1
|
Fischer P, Merkel OM, Siedler M, Meyer T, Nouchikian L, Huelsmeyer M. Antibody oxidation and impact of formulation: A high-throughput screening approach. Eur J Pharm Sci 2025; 209:107113. [PMID: 40306556 DOI: 10.1016/j.ejps.2025.107113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/07/2025] [Accepted: 04/24/2025] [Indexed: 05/02/2025]
Abstract
Oxidation is a complex degradation pathway in biopharmaceutical products that necessitates comprehensive assessment to ensure product stability and safety. This study focuses on implementing an oxidative profiling workflow within a high-throughput (HT) formulation screening process to identify and mitigate potential oxidation liabilities. To assess the feasibility of integrating oxidative stress testing into HT formulation development, we analyzed the oxidation susceptibility of three monoclonal antibodies by varying several formulation parameters including protein concentration, buffer system and pH, surfactant type and concentration as well as presence of antioxidative excipients. Oxidative stress was induced using visible light, hydrogen peroxide, and metal-catalyzed oxidation. HT analytical methods such as Size Exclusion Chromatography and Reversed-Phase Chromatography subunit analysis were employed to assess aggregation and modification of Fc and Fab subunits. An oxidation scoring tool was developed to simplify the evaluation of large datasets. The results demonstrated that formulation composition can significantly influence oxidation susceptibility. However, the outcomes varied greatly among the different antibodies, highlighting the need for a comprehensive profiling approach. The study confirms that the oxidation profiling workflow is an effective method for routine HT formulation screenings, providing a thorough evaluation of the oxidative stability of biopharmaceutical formulations.
Collapse
Affiliation(s)
- Paulina Fischer
- AbbVie Deutschland GmbH & Co. KG, Drug Product Development, Knollstraße, Ludwigshafen am Rhein, Germany.
| | - Olivia M Merkel
- Ludwig-Maximilians-Universität München, Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Munich, Germany
| | - Michael Siedler
- AbbVie Deutschland GmbH & Co. KG, Drug Product Development, Knollstraße, Ludwigshafen am Rhein, Germany
| | - Tanja Meyer
- AbbVie Deutschland GmbH & Co. KG, Drug Product Development, Knollstraße, Ludwigshafen am Rhein, Germany
| | - Lucienne Nouchikian
- AbbVie Deutschland GmbH & Co. KG, Analytical Research & Development, Knollstraße, Ludwigshafen am Rhein, Germany
| | - Martin Huelsmeyer
- AbbVie Deutschland GmbH & Co. KG, Drug Product Development, Knollstraße, Ludwigshafen am Rhein, Germany
| |
Collapse
|
2
|
Greenblott DN, Calderon CP, Randolph TW. Representative training data sets are critical for accurate machine-learning classification of microscopy images of particles formed by lipase-catalyzed polysorbate hydrolysis. J Pharm Sci 2025; 114:1254-1263. [PMID: 39824250 DOI: 10.1016/j.xphs.2024.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/30/2024] [Accepted: 12/30/2024] [Indexed: 01/20/2025]
Abstract
Polysorbate 20 (PS20) is commonly used as an excipient in therapeutic protein formulations. However, over the course of a therapeutic protein product's shelf life, minute amounts of co-purified host-cell lipases may cause slow hydrolysis of PS20, releasing fatty acids (FAs). These FAs may precipitate to form subvisible particles that can be detected and imaged by various techniques, e.g., flow imaging microscopy (FIM). Images of particles can then be classified using supervised convolutional neural networks (CNNs). However, CNNs should be trained on representative images of particles which, as we demonstrate in this work, may be challenging to obtain. Here, we tested several rapid techniques to create FA particles and examined whether CNNs trained on microscopy images of these rapidly formed particles could accurately classify images of particles that had been produced by kinetically slower lipase-catalyzed hydrolysis of PS20. CNNs trained on images of rapidly produced particles were less accurate in classifying images of FA particles that had been produced by enzymatic hydrolysis of PS20 than CNNs trained with images of particles generated by the same slow hydrolysis, highlighting the importance of using representative image data sets for training CNN classifiers.
Collapse
Affiliation(s)
- David N Greenblott
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80303, United States
| | - Christopher P Calderon
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80303, United States; Ursa Analytics, Denver, CO 80212, United States
| | - Theodore W Randolph
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80303, United States.
| |
Collapse
|
3
|
Felix MN, Waerner T, Lakatos D, Reisinger B, Fischer S, Garidel P. Polysorbates degrading enzymes in biotherapeutics - a current status and future perspectives. Front Bioeng Biotechnol 2025; 12:1490276. [PMID: 39867473 PMCID: PMC11760601 DOI: 10.3389/fbioe.2024.1490276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/02/2024] [Indexed: 01/28/2025] Open
Abstract
Polysorbates, in particular polysorbate (PS) 20 and 80, are the most commonly used surfactants for stabilising biotherapeutics produced by biotechnological processes. PSs are derived from ethoxylated sorbitan (a derivative of sorbitol) esterified with fatty acids of varying chain length and degree of saturation. In the past, these surfactants have been reported to have specific liabilities. Chemical (oxidations and hydrolyses) and enzymatic degradations have been reported to affect the stability of PS in drug products. Specifically, the presence of trace amounts (sub-ppm) of certain host cell proteins (HCPs) can induce enzymatic PS degradation, which can lead to the release of free fatty acids during storage over time. Enzymatic polysorbate degradation may impair the functionality of the surfactant in stabilising therapeutic proteins, leading to the formation of visible and/or sub-visible particles in biopharmaceutical drug products. This review summarises the enzymes currently known to be involved in the degradation of polysorbate in mammalian biotechnological processes for therapeutic proteins. In recent years, advanced analytical methods have been developed to qualify and quantify the PS-degrading enzymes. Most of these assays are based on mass spectrometry with a preceding HCP enrichment approach. Efforts were made to measure the enzyme activity and correlate it with observed PS degradation. The impact on drug product quality attributes, including fatty acid solubility and phase separation, up to the formation of visible particles, and the potential induction of protein and protein/fatty acid mixed particles as well as the sensitivity of specific PS quality towards enzymatic degradation, was considered. Various drug substance (DS) mitigation strategies related to the occurrence of PS degrading enzymes are discussed as amongst them the generation of stable HCP knockout cell lines, which are also carefully analysed. The underlying opinion article reflects the undergoing discussions related to PS degrading enzymes and focusses on (i) impact on drug product, (ii) analytics for identification/quantification (characterisation) of the PS degrading enzymes, (iii) enzyme activity (iv) currently identified enzymes, and (v) potential mitigation strategies to avoid enzymatic PS degradation during DS manufacturing.
Collapse
Affiliation(s)
- Marius Nicolaus Felix
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co., KG, Innovation Unit, Biberach an der Riss, Germany
| | - Thomas Waerner
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co., KG, Innovation Unit, Biberach an der Riss, Germany
| | - Daniel Lakatos
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co., KG, Innovation Unit, Biberach an der Riss, Germany
| | - Bernd Reisinger
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co., KG, Innovation Unit, Biberach an der Riss, Germany
| | - Simon Fischer
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co., KG, Innovation Unit, Biberach an der Riss, Germany
| | - Patrick Garidel
- Pharmaceutical Development Biologicals, TIP, Boehringer Ingelheim Pharma GmbH & Co., KG, Innovation Unit, Biberach an der Riss, Germany
| |
Collapse
|
4
|
Roy I, Wuchner K, Stahl P, Tran T, Yaragudi N. A comparison of Polysorbates and Alternative Surfactants for Interfacial Stress Protection and Mitigation of Fatty Acid Particle Formation in the Presence of an Esterase. J Pharm Sci 2024; 113:2688-2698. [PMID: 39009347 DOI: 10.1016/j.xphs.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
The hydrolysis of polysorbate surfactants in large molecule drug product formulations caused by residual host cell proteins presents numerous stability concerns for pharmaceuticals. The fatty acids (FA) released by polysorbate hydrolysis can nucleate into particulates or challenge the conformational stability of the proteinaceous active pharmaceutical ingredient (API). The loss of intact polysorbate may also leave the Drug Product (DP) vulnerable to interfacial stresses. Polysorbate 20 and 80 are available in several different quality grades (Multi-compendial, Super Refined, Pure Lauric Acid (PLA)/Pure Oleic Acid (POA)). All variations of polysorbate as well as three alternative surfactants: Brij L23, Brij O20 and Poloxamer 188 were compared for their ability to protect against air-water interfacial stresses as well as their risk for developing particulates when in the presence of lipoprotein lipase (LPL) (Pseudomonas). Results show a meaningful difference in the timing and morphology of FA particle formation depending on the type of polysorbate used. All grades of polysorbate, while susceptible to hydrolysis, still offered sufficient protection to interfacial stresses, even when hydrolyzed to concentrations as low as 0.005 % (w/v). Alternative surfactants that lack an ester bond were resistant to lipase degradation and showed good protection against shaking stress.
