1
|
Hussain Y, You BG, Huang L, Liu X, Dormocara A, Shah KA, Ali T, Cao QR, Lee BJ, Elbehairi SEI, Iqbal H, Cui JH. Dissolving microneedles for melanoma: Most recent updates, challenges, and future perspectives. Int J Pharm 2025; 673:125382. [PMID: 39988214 DOI: 10.1016/j.ijpharm.2025.125382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 02/08/2025] [Accepted: 02/19/2025] [Indexed: 02/25/2025]
Abstract
Skin cancer is one among the common types of cancers, affecting millions of individual globally. The conventional anticancer therapy such as chemotherapy results in worst systemic and local side effects as well as inhibit the growth of healthy cells around the tumor cells. Dissolving microneedles (DMNs) is a groundbreaking technology with less invasive and more targeted features. Physically, these tiny dissolving needles deliver the anticancer payloads drug to the tumor site after its direct application on the skin surface. Specifically, the DMNs release the anticancer drug cargoes into the cancerous cell sparing the healthy cells around the tumor, thus has provided a significant contribution in the landscape of traditional skin cancer therapy. This targeted therapeutic approach of dissolving microneedles shows a significant therapeutic outcome in decreasing the growth of cancer cells in pre-clinical studies. Dissolving microneedles (DMNs) have demonstrated effectiveness in the targeted delivery of drugs, genes, and vaccines specifically at the site of skin tumors. This method mimics the localized release of adjuvants and immunomodulators, leading to significant humoral and cellular immune responses that are beneficial for skin cancer therapy. In this review, the current trends and potential roles of dissolving microneedles in delivering therapeutic agents focused on treating skin melanoma have been highlighted, drawing insights from recent literature. This emphasizes the promising applications of DMNs in enhancing treatment outcomes for skin cancer patients. Lastly, future perspectives were identified for improving the therapeutic potential and translation of DMNs into clinic.
Collapse
Affiliation(s)
- Yaseen Hussain
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Ben-Gang You
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Linyu Huang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Xiaoyin Liu
- School of Radiation Medicine and Protection of Soochow University, Suzhou 215123, China
| | - Amos Dormocara
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Kiramat Ali Shah
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Tariq Ali
- Department of Civil and Environmental Engineering, Shantou University, Shantou, Guangdong 515063, China
| | - Qing-Ri Cao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | | | - Haroon Iqbal
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| | - Jing-Hao Cui
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| |
Collapse
|
2
|
Pentlavalli S, Coulter SM, An Y, Cross ER, Sun H, Moore JV, Sabri AB, Greer B, Vora L, McCarthy HO, Laverty G. D-peptide hydrogels as a long-acting multipurpose drug delivery platform for combined contraception and HIV prevention. J Control Release 2025; 379:30-44. [PMID: 39724948 DOI: 10.1016/j.jconrel.2024.12.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
New multipurpose prevention technology products for use by women, focused on reducing HIV infection and preventing unwanted pregnancies, are a global health priority. Discreet long-acting formulations will empower women with greater choice around their sexual health. This paper outlines the development of a long-acting technology that enables multiple drugs to be incorporated within one injectable platform. This fixed-dose combination product is formed from a phosphorylated D-peptide (naphthalene-2-ly)-acetyl-diphenylalanine-lysine-tyrosine-glycine-OH (Napffky(p)G-OH) that enables the highly hydrophobic drugs MIV-150 (HIV antiretroviral) and etonogestrel (contraceptive) to be solubilized together within aqueous solvents. Upon subcutaneous injection, this D-peptide-drug combination self-assembles in response to phosphatase enzymes present within the skin space to form an in situ forming drug-releasing hydrogel depot. Oscillatory rheology confirmed the formation of hydrogels, which began within ∼10 s exposure to 3.98 U/mL phosphatase enzymes and continued for ∼198 mins for a Napffk(MIV-150)y(p)G-OH + Napffk(ENG)y(p)G-OH combination (8:2 ratio). Biostability against proteases, an important consideration for long-acting injectables, was demonstrated for at least 28 days in vitro. Covalent attachment of each drug to the D-peptide via an ester linkage enabled sustained release of the drug in an unmodified form via hydrolysis of the D-peptide-drug linker. This significantly reduced the initial drug burst. Low toxicity was also demonstrated in vitro via cell culture (MTS, LHS, Live/Dead®) and within in vivo studies (H&E staining). The fixed dose combination was able to deliver clinically relevant concentrations of each drug to Sprague-Dawley rats for at least 49 days, providing proof-of-concept for the use of hydrogel-forming D-peptides (Napffky(p)G-OH) as a long-acting injectable platform for the delivery of multiple hydrophobic drugs.
Collapse
Affiliation(s)
- Sreekanth Pentlavalli
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Sophie M Coulter
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Yuming An
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Emily R Cross
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Han Sun
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Jessica V Moore
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Akmal Bin Sabri
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Brett Greer
- School of Biological Sciences, Biological Sciences Building, 19 Chlorine Gardens, Belfast, Northern Ireland BT9 5DL, United Kingdom
| | - Lalitkumar Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Garry Laverty
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, United Kingdom.
| |
Collapse
|
3
|
Dul M, Alali M, Ameri M, Burke MD, Creelman BP, Dick L, Donnelly RF, Eakins MN, Frivold C, Forster AH, Gilbert PA, Henke S, Henry S, Hunt D, Lewis H, Mistilis JJ, Park JH, Prausnitz MR, Robinson DK, Hernandez CAR, Shin J, Speaker TJ, Strasinger C, Taylor KMG, Zehrung D, Birchall JC, Jarrahian C, Coulman SA. White paper: Understanding, informing and defining the regulatory science of microneedle-based dosage forms that are applied to the skin. J Control Release 2025; 378:402-415. [PMID: 39603537 DOI: 10.1016/j.jconrel.2024.11.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
The COVID-19 pandemic has accelerated pre-clinical and clinical development of microneedle-based drug delivery technology. However the regulatory science of this emerging dosage form is immature and explicit regulatory guidance is limited. A group of international stakeholders has formed to identify and address key issues for the regulatory science of future products that combine a microneedle device and active pharmaceutical ingredient (in solid or semi-solid state) in a single entity that is designed for application to the skin. Guided by the principles of Quality by Design (QbD) and informed by consultation with wider stakeholders, this 'White Paper' describes fundamental elements of the work in an effort to harmonise understanding, stimulate discussion and guide innovation. The paper discusses classification of the dosage form (combination/medicinal product), the regulatory nomenclature that is likely to be adopted and the technical vocabulary that best describes its form and function. More than twenty potential critical quality attributes (CQAs) are identified for the dosage form, and a prioritisation exercise identifies those CQAs that are most pertinent to the dosage form and that will likely require bespoke test methods (delivered dose, puncture performance) or major adaptions to established compendial test methods (dissolution). Hopefully the work will provide a platform for the development of dosage form specific guidance (from regulatory authorities and/or international pharmacopoeias), that expedites clinical translation of safe and effective microneedle-based products.
Collapse
Affiliation(s)
- Maria Dul
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | | | - Mahmoud Ameri
- Americeutics Consulting, USA; previously Zosano Pharma, USA
| | - Matthew Douglas Burke
- Stemline Therapeutics Inc, a Menarini Group Company, USA; previously Radius Health, Inc., USA
| | | | - Lisa Dick
- Previously Kindeva Drug Delivery, USA
| | | | | | | | | | | | - Stefan Henke
- Bioaxxent - Drug Delivery, Germany; previously LTS Lohmann Therapie-Systeme AG, Germany
| | | | | | | | | | - Jung-Hwan Park
- Department of Bionano Technology, Gachon University, Seongnam, Republic of Korea
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | | | | | - Caroline Strasinger
- Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration (FDA), USA
| | - Kevin M G Taylor
- University College London School of Pharmacy, UK; previously British Pharmacopoeia Commission, UK
| | | | - James C Birchall
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | | | - Sion A Coulman
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
4
|
Moawad F, Ruel Y, Rezaei N, Alsarraf J, Pichette A, Legault J, Pouliot R, Brambilla D. Microneedles with Implantable Tip-Accumulated Therapeutics for the Long-Term Management of Psoriasis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405927. [PMID: 39375985 DOI: 10.1002/smll.202405927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Indexed: 10/09/2024]
Abstract
Methotrexate is successfully used as the gold standard for managing moderate-to-severe psoriasis. However, the low bioavailability and short half-life of the oral pills and the invasiveness of the parenteral injections make these suboptimal therapeutic options. Microneedles, bridging the advantages of the former forms, are successfully used to deliver methotrexate for different therapeutic purposes. However, the utilized dissolving microneedles demand frequent administration, potentially compromising patients' compliance. Additionally, the high toxicity of methotrexate prompts a quest for safer alternatives. Phloretin, a natural compound with confirmed antipsoriatic potential, emerges as a promising candidate. Herein, microneedle patches with separable, slow-degrading tips are developed for the sustained delivery of methotrexate and phloretin, as a comprehensive solution for long-term psoriasis management. Both compounds are individually loaded at varying doses and display sustained-release profiles. The developed microneedle patches demonstrate high mechanical strength, favorable drug delivery efficiency, and remarkable antipsoriatic potential both in vitro in keratinocytes and in vivo in a psoriasis mouse model. Comparative analysis with two subcutaneous injections reveals a similar antipsoriatic efficacy with a single patch of either compound, with prominent phloretin safety. Therefore, the developed patches present a superior alternative to methotrexate's current marketed forms and provide a viable alternative (phloretin) with comparable antipsoriatic efficacy and higher safety.
