C, Roberts JD, Care M, Zareba W, Adler A, Sturm AC, Tadros R, Novelli V, Owens E, Bronicki L, Jarinova O, Callewaert B, Peters S, Lumbers T, Jordan E, Asatryan B, Krishnan N, Hershberger RE, Chahal CAA, Landstrom AP, James C, McNally EM, Judge DP, van Tintelen P, Wilde A, Gollob M, Ingles J, Ware JS. Beyond gene-disease validity: capturing structured data on inheritance, allelic requirement, disease-relevant variant classes, and disease mechanism for inherited cardiac conditions. Genome Med 2023; 15:86. [PMID: 37872640 PMCID: PMC10594882 DOI: 10.1186/s13073-023-01246-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND As the availability of genomic testing grows, variant interpretation will increasingly be performed by genomic generalists, rather than domain-specific experts. Demand is rising for laboratories to accurately classify variants in inherited cardiac condition (ICC) genes, including secondary findings. METHODS We analyse evidence for inheritance patterns, allelic requirement, disease mechanism and disease-relevant variant classes for 65 ClinGen-curated ICC gene-disease pairs. We present this information for the first time in a structured dataset, CardiacG2P, and assess application in genomic variant filtering. RESULTS For 36/65 gene-disease pairs, loss of function is not an established disease mechanism, and protein truncating variants are not known to be pathogenic. Using the CardiacG2P dataset as an initial variant filter allows for efficient variant prioritisation whilst maintaining a high sensitivity for retaining pathogenic variants compared with two other variant filtering approaches. CONCLUSIONS Access to evidence-based structured data representing disease mechanism and allelic requirement aids variant filtering and analysis and is a pre-requisite for scalable genomic testing.
Collapse
Affiliation(s)
- Katherine S Josephs
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Angharad M Roberts
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK
- Great Ormond Street Hospital, NHS Foundation Trust, London, UK
| | - Pantazis Theotokis
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Roddy Walsh
- Amsterdam University Medical Centre, University of Amsterdam, Heart Center, Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | | | - Matthew Edwards
- Clinical Genetics & Genomics Lab, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Andrew Fleming
- Clinical Genetics & Genomics Lab, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Courtney Thaxton
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jason D Roberts
- Population Health Research Institute, McMaster University, and Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Melanie Care
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Division of Cardiology, Toronto General Hospital, Toronto, Canada
| | - Wojciech Zareba
- Clinical Cardiovascular Research Center, University of Rochester, Rochester, NY, USA
| | - Arnon Adler
- Division of Cardiology, Peter Munk Cardiac Centre, University Health Network and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Rafik Tadros
- Cardiovascular Genetics Center, Montreal Heart Institute, and Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Valeria Novelli
- Unit of Immunology and Functional Genomics, Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - Emma Owens
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lucas Bronicki
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Genetics, CHEO, Ottawa, Ontario, Canada
| | - Olga Jarinova
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Genetics, CHEO, Ottawa, Ontario, Canada
| | - Bert Callewaert
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Stacey Peters
- Department of Cardiology and Genomic Medicine, Royal Melbourne Hospital, Melbourne, Australia
- University of Melbourne, Melbourne, Australia
| | - Tom Lumbers
- Barts Health & University College London Hospitals NHS Trusts, London, UK
- Institute of Health Informatics, University College London, London, UK
| | - Elizabeth Jordan
- Divisions of Human Genetics and Cardiovascular Medicine, The Ohio State University, Columbus, OH, USA
| | - Babken Asatryan
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Neesha Krishnan
- Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, Australia
| | - Ray E Hershberger
- Divisions of Human Genetics and Cardiovascular Medicine, The Ohio State University, Columbus, OH, USA
| | - C Anwar A Chahal
- Center for Inherited Cardiovascular Diseases, WellSpan Health, Lancaster, PA, USA
- Cardiac Electrophysiology and Inherited Cardiovascular Diseases, Cardiovascular Division, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - Andrew P Landstrom
- Department of Pediatrics and Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Cynthia James
- Johns Hopkins Center for Inherited Heart Diseases, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Elizabeth M McNally
- Center for Genetic Medicine, Dept of Medicine (Cardiology), Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Daniel P Judge
- Medical University of South Carolina, Charleston, SC, USA
| | - Peter van Tintelen
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Arthur Wilde
- Department of Cardiology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Michael Gollob
- Inherited Arrhythmia and Cardiomyopathy Program, Division of Cardiology, University of Toronto, Toronto, ON, Canada
| | - Jodie Ingles
- Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, Australia
| | - James S Ware
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK.
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK.