Collapse
Affiliation(s)
- Ian Roy
- Drug Product Development, BioTherapeutics Development and Supply, Janssen Research & Development, 200 Great Valley Parkway, Malvern, PA 19355, USA.
| | - Klaus Wuchner
- Analytical Development, BioTherapeutics Development and Supply, Janssen Research & Development, Hochstrasse 201, Schaffhausen 8200, Switzerland
| | - Patrick Stahl
- Drug Product Development, BioTherapeutics Development and Supply, Janssen Research & Development, 200 Great Valley Parkway, Malvern, PA 19355, USA
| | - Tuan Tran
- Analytical Development, BioTherapeutics Development and Supply, Janssen Research & Development, 200 Great Valley Parkway, Malvern, PA 19355, USA
| | - Naveen Yaragudi
- Drug Product Development, BioTherapeutics Development and Supply, Janssen Research & Development, 200 Great Valley Parkway, Malvern, PA 19355, USA
| |
Collapse
|
5
|
Whiteley J, Waters LJ, Humphrey J, Mellor S. A thermodynamic investigation into protein-excipient interactions involving different grades of polysorbate 20 and 80. JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY 2024; 149:13941-13951. [PMID: 39633654 PMCID: PMC11611994 DOI: 10.1007/s10973-024-13533-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 07/25/2024] [Indexed: 12/07/2024]
Abstract
Developing stable biopharmaceutical formulations is of paramount importance and is typically achieved by incorporating surfactants as stabilising agents, such as polysorbate 20 and 80. However, little is known about the effect surfactant grade has on formulation stability. This study evaluates the effect of regular grade and Super-refined™ polysorbates 20 and 80 and their interaction with model proteins, namely β-lactoglobulin (β-Ig), human serum albumin (HSA) and immunoglobulin gamma (IgG), using isothermal titration calorimetry (ITC) and differential scanning calorimetry (DSC). ITC results indicated that all four polysorbates underwent binding interactions with β-Ig and HSA, yet no interaction was observed with IgG this is postulated to be a consequence of differences in secondary structure composition. Surfactant binding to β-Ig occurred at ratios of ~ 3:2 regardless of the surfactant used with dissociation constants ranging from 284 to 388 µM, whereas HSA bound at ratios of ~ 3:1 and dissociation constants ranging from 429 to 653 µM. Changes in enthalpy were larger for the surfactant interactions with HSA compared with β-Ig implying the former produced a greater binding interaction than the latter. DSC facilitated measurement of the temperature of unfolding of each protein with the presence of each polysorbate where results further confirmed interactions had occurred for β-Ig and HSA with an increased unfolding temperature between 4 and 6 K implying improved protein stability, yet again, no interaction was observed with IgG. This study thermodynamically characterised the role of polysorbates in protein stabilisation for biopharmaceutical formulations.
Collapse
Affiliation(s)
- Joseph Whiteley
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH UK
| | - Laura J. Waters
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH UK
| | - James Humphrey
- Croda Europe Ltd, Cowick Hall, Snaith, Goole DN14 9AA UK
| | - Steve Mellor
- Croda Europe Ltd, Cowick Hall, Snaith, Goole DN14 9AA UK
| |
Collapse
|
6
|
Pim S, Bourgès AC, Wu D, Durán-Sampedro G, Garre M, O'Shea DF. Observing bioorthogonal macrocyclizations in the nuclear envelope of live cells using on/on fluorescence lifetime microscopy. Chem Sci 2024:d4sc03489a. [PMID: 39184298 PMCID: PMC11343072 DOI: 10.1039/d4sc03489a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024] Open
Abstract
The reactive partnership between azides and strained alkynes is at the forefront of bioorthogonal reactions, with their in situ cellular studies often achieved through the use of off to on fluorophores with fluorescence microscopy. In this work, the first demonstration of a bioorthogonal, macrocycle-forming reaction occurring within the nuclear envelope of live cells has been accomplished, utilising on/on fluorescence lifetime imaging microscopy for real-time continuous observation of the transformation. The fluorescent, macrocyclic BF2 azadipyrromethene was accessible through a double 1,3-dipolar cycloaddition within minutes, between a precursor bis-azido substituted fluorophore and Sondheimer diyne in water or organic solvents. Photophysical properties of both the starting bis-azide BF2 azadipyrromethene and the fluorescent macrocyclic products were obtained, with near identical emission wavelengths and intensities, but different lifetimes. In a novel approach, the progress of the live-cell bioorthogonal macrocyclization was successfully tracked through a fluorescence lifetime change of 0.6 ns from starting material to products, with reaction completion achieved within 45 min. The continuous monitoring and imaging of this bioorthogonal transformation in the nuclear membrane and invaginations, of two different cancer cell lines, has been demonstrated using a combination of fluorescence intensity and lifetime imaging with phasor plot analysis. As there is a discernible difference in fluorescence lifetimes between starting material and products, this approach removes the necessity for off-to-on fluorogenic probes when preparing for bioorthogonal cell-imaging and microscopy.
Collapse
Affiliation(s)
| | | | - Dan Wu
- Department of Chemistry, RCSI Dublin 2 Ireland
| | | | | | | |
Collapse
|
7
|
Hipper E, Diederichs T, Kaiser W, Lehmann F, Buske J, Hinderberger D, Garidel P. Visible light triggers the formation of reactive oxygen species in monoclonal antibody formulations. Int J Pharm 2024; 661:124392. [PMID: 38942184 DOI: 10.1016/j.ijpharm.2024.124392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Most monoclonal antibody formulations require the presence of a surfactant, such as polysorbate, to ensure protein stability. The presence of high concentrations of polysorbate have been shown to enhance photooxidation of certain protein drug products when exposed to visible light. The current literature, however, suggest that photooxidation of polysorbate only occurs when exposed to visible light in combination with UVA light. This is probable as peroxides present in polysorbate solutions can be cleaved homolytically in the UVA region. In the visible region, photooxidation is not expected to occur as cleavage of peroxides is not expected at these wavelengths. This report presents findings suggesting that the presence of one or more photosensitiser(s) in polysorbate must be a cause and is required to catalyse the aerobic oxidation of polysorbate solutions upon exposure to visible light. Our investigation aimed to clarify the mechanism(s) of polysorbate photooxidation and explore the kinetics and the identity of the generated radicals and their impact on monoclonal antibody (mAb) degradation. Our study reveals that when polysorbate solutions are exposed to visible light between 400 - 800 nm in the absence of proteins, discolouration, radical formation, and oxygen depletion occur. We discuss the initial formation of reactive species, most likely occurring directly after reaction of molecular oxygen, with the presence of a triplet state photosensitiser, which is generated by intersystem crossing of the excited singlet state. When comparing the photooxidation of PS20 and PS80 in varying quality grades, we propose that singlet oxygen possesses potential for reacting with unsaturated fatty acids in PS80HP, however, PS20HP itself exhibited no measurable oxidation under the tested conditions. The study's final part delves into the photooxidation behaviour of different PS grades, examining its influence on the integrity of a mAb in the formulation. Finally, we examined the effect of photooxidation on the integrity of monoclonal antibodies. Our findings show that the exposure to visible light in polysorbate-containing mAb solutions at high PS concentrations of 4 mg·ml-1 results in increased monoclonal antibody degradation, highlighting the need for cautious evaluation of the correct PS concentration to stabilise protein therapeutics.
