1
|
Zhang X, Zhou B, Gong Y, Liu Y. Investigation into the pharmacodynamics and pharmacokinetics of recombinant human interferon alfa-2b vaginal suppository following process optimization in chinese rhesus macaque. Sci Rep 2025; 15:15932. [PMID: 40335589 DOI: 10.1038/s41598-025-98813-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 04/15/2025] [Indexed: 05/09/2025] Open
Abstract
Recombinant human interferon Alfa-2b vaginal suppository is a gynecological preparation mainly made of interferon, commonly used to treat diseases related to viral infections such as cervical erosion. As a recombinant protein drug, it is important to pay attention to the possibility of modifications that may lower the quality of the drug during the production process. The aim of this study is to evaluate the pharmacokinetic (PK) and pharmacodynamic (PD) characteristics of this product in Chinese rhesus macaque after purification process changes, and to demonstrate that there is no difference in the biological activity of recombinant human interferon Alfa-2b vaginal suppository stock solution before and after process changes. There are 12 test animals: Chinese rhesus macaques who received a two-group crossover design and were subcutaneously injected with the same active dose of 500,000 IU/kg around the navel in the abdomen. According to maximum concentration (Cmax) and time of maximum concentration (Tmax) within non-parametric test (P > 0.05), geometric mean ratio of PK parameter Cmax for the drugs after purification process changes (sample S) compared to the before purification process changes one (sample R) was 97.09%, with a 90% confidence interval (CI) of 87.39-107.87%. The geometric mean ratio Cmax of serum Beta2-microglobulin (PDmax) for PD index is 100.07%, with a 90% CI of 97.16-103.07%; Geometric mean ratio of AUEC0 - t is 98.91%, with a 90% CI of 96.53-101.34%. The geometric mean of the PD index, neopterin PDmax, is 97.75%, with a 90% CI of 92.53-103.25%; Geometric mean of AUEC0 - t is 105.59%, with a 90% CI ranging from 97.22 to 114.68%. The important parameters of PK/PD meet the equivalence requirements, and biological activity of the recombinant human interferon Alfa-2b vaginal suppository stock solution after purification process change is no different from before the change. Under the same active dose administration conditions, the same biological effects were produced, achieving the same effect as before the change.
Collapse
Affiliation(s)
- Xueyan Zhang
- Department of Recombinant Protein Drug, Changchun Institute of Biological Products, Changchun, 130012, China
| | - Baisong Zhou
- Department of Recombinant Protein Drug, Changchun Institute of Biological Products, Changchun, 130012, China
| | - Yihan Gong
- Department of Recombinant Protein Drug, Changchun Institute of Biological Products, Changchun, 130012, China
| | - Yulin Liu
- Department of Recombinant Protein Drug, Changchun Institute of Biological Products, Changchun, 130012, China.
| |
Collapse
|
2
|
Numao E, Yanagisawa K, Yagi Y, Tsuchida D, Yamazaki K. Comparison of a new peak detection function for selecting a phase-appropriate multi-attribute method system. J Biosci Bioeng 2025; 139:156-163. [PMID: 39523161 DOI: 10.1016/j.jbiosc.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
The multi-attribute method (MAM) has been recognized as an optimal tool for quality control in biotherapeutics. New peak detection (NPD) is one of the functions of MAM for detecting unexpected differences in samples and is an essential feature required for replacing conventional methods with MAM. Not only used for release and stability testing, NPD is also considered valuable for evaluating comparability and identifying product quality attributes in the research phase. Although many researchers consider the processing parameter the key to NPD, the details of the decision-making process are unclear. Besides specific instruments and software packages has been used almost exclusively, yet the differences in NPD function between other choices have not been confirmed. Thus, this research aimed to confirm the applicability of our original decision-making approach for NPD processing parameters using two different systems. After optimization for each, under a condition that detected crucial differences and did not return false positives, they differed in the reproducibility of the results. To our knowledge, this was the first time the comparison of NPD results of different systems has been published, and the eligibility of processing methods was evaluated in light of the equivalency of conventional methods' detectability. The findings suggested that the capability of NPD is determined not only by the instrument's resolution but also by the software's capability. Our approach for optimizing the NPD processing parameter is deemed widely applicable and practical in developing therapeutic proteins. The revealed difference will help us select the fit-for-purpose system.