Collapse
Affiliation(s)
- Fatma Moawad
- Faculté de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec, H3T 1J4, Canada
- Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 625617, Egypt
| | - Yasmine Ruel
- Faculté de Pharmacie, Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Nastaran Rezaei
- Faculté de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec, H3T 1J4, Canada
| | - Jérôme Alsarraf
- Département des Sciences Fondamentales, Centre de Recherche sur la boréalie (CREB), Université du Québec à Chicoutimi, Chicoutimi, Québec, G7H 2B1, Canada
| | - André Pichette
- Département des Sciences Fondamentales, Centre de Recherche sur la boréalie (CREB), Université du Québec à Chicoutimi, Chicoutimi, Québec, G7H 2B1, Canada
| | - Jean Legault
- Département des Sciences Fondamentales, Centre de Recherche sur la boréalie (CREB), Université du Québec à Chicoutimi, Chicoutimi, Québec, G7H 2B1, Canada
| | - Roxane Pouliot
- Faculté de Pharmacie, Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Davide Brambilla
- Faculté de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec, H3T 1J4, Canada
| |
Collapse
|
5
|
Wang B, Liao L, Liang H, Chen J, Qiu Y. Preparation and In Vitro/In Vivo Characterization of Mixed-Micelles-Loaded Dissolving Microneedles for Sustained Release of Indomethacin. Pharmaceutics 2024; 16:1505. [PMID: 39771485 PMCID: PMC11728531 DOI: 10.3390/pharmaceutics16121505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 01/16/2025] Open
Abstract
Background/Objectives: Indomethacin (IDM) is commonly used to treat chronic inflammatory diseases such as rheumatoid arthritis and osteoarthritis. However, long-term oral IDM treatment can harm the gastrointestinal tract. This study presents a design for encapsulating IDM within mixed micelles (MMs)-loaded dissolving microneedles (DMNs) to improve and sustain transdermal drug delivery. Methods: Indomethacin-loaded mixed micelles (IDM-MMs) were prepared from Soluplus® and Poloxamer F127 by means of a thin-film hydration method. The MMs-loaded DMNs were fabricated using a two-step molding method and evaluated for storage stability, insertion ability, in vitro release, in vitro transdermal penetration, and in vivo PK/PD studies. Results: The obtained MMs were stable at 4 °C and 30 °C for 60 days. The in vitro IDM transdermal penetration was remarkably improved by the MMs-loaded DMNs compared to a commercial patch. A pharmacokinetic study demonstrated that the MMs-loaded DMNs had a relative bioavailability of 4.1 in comparison with the commercial patch. Furthermore, the MMs-loaded DMNs showed a significantly shorter lag time than the commercial patch, as well as a more stable plasma concentration than the DMNs without MMs. The therapeutic efficacy of the IDM DMNs was examined in Complete Freund's Adjuvant-induced arthritis mice. The IDM DMN treatment effectively reduced arthritis severity, resulting in decreased paw swelling, arthritis index, spleen hyperplasia, and serum IL-1β and TNF-α levels. Conclusions: Our findings demonstrated that the novel MMs-loaded DMNs were an effective strategy for sustained IDM release, providing an alternate route of anti-inflammatory drug delivery.
Collapse
Affiliation(s)
- Baojie Wang
- The Third People’s Hospital of Longgang District, Shenzhen 518112, China;
| | - Langkun Liao
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 East Waihuan Road, Guangzhou 510006, China; (L.L.); (H.L.); (J.C.)
| | - Huihui Liang
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 East Waihuan Road, Guangzhou 510006, China; (L.L.); (H.L.); (J.C.)
| | - Jiaxin Chen
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 East Waihuan Road, Guangzhou 510006, China; (L.L.); (H.L.); (J.C.)
| | - Yuqin Qiu
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 East Waihuan Road, Guangzhou 510006, China; (L.L.); (H.L.); (J.C.)
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
6
|
Yadav PR, Hingonia P, Das DB, Pattanayek SK. Modeling of Dissolving Microneedle-Based Transdermal Drug Delivery: Effects of Dynamics of Polymers in Solution. Mol Pharm 2024; 21:5104-5114. [PMID: 39259772 DOI: 10.1021/acs.molpharmaceut.4c00492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Dissolving microneedle (DMN)-assisted transdermal drug delivery (TDD) has received attention from the scientific community in recent years due to its ability to control the rate of drug delivery through its design, the choice of polymers, and its composition. The dissolution of the polymer depends strongly on the polymer-solvent interaction and polymer physics. Here, we developed a mathematical model based on the physicochemical parameters of DMNs and polymer physics to determine the drug release profiles. An annular gap width is defined when the MN is inserted in the skin, accumulating interstitial fluid (ISF) from the surrounding skin and acting as a boundary layer between the skin and the MN. Poly(vinylpyrrolidone) (PVP) is used as a model dissolving polymer, and ceftriaxone is used as a representative drug. The model agrees well with the literature data for ex vivo permeation studies, along with the percent height reduction of the MN. Based on the suggested mathematical model, when loading 0.39 mg of ceftriaxone, the prediction indicates that approximately 93% of the drug will be cleared from the bloodstream within 24 h. The proposed modeling strategy can be utilized to optimize drug transport behavior using DMNs.
Collapse
Affiliation(s)
- Prateek R Yadav
- Department of Chemical Engineering, Indian Institute of Technology, Delhi 110016, India
| | - Pratinav Hingonia
- Department of Chemical Engineering, Indian Institute of Technology, Delhi 110016, India
| | - Diganta B Das
- Chemical Engineering Department, Loughborough University, Loughborough LE11 3TU, Leicestershire, United Kingdom
| | - Sudip K Pattanayek
- Department of Chemical Engineering, Indian Institute of Technology, Delhi 110016, India
| |
Collapse
|
7
|
Vora LK, Tekko IA, Volpe Zanutto F, Sabri A, Choy RKM, Mistilis J, Kwarteng P, Kilbourne-Brook M, Jarrahian C, McCarthy HO, Donnelly RF. Development of Norelgestromin Dissolving Bilayer Microarray Patches for Sustained Release of Hormonal Contraceptive. Pharmaceutics 2024; 16:946. [PMID: 39065643 PMCID: PMC11279563 DOI: 10.3390/pharmaceutics16070946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/06/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Microarray patches (MAPs) offer a noninvasive and patient-friendly drug delivery method, suitable for self-administration, which is especially promising for low- and middle-income country settings. This study focuses on the development of dissolving bilayer MAPs loaded with norelgestromin (NGMN) as a first step towards developing a future potential drug delivery system for sustained hormonal contraception. The fabricated MAPs were designed with the appropriate needle lengths to penetrate the stratum corneum, while remaining minimally stimulating to dermal nociceptors. Ex vivo assessments showed that the MAPs delivered an average of 176 ± 60.9 μg of NGMN per MAP into excised neonatal porcine skin, representing 15.3 ± 5.3% of the loaded drug. In vivo pharmacokinetic analysis in Sprague Dawley rats demonstrated a Tmax of 4 h and a Cmax of 67.4 ± 20.1 ng/mL for the MAP-treated group, compared to a Tmax of 1 h and a Cmax of 700 ± 138 ng/mL for the intramuscular (IM) injection group, with a relative bioavailability of approximately 10% for the MAPs. The MAP-treated rats maintained plasma levels sufficient for therapeutic effects for up to 7 days after a single application. These results indicate the potential of NGMN-loaded dissolving bilayer MAPs, with further development focused on extending the release duration and improving bioavailability for prolonged contraceptive effects.
Collapse
Affiliation(s)
- Lalitkumar K. Vora
- School of Pharmacy, Medical Biology Centre, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (L.K.V.)
| | - Ismaiel A. Tekko
- School of Pharmacy, Medical Biology Centre, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (L.K.V.)
| | - Fabiana Volpe Zanutto
- School of Pharmacy, Medical Biology Centre, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (L.K.V.)
| | - Akmal Sabri
- School of Pharmacy, Medical Biology Centre, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (L.K.V.)
| | | | | | | | | | | | - Helen O. McCarthy
- School of Pharmacy, Medical Biology Centre, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (L.K.V.)
| | - Ryan F. Donnelly
- School of Pharmacy, Medical Biology Centre, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (L.K.V.)
| |
Collapse
|
8
|
Karve T, Dandekar A, Agrahari V, Melissa Peet M, Banga AK, Doncel GF. Long-acting transdermal drug delivery formulations: Current developments and innovative pharmaceutical approaches. Adv Drug Deliv Rev 2024; 210:115326. [PMID: 38692457 DOI: 10.1016/j.addr.2024.115326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/05/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
Transdermal administration remains an active research and development area as an alternative route for long-acting drug delivery. It avoids major drawbacks of conventional oral (gastrointestinal side effects, low drug bioavailability, and need for multiple dosing) or parenteral routes (invasiveness, pain, and psychological stress and bio-hazardous waste generated from needles), thereby increasing patient appeal and compliance. This review focuses on the current state of long-acting transdermal drug delivery, including adhesive patches, microneedles, and molecularly imprinted polymeric systems. Each subsection describes an approach including key considerations in formulation development, design, and process parameters with schematics. An overview of commercially available conventional (adhesive) patches for long-acting drug delivery (longer than 24 h), the reservoir- and matrix-type systems under preclinical evaluation, as well as the advanced transdermal formulations, such as the core-shell, nanoformulations-incorporated and stimuli-responsive microneedles, and 3D-printed and molecularly imprinted polymers that are in development, is also provided. Finally, we elaborated on translational aspects, challenges in patch formulation development, and future directions for the clinical advancement of new long-acting transdermal products.
Collapse
Affiliation(s)
- Tanvi Karve
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Amruta Dandekar
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Vivek Agrahari
- CONRAD, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | - M Melissa Peet
- CONRAD, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Ajay K Banga
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA.
| | | |
Collapse
|
9
|
Cheng A, Zhang S, Meng F, Xing M, Liu H, Yang G, Gao Y. Nanosuspension-Loaded Dissolving Microneedle Patches for Enhanced Transdermal Delivery of a Highly Lipophilic Cannabidiol. Int J Nanomedicine 2024; 19:4061-4079. [PMID: 38736651 PMCID: PMC11088408 DOI: 10.2147/ijn.s452207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/11/2024] [Indexed: 05/14/2024] Open
Abstract
Purpose Transdermal Drug Delivery System (TDDS) offers a promising alternative for delivering poorly soluble drugs, challenged by the stratum corneum's barrier effect, which restricts the pool of drug candidates suitable for TDDS. This study aims to establish a delivery platform specifically for highly lipophilic drugs requiring high doses (log P > 5, dose > 10 mg/kg/d), to improve their intradermal delivery and enhance solubility. Methods Cannabidiol (CBD, log P = 5.91) served as the model drug. A CBD nanosuspension (CBD-NS) was prepared using a bottom-up method. The particle size, polydispersity index (PDI), zeta potential, and concentration of the CBD-NS were characterized. Subsequently, CBD-NS was incorporated into dissolving microneedles (DMNs) through a one-step manufacturing process. The intradermal dissolution abilities, physicochemical properties, mechanical strength, insertion depth, and release behavior of the DMNs were evaluated. Sprague-Dawley (SD) rats were utilized to assess the efficacy of the DMN patch in treating knee synovitis and to analyze its skin permeation kinetics and pharmacokinetic performance. Results The CBD-NS, stabilized with Tween 80, exhibited a particle size of 166.83 ± 3.33 nm, a PDI of 0.21 ± 0.07, and a concentration of 46.11 ± 0.52 mg/mL. The DMN loaded with CBD-NS demonstrated favorable intradermal dissolution and mechanical properties. It effectively increased the delivery of CBD into the skin, extended the action's duration in vivo, and enhanced bioavailability. CBD-NS DMN exhibited superior therapeutic efficacy and safety in a rat model of knee synovitis, significantly inhibiting TNF-α and IL-1β compared with the methotrexate subcutaneous injection method. Conclusion NS technology effectively enhances the solubility of the poorly soluble drug CBD, while DMN facilitates penetration, extends the duration of action in vivo, and improves bioavailability. Furthermore, CBD has shown promising therapeutic outcomes in treating knee synovitis. This innovative drug delivery system is expected to offer a more efficient solution for the administration of highly lipophilic drugs akin to CBD, thereby facilitating high-dose administration.