Collapse
Affiliation(s)
- Elena Hipper
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle, Germany; Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Tim Diederichs
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Wolfgang Kaiser
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Florian Lehmann
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle, Germany
| | - Julia Buske
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Dariush Hinderberger
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle, Germany
| | - Patrick Garidel
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle, Germany; Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany.
| |
Collapse
|
8
|
Aryal B, Lehtimaki M, Rao VA. Stress-mediated polysorbate 20 degradation and its potential impact on therapeutic proteins. Pharm Res 2024; 41:1217-1232. [PMID: 38740663 PMCID: PMC11196320 DOI: 10.1007/s11095-024-03700-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/07/2024] [Indexed: 05/16/2024]
Abstract
PURPOSE Polysorbates are the most commonly used surfactants in formulations to stabilize therapeutic proteins against interfacial stresses. Polysorbates can undergo oxidative or enzyme-mediated hydrolytic degradation to produce free fatty acids (FFAs) and subvisible particles in formulations. To determine which product related variables contribute to PS20 degradation, we investigated the effects of storage temperature, formulation, pH, presence of hydrolytic enzymes, and specific fatty acid composition on different grades of PS20 in relation to their PS20 degradation profile and consequently the quality of protein drug products. METHODS Bevacizumab and T-DM1 were reformulated in the freshly prepared therapeutic protein formulations containing either compendial PS20 or non-compendial PS20 with high % lauric acid and spiked with exogenous esterase or lipase. The release of FFAs and formation of particles were monitored at 4°C and 37°C. Protein quality was assessed for secondary structures, purity, and biological activity. RESULTS Hydrolytic release of FFAs and formation of subvisible particles were found to be dependent on grades of PS20, types of enzymes used, incubation temperature, and pH. Esterase- or lipase-mediated degradation of PS20 and formation of subvisible particles in drug formulation showed no significant impact on the biological activity and stability of therapeutic proteins against degradation or aggregation. CONCLUSIONS Our study suggests that degradation of PS20 and formation of FFA particles depend on the fatty acid composition of PS20, types of hydrolytic enzymes, pH, and temperature. The presence of FFA subvisible particles showed no significant impact on the purity and biological activity of the therapeutic proteins under the tested conditions.
Collapse
Affiliation(s)
- Baikuntha Aryal
- Laboratory of Applied Biochemistry, Division of Biotechnology Research and Review III, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administrations, Silver Spring, MD, 20993, USA
| | - Mari Lehtimaki
- Laboratory of Applied Biochemistry, Division of Biotechnology Research and Review III, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administrations, Silver Spring, MD, 20993, USA
| | - V Ashutosh Rao
- Laboratory of Applied Biochemistry, Division of Biotechnology Research and Review III, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administrations, Silver Spring, MD, 20993, USA.
| |
Collapse
|
9
|
Greenblott DN, Johann F, Snell JR, Gieseler H, Calderon CP, Randolph TW. Features in Backgrounds of Microscopy Images Introduce Biases in Machine Learning Analyses. J Pharm Sci 2024; 113:1177-1189. [PMID: 38484874 DOI: 10.1016/j.xphs.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/24/2024]
Abstract
Subvisible particles may be encountered throughout the processing of therapeutic protein formulations. Flow imaging microscopy (FIM) and backgrounded membrane imaging (BMI) are techniques commonly used to record digital images of these particles, which may be analyzed to provide particle size distributions, concentrations, and identities. Although both techniques record digital images of particles within a sample, FIM analyzes particles suspended in flowing liquids, whereas BMI records images of dry particles after collection by filtration onto a membrane. This study compared the performance of convolutional neural networks (CNNs) in classifying images of subvisible particles recorded by both imaging techniques. Initially, CNNs trained on BMI images appeared to provide higher classification accuracies than those trained on FIM images. However, attribution analyses showed that classification predictions from CNNs trained on BMI images relied on features contributed by the membrane background, whereas predictions from CNNs trained on FIM features were based largely on features of the particles. Segmenting images to minimize the contributions from image backgrounds reduced the apparent accuracy of CNNs trained on BMI images but caused minimal reduction in the accuracy of CNNs trained on FIM images. Thus, the seemingly superior classification accuracy of CNNs trained on BMI images compared to FIM images was an artifact caused by subtle features in the backgrounds of BMI images. Our findings emphasize the importance of examining machine learning algorithms for image analysis with attribution methods to ensure the robustness of trained models and to mitigate potential influence of artifacts within training data sets.
Collapse
Affiliation(s)
- David N Greenblott
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, United States
| | - Florian Johann
- Department of Pharmaceutics, Friedrich Alexander University Erlangen-Nürnberg, Erlangen 91058, Germany; Merck KGaA, Darmstadt 64293, Germany
| | | | - Henning Gieseler
- Department of Pharmaceutics, Friedrich Alexander University Erlangen-Nürnberg, Erlangen 91058, Germany; GILYOS GmbH, Würzburg 97076, Germany
| | - Christopher P Calderon
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, United States; Ursa Analytics, Denver, CO 80212, United States
| | - Theodore W Randolph
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, United States.
| |
Collapse
|
10
|
Gregoritza K, Theodorou C, Heitz M, Graf T, Germershaus O, Gregoritza M. Enzymatic degradation pattern of polysorbate 20 impacts interfacial properties of monoclonal antibody formulations. Eur J Pharm Biopharm 2024; 194:74-84. [PMID: 38042510 DOI: 10.1016/j.ejpb.2023.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Polysorbate 20 (PS20) is widely used to maintain protein stability in biopharmaceutical formulations. However, PS20 is susceptible to hydrolytic degradation catalyzed by trace amounts of residual host cell proteins present in monoclonal antibody (mAb) formulations. The resulting loss of intact surfactant and the presence of PS20 degradation products, such as free fatty acids (FFAs), may impair protein stability. In this study, two hydrolytically-active immobilized lipases, which primarily targeted either monoester or higher-order ester species in PS20, were used to generate partially-degraded PS20. The impact of PS20 degradation pattern on critical micelle concentration (CMC), surface tension, interfacial rheology parameters and agitation protection was assessed. CMC was slightly increased upon monoester degradation, but significantly increased upon higher-order ester degradation. The PS20 degradation pattern also significantly impacted the dynamic surface tension of a mAb formulation, whereas changes in the equilibrium surface tension were mainly caused by the adsorption of FFAs onto the air-water interface. In an agitation protection study, monoester degradation resulted in the formation of soluble mAb aggregates and proteinaceous particles, suggesting that preferential degradation of PS20 monoester species can significantly impair mAb stability. Additional mAbs should be tested in the future to assess the impact of the protein format.
Collapse
Affiliation(s)
- Kathrin Gregoritza
- Pharmaceutical and Processing Development, Pharma Technical Development Biologics Europe, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| | - Christos Theodorou
- Pharmaceutical and Processing Development, Pharma Technical Development Biologics Europe, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Marc Heitz
- Pharmaceutical and Processing Development, Pharma Technical Development Biologics Europe, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Tobias Graf
- Analytical Development and Quality Control, Pharma Technical Development Biologics Europe, Roche Diagnostics GmbH, Penzberg, Germany
| | - Oliver Germershaus
- Institute for Pharma Technology, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Manuel Gregoritza
- Analytical Development and Quality Control, Pharma Technical Development Biologics Europe, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| |
Collapse
|
11
|
Weber J, Buske J, Mäder K, Garidel P, Diederichs T. Oxidation of polysorbates - An underestimated degradation pathway? Int J Pharm X 2023; 6:100202. [PMID: 37680877 PMCID: PMC10480556 DOI: 10.1016/j.ijpx.2023.100202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/03/2023] [Accepted: 07/24/2023] [Indexed: 09/09/2023] Open
Abstract
To ensure the stability of biologicals over their entire shelf-life, non-ionic surface-active compounds (surfactants) are added to protect biologics from denaturation and particle formation. In this context, polysorbate 20 and 80 are the most used detergents. Despite their benefits of low toxicity and high biocompatibility, specific factors are influencing the intrinsic stability of polysorbates, leading to degradation, loss in efficacy, or even particle formation. Polysorbate degradation can be categorized into chemical or enzymatic hydrolysis and oxidation. Under pharmaceutical relevant conditions, hydrolysis is commonly originated from host cell proteins, whereas oxidative degradation may be caused by multiple factors such as light, presence of residual metal traces, peroxides, or temperature, which can be introduced upon manufacturing or could be already present in the raw materials. In this review, we provide an overview of the current knowledge on polysorbates with a focus on oxidative degradation. Subsequently, degradation products and key characteristics of oxidative-mediated polysorbate degradation in respect of different types and grades are summarized, followed by an extensive comparison between polysorbate 20 and 80. A better understanding of the radical-induced oxidative PS degradation pathway could support specific mitigation strategies. Finally, buffer conditions, various stressors, as well as appropriate mitigation strategies, reagents, and alternative stabilizers are discussed. Prior manufacturing, careful consideration and a meticulous risk-benefit analysis are highly recommended in terms of polysorbate qualities, buffers, storage conditions, as well as mitigation strategies.