Collapse
Affiliation(s)
- Eriko Numao
- Bio Process Research and Development Laboratories, Manufacturing Division, Kyowa Kirin Co., Ltd., Takasaki, Gunma 370-0013, Japan.
| | - Kumi Yanagisawa
- Bio Process Research and Development Laboratories, Manufacturing Division, Kyowa Kirin Co., Ltd., Takasaki, Gunma 370-0013, Japan
| | - Yuki Yagi
- Bio Process Research and Development Laboratories, Manufacturing Division, Kyowa Kirin Co., Ltd., Takasaki, Gunma 370-0013, Japan
| | - Daisuke Tsuchida
- Bio Process Research and Development Laboratories, Manufacturing Division, Kyowa Kirin Co., Ltd., Takasaki, Gunma 370-0013, Japan
| | - Katsuyoshi Yamazaki
- Bio Process Research and Development Laboratories, Manufacturing Division, Kyowa Kirin Co., Ltd., Takasaki, Gunma 370-0013, Japan
| |
Collapse
|
3
|
Jiang T, Kwofie F, Attanasio N, Haas M, Higgins J, Kosanam H. Exploring the Correlation between LC-MS Multi-Attribute Method and Conventional Chromatographic Product Quality Assays through Multivariate Data Analysis. AAPS J 2024; 27:5. [PMID: 39572443 DOI: 10.1208/s12248-024-00973-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/31/2024] [Indexed: 02/27/2025] Open
Abstract
Biotherapeutics are subject to inherent heterogeneity due to the complex biomanufacturing processes. Numerous analytical techniques have been employed to identify, characterize, and monitor critical quality attributes (CQAs) to ensure product safety, and efficacy. Mass spectrometry (MS)-based multi-attribute method (MAM) has become increasingly popular in biopharmaceutical industry due to its potential to replace multiple traditional analytical methods. However, the correlation between MAM and conventional methods remains to be fully understood. Additionally, the complex analytical workflow and limited throughput of MAM restricts its implementation as a quality control (QC) release assay. Herein, we present a simple, robust, and rapid MAM workflow for monitoring CQAs. Our rapid approach allowed us to create a database from ~700 samples, including site-specific post-translational modifications (PTMs) quantitation results using MAM and data from traditional charge variant and oxidation characterization methods. To gain insights from this database, we employ multivariate data analysis (MVDA) to thoroughly exploit the data. By applying partial least squares regression (PLSR) models, we demonstrate the ability to quantitatively predict charge variants in ion exchange chromatography (IEX) assay and oxidation abundances in hydrophobic-interaction chromatography (HIC) assay using MAM data, highlighting the interconnectivity between MAM and traditional product quality assays. These findings help evaluate the suitability of MAM as a replacement for conventional methods for release, and more importantly, contribute to enhanced process and product understanding.
Collapse
Affiliation(s)
- Tingting Jiang
- Global Vaccines and Biologics Commercialization, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania, 19486, USA
| | - Francis Kwofie
- Global Vaccines and Biologics Commercialization, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania, 19486, USA
| | - Nick Attanasio
- Global Vaccines and Biologics Commercialization, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania, 19486, USA
| | - Matthew Haas
- Global Vaccines and Biologics Commercialization, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania, 19486, USA
| | - John Higgins
- Global Vaccines and Biologics Commercialization, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania, 19486, USA
| | - Hari Kosanam
- Global Vaccines and Biologics Commercialization, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania, 19486, USA.