- MRC London Institute of Medical Sciences, Imperial College London, London, UK.
| |
Collapse
|
21
|
Lipov A, Jurgens SJ, Mazzarotto F, Allouba M, Pirruccello JP, Aguib Y, Gennarelli M, Yacoub MH, Ellinor PT, Bezzina CR, Walsh R. Exploring the complex spectrum of dominance and recessiveness in genetic cardiomyopathies. NATURE CARDIOVASCULAR RESEARCH 2023; 2:1078-1094. [PMID: 38666070 PMCID: PMC11041721 DOI: 10.1038/s44161-023-00346-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/07/2023] [Indexed: 04/28/2024]
Abstract
Discrete categorization of Mendelian disease genes into dominant and recessive models often oversimplifies their underlying genetic architecture. Cardiomyopathies (CMs) are genetic diseases with complex etiologies for which an increasing number of recessive associations have recently been proposed. Here, we comprehensively analyze all published evidence pertaining to biallelic variation associated with CM phenotypes to identify high-confidence recessive genes and explore the spectrum of monoallelic and biallelic variant effects in established recessive and dominant disease genes. We classify 18 genes with robust recessive association with CMs, largely characterized by dilated phenotypes, early disease onset and severe outcomes. Several of these genes have monoallelic association with disease outcomes and cardiac traits in the UK Biobank, including LMOD2 and ALPK3 with dilated and hypertrophic CM, respectively. Our data provide insights into the complex spectrum of dominance and recessiveness in genetic heart disease and demonstrate how such approaches enable the discovery of unexplored genetic associations.
Collapse
Affiliation(s)
- Alex Lipov
- Department of Experimental Cardiology, Heart Centre, Amsterdam UMC, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
| | - Sean J. Jurgens
- Department of Experimental Cardiology, Heart Centre, Amsterdam UMC, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA USA
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Francesco Mazzarotto
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Mona Allouba
- National Heart and Lung Institute, Imperial College London, London, UK
- Aswan Heart Centre, Magdi Yacoub Heart Foundation, Aswan, Egypt
| | - James P. Pirruccello
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA USA
- Division of Cardiology, University of California, San Francisco, San Francisco, CA USA
| | - Yasmine Aguib
- National Heart and Lung Institute, Imperial College London, London, UK
- Aswan Heart Centre, Magdi Yacoub Heart Foundation, Aswan, Egypt
| | - Massimo Gennarelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Genetics Unit, Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Magdi H. Yacoub
- National Heart and Lung Institute, Imperial College London, London, UK
- Aswan Heart Centre, Magdi Yacoub Heart Foundation, Aswan, Egypt
- Harefield Heart Science Centre, Uxbridge, UK
| | - Patrick T. Ellinor
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA USA
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA USA
| | - Connie R. Bezzina
- Department of Experimental Cardiology, Heart Centre, Amsterdam UMC, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart, Amsterdam, the Netherlands
| | - Roddy Walsh
- Department of Experimental Cardiology, Heart Centre, Amsterdam UMC, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
| |
Collapse
|
22
|
McCormick EM, Keller K, Taylor JP, Coffey AJ, Shen L, Krotoski D, Harding B, Gai X, Falk MJ, Zolkipli-Cunningham Z, Rahman S. Expert Panel Curation of 113 Primary Mitochondrial Disease Genes for the Leigh Syndrome Spectrum. Ann Neurol 2023; 94:696-712. [PMID: 37255483 PMCID: PMC10763625 DOI: 10.1002/ana.26716] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/01/2023]
Abstract
OBJECTIVE Primary mitochondrial diseases (PMDs) are heterogeneous disorders caused by inherited mitochondrial dysfunction. Classically defined neuropathologically as subacute necrotizing encephalomyelopathy, Leigh syndrome spectrum (LSS) is the most frequent manifestation of PMD in children, but may also present in adults. A major challenge for accurate diagnosis of LSS in the genomic medicine era is establishing gene-disease relationships (GDRs) for this syndrome with >100 monogenic causes across both nuclear and mitochondrial genomes. METHODS The Clinical Genome Resource (ClinGen) Mitochondrial Disease Gene Curation Expert Panel (GCEP), comprising 40 international PMD experts, met monthly for 4 years to review GDRs for LSS. The GCEP standardized gene curation for LSS by refining the phenotypic definition, modifying the ClinGen Gene-Disease Clinical Validity Curation Framework to improve interpretation for LSS, and establishing a scoring rubric for LSS. RESULTS The GDR with LSS across the nuclear and mitochondrial genomes was classified as definitive for 31 of 114 GDRs curated (27%), moderate for 38 (33%), limited for 43 (38%), and disputed for 2 (2%). Ninety genes were associated with autosomal recessive inheritance, 16 were maternally inherited, 5 were autosomal dominant, and 3 were X-linked. INTERPRETATION GDRs for LSS were established for genes across both nuclear and mitochondrial genomes. Establishing these GDRs will allow accurate variant interpretation, expedite genetic diagnosis of LSS, and facilitate precision medicine, multisystem organ surveillance, recurrence risk counseling, reproductive choice, natural history studies, and determination of eligibility for interventional clinical trials. ANN NEUROL 2023;94:696-712.