Collapse
Affiliation(s)
- Johanna Weber
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Faculty of Biosciences, Wolfgang-Langenbeck-Strasse 4, Halle (Saale) 06120, Germany
| | - Julia Buske
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, TIP, Birkendorfer Straße 65, Biberach an der Riss 88397, Germany
| | - Karsten Mäder
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Faculty of Biosciences, Wolfgang-Langenbeck-Strasse 4, Halle (Saale) 06120, Germany
| | - Patrick Garidel
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Faculty of Biosciences, Wolfgang-Langenbeck-Strasse 4, Halle (Saale) 06120, Germany
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, TIP, Birkendorfer Straße 65, Biberach an der Riss 88397, Germany
| | - Tim Diederichs
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, TIP, Birkendorfer Straße 65, Biberach an der Riss 88397, Germany
| |
Collapse
|
12
|
Riccardi C, Carlson DP, Graham KS, Shameem M, Kamen DE. Evaluation of the In-Use Stability of Monoclonal Antibody IV Admixtures Prepared from Drug Products Containing Polysorbate 20 Degraded by Host-Cell Lipases. J Pharm Sci 2023; 112:3045-3055. [PMID: 37643700 DOI: 10.1016/j.xphs.2023.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Host-cell lipases can be present in monoclonal antibody drug products and can degrade polysorbates present in the formulations as stabilizers. We hypothesized that the in-use stability of the IV admixture prepared from such a drug product might be impacted by decreasing levels of polysorbate 20. Host-cell lipase activity has, in fact, been observed during development of one of our therapeutic monoclonal antibody drug products. Throughout the course of the product shelf life, polysorbate 20 levels decreased but no other quality attributes of the drug product were impacted. An experimental approach was developed to simulate how the prepared IV admixture in-use stability is affected as polysorbate 20 concentration in the drug product decreased over the shelf life, and from that a minimum level of polysorbate 20 required in the drug product was determined to estimate the in-use stability of the IV admixture as the polysorbate 20 in the drug product degrades. The results indicate that although the observed degradation of polysorbate 20 does not affect quality attributes of this drug product, in-use stability of the IV admixture as a function of polysorbate degradation can be impacted and should be assessed to ensure sufficient quality.
Collapse
Affiliation(s)
- Caterina Riccardi
- Regeneron Pharmaceuticals Inc., Formulation Development, 777 Old Saw Mill River Road, Tarrytown, New York, NY 10591, USA
| | - Dane P Carlson
- Regeneron Pharmaceuticals Inc., Formulation Development, 777 Old Saw Mill River Road, Tarrytown, New York, NY 10591, USA
| | - Kenneth S Graham
- Regeneron Pharmaceuticals Inc., Formulation Development, 777 Old Saw Mill River Road, Tarrytown, New York, NY 10591, USA
| | - Mohammed Shameem
- Regeneron Pharmaceuticals Inc., Formulation Development, 777 Old Saw Mill River Road, Tarrytown, New York, NY 10591, USA
| | - Douglas E Kamen
- Regeneron Pharmaceuticals Inc., Formulation Development, 777 Old Saw Mill River Road, Tarrytown, New York, NY 10591, USA.
| |
Collapse
|
13
|
Waters LJ, Whiteley J, Small W, Mellor S. Determining suitable surfactant concentration ranges to avoid protein unfolding in pharmaceutical formulations using UV analysis. Heliyon 2023; 9:e21712. [PMID: 37954313 PMCID: PMC10632529 DOI: 10.1016/j.heliyon.2023.e21712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 09/08/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
Protein stability is fundamental to maintain pharmaceutical efficacy in the nascent field of biologics. One particular property that is essential for therapeutic effect is retention of the folded 3-dimensional conformation, i.e. once unfolding has occurred the biologic is often rendered inactive. In this work we propose a modified form of a recently published UV spectroscopic method that identifies protein unfolding. In this study we determine concentration limits to avoid protein unfolding of two model surfactants, namely polysorbate 20 and polysorbate 80, by correlating surfactant concentration with percentage 'unfolded' for three model proteins. For each scenario two distinct regions were observed, firstly surfactant concentrations at which no unfolding had occurred, followed by a second region whereby unfolding steadily increased with surfactant concentration. In general for the combinations analysed in this study, this second region began to appear around ten times below the critical micellar concentration of each surfactant, regardless of the protein or polysorbate chosen. It is therefore proposed that this adapted method could be used by researchers in the early stages of formulation development as a convenient and simple screening tool to confirm the 'onset of unfolding' concentration for protein-surfactant formulations, thus helping to optimise surfactant concentration selection in pharmaceutical formulations to maintain the benefits of surfactants yet avoid inadvertent unfolding.
Collapse
Affiliation(s)
- Laura J. Waters
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Joseph Whiteley
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - William Small
- Croda Europe Ltd, Cowick Hall, Snaith, Goole, DN14 9AA, UK
| | - Steve Mellor
- Croda Europe Ltd, Cowick Hall, Snaith, Goole, DN14 9AA, UK
| |
Collapse
|
14
|
Doyle M, Barnes A, Larson NR, Liu H, Yi L. Development of UPLC-UV-ELSD Method for Fatty Acid Profiling in Polysorbate 80 and Confirmation of the Presence of Conjugated Fatty Acids by Mass Spectrometry, UV Absorbance and Proton Nuclear Magnetic Resonance Spectroscopy. J Pharm Sci 2023; 112:2393-2403. [PMID: 37295606 DOI: 10.1016/j.xphs.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Polysorbate 80 (PS80), a chemical substance composed of sorbitol, ethylene glycol, and fatty acids, is commonly used in pharmaceutical drug products to stabilize formulations. However, recent studies have demonstrated that PS80 may hydrolyze over time and the released free fatty acids (FFAs) may lead to particle formation. Naming conventions of fatty acids in current pharmacopeia and in products' certificates of analysis (CoA) of PS80 do not typically distinguish between isomeric species of fatty acids in PS80. Thus, methods to fully characterize the fatty acid species present in PS80 raw materials are needed to enhance quality control strategies of pharmaceuticals using PS80. Here, extended effort is taken to characterize fatty acids in hydrolyzed PS80 raw materials and elucidate the identities of isomeric fatty acid species. In this work, a method was developed and optimized for separation and detection of fatty acids in alkaline hydrolyzed PS80 raw materials using ultra performance liquid chromatography (UPLC) with ultra-violet (UV) detection and evaporative light scattering detection (ELSD). Fatty acids not specified in the current pharmacopeias were detected in PS80 raw material by the developed LC-UV-ELSD method including conjugated forms of linoleic and linolenic fatty acid species. Their identities were orthogonally confirmed by retention time agreement with analytical standards, accurate mass by high resolution mass spectrometry, UV absorbance, and proton nuclear magnetic resonance spectroscopy. The detected conjugated fatty acids are theoretically more hydrophobic and less soluble than their unconjugated counterparts and may increase the propensity of PS80 to form particles upon hydrolysis. This work highlights the need for better quality control of PS80 raw material, as it may eventually play a critical role in product quality of therapeutic proteins.