| |
Collapse
|
4
|
Setoguchi S, Goto S, Matsunaga K. Potential of Powder Rheology for Detecting Unforeseen Cross-Contamination of Foreign Active Pharmaceutical Ingredients. AAPS PharmSciTech 2024; 25:138. [PMID: 38890193 DOI: 10.1208/s12249-024-02856-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024] Open
Abstract
Unexpected cross-contamination by foreign components during the manufacturing and quality control of pharmaceutical products poses a serious threat to the stable supply of drugs and the safety of customers. In Japan, in 2020, a mix-up containing a sleeping drug went undetected by liquid chromatography during the final quality test because the test focused only on the main active pharmaceutical ingredient (API) and known impurities. In this study, we assessed the ability of a powder rheometer to analyze powder characteristics in detail to determine whether it can detect the influence of foreign APIs on powder flow. Aspirin, which was used as the host API, was combined with the guest APIs (acetaminophen from two manufacturers and albumin tannate) and subsequently subjected to shear and stability tests. The influence of known lubricants (magnesium stearate and leucine) on powder flow was also evaluated for standardized comparison. Using microscopic morphological analysis, the surface of the powder was observed to confirm physical interactions between the host and guest APIs. In most cases, the guest APIs were statistically detected due to characteristics such as their powder diameter, pre-milling, and cohesion properties. Furthermore, we evaluated the flowability of a formulation incorporating guest APIs for direct compression method along with additives such as microcrystalline cellulose, potato starch, and lactose. Even in the presence of several additives, the influence of the added guest APIs was successfully detected. In conclusion, powder rheometry is a promising method for ensuring stable product quality and reducing the risk of unforeseen cross-contamination by foreign APIs.
Collapse
Affiliation(s)
- Shuichi Setoguchi
- Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka- shi, Fukuoka, 814-0180, Japan.
| | - Shotaro Goto
- Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka- shi, Fukuoka, 814-0180, Japan
| | - Kazuhisa Matsunaga
- Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka- shi, Fukuoka, 814-0180, Japan
| |
Collapse
|
5
|
Drobnjakovic M, Hart R, Kulvatunyou BS, Ivezic N, Srinivasan V. Current challenges and recent advances on the path towards continuous biomanufacturing. Biotechnol Prog 2023; 39:e3378. [PMID: 37493037 DOI: 10.1002/btpr.3378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/13/2023] [Accepted: 06/21/2023] [Indexed: 07/27/2023]
Abstract
Continuous biopharmaceutical manufacturing is currently a field of intense research due to its potential to make the entire production process more optimal for the modern, ever-evolving biopharmaceutical market. Compared to traditional batch manufacturing, continuous bioprocessing is more efficient, adjustable, and sustainable and has reduced capital costs. However, despite its clear advantages, continuous bioprocessing is yet to be widely adopted in commercial manufacturing. This article provides an overview of the technological roadblocks for extensive adoptions and points out the recent advances that could help overcome them. In total, three key areas for improvement are identified: Quality by Design (QbD) implementation, integration of upstream and downstream technologies, and data and knowledge management. First, the challenges to QbD implementation are explored. Specifically, process control, process analytical technology (PAT), critical process parameter (CPP) identification, and mathematical models for bioprocess control and design are recognized as crucial for successful QbD realizations. Next, the difficulties of end-to-end process integration are examined, with a particular emphasis on downstream processing. Finally, the problem of data and knowledge management and its potential solutions are outlined where ontologies and data standards are pointed out as key drivers of progress.