Collapse
Affiliation(s)
- Aguo Cheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Suohui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing, People’s Republic of China
- Beijing CAS Microneedle Technology Ltd, Beijing, People’s Republic of China
| | - Fanda Meng
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, People’s Republic of China
| | - Mengzhen Xing
- Key Laboratory of New Material Research Institute, Department of Pharmaceutical Research Institute, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, People’s Republic of China
| | - Han Liu
- Beijing CAS Microneedle Technology Ltd, Beijing, People’s Republic of China
| | - Guozhong Yang
- Beijing CAS Microneedle Technology Ltd, Beijing, People’s Republic of China
| | - Yunhua Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
- Beijing CAS Microneedle Technology Ltd, Beijing, People’s Republic of China
| |
Collapse
|
10
|
McGuckin MB, Hutton AR, Davis ER, Sabri AH, Ripolin A, Himawan A, Naser YA, Ghanma R, Greer B, McCarthy HO, Paredes AJ, Larrañeta E, Donnelly RF. Transdermal Delivery of Pramipexole Using Microneedle Technology for the Potential Treatment of Parkinson's Disease. Mol Pharm 2024; 21:2512-2533. [PMID: 38602861 PMCID: PMC11080471 DOI: 10.1021/acs.molpharmaceut.4c00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024]
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disease primarily impacting neurons responsible for dopamine production within the brain. Pramipexole (PRA) is a dopamine agonist that is currently available in tablet form. However, individuals with PD commonly encounter difficulties with swallowing and gastrointestinal motility, making oral formulations less preferable. Microneedle (MN) patches represent innovative transdermal drug delivery devices capable of enhancing skin permeability through the creation of microconduits on the surface of the skin. MNs effectively reduce the barrier function of skin and facilitate the permeation of drugs. The work described here focuses on the development of polymeric MN systems designed to enhance the transdermal delivery of PRA. PRA was formulated into both dissolving MNs (DMNs) and directly compressed tablets (DCTs) to be used in conjunction with hydrogel-forming MNs (HFMNs). In vivo investigations using a Sprague-Dawley rat model examined, for the first time, if it was beneficial to prolong the application of DMNs and HFMNs beyond 24 h. Half of the patches in the MN cohorts were left in place for 24 h, whereas the other half remained in place for 5 days. Throughout the entire 5 day study, PRA plasma levels were monitored for all cohorts. This study confirmed the successful delivery of PRA from DMNs (Cmax = 511.00 ± 277.24 ng/mL, Tmax = 4 h) and HFMNs (Cmax = 328.30 ± 98.04 ng/mL, Tmax = 24 h). Notably, both types of MNs achieved sustained PRA plasma levels over a 5 day period. In contrast, following oral administration, PRA remained detectable in plasma for only 48 h, achieving a Cmax of 159.32 ± 113.43 ng/mL at 2 h. The HFMN that remained in place for 5 days demonstrated the most promising performance among all investigated formulations. Although in the early stages of development, the findings reported here offer a hopeful alternative to orally administered PRA. The sustained plasma profile observed here has the potential to reduce the frequency of PRA administration, potentially enhancing patient compliance and ultimately improving their quality of life. This work provides substantial evidence advocating the development of polymeric MN-mediated drug delivery systems to include sustained plasma levels of hydrophilic pharmaceuticals.
Collapse
Affiliation(s)
- Mary B. McGuckin
- School
of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Aaron R.J. Hutton
- School
of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Ellie R. Davis
- School
of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Akmal H.B. Sabri
- School
of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Anastasia Ripolin
- School
of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Achmad Himawan
- School
of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Yara A. Naser
- School
of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Rand Ghanma
- School
of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Brett Greer
- Institute
for Global Food Security, School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom
- The International
Joint Research Centre on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Pahonyothin
Road, Khong Luang ,Pathum
Thani12120, Thailand
| | - Helen O. McCarthy
- School
of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Alejandro J. Paredes
- School
of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Eneko Larrañeta
- School
of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Ryan F. Donnelly
- School
of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| |
Collapse
|
11
|
Meng F, Qiao X, Xin C, Ju X, He M. Recent progress of polymeric microneedle-assisted long-acting transdermal drug delivery. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:12434. [PMID: 38571937 PMCID: PMC10987780 DOI: 10.3389/jpps.2024.12434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/06/2024] [Indexed: 04/05/2024]
Abstract
Microneedle (MN)-assisted drug delivery technology has gained increasing attention over the past two decades. Its advantages of self-management and being minimally invasive could allow this technology to be an alternative to hypodermic needles. MNs can penetrate the stratum corneum and deliver active ingredients to the body through the dermal tissue in a controlled and sustained release. Long-acting polymeric MNs can reduce administration frequency to improve patient compliance and therapeutic outcomes, especially in the management of chronic diseases. In addition, long-acting MNs could avoid gastrointestinal reactions and reduce side effects, which has potential value for clinical application. In this paper, advances in design strategies and applications of long-acting polymeric MNs are reviewed. We also discuss the challenges in scale manufacture and regulations of polymeric MN systems. These two aspects will accelerate the effective clinical translation of MN products.
Collapse
Affiliation(s)
- Fanda Meng
- College of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xinyu Qiao
- College of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Chenglong Xin
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Xiaoli Ju
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, Yantai, Shandong, China
| | - Meilin He
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, Yantai, Shandong, China
| |
Collapse
|
12
|
Donnelly RF, Prausnitz MR. The promise of microneedle technologies for drug delivery. Drug Deliv Transl Res 2024; 14:573-580. [PMID: 37783973 DOI: 10.1007/s13346-023-01430-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2023] [Indexed: 10/04/2023]
Abstract
Microneedle (MN) technologies offer the opportunity to improve patient access and target delivery of drugs and vaccines to specific tissues. When in the form of skin patches, MNs can be administered by personnel with minimal training, or could be self-administered by patients, which can improve access to medication, especially those usually requiring injection. Because MNs are small (usually sub-millimetre), they can be used for precise tissue targeting. MN patches have been extensively studied to administer vaccines and drugs in preclinical work as well as in multiple clinical trials. When formulated with biodegradable polymer, MNs can enable long-acting therapies by slowly releasing drug as the MNs biodegrade. Targeted drug delivery by hollow MNs has resulted in FDA-approved products that are able to inject vaccines to skin-resident immune cells to improve immune response and to target specific parts of the eye (e.g., suprachoroidal space) for increased efficacy and avoidance of side effects in other parts of the eye. Cosmetic products based on MN technologies are already in widespread use, mostly as anti-aging agents. With extensive research coupled with FDA-approved products, MN technology promises to continue is growth in research leading to products that can benefit patients.
Collapse
Affiliation(s)
- Ryan F Donnelly
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| | - Mark R Prausnitz
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
13
|
Ando D, Miyatsuji M, Sakoda H, Yamamoto E, Miyazaki T, Koide T, Sato Y, Izutsu KI. Mechanical Characterization of Dissolving Microneedles: Factors Affecting Physical Strength of Needles. Pharmaceutics 2024; 16:200. [PMID: 38399254 PMCID: PMC10893124 DOI: 10.3390/pharmaceutics16020200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/04/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Dissolving microneedles (MNs) are novel transdermal drug delivery systems that can be painlessly self-administered. This study investigated the effects of experimental conditions on the mechanical characterization of dissolving MNs for quality evaluation. Micromolding was used to fabricate polyvinyl alcohol (PVA)-based dissolving MN patches with eight different cone-shaped geometries. Axial force mechanical characterization test conditions, in terms of compression speed and the number of compression needles per test, significantly affected the needle fracture force of dissolving MNs. Characterization using selected test conditions clearly showed differences in the needle fracture force of dissolving MNs prepared under various conditions. PVA-based MNs were divided into two groups that showed buckling and unbuckling deformation, which occurred at aspect ratios (needle height/base diameter) of 2.8 and 1.8, respectively. The needle fracture force of PVA-based MNs was negatively correlated with an increase in the needle's aspect ratio. Higher residual water or higher loading of lidocaine hydrochloride significantly decreased the needle fracture force. Therefore, setting appropriate methods and parameters for characterizing the mechanical properties of dissolving MNs should contribute to the development and supply of appropriate products.
Collapse
Affiliation(s)
- Daisuke Ando
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Kanagawa, Japan
| | - Megumi Miyatsuji
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Kanagawa, Japan
| | - Hideyuki Sakoda
- Division of Medical Devices, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Kanagawa, Japan
| | - Eiichi Yamamoto
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Kanagawa, Japan
- Division of Medical Devices, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Kanagawa, Japan
| | - Tamaki Miyazaki
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Kanagawa, Japan
| | - Tatsuo Koide
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Kanagawa, Japan
| | - Yoji Sato
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Kanagawa, Japan
| | - Ken-Ichi Izutsu
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Kanagawa, Japan
- Department of Pharmaceutical Sciences, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara 324-8501, Tochigi, Japan
| |
Collapse
|
14
|
Moawad F, Le Meur M, Ruel Y, Gaëlle Roullin V, Pouliot R, Brambilla D. Impact of the crystal size of crystalline active pharmaceutical compounds on loading into microneedles. Int J Pharm 2024; 649:123676. [PMID: 38056795 DOI: 10.1016/j.ijpharm.2023.123676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/27/2023] [Accepted: 12/03/2023] [Indexed: 12/08/2023]
Abstract
Microneedle (MN) technology offers a promising platform for the delivery of a wide variety of active pharmaceutical compounds into and/or through the skin. Yet, the low loading capacity of MNs limits their clinical translation. The solid state of loaded compounds, crystallinity versus amorphousness and crystal size of the former, could greatly affect their loading. Here, we investigated the effect of the crystal size of crystalline compounds on their loading into dissolving MNs, prepared using the solvent-casting technique. A model crystalline compound was subjected to crystal size reduction via wet bead milling and loaded into dissolving MNs. A range of crystal sizes, from micro to nano, was obtained via different milling periods. The obtained crystals were characterized for their size, morphology, and sedimentation behavior. Besides, their content, solid state inside the MNs, and impact on the MN mechanical strength were assessed. The crystals exhibited size-dependent sedimentation, which dramatically affected their loading inside the MNs. However, crystal size and sedimentation demonstrated a negligible effect on the mechanical strength and sharpness of the needles, hence no anticipated impact on the MNs' drug delivery efficiency. The elucidation of the correlation between the crystal size and MN loading opens new potentials to address a major drawback in MN technology.