Collapse
Affiliation(s)
- Michael Doyle
- Analytical Development, Biogen Inc., 5000 Davis Drive, RTP, NC, 27709, United States of America
| | - Adam Barnes
- Analytical Development, Biogen Inc., 5000 Davis Drive, RTP, NC, 27709, United States of America
| | - Nicholas R Larson
- Analytical Development, Biogen Inc., 225 Binney Street, Cambridge, MA, 02142, United States of America
| | - Haiyan Liu
- Analytical Development, Biogen Inc., 5000 Davis Drive, RTP, NC, 27709, United States of America
| | - Linda Yi
- Analytical Development, Biogen Inc., 5000 Davis Drive, RTP, NC, 27709, United States of America.
| |
Collapse
|
15
|
Bai L, Zhang Y, Zhang C, Lu Y, Li Z, Huang G, Meng B. Investigation of excipients impact on polysorbate 80 degradation in biopharmaceutical formulation buffers. J Pharm Biomed Anal 2023; 233:115496. [PMID: 37285658 DOI: 10.1016/j.jpba.2023.115496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/17/2023] [Accepted: 05/28/2023] [Indexed: 06/09/2023]
Abstract
A study on the polysorbate 80 stability in various formulation buffers commonly used in biopharmaceuticals was performed, to investigate the excipients influence on polysorbate 80 degradation. Polysorbate 80 is a common excipient in biopharmaceutical products. However, its degradation will potentially impact the drug product quality, and may trigger protein aggregation and particles formation. Due to the heterogeneity of the polysorbates and the mutual effects with other formulation compositions, the study of polysorbate degradation is challenging. Herein, a real-time stability study was designed and performed. The polysorbate 80 degradation trend was monitored by fluorescence micelle-based assay (FMA), reversed-phase-ultra-performance liquid chromatography-evaporative light scattering detector (RP-UPLC-ELSD) assay, and LC-MS assay. These assays provide orthogonal results to reveal both the micelle-forming capability and the compositional changes of polysorbate 80 in different buffer systems. The degradation occurred after a period of storage under 25 °C in different trend, which indicates the excipients could impact the degradation kinetics. Upon comparison, the degradation is prone to happen in histidine buffer than in acetate, phosphate or citrate buffers. LC-MS confirms oxidation as an independent degradation pathway with detection of the oxidative aldehyde. Thus, it is necessary to pay more attention to the excipients selection and their potential impact on polysorbate 80 stability to achieve longer shelf life for the biopharmaceuticals. Besides, the protective roles of several additives were figured out, which could be applied as potential industrial solutions to the polysorbate 80 degradation issues.
Collapse
Affiliation(s)
- Ling Bai
- Analytical Sciences, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai, 201400, China
| | - Yanlan Zhang
- Analytical Sciences, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai, 201400, China
| | - Cai Zhang
- Analytical Sciences, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai, 201400, China
| | - Yuchen Lu
- Analytical Sciences, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai, 201400, China
| | - Zhiguo Li
- Analytical Sciences, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai, 201400, China
| | - Gang Huang
- Analytical Sciences, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai, 201400, China
| | - Bo Meng
- Analytical Sciences, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai, 201400, China.
| |
Collapse
|
16
|
Wu D, Durán-Sampedro G, Fitzgerald S, Garre M, O'Shea DF. Double click macrocyclization with Sondheimer diyne of aza-dipyrrins for B-F ree bioorthogonal imaging. Chem Commun (Camb) 2023; 59:1951-1954. [PMID: 36722871 DOI: 10.1039/d2cc06461h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Sequential azide/diyne cycloadditions proved highly effective for the macrocyclization of a bis-azido aza-dipyrrin. Macrocyclic aza-dipyrrin could be produced in 30 min at rt in water with changes in fluorescence intensity and lifetimes measurable upon reaction. Live cell microscopy showed that aza-dipyrrins were suitable for confocal and STED super-resolution imaging and a bioorthogonal response to macrocyclization could be detected in cellular compartments. These results will encourage a broader examination of the sensing and imaging uses of aza-dipyrrins.
Collapse
Affiliation(s)
- Dan Wu
- Department of Chemistry, RCSI, 123 St Stephen's Green, Dublin 2, Ireland.
| | | | - Sheila Fitzgerald
- Department of Chemistry, RCSI, 123 St Stephen's Green, Dublin 2, Ireland.
| | - Massimiliano Garre
- Department of Chemistry, RCSI, 123 St Stephen's Green, Dublin 2, Ireland.
| | - Donal F O'Shea
- Department of Chemistry, RCSI, 123 St Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|
17
|
Characterization of Recombinantly-Expressed Hydrolytic Enzymes from Chinese Hamster Ovary Cells: Identification of Host Cell Proteins that Degrade Polysorbate. J Pharm Sci 2023; 112:1351-1363. [PMID: 36646283 DOI: 10.1016/j.xphs.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/15/2023]
Abstract
Enzymatic hydrolysis of polysorbate in drug products is a major challenge for the biopharmaceutical industry. Polysorbate hydrolysis caused by host cell proteins (HCPs) co-purified during bioprocessing can reduce the protective effects of the surfactant for the active pharmaceutical ingredient and cause the accumulation of low-solubility degradation products over the long-term storage. The identities of such HCPs are elusive due to their extremely low concentrations after the efficient purification processes of most biopharmaceuticals. In this work, 20 enzymes-selected for their known or putative hydrolytic activity and potential to degrade polysorbate-were recombinantly expressed, purified, and characterized via orthogonal methods. First, these recombinant HCPs were assessed for hydrolytic activity against a fluorogenic esterase substrate in a recently-developed, high-throughput assay. Second, these HCPs were screened for hydrolytic activity against polysorbate in a representative mAb formulation. Third, HCPs that displayed hydrolytic activities in the first two assays were subjected to more detailed characterization of their enzyme kinetics against polysorbates. Finally, these HCPs were evaluated for substrate specificity towards different sub-species of polysorbates. This work provides critical new insights for targeted LC-MS/MS approaches for identification of relevant polysorbate-degrading enzymes and supports improvements to remove such HCPs, including knockouts or targeted removal during purification.
Collapse
|
18
|
Curtin N, Garre M, Bodin JB, Solem N, Méallet-Renault R, O'Shea DF. Exploiting directed self-assembly and disassembly for off-to-on fluorescence responsive live cell imaging. RSC Adv 2022; 12:35655-35665. [PMID: 36545082 PMCID: PMC9745887 DOI: 10.1039/d2ra06534g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
A bio-responsive nanoparticle was formed by the directed self-assembly (DSA) of a hydrophobic NIR-fluorophore with poloxamer P188. Fluorophore emission was switched off when part of the nanoparticle, however upon stimulus induced nanoparticle dis-assembly the emission switched on. The emission quenching was shown to be due to fluorophore hydration and aggregation within the nanoparticle and the turn on response attributable to nanoparticle disassembly with embedding of the fluorophore within lipophilic environments. This was exploited for temporal and spatial live cell imaging with a measurable fluorescence response seen upon intracellular delivery of the fluorophore. The first dynamic response, seen within minutes, was from lipid droplets with other lipophilic regions such as the endoplasmic reticulum, nuclear membranes and secretory vacuoles imageable after hours. The high degree of fluorophore photostability facilitated continuous imaging for extended periods and the off to on switching facilitated the real-time observation of lipid droplet biogenesis as they emerged from the endoplasmic reticulum. With an in-depth understanding of the principles involved, further assembly controlling functional responses could be anticipated.
Collapse
Affiliation(s)
- Niamh Curtin
- Department of Chemistry, RCSI123 St Stephen's GreenDublin 2Ireland
| | | | - Jean-Baptiste Bodin
- Université Paris-Saclay, Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS91400 OrsayFrance
| | - Nicolas Solem
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay91405OrsayFrance
| | - Rachel Méallet-Renault
- Université Paris-Saclay, Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS91400 OrsayFrance
| | - Donal F. O'Shea
- Department of Chemistry, RCSI123 St Stephen's GreenDublin 2Ireland
| |
Collapse
|
19
|
Morales AM, Sreedhara A, Buecheler J, Brosig S, Chou D, Christian T, Das T, de Jong I, Fast J, Jagannathan B, Moussa EM, Nejadnik MR, Prajapati I, Radwick A, Rahman Y, Singh S. End-to-End Approach to Surfactant Selection, Risk Mitigation, and Control Strategies for Protein-Based Therapeutics. AAPS J 2022; 25:6. [PMID: 36471030 DOI: 10.1208/s12248-022-00773-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/31/2022] [Indexed: 12/12/2022] Open
Abstract
A survey performed by the AAPS Drug Product Handling community revealed a general, mostly consensus, approach to the strategy for the selection of surfactant type and level for biopharmaceutical products. Discussing and building on the survey results, this article describes the common approach for surfactant selection and control strategy for protein-based therapeutics and focuses on key studies, common issues, mitigations, and rationale. Where relevant, each section is prefaced by survey responses from the 22 anonymized respondents. The article format consists of an overview of surfactant stabilization, followed by a strategy for the selection of surfactant level, and then discussions regarding risk identification, mitigation, and control strategy. Since surfactants that are commonly used in biologic formulations are known to undergo various forms of degradation, an effective control strategy for the chosen surfactant focuses on understanding and controlling the design space of the surfactant material attributes to ensure that the desired material quality is used consistently in DS/DP manufacturing. The material attributes of a surfactant added in the final DP formulation can influence DP performance (e.g., protein stability). Mitigation strategies are described that encompass risks from host cell proteins (HCP), DS/DP manufacturing processes, long-term storage, as well as during in-use conditions.