Collapse
Affiliation(s)
- Milos Drobnjakovic
- Systems Integration Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Roger Hart
- National Institute for Innovation in Manufacturing Biopharmaceuticals, Newark, New Jersey, USA
| | - Boonserm Serm Kulvatunyou
- Systems Integration Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Nenad Ivezic
- Systems Integration Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Vijay Srinivasan
- Systems Integration Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| |
Collapse
|
6
|
Gervais A, Dirksen EHC, Pohl T, Bechtold-Peters K, Burkitt W, D'Alessio V, Greven S, Lennard A, Li X, Lössner C, Niu B, Reusch D, O'Riordan T, Shearer JW, Spencer D, Xu W, Yi L. Compliance and regulatory considerations for the implementation of the multi-attribute-method by mass spectrometry in a quality control laboratory. Eur J Pharm Biopharm 2023; 191:57-67. [PMID: 37582411 DOI: 10.1016/j.ejpb.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/04/2023] [Accepted: 08/12/2023] [Indexed: 08/17/2023]
Abstract
Multi-attribute methods employing mass spectrometry are applied throughout the biopharmaceutical industry for product and process characterization purposes but are not yet widely accepted as a method for batch release and stability testing under the good manufacturing practice (GMP) regime, due to limited experience and level of comfort with the technical, compliance and regulatory aspects of its implementation at quality control (QC) laboratories. This article is the second part of a two-tiered publication aiming at providing guidance for implementation of the multi-attribute method by peptide mapping liquid chromatography mass spectrometry (MAM) in a QC laboratory. The first part [1] focuses on technical considerations, while this second part provides considerations related to GMP compliance and regulatory aspects. This publication has been prepared by a group of industry experts representing 14 globally acting major biotechnology companies under the umbrella of the European Federation of Pharmaceutical Industries and Associations (EFPIA) Manufacturing & Quality Expert Group (MQEG).
Collapse
Affiliation(s)
- Annick Gervais
- Analytical Development Sciences for Biologicals, UCB, Chemin du Foriest, 1420 Braine L'Alleud, Belgium.
| | - Eef H C Dirksen
- Analytical Development and Quality Control, Byondis, Microweg 22, 6545 CM, Nijmegen, the Netherlands
| | - Thomas Pohl
- Biologics Analytical Development, Novartis Pharma AG, Klybeckstrasse 141, CH-4057 Basel, Switzerland
| | - Karoline Bechtold-Peters
- Biologics Drug Product Development, Novartis Pharma AG, Klybeckstrasse 141, CH-4057 Basel, Switzerland
| | - Will Burkitt
- Biological Characterisation Product Development Sciences, UCB, 216 Bath Road, Slough SL1 3WE, UK
| | - Valerio D'Alessio
- Analytical Development & Innovation NBE, Merck Serono S.p.A, Via Luigi Einaudi, 11, 00012 Guidonia Montecelio - Rome, Italy
| | - Simone Greven
- Pharmaceuticals, Biological Development, Bayer AG, Friedrich-Ebert-Strasse 217-333, 42117 Wuppertal, Germany
| | - Andrew Lennard
- Amgen Ltd, 4 Uxbridge Business Park, Sanderson Road, Uxbridge, UB8 1DH, UK
| | - Xue Li
- Biologics Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, NJ 08901, USA
| | - Christopher Lössner
- Analytical Dev. Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Ben Niu
- Biotherapeutics, Bristol Myers Squibb, 4224 Campus Point Court, San Diego, CA 92121, USA
| | - Dietmar Reusch
- Pharma Technical Development, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Tomás O'Riordan
- Eli Lilly Kinsale Limited, Dunderrow, Kinsale, Co. Cork, P17NY71, Ireland
| | - Justin W Shearer
- Analytical Development, GSK, 709 Swedeland Road, King of Prussia, PA 19406, USA
| | - David Spencer
- BioPharmaceutical Development, Ipsen Biopharm Limited, 9 Ash Road, Wrexham Industrial Estate, Wrexham LL13 9UF, UK
| | - Wei Xu
- Analytical Sciences, BioPharmaceuticals R&D, AstraZeneca, One Medimmune Way, Gaithersburg, MD 20878, USA
| | - Linda Yi
- Analytical Development, Biogen, 5000 Davis Drive, Research Triangle Park, NC 27709, USA
| |
Collapse
|
7
|
Li X. Recent applications of quantitative mass spectrometry in biopharmaceutical process development and manufacturing. J Pharm Biomed Anal 2023; 234:115581. [PMID: 37494866 DOI: 10.1016/j.jpba.2023.115581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/27/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
Biopharmaceutical products have seen rapid growth over the past few decades and continue to dominate the global pharmaceutical market. Aligning with the quality by design (QbD) framework and realization, recent advances in liquid chromatography-mass spectrometry (LC-MS) instrumentation and related techniques have enhanced biopharmaceutical characterization capabilities and have supported an increased development of biopharmaceutical products. Beyond its routine qualitative characterization, the quantitative feature of LC-MS has unique applications in biopharmaceutical process development and manufacturing. This review describes the recent applications and implications of the advancement of quantitative MS methods in biopharmaceutical process development, and characterization of biopharmaceutical product, product-related variants, and process-related impurities. We also provide insights on the emerging applications of quantitative MS in the lifecycle of biopharmaceutical product development including quality control in the Good Manufacturing Practice (GMP) environment and process analytical technology (PAT) practices during process development and manufacturing. Through collaboration with instrument and software vendors and regulatory agencies, we envision broader adoption of phase-appropriate quantitative MS-based methods for the analysis of biopharmaceutical products, which in turn has the potential to enable manufacture of higher quality products for patients.