Collapse
Affiliation(s)
- Fatma Moawad
- Faculté de Pharmacie, Université de Montréal, Montréal, Québec H3T 1J4, Canada; Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Marion Le Meur
- Faculté de Pharmacie, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Yasmine Ruel
- Faculté de Pharmacie, Université Laval, Québec, Québec G1V 0A6, Canada
| | | | - Roxane Pouliot
- Faculté de Pharmacie, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Davide Brambilla
- Faculté de Pharmacie, Université de Montréal, Montréal, Québec H3T 1J4, Canada.
| |
Collapse
|
15
|
Kenchegowda M, Hani U, Al Fatease A, Haider N, Ramesh KVRNS, Talath S, Gangadharappa HV, Kiran Raj G, Padmanabha SH, Osmani RAM. Tiny titans- unravelling the potential of polysaccharides and proteins based dissolving microneedles in drug delivery and theranostics: A comprehensive review. Int J Biol Macromol 2023; 253:127172. [PMID: 37793514 DOI: 10.1016/j.ijbiomac.2023.127172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/22/2023] [Accepted: 09/29/2023] [Indexed: 10/06/2023]
Abstract
In recent years, microneedles (MNs) have emerged as a promising alternative to traditional drug delivery systems in transdermal drug delivery. The use of MNs has demonstrated significant potential in improving patient acceptance and convenience while avoiding the invasiveness of traditional injections. Dissolving, solid, hollow, coated, and hydrogel microneedles are among the various types studied for drug delivery. Dissolving microneedles (DMNs), in particular, have gained attention for their safety, painlessness, patient convenience, and high delivery efficiency. This comprehensive review primarily focuses on different types of microneedles, fabrication methods, and materials used in fabrication of DMNs such as hyaluronic acid, chitosan, alginate, gelatin, collagen, silk fibroin, albumin, cellulose and starch, to list a few. The review also provides an exhaustive discussion on the applications of DMNs, including the delivery of vaccines, cosmetic agents, contraceptives, hormone and genes, and other therapeutic applications like for treating cancer, skin diseases, and diabetes, among others, are covered in this review. Additionally, this review highlights some of the DMN systems that are presently undergoing clinical trials. Finally, the review discusses current advances and trends in DMNs, as well as future prospective directions for this ground-breaking technology in drug delivery.
Collapse
Affiliation(s)
- Madhuchandra Kenchegowda
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Nazima Haider
- Department of Pathology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - K V R N S Ramesh
- Department of Pharmaceutics, RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Hosahalli V Gangadharappa
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - G Kiran Raj
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
| | - Sharath Honganoor Padmanabha
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India.
| |
Collapse
|
16
|
Wang B, Liu H, Zhang S, Cheng A, Yan C, Xu B, Gao Y. Aspirin microcrystals deposited on high-density microneedle tips for the preparation of soluble polymer microneedles. Drug Deliv Transl Res 2023; 13:2639-2652. [PMID: 37040032 DOI: 10.1007/s13346-023-01343-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2023] [Indexed: 04/12/2023]
Abstract
To reduce mucosal damage in the gastrointestinal tract caused by aspirin, aspirin microcrystals were loaded in soluble polymeric microneedle (MN) tips. Aspirin was prepared into aspirin microcrystals by jet milling. Aspirin microcrystals with particle sizes of 0.5-5 μm were loaded on MN tips with a height of 250 µm or 300 µm. The aspirin microcrystals suspended in a polymer solution were concentrated in the MN tips under negative pressure. The aspirin microcrystals had high stability in the MNs since they were not dissolved in solution during the fabrication process. The MN patch packaged in an aluminum-plastic bag containing silica gel desiccant can be stored at 4 °C. The MN tips implanted in the skin of Institute of Cancer Research (ICR) mice dissolved within 30 min. Isolated porcine ear skin was punctured by MNs with heights of 300 μm and 250 μm to depths of 130 μm and 90 μm, respectively. The fluorescent red (FR) release from MNs reached 98.59% within 24 h. The MNs delivered aspirin microcrystals to the epidermis and dermis, providing a smooth plasma concentration in rats. The MNs loaded with aspirin microcrystals did not evoke primary irritation on the dorsal skin of Japanese white rabbits. In summary, MNs loaded with aspirin microcrystals provide a new approach to improve the stability of aspirin in MN patches.
Collapse
Affiliation(s)
- Baorui Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Han Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing, 100190, China
| | - Suohui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing, 100190, China
- Beijing CAS Microneedle Technology Ltd, Beijing, 102609, China
| | - Aguo Cheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing, 100190, China
| | - Chenxin Yan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing, 100190, China
| | - Bo Xu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunhua Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing, 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing CAS Microneedle Technology Ltd, Beijing, 102609, China.
| |
Collapse
|
17
|
Vora LK, Sabri AH, Naser Y, Himawan A, Hutton ARJ, Anjani QK, Volpe-Zanutto F, Mishra D, Li M, Rodgers AM, Paredes AJ, Larrañeta E, Thakur RRS, Donnelly RF. Long-acting microneedle formulations. Adv Drug Deliv Rev 2023; 201:115055. [PMID: 37597586 DOI: 10.1016/j.addr.2023.115055] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
The minimally-invasive and painless nature of microneedle (MN) application has enabled the technology to obviate many issues with injectable drug delivery. MNs not only administer therapeutics directly into the dermal and ocular space, but they can also control the release profile of the active compound over a desired period. To enable prolonged delivery of payloads, various MN types have been proposed and evaluated, including dissolving MNs, polymeric MNs loaded or coated with nanoparticles, fast-separable MNs hollow MNs, and hydrogel MNs. These intricate yet intelligent delivery platforms provide an attractive approach to decrease side effects and administration frequency, thus offer the potential to increase patient compliance. In this review, MN formulations that are loaded with various therapeutics for long-acting delivery to address the clinical needs of a myriad of diseases are discussed. We also highlight the design aspects, such as polymer selection and MN geometry, in addition to computational and mathematical modeling of MNs that are necessary to help streamline and develop MNs with high translational value and clinical impact. Finally, up-scale manufacturing and regulatory hurdles along with potential avenues that require further research to bring MN technology to the market are carefully considered. It is hoped that this review will provide insight to formulators and clinicians that the judicious selection of materials in tandem with refined design may offer an elegant approach to achieve sustained delivery of payloads through the simple and painless application of a MN patch.
Collapse
Affiliation(s)
- Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Akmal H Sabri
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Yara Naser
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Achmad Himawan
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmaceutical Science and Technology, Faculty of Pharmacy, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Aaron R J Hutton
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Fabiana Volpe-Zanutto
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Deepakkumar Mishra
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Mingshan Li
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Aoife M Rodgers
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Alejandro J Paredes
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | | | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
18
|
Wang B, Zhang S, Cheng A, Yan J, Gao Y. Soluble Polymer Microneedles Loaded with Interferon Alpha 1b for Treatment of Hyperplastic Scar. Polymers (Basel) 2023; 15:2621. [PMID: 37376266 DOI: 10.3390/polym15122621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
To achieve the painless administration of interferon alpha 1b (rhIFNα-1b), a double-layered soluble polymer microneedle (MN) patch loaded with rhIFNα-1b was used to deliver rhIFNα-1b transdermally. The solution containing rhIFNα-1b was concentrated in the MN tips under negative pressure. The MNs punctured the skin and delivered rhIFNα-1b to the epidermis and dermis. The MN tips implanted in the skin dissolved within 30 min and gradually released rhIFNα-1b. The rhIFNα-1b had a significant inhibitory effect on the abnormal proliferation of fibroblasts and excessive deposition of collagen fibers in the scar tissue. The color and thickness of the scar tissue treated using the MN patches loaded with rhIFNα-1b were effectively reduced. The relative expressions of type I collagen (Collagen I), type III collagen (Collagen III), transforming growth factor beta 1 (TGF-β1), and α-smooth muscle actin (α-SMA) were significantly downregulated in scar tissues. In summary, the MN patch loaded with rhIFNα-1b provided an effective method for the transdermal delivery of rhIFNα-1b.
Collapse
Affiliation(s)
- Baorui Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suohui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China
- Beijing CAS Microneedle Technology Ltd., Beijing 102609, China
| | - Aguo Cheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China
- Beijing CAS Microneedle Technology Ltd., Beijing 102609, China
| | - Juan Yan
- Beijing CAS Microneedle Technology Ltd., Beijing 102609, China
- College of Life Sciences, Changchun Normal University, Changchun 130032, China
| | - Yunhua Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing CAS Microneedle Technology Ltd., Beijing 102609, China
| |
Collapse
|
19
|
Ramadon D, Ulayya F, Qur’ani AS, Iskandarsyah I, Harahap Y, Anjani QK, Aileen V, Hartrianti P, Donnelly RF. Combination of Dissolving Microneedles with Nanosuspension and Co-Grinding for Transdermal Delivery of Ketoprofen. Pharmaceuticals (Basel) 2023; 16:ph16030378. [PMID: 36986478 PMCID: PMC10054238 DOI: 10.3390/ph16030378] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Ketoprofen is an anti-inflammatory agent that may cause gastric irritation if administered orally. Dissolving microneedles (DMN) can be a promising strategy to overcome this issue. However, ketoprofen has a low solubility; therefore, it is essential to enhance its solubility using certain methods, namely nanosuspension (NS) and co-grinding (CG). This research aimed to formulate DMN containing ketoprofen-loaded NS and CG. Ketoprofen NS was formulated with poly(vinyl alcohol) (PVA) at concentrations of 0.5%, 1%, and 2%. CG was prepared by grinding ketoprofen with PVA or poly(vinyl pyrrolidone) (PVP) at different drug–polymer ratios. The manufactured ketoprofen-loaded NS and CG were evaluated in terms of their dissolution profile. The most promising formulation from each system was then formulated into microneedles (MNs). The fabricated MNs were assessed in terms of their physical and chemical properties. An in vitro permeation study using Franz diffusion cells was also carried out. The most promising MN-NS and MN-CG formulations were F4-MN-NS (PVA 5%-PVP 10%), F5-MN-NS (PVA 5%-PVP 15%), F8-MN-CG (PVA 5%-PVP 15%), and F11-MN-CG (PVA 7.5%-PVP 15%), respectively. The cumulative amounts of drug permeated after 24 h for F5-MN-NS and F11-MN-CG were 3.88 ± 0.46 µg and 8.73 ± 1.40 µg, respectively. In conclusion, the combination of DMN with nanosuspension or a co-grinding system may be a promising strategy for delivering ketoprofen transdermally.