Collapse
Affiliation(s)
- Annette Medina Morales
- Dosage Form Design and Development, BioPharmaceuticals Development, R&D, AstraZeneca, 1 Medimmune Way, Gaithersburg, Maryland, 20878, USA.
| | - Alavattam Sreedhara
- Genentech, Pharmaceutical Development, South San Francisco, California, 94080, USA
| | - Jakob Buecheler
- Technical Research and Development, Novartis Pharma AG, 4002, Basel, Switzerland
| | - Sebastian Brosig
- Technical Research and Development, Novartis Pharma AG, 4002, Basel, Switzerland
| | - Danny Chou
- Compassion BioSolution, LLC, Lomita, California, 90717, USA
| | | | - Tapan Das
- Analytical Development and Attribute Sciences, Bristol Myers Squibb, New Brunswick, New Jersey, USA
| | - Isabella de Jong
- Genentech, Pharmaceutical Development, South San Francisco, California, 94080, USA
| | - Jonas Fast
- Pharmaceutical Development, F. Hoffmann-La Roche Ltd, CH-4070, Basel, Switzerland
| | | | - Ehab M Moussa
- Drug Product Development, AbbVie, North Chicago, Illinios, 60064, USA
| | - M Reza Nejadnik
- Department of Pharmaceutical Sciences & Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Indira Prajapati
- Dosage Form Design and Development, BioPharmaceuticals Development, R&D, AstraZeneca, 1 Medimmune Way, Gaithersburg, Maryland, 20878, USA
| | | | - Yusra Rahman
- Department of Pharmaceutical Sciences & Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Shubhadra Singh
- GlaxoSmithKline R&D, Biopharmaceutical Product Sciences, Collegeville, Philadelphia, Pennsylvania, 19426, USA
| |
Collapse
|
20
|
Wuchner K, Yi L, Chery C, Nikels F, Junge F, Crotts G, Rinaldi G, Starkey JA, Bechtold-Peters K, Shuman M, Leiss M, Jahn M, Garidel P, de Ruiter R, Richer SM, Cao S, Peuker S, Huille S, Wang T, Brun VL. Industry Perspective on the Use and Characterization of Polysorbates for Biopharmaceutical Products Part 2: Survey Report on Control Strategy Preparing for the Future. J Pharm Sci 2022; 111:2955-2967. [PMID: 36002077 DOI: 10.1016/j.xphs.2022.08.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 12/14/2022]
Abstract
Polysorbate (PS) 20 and 80 are the main surfactants used to stabilize biopharmaceutical products. Industry practices on various aspects of PS based on a confidential survey and following discussions by 16 globally acting major biotechnology companies is presented in two publications. Part 1 summarizes the current practice and use of PS during manufacture in addition to aspects like current understanding of the (in)stability of PS, the routine QC testing and control of PS, and selected regulatory aspects of PS.1 The current part 2 of the survey focusses on understanding, monitoring, prediction, and mitigation of PS degradation pathways in order to propose an effective control strategy. The results of the survey and extensive cross-company discussions are put into relation with currently available scientific literature.
Collapse
Affiliation(s)
- Klaus Wuchner
- Janssen R&D, DPDS BTDS Analytical Development, Hochstr. 201, 8200 Schaffhausen, Switzerland.
| | - Linda Yi
- Analytical Development, Biogen, Morrisville, NC 27709, USA
| | - Cyrille Chery
- UCB, Analytical Development Sciences for Biologicals, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium
| | - Felix Nikels
- Boehringer Ingelheim Pharma GmbH & Co KG, Innovation Unit, Birkendorfer Str. 65, 88397 Biberach an der Riss, Germany
| | - Friederike Junge
- Analytical Research and Development, NBE Analytical R&D, AbbVie Deutschland GmbH& Co. KG, Knollstraße, 67061 Ludwigshafen, Germany
| | - George Crotts
- GlaxoSmithKline, 1250 S Collegeville Rd, Collegeville, PA 19426, USA
| | - Gianluca Rinaldi
- Merck Serono SpA, Guidonia Montecelio, Italy, an affiliate of Merck KGaA, Darmstadt, Germany
| | - Jason A Starkey
- Pfizer, Inc. Biotherapeutics Pharmaceutical Sciences, Analytical Research and Development 875 W. Chesterfield Parkway, Chesterfield, MO 63017, USA
| | | | - Melissa Shuman
- GlaxoSmithKline, 1250 S Collegeville Rd, Collegeville, PA 19426, USA
| | - Michael Leiss
- Pharma Technical Development Analytics, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg, 82377, Germany
| | - Michael Jahn
- Lonza AG, Drug Product Services, Hochbergerstr. 60G, CH-4057 Basel, Switzerland
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co KG, Innovation Unit, Birkendorfer Str. 65, 88397 Biberach an der Riss, Germany
| | - Rien de Ruiter
- Byondis B.V., Downstream Processing, Nijmegen, the Netherlands
| | - Sarah M Richer
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Shawn Cao
- Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Sebastian Peuker
- Bayer AG, Product Supply, Analytical Development and Clinical QC for Biotech Products, Friedrich-Ebert-Str. 217-233, 42117 Wuppertal, Germany
| | - Sylvain Huille
- Sanofi R&D, Biologics Drug Products Development,13 quai Jules Guesde, 94403 Vitry-sur Seine, France
| | - Tingting Wang
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Virginie Le Brun
- Lonza AG, Drug Product Services, Hochbergerstr. 60G, CH-4057 Basel, Switzerland
| |
Collapse
|
21
|
Calderon CP, Levačić AK, Helbig C, Wuchner K, Menzen T. Combining Machine Learning and Backgrounded Membrane Imaging: A Case Study in Comparing and Classifying Different Types of Biopharmaceutically Relevant Particles. J Pharm Sci 2022; 111:2422-2434. [PMID: 35661758 PMCID: PMC9391316 DOI: 10.1016/j.xphs.2022.05.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 11/25/2022]
Abstract
This study investigates how backgrounded membrane imaging (BMI) can be used in combination with convolutional neural networks (CNNs) in order to quantitatively and qualitatively study subvisible particles in both protein biopharmaceuticals and samples containing synthetic model particles. BMI requires low sample volumes and avoids many technical complications associated with imaging particles in solution, e.g., air bubble interference, low refractive index contrast between solution and particles of interest, etc. Hence, BMI is an attractive technique for characterizing particles at various stages of drug product development. However, to date, the morphological information encoded in brightfield BMI images has scarcely been utilized. Here we show that CNN based methods can be useful in extracting morphological information from (label-free) brightfield BMI particle images. Images of particles from biopharmaceutical products and from laboratory prepared samples were analyzed with two types of CNN based approaches: traditional supervised classifiers and a recently proposed fingerprinting analysis method. We demonstrate that the CNN based methods are able to efficiently leverage BMI data to distinguish between particles comprised of different proteins, various fatty acids (representing polysorbate degradation related particles), and protein surrogates (NIST ETFE reference material) only based on BMI images. The utility of using the fingerprinting method for comparing morphological differences and similarities of particles formed in distinct drug products and/or laboratory prepared samples is further demonstrated and discussed through three case studies.