Collapse
Affiliation(s)
- Elizabeth M. McCormick
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children’s Hospital of Philadelphia (CHOP), Philadelphia, PA, USA
| | - Kierstin Keller
- Center for Mitochondrial and Epigenomic Medicine, Department of Pathology, CHOP, Philadelphia, PA, USA
| | - Julie P. Taylor
- Illumina Clinical Services Laboratory, Illumina Inc., San Diego, CA, USA
| | - Alison J. Coffey
- Illumina Clinical Services Laboratory, Illumina Inc., San Diego, CA, USA
| | - Lishuang Shen
- Center for Personalized Medicine, Department of Pathology & Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Danuta Krotoski
- IDDB/NICHD, National Institutes of Health, Bethesda, MD, USA
| | - Brian Harding
- Departments of Pathology and Lab Medicine (Neuropathology), Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Xiaowu Gai
- Center for Personalized Medicine, Department of Pathology & Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Marni J. Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children’s Hospital of Philadelphia (CHOP), Philadelphia, PA, USA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Zarazuela Zolkipli-Cunningham
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children’s Hospital of Philadelphia (CHOP), Philadelphia, PA, USA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Shamima Rahman
- Mitochondrial Research Group, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, and Metabolic Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
23
|
Krishnan AR, Schwartz ML, Somerville C, Ding Q, Kim RH. Using whole genome sequence findings to assess gene-disease causality in cardiomyopathy and arrhythmia patients. Future Cardiol 2023; 19:583-592. [PMID: 37830358 DOI: 10.2217/fca-2023-0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
Aim: The genetic etiologies of cardiomyopathies and arrhythmias have not been fully elucidated. Materials & methods: Research findings from genome analyses in a cardiomyopathy and arrhythmia cohort were gathered. Gene-disease relationships from two databases were compared with patient phenotypes. A literature review was conducted for genes with limited evidence. Results: Of 43 genes with candidate findings from 18 cases, 23.3% of genes had never been curated, 15.0% were curated for cardiomyopathies, 16.7% for arrhythmias and 31.3% for other conditions. 25.5% of candidate findings were curated for the patient's specific phenotype with 11.8% having definitive evidence. MYH6 and TPCN1 were flagged for recuration. Conclusion: Findings from genome sequencing in disease cohorts may be useful to guide gene-curation efforts.
Collapse
Affiliation(s)
- Aishwarya Rajesh Krishnan
- Division of Clinical & Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Marci Lb Schwartz
- Division of Clinical & Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
- Ted Rogers Centre for Heart Research, Cardiac Genome Clinic, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, M5G 1X8, Canada
| | - Cherith Somerville
- Division of Clinical & Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
- Ted Rogers Centre for Heart Research, Cardiac Genome Clinic, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, M5G 1X8, Canada
| | - Qiliang Ding
- Division of Clinical & Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
- Ted Rogers Centre for Heart Research, Cardiac Genome Clinic, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, M5G 1X8, Canada
| | - Raymond H Kim
- Division of Clinical & Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
- Ted Rogers Centre for Heart Research, Cardiac Genome Clinic, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, M5G 1X8, Canada
- Fred A. Litwin Family Centre in Genetic Medicine, University Health Network, Sinai Health System, Department of Medicine, Toronto, Ontario, M5T 3L9, Canada
| |
Collapse
|
24
|
Josephs KS, Roberts AM, Theotokis P, Walsh R, Ostrowski PJ, Edwards M, Fleming A, Thaxton C, Roberts JD, Care M, Zareba W, Adler A, Sturm AC, Tadros R, Novelli V, Owens E, Bronicki L, Jarinova O, Callewaert B, Peters S, Lumbers T, Jordan E, Asatryan B, Krishnan N, Hershberger RE, Chahal CAA, Landstrom AP, James C, McNally EM, Judge DP, van Tintelen P, Wilde A, Gollob M, Ingles J, Ware JS. Beyond gene-disease validity: capturing structured data on inheritance, allelic-requirement, disease-relevant variant classes, and disease mechanism for inherited cardiac conditions. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.03.23287612. [PMID: 37066275 PMCID: PMC10104233 DOI: 10.1101/2023.04.03.23287612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Background As availability of genomic testing grows, variant interpretation will increasingly be performed by genomic generalists, rather than domain-specific experts. Demand is rising for laboratories to accurately classify variants in inherited cardiac condition (ICC) genes, including as secondary findings. Methods We analyse evidence for inheritance patterns, allelic requirement, disease mechanism and disease-relevant variant classes for 65 ClinGen-curated ICC gene-disease pairs. We present this information for the first time in a structured dataset, CardiacG2P, and assess application in genomic variant filtering. Results For 36/65 gene-disease pairs, loss-of-function is not an established disease mechanism, and protein truncating variants are not known to be pathogenic. Using CardiacG2P as an initial variant filter allows for efficient variant prioritisation whilst maintaining a high sensitivity for retaining pathogenic variants compared with two other variant filtering approaches. Conclusions Access to evidence-based structured data representing disease mechanism and allelic requirement aids variant filtering and analysis and is pre-requisite for scalable genomic testing.