Collapse
Affiliation(s)
- Delly Ramadon
- Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia
- Correspondence:
| | - Fathin Ulayya
- Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia
| | | | | | - Yahdiana Harahap
- Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia
- Faculty of Military Pharmacy, Republic of Indonesia Defense University, Bogor 16810, Indonesia
| | - Qonita Kurnia Anjani
- School of Pharmacy, Medical Biology Centre, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Vania Aileen
- Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia
| | - Pietradewi Hartrianti
- School of Life Sciences, Indonesia International Institute for Life Sciences, Jakarta Timur 13210, Indonesia
| | - Ryan F. Donnelly
- School of Pharmacy, Medical Biology Centre, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
20
|
3D Printed Hollow Microneedles for Treating Skin Wrinkles Using Different Anti-Wrinkle Agents: A Possible Futuristic Approach. COSMETICS 2023. [DOI: 10.3390/cosmetics10020041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Skin wrinkles are an inevitable phenomenon that is brought about by aging due to the degradation of scleroprotein fibers and significant collagen reduction, which is the fundamental basis of anti-wrinkle technology in use today. Conventional treatments such as lasering and Botulinum toxin have some drawbacks including allergic skin reactions, cumbersome treatment procedures, and inefficient penetration of the anti-wrinkle products into the skin due to the high resistance of stratum corneum. Bearing this in mind, the cosmetic industry has exploited the patient-compliant technology of microneedles (MNs) to treat skin wrinkles, developing several products based on solid and dissolvable MNs incorporated with antiwrinkle formulations. However, drug administration via these MNs is limited by the high molecular weight of the drugs. Hollow MNs (HMNs) can deliver a wider array of active agents, but that is a relatively unexplored area in the context of antiwrinkle technology. To address this gap, we discuss the possibility of bioinspired 3D printed HMNs in treating skin wrinkles in this paper. We compare the previous and current anti-wrinkling treatment options, as well as the techniques and challenges involved with its manufacture and commercialization.
Collapse
|
21
|
Duan X, Ma J, Ning M, Gao Y. Dissolving Microneedles Loaded with Gestodene: Fabrication and Characterization In Vitro and In Vivo. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2023; 22:e131819. [PMID: 38116561 PMCID: PMC10728855 DOI: 10.5812/ijpr-131819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 02/25/2023] [Accepted: 04/04/2023] [Indexed: 12/21/2023]
Abstract
Background Gestodene (GEST) is widely used in female contraception. It is currently being used as an oral contraceptive. However, unfortunately, oral contraceptives are often associated with several bothersome side effects and poor compliance. Therefore, a sustained delivery system for GEST to overcome these shortcomings is highly desirable. Objectives The present study successfully developed a kind of novel dissolving microneedles (DMNs) with a potential for sustained release and a minimally invasive intradermal treatment of GEST. Methods The dissolving microneedles containing GEST were fabricated using polyvinylpyrrolidone as the base material. The characteristics in vitro and pharmacokinetics in vivo of GEST-loaded DMNs were investigated. Results The results showed that the microneedle could pierce the porcine skin and release the drug at an average dose of 20µg/cm2 daily for seven days. The pharmacokinetic experiment of the microneedles indicated that the plasma level of GEST in rats increased with increasing drug dosage, and the plasma drug concentration-time curves were much flatter compared with subcutaneous injection and oral administration. In addition, no cutaneous irritation was observed. Conclusions GEST-loaded DMNs may be a promising intradermal sustained delivery system for contraceptive use.
Collapse
Affiliation(s)
- Xueyan Duan
- Center of Drug and Medical Polymer Materials, National Research Institute for Family Planning, Beijing, China
| | - Jianan Ma
- Center of Drug and Medical Polymer Materials, National Research Institute for Family Planning, Beijing, China
| | - Meiying Ning
- Center of Drug and Medical Polymer Materials, National Research Institute for Family Planning, Beijing, China
| | - Yunhua Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Alimardani V, Sadat Abolmaali S, Yousefi G, Hossein Nowroozzadeh M, Mohammad Tamaddon A. In-situ nanomicelle forming microneedles of poly NIPAAm-b-poly glutamic acid for trans-scleral delivery of dexamethasone. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Liu S, Yang G, Li M, Sun F, Li Y, Wang X, Gao Y, Yang P. Transcutaneous immunization via dissolving microneedles protects mice from lethal influenza H7N9 virus challenge. Vaccine 2022; 40:6767-6775. [PMID: 36243592 DOI: 10.1016/j.vaccine.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 08/16/2022] [Accepted: 09/02/2022] [Indexed: 11/06/2022]
Abstract
Avian influenza H7N9 virus has first emerged in 2013 and since then has spread in China in five seasonal waves. In humans, influenza H7N9 virus infection is associated with a high fatality rate; thus, an effective vaccine for this virus is needed. In the present study, we evaluated the usefulness of dissolving microneedles (MNs) loaded with influenza H7N9 vaccine in terms of the dissolution time, insertion capacity, insertion depth, and structural integrity of H7N9 virus in vitro. Our in vitro results showed MNs dissolved within 6 mins. The depth of skin penetration was 270 µm. After coating with a matrix material solution, the H7N9 proteins were agglomerated. We detected the H7N9 delivery time and humoral immune response in vivo. In a mouse model, the antigen retention time was longer for MNs than for intramuscular (IM) injection. The humoral response showed that similar to IM administration, MN administration increased the levels of functional and systematic antibodies and protection against the live influenza A/Anhui/01/2013 virus (Ah01/H7N9). The protection level was determined by the analysis of pathological sections of infected lungs. MN and IM administration yielded results superior to those in the control group. Taken together, these findings demonstrate that the use of dissolving MNs to deliver influenza H7N9 vaccines is a promising immunization approach.
Collapse
Affiliation(s)
- Siqi Liu
- The First Medical Center of Chinese PLA General Hospital, Beijing 100835, China; Department of Rheumatology and Clinical Immunology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB Groningen, NL, the Netherlands
| | - Guozhong Yang
- Key Laboratory of Photo Chemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Minghui Li
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Fang Sun
- The First Medical Center of Chinese PLA General Hospital, Beijing 100835, China
| | - Yufeng Li
- The First Medical Center of Chinese PLA General Hospital, Beijing 100835, China
| | - Xiliang Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yunhua Gao
- Key Laboratory of Photo Chemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China.
| | - Penghui Yang
- The First Medical Center of Chinese PLA General Hospital, Beijing 100835, China.
| |
Collapse
|
24
|
Zhang XP, He YT, Li WX, Chen BZ, Zhang CY, Cui Y, Guo XD. An update on biomaterials as microneedle matrixes for biomedical applications. J Mater Chem B 2022; 10:6059-6077. [PMID: 35916308 DOI: 10.1039/d2tb00905f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microneedles (MNs) have been developed for various applications such as drug delivery, cosmetics, diagnosis, and biosensing. To meet the requirements of MNs used in these areas, numerous materials have been used for the fabrication of MNs. However, MNs will be exposed to skin tissues after piercing the stratum corneum barrier. Thus, it is necessary to ensure that the matrix materials of MNs have the characteristics of low toxicity, good biocompatibility, biodegradability, and sufficient mechanical properties for clinical application. In this review, the matrix materials currently used for preparing MNs are summarized and reviewed in terms of these factors. In addition, MN products used on the market and their applications are summarized in the end. This work may provide some basic information to researchers in the selection of MN matrix materials and in developing new materials.
Collapse
Affiliation(s)
- Xiao Peng Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 10029, China.
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yu Ting He
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 10029, China.
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Wen Xuan Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 10029, China.
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Bo Zhi Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 10029, China.
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Can Yang Zhang
- Biopharmaceutical and Health Engineering Division, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China.
| | - Yong Cui
- Department of Dermatology, China-Japan Friendship Hospital, East Street Cherry Park, Chaoyang District, Beijing, 100029, P. R. China.
| | - Xin Dong Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 10029, China.
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
25
|
Ko PJ, Milad MA, Radulovic LL, Gibson D. Pharmacokinetics of Levonorgestrel in Rat and Minipig and Pharmacokinetics of Etonogestrel in Rat Following Various Administration Routes. Xenobiotica 2022; 52:575-582. [PMID: 35975955 DOI: 10.1080/00498254.2022.2079023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
1. The objective of these studies was to determine the pharmacokinetics of levonorgestrel and etonogestrel in Sprague-Dawley rat or Göttingen minipig following various administration routes.2. Four sequential crossover studies were conducted: Study 1 administered levonorgestrel 30 µg intravenously and intradermally in four minipigs; Study 2 administered levonorgestrel 30 µg intravenously in 12 rats; Study 3 administered levonorgestrel 60 µg intravenously and subcutaneously in 12 rats; and Study 4 administered etonogestrel 30 µg intravenously in 12 rats. Samples were quantified using liquid chromatography-tandem mass spectrometry and pharmacokinetic parameters were estimated via noncompartmental analysis.3. Cmax and AUCinf for etonogestrel and levonorgestrel were similar following 30 µg intravenous bolus in rat, suggesting comparable pharmacokinetics. Levonorgestrel exposure was dose-proportional in rats, based on two-fold higher AUCinf following levonorgestrel 60 versus 30 µg. Bioavailability of intradermal and subcutaneous levonorgestrel was 97.7% (Study 1) and 90.3% (Study 3), respectively. The minipig levonorgestrel clearance was 21.5 L/hr, which was about 10-fold higher than both the rat levonorgestrel (range: 0.985 to 1.45 L/hr) and etonogestrel clearance (range: 0.803 to 0.968 L/hr).4. These studies contribute to the gap in knowledge of nonclinical levonorgestrel and etonogestrel pharmacokinetics, which is necessary for ongoing development of long-acting reversible contraceptives.