Collapse
Affiliation(s)
- Christopher P Calderon
- Ursa Analytics, Inc., Denver, CO 80212; Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States.
| | - Ana Krhač Levačić
- Coriolis Pharma Research GmbH, Fraunhoferstr. 18 b, 82152 Martinsried, Germany
| | - Constanze Helbig
- Coriolis Pharma Research GmbH, Fraunhoferstr. 18 b, 82152 Martinsried, Germany
| | - Klaus Wuchner
- Janssen Research and Development, DPDS BTDS Analytical Development, Hochstr. 201, 8200 Schaffhausen, Switzerland
| | - Tim Menzen
- Coriolis Pharma Research GmbH, Fraunhoferstr. 18 b, 82152 Martinsried, Germany.
| |
Collapse
|
22
|
Poloxamer 188 as surfactant in biological formulations - An alternative for polysorbate 20/80? Int J Pharm 2022; 620:121706. [PMID: 35367584 DOI: 10.1016/j.ijpharm.2022.121706] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/05/2022] [Accepted: 03/26/2022] [Indexed: 01/25/2023]
Abstract
Surfactants are used to stabilize biologics. Particularly, polysorbates (Tween® 20 and Tween® 80) dominate the group of surfactants in protein and especially antibody drug products. Since decades drug developers rely on the ethoxylated sorbitan fatty acid ester mixtures to stabilize sensitive molecules such as proteins. Reasons are (i) excellent stabilizing properties, and (ii) well recognized safety and tolerability profile of these polysorbates in humans, especially for parenteral applications. However, over the past decade concerns regarding the stability of these two polysorbates were raised. The search of alternatives with preferably less reservations concerning degradation and product quality reducing issues leads, among others, to poloxamer 188 (e.g. Kolliphor® P188), a nonionic triblock-copolymer surfactant. This review sums up our current knowledge related to the characterization and physico-chemical properties of poloxamer 188, its analytics and stability properties for biological formulations. Furthermore, the advantages and disadvantages as a suitable polysorbate-alternative for the stabilization of biologics are discussed.
Collapse
|
23
|
Effects of polyol excipient stability during storage and use on the quality of biopharmaceutical formulations. J Pharm Anal 2022; 12:774-782. [PMID: 36320601 PMCID: PMC9615580 DOI: 10.1016/j.jpha.2022.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/19/2022] [Accepted: 03/16/2022] [Indexed: 11/30/2022] Open
Abstract
Biopharmaceuticals are formulated using a variety of excipients to maintain their storage stability. However, some excipients are prone to degradation during repeated use and/or improper storage, and the impurities generated by their degradation are easily overlooked by end users and are usually not strictly monitored, affecting the stability of biopharmaceuticals. In this study, we evaluated the degradation profile of polyol excipient glycerol during repeated use and improper storage and identified an unprecedented cyclic ketal impurity using gas chromatography with mass spectrometry (GC-MS). The other polyol excipient, mannitol, was much more stable than glycerol. The effects of degraded glycerol and mannitol on the stability of the model biopharmaceutical pentapeptide, thymopentin, were also evaluated. The thymopentin content was only 66.4% in the thymopentin formulations with degraded glycerol, compared to 95.8% in other formulations after the stress test. Most glycerol impurities (i.e., aldehydes and ketones) reacted with thymopentin, affecting the stability of thymopentin formulations. In conclusion, this work suggests that more attention should be paid to the quality changes of excipients during repeated use and storage. Additional testing of excipient stability under real or accelerated conditions by manufacturers would help avoid unexpected and painful results. Unprecedented impurities in degraded glycerol were identified with GC-MS. Degradation of thymopentin due to glycerol degradation was determined using LC-MS/MS. Excipient stability affects biopharmaceutical formulation quality.
Collapse
|
24
|
Doshi N, Ritchie K, Shobha T, Giddings J, Gregoritza K, Taing R, Rumbelow S, Chu J, Tomlinson A, Kannan A, Saggu M, Cai SK, Nicoulin V, Liu W, Russell S, Luis L, Yadav S. Evaluating a Modified High Purity Polysorbate 20 Designed to Reduce the Risk of Free Fatty Acid Particle Formation. Pharm Res 2021; 38:1563-1583. [PMID: 34495486 DOI: 10.1007/s11095-021-03087-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/19/2021] [Indexed: 02/02/2023]
Abstract
PURPOSE To evaluate a modified high purity polysorbate 20 (RO HP PS20)-with lower levels of stearate, palmitate and myristate esters than the non-modified HP PS20-as a surfactant in biopharmaceutical drug products (DP). RO HP PS20 was designed to provide functional equivalence as a surfactant while delaying the onset of free fatty acid (FFA) particle formation upon hydrolytic degradation relative to HP PS20. METHODS Analytical characterization of RO HP PS20 raw material included fatty acid ester (FAE) distribution, higher order ester (HOE) fraction, FFA levels and trace metals. Functional assessments included 1) vial and intravenous bag agitation; 2) oxidation via a placebo and methionine surrogate study; and 3) hydrolytic PS20 degradation studies to evaluate FFA particle formation with and without metal nucleation. RESULTS Interfacial protection and oxidation propensity were comparable between the two polysorbates. Upon hydrolytic degradation, FFA particle onset was delayed in RO HP PS20. The delay was more pronounced when HOEs of PS20 were preferentially degraded. Furthermore, the hydrolytic degradants of RO HP PS20 formed fewer particles in the presence of spiked aluminum. CONCLUSION This work highlights the criticality of having tighter control on long chain FAE levels of PS20 to reduce the occurrence of FFA particle formation upon hydrolytic degradation and lower the variability in its onset. By simultaneously meeting compendial PS20 specifications while narrowing the allowable range for each FAE and shifting its composition towards the shorter carbon chain species, RO HP PS20 provides a promising alternative to HP PS20 for biopharmaceutical DPs.
Collapse
Affiliation(s)
- Nidhi Doshi
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA.
| | - Kyle Ritchie
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Tamanna Shobha
- Pharmaceutical Technical Innovation, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Jamie Giddings
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Kathrin Gregoritza
- Pharma Technical Development Biologics, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4054, Basel, Switzerland
| | - Rosalynn Taing
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Stephen Rumbelow
- Croda Inc, 777 Scudders Mill Road, Bldg. 2, Plainsboro, NJ, 08536, USA
| | - Jeff Chu
- Analytical Operations, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Anthony Tomlinson
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Aadithya Kannan
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Miguel Saggu
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Si Kai Cai
- Pharma Technical Development Biologics, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4054, Basel, Switzerland
| | - Victor Nicoulin
- Pharma Technical Development Biologics, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4054, Basel, Switzerland
| | - Wenqiang Liu
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Steve Russell
- Analytical Operations, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Lin Luis
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Sandeep Yadav
- Pharmaceutical Technical Innovation, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| |
Collapse
|
25
|
Roy I, Patel A, Kumar V, Nanda T, Assenberg R, Wuchner K, Amin K. Polysorbate Degradation and Particle Formation in a High Concentration mAb: Formulation Strategies to Minimize Effect of Enzymatic Polysorbate Degradation. J Pharm Sci 2021; 110:3313-3323. [PMID: 34077768 DOI: 10.1016/j.xphs.2021.05.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/26/2021] [Accepted: 05/10/2021] [Indexed: 12/24/2022]
Abstract
Polysorbate (PS) 20 and 80 are the most common surfactants in monoclonal antibody (mAb) drug product (DP) formulations. Residual host cell proteins (HCP) present at extremely low concentrations in DP formulations can maintain enough enzymatic activity to degrade PS surfactants. Over time, the hydrolysis of surfactant causes the accumulation of minimally soluble free fatty acids resulting in precipitation and formation of subvisible and visible particulates. This manuscript summarizes the investigation of a batch of high concentration (>100 mg/mL) mAb DP where subvisible particles formed abruptly after prolonged storage at 5C°. The work also summarizes the effectiveness of different strategies for managing host cell proteins and fatty acid particles. The concentration and fatty acid composition of polysorbates were found to be significant factors in particle development. Solubilizers and alternative surfactants were all shown to be effective means of preventing particle formation. Lipase inhibitors proved to be a simple means to identify the problem but are more difficult to utilize as a solution.