Collapse
Affiliation(s)
- Katherine S Josephs
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London UK
| | - Angharad M Roberts
- National Heart and Lung Institute, Imperial College London, London, UK
- Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | | | - Roddy Walsh
- Amsterdam University Medical Centre, University of Amsterdam, Heart Center, Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | | | - Matthew Edwards
- Clinical Genetics & Genomics Lab, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London UK
| | - Andrew Fleming
- Clinical Genetics & Genomics Lab, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London UK
| | - Courtney Thaxton
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jason D Roberts
- Population Health Research Institute, McMaster University, and Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Melanie Care
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Division of Cardiology, Toronto General Hospital, Toronto, Canada
| | - Wojciech Zareba
- Clinical Cardiovascular Research Center, University of Rochester, Rochester, New York, USA
| | - Arnon Adler
- Division of Cardiology, Peter Munk Cardiac Centre, University Health Network and Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Amy C Sturm
- 23andMe, Sunnyvale, California, Genomic Health
| | - Rafik Tadros
- Cardiovascular Genetics Center, Montreal Heart Institute, and Faculty of Medicine, Université de Montréal
| | - Valeria Novelli
- Unit of Immunology and Functional Genomics, Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - Emma Owens
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lucas Bronicki
- CHEO Research Institute, University of Ottawa, Ontario, Canada
| | - Olga Jarinova
- CHEO Research Institute, University of Ottawa, Ontario, Canada
- Department of Genetics, CHEO, Ontario, Canada
| | - Bert Callewaert
- Center for Medical Genetics, Ghent University Hospital
- Department of Biomolecular Medicine, Ghent University
| | - Stacey Peters
- Department of Cardiology and Genomic Medicine, Royal Melbourne Hospital, Melbourne, Australia
- University of Melbourne, Melbourne, Australia
| | - Tom Lumbers
- Barts Health & University College London Hospitals NHS Trusts, London, UK
- Institute of Health Informatics, University College London, London, UK
| | - Elizabeth Jordan
- Division of Human Genetics, The Ohio State University, Columbus, Ohio USA
| | - Babken Asatryan
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Neesha Krishnan
- Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, Australia
| | - Ray E Hershberger
- Division of Human Genetics, The Ohio State University, Columbus, Ohio USA
| | - C Anwar A Chahal
- Center for Inherited Cardiovascular Diseases, WellSpan Health, Lancaster, PA USA
- Cardiac Electrophysiology and Inherited Cardiovascular Diseases, Cardiovascular Division, Hospital of the University of Pennsylvania, Philadelphia, PA USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN USA
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - Andrew P Landstrom
- Department of Pediatrics and Cell Biology, Duke University School of Medicine, Durham, North Carolina, US
| | - Cynthia James
- Johns Hopkins Center for Inherited Heart Diseases, Department of Medicine, Johns Hopkins
| | - Elizabeth M McNally
- Center for Genetic Medicine, Dept of Medicine (Cardiology), Northwestern University Feinberg School of Medicine, Chicago, IL US
| | - Daniel P Judge
- Medical University of South Carolina, Charleston, SC USA
| | - Peter van Tintelen
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Arthur Wilde
- Amsterdam UMC location University of Amsterdam, Department of Cardiology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and arrhythmias, Amsterdam, the Netherlands
| | - Michael Gollob
- Inherited Arrhythmia and Cardiomyopathy Program, Division of Cardiology, University of Toronto, Toronto ON Canada
| | - Jodie Ingles
- Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, Australia
| | - James S Ware
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London UK
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| |
Collapse
|