Collapse
Affiliation(s)
- Paul J Ko
- Milad Pharmaceutical Consulting LLC, Plymouth, Michigan, United States
| | - Mark A Milad
- Milad Pharmaceutical Consulting LLC, Plymouth, Michigan, United States
| | - Louis L Radulovic
- Innovative Pharma Consulting LLC, Superior Township, Michigan, United States
| | - Don Gibson
- DMG III Pharma Project Management Consulting LLC, East Lyme, Connecticut, United States
| |
Collapse
|
26
|
Preparation and evaluation of dissolving microneedle loaded with azelaic acid for acne vulgaris therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Tijani AO, Garg J, Frempong D, Verana G, Kaur J, Joga R, Sabanis CD, Kumar S, Kumar N, Puri A. Sustained drug delivery strategies for treatment of common substance use disorders: Promises and challenges. J Control Release 2022; 348:970-1003. [PMID: 35752256 DOI: 10.1016/j.jconrel.2022.06.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 10/17/2022]
Abstract
Substance use disorders (SUDs) are a leading cause of death and other ill health effects in the United States and other countries in the world. Several approaches ranging from detoxification, behavioral therapy, and the use of antagonists or drugs with counter effects are currently being applied for its management. Amongst these, drug therapy is the mainstay for some drug abuse incidences, as is in place specifically for opioid abuse or alcohol dependence. The severity of the havocs observed with the SUDs has triggered constant interest in the discovery and development of novel medications as well as suitable or most appropriate methods for the delivery of these agents. The chronic need of such drugs in users warrants the need for their prolonged or sustained systemic availability. Further, the need to improve patient tolerance to medication, limit invasive drug use and overall treatment outcome are pertinent considerations for embracing sustained release designs for medications used in managing SUDs. This review aims to provide an overview on up-to-date advances made with regards to sustained delivery systems for the drugs for treatment of different types of SUDs such as opioid, alcohol, tobacco, cocaine, and cannabis use disorders. The clinical relevance, promises and the limitations of deployed sustained release approaches along with future opportunities are discussed.
Collapse
Affiliation(s)
- Akeemat O Tijani
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614, USA.
| | - Jivesh Garg
- University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| | - Dorcas Frempong
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614, USA.
| | - Gabrielle Verana
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614, USA.
| | - Jagroop Kaur
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614, USA.
| | - Ramesh Joga
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India.
| | - Chetan D Sabanis
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India.
| | - Sandeep Kumar
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India.
| | - Neeraj Kumar
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India.
| | - Ashana Puri
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614, USA.
| |
Collapse
|
28
|
Abdelghany S, Alshaer W, Al Thaher Y, Al Fawares M, Al-Bakri AG, Zuriekat S, Mansour RSH. Ciprofloxacin-loaded dissolving polymeric microneedles as a potential therapeutic for the treatment of S. aureus skin infections. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:517-527. [PMID: 35812251 PMCID: PMC9235833 DOI: 10.3762/bjnano.13.43] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/01/2022] [Indexed: 05/09/2023]
Abstract
Microneedles have been widely studied for many topical and transdermal therapeutics due to their ability to painlessly puncture the skin, thereby bypassing the stratum corneum, the main skin barrier. In this study, ciprofloxacin (CIP) was loaded into dissolving polymeric microneedles prepared by a two-layer centrifugation method as a potential treatment of skin infections such as cellulitis. The polymers used were polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP). Two formulations were investigated, namely CIP_MN1, composed of 10 mg ciprofloxacin incorporated into a polymer matrix of PVA and PVP with a weight ratio of (9:1), and CIP_MN2, composed of 10 mg ciprofloxacin incorporated into PVA polymer. CIP_MN1 and CIP_MN2 showed a mean microneedle height of 188 and 179 µm, respectively. Since Parafilm has been proven as a model to examine the perforation of microneedles in skin, it was used to evaluate the ability of microneedles to perforate the skin. CIP_MN1 showed almost complete perforation of Parafilm, 190 pores, compared to CIP_MN2 which created only 85 pores in Parafilm, and therefore CIP_MN1 was used for subsequent studies. Examining CIP_MN1 on agarose gel as an in vitro model of human skin showed that the formula was able to fully perforate the agarose gel. Moreover, this formula showed significantly greater antimicrobial activity (p < 0.0001) compared to a free gel of ciprofloxacin against Staphylococcus aureus in an agarose gel-based model. This was evidenced by a zone of inhibition of 29 mm for the microneedle formulation of ciprofloxacin (CIP_MN1) compared to 2 mm for the free gel of ciprofloxacin. Furthermore, the CIP_MN1 showed complete dissolution in human skin after 60 min from application. Finally, the skin deposition of CIP_MN1 was investigated in ex vivo excised human skin. CIP_MN1 showed significantly more deposition of ciprofloxacin in deeper skin layers compared to the free gel of ciprofloxacin, and the released ciprofloxacin from the microneedles tends to migrate to deeper layers with time. Collectively, these results suggest that CIP_MN1 can be a potential delivery system for the treatment of S. aureus skin infections.
Collapse
Affiliation(s)
| | - Walhan Alshaer
- Cell Therapy Center, University of Jordan, Amman, 11942, Jordan
| | - Yazan Al Thaher
- Faculty of Pharmacy, Philadelphia University, Amman, 19392, Jordan
| | | | - Amal G Al-Bakri
- School of Pharmacy, University of Jordan, Amman, 11942, Jordan
| | - Saja Zuriekat
- School of Pharmacy, University of Jordan, Amman, 11942, Jordan
| | - Randa SH Mansour
- Faculty of Pharmacy, Philadelphia University, Amman, 19392, Jordan
| |
Collapse
|
29
|
Liu H, Zhang S, Zhou Z, Xing M, Gao Y. Two-Layer Sustained-Release Microneedles Encapsulating Exenatide for Type 2 Diabetes Treatment. Pharmaceutics 2022; 14:pharmaceutics14061255. [PMID: 35745827 PMCID: PMC9230706 DOI: 10.3390/pharmaceutics14061255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/19/2022] [Accepted: 06/10/2022] [Indexed: 01/27/2023] Open
Abstract
Daily administration of multiple injections can cause inconvenience and reduce compliance in diabetic patients; thus, microneedle (MN) administration is favored due to its various advantages. Accordingly, the two-layer sustained-release MNs (TS-MNs) were fabricated by encapsulating exenatide (EXT) in calcium alginate (CA) gel in this work. The TS-MNs were composed of a sodium alginate (SA) tip and a water-soluble matrix-containing calcium chloride (CaCl2). Subsequently, the calcium ion (Ca2+) contained in the matrix layer penetrated the tip layer for cross-linking, leaving the drug in the cross-linked network. The patches have adequate mechanical strength to pierce the skin; then, the matrix layer is dissolved, leaving the tip layer to achieve sustained release. Additionally, the TS-MNs encapsulating EXT retained high activity during long-term storage at room temperature. The pharmacokinetic results indicated that the plasma concentrations of EXT were sustained for 48 h in the EXT MN group, which agreed with the in vitro release test. Furthermore, they had high relative bioavailability (83.04%). Moreover, the hypoglycemic effect was observed to last for approximately 24 h after a single administration and remained effective after multiple administrations without drug resistance. These results suggest that the TS-MNs are a promising depot for the sustained delivery of encapsulated EXT.
Collapse
Affiliation(s)
- Han Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China; (H.L.); (S.Z.); (Z.Z.); (M.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suohui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China; (H.L.); (S.Z.); (Z.Z.); (M.X.)
- Beijing CAS Microneedle Technology Ltd., Beijing 102609, China
| | - Zequan Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China; (H.L.); (S.Z.); (Z.Z.); (M.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengzhen Xing
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China; (H.L.); (S.Z.); (Z.Z.); (M.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunhua Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China; (H.L.); (S.Z.); (Z.Z.); (M.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing CAS Microneedle Technology Ltd., Beijing 102609, China
- Correspondence: ; Tel.: +86-10-82543581
| |
Collapse
|
30
|
Sustainable drug release using nanoparticle encapsulated microneedles. Chem Asian J 2022; 17:e202200333. [DOI: 10.1002/asia.202200333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/26/2022] [Indexed: 11/07/2022]
|
31
|
Wearable and implantable devices for drug delivery: Applications and challenges. Biomaterials 2022; 283:121435. [DOI: 10.1016/j.biomaterials.2022.121435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/26/2022] [Accepted: 02/17/2022] [Indexed: 12/19/2022]
|
32
|
Al Dalaty A, Gualeni B, Coulman SA, Birchall JC. Models and methods to characterise levonorgestrel release from intradermally administered contraceptives. Drug Deliv Transl Res 2021; 12:335-349. [PMID: 34862590 PMCID: PMC8724103 DOI: 10.1007/s13346-021-01091-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2021] [Indexed: 12/24/2022]
Abstract
Microneedle (MN)-based technologies have been proposed as a means to facilitate minimally invasive sustained delivery of long-acting hormonal contraceptives into the skin. Intradermal administration is a new route of delivery for these contraceptives and therefore no established laboratory methods or experimental models are available to predict dermal drug release and pharmacokinetics from candidate MN formulations. This study evaluates an in vitro release (IVR) medium and a medium supplemented with ex vivo human skin homogenate (SH) as potential laboratory models to investigate the dermal release characteristics of one such hormonal contraceptive that is being tested for MN delivery, levonorgestrel (LNG), and provides details of an accompanying novel two-step liquid–liquid drug extraction procedure and sensitive reversed-phase HPLC–UV assay. The extraction efficiency of LNG was 91.7 ± 3.06% from IVR medium and 84.6 ± 1.6% from the medium supplemented with SH. The HPLC–UV methodology had a limit of quantification of 0.005 µg/mL and linearity between 0.005 and 25 µg/mL. Extraction and detection methods for LNG were exemplified in both models using the well-characterised, commercially available sustained-release implant (Jadelle®). Sustained LNG release from the implant was detected in both media over 28 days. This study reports for the first time the use of biologically relevant release models and a rapid, reliable and sensitive methodology to determine release characteristics of LNG from intradermally administered long-acting drug delivery systems.