Collapse
Affiliation(s)
- Ian Roy
- Drug Product Development, BioTherapeutics Development, Janssen Research & Development, 200 Great Valley Parkway, Malvern, PA 19355, USA.
| | - Ashaben Patel
- Drug Product Development, BioTherapeutics Development, Janssen Research & Development, 200 Great Valley Parkway, Malvern, PA 19355, USA
| | - Vineet Kumar
- Drug Product Development, BioTherapeutics Development, Janssen Research & Development, 200 Great Valley Parkway, Malvern, PA 19355, USA
| | - Tatiana Nanda
- Drug Product Development, BioTherapeutics Development, Janssen Research & Development, 200 Great Valley Parkway, Malvern, PA 19355, USA
| | - Rene Assenberg
- Analytical Development, BioTherapeutics Development, Janssen Research & Development, 200 Great Valley Parkway, Malvern, PA 19355, USA
| | - Klaus Wuchner
- Analytical Development, BioTherapeutics Development, Janssen Research & Development, 200 Great Valley Parkway, Malvern, PA 19355, USA
| | - Ketan Amin
- Drug Product Development, BioTherapeutics Development, Janssen Research & Development, 200 Great Valley Parkway, Malvern, PA 19355, USA
| |
Collapse
|
26
|
Doshi N, Giddings J, Luis L, Wu A, Ritchie K, Liu W, Chan W, Taing R, Chu J, Sreedhara A, Kannan A, Kei P, Shieh I, Graf T, Hu M. A Comprehensive Assessment of All-Oleate Polysorbate 80: Free Fatty Acid Particle Formation, Interfacial Protection and Oxidative Degradation. Pharm Res 2021; 38:531-548. [PMID: 33713012 DOI: 10.1007/s11095-021-03021-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/22/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Enzymatic polysorbate (PS) degradation and resulting free fatty acid (FFA) particles are detrimental to biopharmaceutical drug product (DP) stability. Different types and grades of polysorbate have varying propensity to form FFA particles. This work evaluates the homogenous all-oleate (AO) PS80 alongside heterogeneous PS20 and PS80 grades in terms its propensity to form FFA particles and other important attributes like interfacial protection and oxidation susceptibility. METHODS FFA particle formation rates were compared by degrading PS using non-immobilized hydrolases and fast degrading DP formulations. Interfacial protection of monoclonal antibodies (mAbs) was assessed by agitation studies in saline using non-degraded and degraded PS. Several antioxidants were assessed for their ability to mitigate AO PS80 oxidation and subsequent mAb oxidation by a 40°C placebo stability study and a 2, 2'-Azobis (2-amidinopropane) dihydrochloride stress model, respectively. RESULTS Visible and subvisible particles were significantly delayed in AO PS80 formulations compared with heterogeneous PS20 and PS80 formulations. Non-degraded AO PS80 was less protective of mAbs against the air-water interface compared with heterogeneous PS20. Interfacial protection by AO PS80 improved upon degradation owing to high surface activity of FFAs. Diethylenetriaminepentaacetic acid (DTPA) completely mitigated AO PS80 oxidation unlike L-methionine and N-Acetyl-DL-Tryptophan. However, DTPA did not mitigate radical mediated mAb oxidation. CONCLUSION AO PS80 is a promising alternative to reduce FFA particle formation compared with other PS types and grades. However, limitations observed here---such as lower protection against interfacial stresses and higher propensity for oxidation---need to be considered in assessing the risk/benefit ratio in using AO PS80.
Collapse
Affiliation(s)
- Nidhi Doshi
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA.
| | - Jamie Giddings
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Lin Luis
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Arthur Wu
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Kyle Ritchie
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Wenqiang Liu
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Wayman Chan
- Analytical Operations, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Rosalynn Taing
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Jeff Chu
- Analytical Operations, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Alavattam Sreedhara
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Aadithya Kannan
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Pervina Kei
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Ian Shieh
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Tobias Graf
- Pharma Technical Development Analytics, Roche Diagnostics GmbH, Nonnenwald 2, 82377, Penzberg, Germany
| | - Mark Hu
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| |
Collapse
|
27
|
Doshi N, Rutherford K, Najjar A. Dissolution of Polysorbate 20 Degradation Related Free Fatty Acid Particles in Intravenous Bag Solutions. J Pharm Sci 2020; 110:687-692. [PMID: 33039438 DOI: 10.1016/j.xphs.2020.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 11/15/2022]
Abstract
Degradation of Polysorbate 20 (PS20), a commonly used surfactant in drug product (DP) formulations, is a phenomenon of increasing concern to the biopharmaceutical industry. One of the most prevalent modes of PS20 degradation is enzymatic hydrolysis resulting from co-purified hydrolases that make their way into biologic DP formulations at trace levels. Enzymatic PS20 degradation results in generation of free fatty acids (FFAs) that have limited solubility in aqueous formulations and can form visible and/or sub-visible particles which is undesirable for parenteral DP stability and administration. Many therapeutic monoclonal antibodies are administered intravenously after first diluting the DP into an infusion solution (e.g., 0.9% normal saline, 0.45% half normal saline or 5% dextrose). The purpose of this work is to understand if FFA particles in the DP dissolve in intravenous solutions prior to administration. Our assessment indicates that visible and/or sub-visible particles that contain high levels of lauric, myristic and palmitic acids dissolve immediately upon dilution (at or exceeding two fold) regardless of the intravenous bag or solution type. Therefore, the risk is low of visible and/or sub-visible particles, comprised of FFAs in biopharmaceutical DPs, being intravenously administered to a patient.
Collapse
Affiliation(s)
- Nidhi Doshi
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Karen Rutherford
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Asil Najjar
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
28
|
Doshi N, Martin J, Tomlinson A. Improving Prediction of Free Fatty Acid Particle Formation in Biopharmaceutical Drug Products: Incorporating Ester Distribution during Polysorbate 20 Degradation. Mol Pharm 2020; 17:4354-4363. [DOI: 10.1021/acs.molpharmaceut.0c00794] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Nidhi Doshi
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Joelle Martin
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
- Therapeutic Discovery, Amgen Research, Amgen Inc., 1120 Veterans Blvd, South San Francisco, California 94080, United States
| | - Anthony Tomlinson
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
29
|
Paschen CA, Klemm D, Graf T, Kopf R, Pinto C, Müller C, Bell CH, Pfaff J. Simultaneous quantification of polysorbate 20 and poloxamer 188 in biopharmaceutical formulations using evaporative light scattering detection. J Pharm Biomed Anal 2020; 192:113640. [PMID: 33002754 DOI: 10.1016/j.jpba.2020.113640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/28/2020] [Accepted: 09/11/2020] [Indexed: 11/28/2022]
Abstract
Polysorbates and Poloxamer 188 constitute the most common surfactants used in biopharmaceutical formulations owing to their excellent protein-stabilizing properties and good safety profiles. In recent years, however, a vast number of reports concerning potential risk factors closely related with their applications, such as the accumulation of degradation products, their inherent heterogeneity and adsorption effects of proteins at silicon/oil interfaces have drawn the focus to potential alternatives. Apart from tedious efforts to evaluate new excipient candidates, the use of mixed formulations leveraging combinations of well-established surfactants appears to be a promising approach to eliminate or, at least, minimize and postpone adverse effects associated with the single compounds. Due to the similar molecular properties of non-ionic surfactants, however, baseline separation of these mixtures, which is mandatory for their reliable quantification, poses a great challenge to analytical scientists. For this purpose, the present work describes the development of a robust mixed-mode liquid chromatography method coupled to evaporative light scattering detection (mixed-mode LC-ELSD) for simultaneous determination of the (intact) Polysorbate 20 and Poloxamer 188 content in biopharmaceutical formulations containing monoclonal antibodies. Extensive qualification and validation studies, comprising the evaluation of method specificity, robustness, linearity, accuracy and precision according to ICH guidelines, demonstrated its suitability for quality control studies. A case study on the storage stability of a formulated antibody was conducted to underline the method's practical utility. Finally, the versatility of the developed approach was successfully tested by quantifying Polysorbate 20-related surfactants, such as Polysorbate 80 and super-refined Polysorbate.
Collapse
Affiliation(s)
| | - Denis Klemm
- F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Tobias Graf
- Roche Diagnostics GmbH, Nonnenwald 2, 82377, Penzberg, Germany
| | - Robert Kopf
- F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Cosimo Pinto
- F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Claudia Müller
- F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Christian H Bell
- F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Janina Pfaff
- F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| |
Collapse
|