Collapse
Affiliation(s)
- Adnan Al Dalaty
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, UK
| | - Benedetta Gualeni
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, UK
| | - Sion A Coulman
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, UK
| | - James C Birchall
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, UK.
| |
Collapse
|
33
|
Wang C, Jiang X, Zeng Y, Terry RN, Li W. Rapidly separable microneedle patches for controlled release of therapeutics for long-acting therapies. MEDICINE IN DRUG DISCOVERY 2021. [DOI: 10.1016/j.medidd.2021.100118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
34
|
Xing M, Yang G, Zhang S, Gao Y. Acid-base combination principles for preparation of anti-acne dissolving microneedles loaded with azelaic acid and matrine. Eur J Pharm Sci 2021; 165:105935. [PMID: 34284096 DOI: 10.1016/j.ejps.2021.105935] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/08/2021] [Accepted: 07/04/2021] [Indexed: 11/29/2022]
Abstract
To overcome the poor solubility, skin irritation, and low permeability of azelaic acid (AZA) existed on the marketed formulations, a co-drug principle via matrine (MAT) was adopted to prepare anti-acne dissolving microneedles (DMNs). The formula was optimized according to the solubility and antibacterial activity of novel ionic salt. The results indicated solubilization of AZA could be achieved at a molar ratio between AZA and MAT was 1:1. Meanwhile, synergistic antibacterial and anti-irritative properties were acquired. The matrix materials were composed of sodium carboxymethyl cellulose (CMC), polyvinylpyrrolidone (PVP), and trehalose. And drug loadings of AZA and MAT in DMNs were 201.88 ± 4.81 µg and 259.71 ± 1.72 µg, respectively. After insertion into porcine skin for 10 h, the cumulative permeability of AZA and MAT were 68.16% ± 3.79% and 57.37 ± 5.17%, respectively, while just 4.13 ± 0.39% (p < 0.01) was detected for commercially available AZA gel. In vitro antibacterial experiment, bacteriostatic rates of DMNs were all above 95% for Staphylococcus aureus, Staphylococcus epidermidis, and Propionibacterium acnes. Besides, DMNs exhibited no cytotoxicity and skin irritation. In conclusion, combination between AZA and MAT addressed shortcomings of AZA, and made it easier, safer, and more effective in acne treatment.
Collapse
Affiliation(s)
- Mengzhen Xing
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guozhong Yang
- Beijing CAS Microneedle Technology Ltd, Beijing 102609, China
| | - Suohui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China; Beijing CAS Microneedle Technology Ltd, Beijing 102609, China
| | - Yunhua Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing CAS Microneedle Technology Ltd, Beijing 102609, China.
| |
Collapse
|
35
|
Preparation, characterization, and in vivo evaluation of levonorgestrel-loaded thermostable microneedles. Drug Deliv Transl Res 2021; 12:944-956. [PMID: 34515951 DOI: 10.1007/s13346-021-01057-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2021] [Indexed: 10/20/2022]
Abstract
To facilitate the storage and use of poly (lactic-co-glycolic acid) (PLGA)-based microneedles (MNs) in hot seasons and regions, thermally stable MNs loaded with levonorgestrel (LNG) were developed. Due to its good biocompatibility and high glass transition temperature (Tg), Hydroxypropyl methylcellulose (HPMC) was added to the PLGA-based MNs to increase thermal stability. MNs with HPMC exhibited excellent thermal stability at high temperatures. After the MNs has been applied to the skin for 10 min, the backing layer of the MNs was dissolved by contact with the interstitial fluid of skin, which resulted in the separation of the MN tips from the backing layer. The MN tips were implanted intradermally and sustained-release LNG. Biodegradable polymers were used to encapsulate the LNG, providing long-acting contraception. The in vitro release rate of LNG from the MNs reached 72.78%-83.76% within 21 days. In rats, the MNs maintained plasma concentrations of LNG above the human contraceptive level for 8-12 days. In mice, the time required for complete degradation of the MN tips was 12-16 days. MNs have excellent medication adherence due to the advantages of painlessness, minimally invasive, and self-administered. MNs can make long-acting contraceptives more readily available to humans.
Collapse
|
36
|
Bhadale RS, Londhe VY. A systematic review of carbohydrate-based microneedles: current status and future prospects. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:89. [PMID: 34331594 PMCID: PMC8325649 DOI: 10.1007/s10856-021-06559-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 07/07/2021] [Indexed: 06/01/2023]
Abstract
Microneedles (MNs) are minimally invasive tridimensional biomedical devices that bypass the skin barrier resulting in systemic and localized pharmacological effects. Historically, biomaterials such as carbohydrates, due to their physicochemical properties, have been used widely to fabricate MNs. Owing to their broad spectrum of functional groups, carbohydrates permit designing and engineering with tunable properties and functionalities. This has led the carbohydrate-based microarrays possessing the great potential to take a futuristic step in detecting, drug delivery, and retorting to biologicals. In this review, the crucial and extensive summary of carbohydrates such as hyaluronic acid, chitin, chitosan, chondroitin sulfate, cellulose, and starch has been discussed systematically, using PRISMA guidelines. It also discusses different approaches for drug delivery and the mechanical properties of biomaterial-based MNs, till date, progress has been achieved in clinical translation of carbohydrate-based MNs, and regulatory requirements for their commercialization. In conclusion, it describes a brief perspective on the future prospects of carbohydrate-based MNs referred to as the new class of topical drug delivery systems.
Collapse
Affiliation(s)
- Rupali S Bhadale
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Vile Parle [W], Mumbai, 400056, Maharashtra, India
| | - Vaishali Y Londhe
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Vile Parle [W], Mumbai, 400056, Maharashtra, India.
| |
Collapse
|
37
|
Yadav PR, Munni MN, Campbell L, Mostofa G, Dobson L, Shittu M, Pattanayek SK, Uddin MJ, Das DB. Translation of Polymeric Microneedles for Treatment of Human Diseases: Recent Trends, Progress, and Challenges. Pharmaceutics 2021; 13:1132. [PMID: 34452093 PMCID: PMC8401662 DOI: 10.3390/pharmaceutics13081132] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
The ongoing search for biodegradable and biocompatible microneedles (MNs) that are strong enough to penetrate skin barriers, easy to prepare, and can be translated for clinical use continues. As such, this review paper is focused upon discussing the key points (e.g., choice polymeric MNs) for the translation of MNs from laboratory to clinical practice. The review reveals that polymers are most appropriately used for dissolvable and swellable MNs due to their wide range of tunable properties and that natural polymers are an ideal material choice as they structurally mimic native cellular environments. It has also been concluded that natural and synthetic polymer combinations are useful as polymers usually lack mechanical strength, stability, or other desired properties for the fabrication and insertion of MNs. This review evaluates fabrication methods and materials choice, disease and health conditions, clinical challenges, and the future of MNs in public healthcare services, focusing on literature from the last decade.
Collapse
Affiliation(s)
- Prateek Ranjan Yadav
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK; (P.R.Y.); (L.C.); (L.D.); (M.S.)
- Chemical Engineering Department, Indian Institute of Technology, Delhi 110016, India;
| | | | - Lauryn Campbell
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK; (P.R.Y.); (L.C.); (L.D.); (M.S.)
| | - Golam Mostofa
- Drug Delivery & Therapeutics Lab, Dhaka 1212, Bangladesh; (M.N.M.); (G.M.)
| | - Lewis Dobson
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK; (P.R.Y.); (L.C.); (L.D.); (M.S.)
| | - Morayo Shittu
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK; (P.R.Y.); (L.C.); (L.D.); (M.S.)
| | | | - Md. Jasim Uddin
- Drug Delivery & Therapeutics Lab, Dhaka 1212, Bangladesh; (M.N.M.); (G.M.)
- Department of Pharmacy, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Diganta Bhusan Das
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK; (P.R.Y.); (L.C.); (L.D.); (M.S.)
| |
Collapse
|
38
|
Paredes AJ, Ramöller IK, McKenna PE, Abbate MT, Volpe-Zanutto F, Vora LK, Kilbourne-Brook M, Jarrahian C, Moffatt K, Zhang C, Tekko IA, Donnelly RF. Microarray patches: Breaking down the barriers to contraceptive care and HIV prevention for women across the globe. Adv Drug Deliv Rev 2021; 173:331-348. [PMID: 33831475 DOI: 10.1016/j.addr.2021.04.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023]
Abstract
Despite the existence of a variety of contraceptive products for women, as well as decades of research into the prevention and treatment of human immunodeficiency virus (HIV), there is still a globally unmet need for easily accessible, acceptable, and affordable products to protect women's sexual and reproductive health. Microarray patches (MAPs) are a novel platform being developed for the delivery of hormonal contraception and antiretroviral drugs. MAPs provide enhanced drug delivery to the systemic circulation via the transdermal route when compared to transdermal patches, oral and injectable formulations. These minimally invasive patches can be self-administered by the user, reducing the burden on health care personnel. Since MAPs represent needle-free drug delivery, no sharps waste is generated after application, thereby eliminating possible MAP reuse and risk of needle-stick injuries. This review discusses the administration of contraceptive and antiretroviral drugs using MAPs, their acceptability by end-users, and the future perspective of the field.
Collapse
|
39
|
Novel dissolving microneedles preparation for synergistic melasma therapy: Combined effects of tranexamic acid and licorice extract. Int J Pharm 2021; 600:120406. [PMID: 33711468 DOI: 10.1016/j.ijpharm.2021.120406] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/02/2021] [Accepted: 02/13/2021] [Indexed: 02/07/2023]
Abstract
The aim of this study was to prepare dissolving microneedles (DMNs) patches containing tranexamic acid (TA) for the treatment of melasma. Polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP) were preferred as matrix materials through the compatibility experiment. In the in vitro permeation study, the transdermal amount of TA was significantly promoted through dissolving microneedles with the cumulative release was 44.43 ± 6.55%. By comparison, the release of TA solution assisted with solid microneedles (SMNs) was merely 11.31 ± 2.30% (p < 0.05). Pharmacokinetics study indicated the bioavailability of dissolving microneedles was more than 1.3 times compared with oral administration. In pharmacodynamics investigation, TA dissolving microneedles obviously reduced melanin deposition in the skin of melasma guinea pigs after 8 consecutive administrations. In particular, the combination of tranexamic acid and licorice extract (LIC) dissolving microneedles worked better than tranexamic acid alone. Accelerated stress conditions including high temperature, high humidity, as well as photostability were designed to prove that TA microneedles maintained good pharmaceutical stability. In conclusion, tranexamic acid dissolving microneedles showed reliable quality and remarkable effect. Moreover, the combination of tranexamic acid and licorice extract had a synergistic therapy in melasma.
Collapse
|
40
|
Zhang XP, Wang BB, Li WX, Fei WM, Cui Y, Guo XD. In vivo safety assessment, biodistribution and toxicology of polyvinyl alcohol microneedles with 160-day uninterruptedly applications in mice. Eur J Pharm Biopharm 2021; 160:1-8. [DOI: 10.1016/j.ejpb.2021.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/31/2020] [Accepted: 01/12/2021] [Indexed: 12/25/2022]
|
41
|
Vora LK, Moffatt K, Tekko IA, Paredes AJ, Volpe-Zanutto F, Mishra D, Peng K, Raj Singh Thakur R, Donnelly RF. Microneedle array systems for long-acting drug delivery. Eur J Pharm Biopharm 2021; 159:44-76. [DOI: 10.1016/j.ejpb.2020.12.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/25/2020] [Accepted: 12/08/2020] [Indexed: 12/31/2022]
|
42
|
Advances in controlled release hormonal technologies for contraception: A review of existing devices, underlying mechanisms, and future directions. J Control Release 2021; 330:797-811. [DOI: 10.1016/j.jconrel.2020.12.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022]
|
43
|
Enhancement strategies for transdermal drug delivery systems: current trends and applications. Drug Deliv Transl Res 2021; 12:758-791. [PMID: 33474709 PMCID: PMC7817074 DOI: 10.1007/s13346-021-00909-6] [Citation(s) in RCA: 214] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 12/11/2022]
Abstract
Transdermal drug delivery systems have become an intriguing research topic in pharmaceutical technology area and one of the most frequently developed pharmaceutical products in global market. The use of these systems can overcome associated drawbacks of other delivery routes, such as oral and parenteral. The authors will review current trends, and future applications of transdermal technologies, with specific focus on providing a comprehensive understanding of transdermal drug delivery systems and enhancement strategies. This article will initially discuss each transdermal enhancement method used in the development of first-generation transdermal products. These methods include drug/vehicle interactions, vesicles and particles, stratum corneum modification, energy-driven methods and stratum corneum bypassing techniques. Through suitable design and implementation of active stratum corneum bypassing methods, notably microneedle technology, transdermal delivery systems have been shown to deliver both low and high molecular weight drugs. Microneedle technology platforms have proven themselves to be more versatile than other transdermal systems with opportunities for intradermal delivery of drugs/biotherapeutics and therapeutic drug monitoring. These have shown that microneedles have been a prospective strategy for improving transdermal delivery systems.
Collapse
|
44
|
Gupta J, Gupta R, Vanshita. Microneedle Technology: An Insight into Recent Advancements and Future Trends in Drug and Vaccine Delivery. Assay Drug Dev Technol 2020; 19:97-114. [PMID: 33297823 DOI: 10.1089/adt.2020.1022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Over the last decade, microneedle (MN) induced microporation multifunctional approaches to enhance the delivery of drugs through the skin. MN technology included micron-sized needles to create microchannels into the Stratum corneum of skin, the most significant protective layer. Delivery of drugs and vaccines through the transdermal route is an alternative route for hypodermic and oral. It overcomes the problems associated with gastrointestinal along with drug deterioration. It is affordable, noninvasive, painless, simple, and self-administered techniques that provide prolonged release of drugs to enhance patient compliance. The MN delivery focused on biopharmaceuticals like proteins or peptides. The novel concepts have drawn interest in using these techniques in tandem with other enhancement approaches. This review article discussed the latest advancements in MN technology. It emphasized types of MNs, methodology, mechanisms, strategies for delivery of several drugs and vaccines, and significant challenges in the marketing of biopharmaceuticals. Furthermore, relevant U.S. patents and clinical trials based on MNs are also accentuated. Therefore, MN techniques will play a pivotal role in promoting clinical applications and innovative research for scientists and researchers working in the pharmaceutical field.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | | | - Vanshita
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| |
Collapse
|
45
|
|
46
|
Jamaledin R, Makvandi P, Yiu CKY, Agarwal T, Vecchione R, Sun W, Maiti TK, Tay FR, Netti PA. Engineered Microneedle Patches for Controlled Release of Active Compounds: Recent Advances in Release Profile Tuning. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000171] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rezvan Jamaledin
- Department of Chemical, Materials & Industrial Production Engineering University of Naples Federico II Naples 80125 Italy
- Center for Advanced Biomaterials for Health Care (iit@CRIB) Italian Institute of Technology Naples 80125 Italy
| | - Pooyan Makvandi
- Center for Micro‐BioRobotics Istituto Italiano di Tecnologia (IIT) Viale R. Piaggio 34, 56025 Pontedera Pisa Italy
| | - Cynthia K. Y. Yiu
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, Prince Philip Dental Hospital The University of Hong Kong Hong Kong SAR China
| | - Tarun Agarwal
- Department of Biotechnology Indian Institute of Technology Kharagpur 721302 India
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for Health Care (iit@CRIB) Italian Institute of Technology Naples 80125 Italy
| | - Wujin Sun
- Department of Bioengineering Center for Minimally Invasive Therapeutics University of California, Los Angeles Los Angeles CA 90095 USA
| | - Tapas Kumar Maiti
- Department of Biotechnology Indian Institute of Technology Kharagpur 721302 India
| | | | - Paolo Antonio Netti
- Center for Advanced Biomaterials for Health Care (iit@CRIB) Italian Institute of Technology Naples 80125 Italy
| |
Collapse
|
47
|
Ahmed Saeed AL-Japairai K, Mahmood S, Hamed Almurisi S, Reddy Venugopal J, Rebhi Hilles A, Azmana M, Raman S. Current trends in polymer microneedle for transdermal drug delivery. Int J Pharm 2020; 587:119673. [PMID: 32739388 PMCID: PMC7392082 DOI: 10.1016/j.ijpharm.2020.119673] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/11/2020] [Accepted: 07/16/2020] [Indexed: 01/26/2023]
Abstract
Transdermal drug delivery using microneedles is increasingly gaining interest due to the issues associated with oral drug delivery routes. Gastrointestinal route exposes the drug to acid and enzymes present in the stomach, leading to denaturation of the compound and resulting in poor bioavailability. Microneedle transdermal drug delivery addresses the problems linked to oral delivery and to relieves the discomfort of patients associated with injections to increase patient compliance. Microneedles can be broadly classified into five types: solid microneedles, coated microneedles, dissolving microneedles, hollow microneedles, and hydrogel-forming microneedles. The materials used for the preparation of microneedles dictate the different applications and features present in the microneedle. Polymeric microneedle arrays present an improved method for transdermal administration of drugs as they penetrate the skin stratum corneum barrier with minimal invasiveness. The review summarizes the importance of polymeric microneedle and discussed some of the most important therapeutic drugs in research, mainly protein drugs, vaccines and small molecule drugs in regenerative medicine.
Collapse
Affiliation(s)
- Khater Ahmed Saeed AL-Japairai
- Department of Pharmaceutical Engineering, Faculty of Chemical and Process Engineering Technology, University Malaysia Pahang, Gambang 26300, Malaysia
| | - Syed Mahmood
- Department of Pharmaceutical Engineering, Faculty of Chemical and Process Engineering Technology, University Malaysia Pahang, Gambang 26300, Malaysia; Centre of Excellence for Advanced Research in Fluid Flow (CARIFF), University Malaysia Pahang, 26300 Gambang, Pahang, Malaysia.
| | - Samah Hamed Almurisi
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia (IIUM), Kuantan 25200, Malaysia
| | - Jayarama Reddy Venugopal
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Gambang 26300, Malaysia
| | - Ayah Rebhi Hilles
- Faculty of Health Sciences, Department of Medical Science and Technology, PICOMS International University College of Medical Sciences, 68100 Kuala Lumpur, Malaysia
| | - Motia Azmana
- Department of Pharmaceutical Engineering, Faculty of Chemical and Process Engineering Technology, University Malaysia Pahang, Gambang 26300, Malaysia
| | - Subashini Raman
- Department of Pharmaceutical Engineering, Faculty of Chemical and Process Engineering Technology, University Malaysia Pahang, Gambang 26300, Malaysia
| |
Collapse
|
48
|
Cheng A, Sun W, Xing M, Zhang S, Gao Y. The hygroscopicity of polymer microneedles on the performance of dissolving behavior for transdermal delivery. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1798442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Aguo Cheng
- Technical institute of Physics and Chemistry, Chinese Academy of Sciences, Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wentao Sun
- University of Chinese Academy of Sciences, Beijing, China
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Key Laboratory of Cryogenics, Beijing, China
| | - Mengzhen Xing
- Technical institute of Physics and Chemistry, Chinese Academy of Sciences, Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Suohui Zhang
- Technical institute of Physics and Chemistry, Chinese Academy of Sciences, Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Beijing, China
- Beijing CAS Microneedle Technology Ltd, Beijing, China
| | - Yunhua Gao
- Technical institute of Physics and Chemistry, Chinese Academy of Sciences, Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing CAS Microneedle Technology Ltd, Beijing, China
| |
Collapse
|
49
|
Villarruel Mendoza LA, Scilletta NA, Bellino MG, Desimone MF, Catalano PN. Recent Advances in Micro-Electro-Mechanical Devices for Controlled Drug Release Applications. Front Bioeng Biotechnol 2020; 8:827. [PMID: 32850709 PMCID: PMC7405504 DOI: 10.3389/fbioe.2020.00827] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/29/2020] [Indexed: 01/27/2023] Open
Abstract
In recent years, controlled release of drugs has posed numerous challenges with the aim of optimizing parameters such as the release of the suitable quantity of drugs in the right site at the right time with the least invasiveness and the greatest possible automation. Some of the factors that challenge conventional drug release include long-term treatments, narrow therapeutic windows, complex dosing schedules, combined therapies, individual dosing regimens, and labile active substance administration. In this sense, the emergence of micro-devices that combine mechanical and electrical components, so called micro-electro-mechanical systems (MEMS) can offer solutions to these drawbacks. These devices can be fabricated using biocompatible materials, with great uniformity and reproducibility, similar to integrated circuits. They can be aseptically manufactured and hermetically sealed, while having mobile components that enable physical or analytical functions together with electrical components. In this review we present recent advances in the generation of MEMS drug delivery devices, in which various micro and nanometric structures such as contacts, connections, channels, reservoirs, pumps, valves, needles, and/or membranes can be included in their design and manufacture. Implantable single and multiple reservoir-based and transdermal-based MEMS devices are discussed in terms of fundamental mechanisms, fabrication, performance, and drug release applications.
Collapse
Affiliation(s)
| | - Natalia Antonela Scilletta
- Departamento de Micro y Nanotecnologia, Instituto de Nanociencia y Nanotecnología, CNEA-CONICET, San Martín, Argentina
| | | | - Martin Federico Desimone
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Paolo Nicolas Catalano
- Departamento de Micro y Nanotecnologia, Instituto de Nanociencia y Nanotecnología, CNEA-CONICET, San Martín, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| |
Collapse
|
50
|
He M, Yang G, Zhao X, Zhang S, Gao Y. Intradermal Implantable PLGA Microneedles for Etonogestrel Sustained Release. J Pharm Sci 2020; 109:1958-1966. [DOI: 10.1016/j.xphs.2020.02.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/21/2020] [Accepted: 02/05/2020] [Indexed: 12/29/2022]
|