Collapse
Affiliation(s)
- Xuanwen Li
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, NJ 07065, USA.
| |
Collapse
|
8
|
Millán-Martín S, Jakes C, Carillo S, Gallagher L, Scheffler K, Broster K, Bones J. Multi-Attribute Method (MAM): An Emerging Analytical Workflow for Biopharmaceutical Characterization, Batch Release and cGMP Purity Testing at the Peptide and Intact Protein Level. Crit Rev Anal Chem 2023; 54:3234-3251. [PMID: 37490277 DOI: 10.1080/10408347.2023.2238058] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The rapid growth of biotherapeutic industry, with more and more complex molecules entering the market, forces the need for advanced analytical platforms that can quickly and accurately identify and quantify product quality attributes. Mass spectrometry has the potential to provide more detailed information about the quality attributes of complex products, and MS methods are more sensitive than UV methods for detection of impurities. The multi-attribute method (MAM), a liquid chromatography-mass spectrometry based analytical approach is an emerging platform which supports biotherapeutic characterization and cGMP testing. The main advantage lies in the ability to monitor multiple quality attributes in a single assay, both at the peptide and the intact level, facilitating streamlined biopharmaceutical production, from research and development to the QC environment. This review highlights the current landscape of the MAM approach with special attention given to increased analytical throughput, general requirements for QC in terms of instrumentation and software, regulatory requirements, and industry acceptance of the MAM platform.
Collapse
Affiliation(s)
- Silvia Millán-Martín
- National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Co, Dublin, Ireland
| | - Craig Jakes
- National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Co, Dublin, Ireland
| | - Sara Carillo
- National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Co, Dublin, Ireland
| | | | | | - Kelly Broster
- Thermo Fisher Scientific, Stafford House, Hemel Hempstead, UK
| | - Jonathan Bones
- National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Co, Dublin, Ireland
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Ireland
| |
Collapse
|
9
|
Bhattacharya S, Joshi S, Rathore AS. A native multi-dimensional monitoring workflow for at-line characterization of mAb titer, size, charge, and glycoform heterogeneities in cell culture supernatant. J Chromatogr A 2023; 1696:463983. [PMID: 37054641 DOI: 10.1016/j.chroma.2023.463983] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/26/2023] [Accepted: 04/07/2023] [Indexed: 04/15/2023]
Abstract
With growing maturity of the biopharmaceutical industry, new modalities entering the therapeutic design space and increasing complexity of formulations such as combination therapy, the demands and requirements on analytical workflows have also increased. A recent evolution in newer analytical workflows is that of multi-attribute monitoring workflows designed on chromatography-mass spectrometry (LC-MS) platform. In comparison to traditional one attribute per workflow paradigm, multi-attribute workflows are designed to monitor multiple critical quality attributes through a single workflow, thus reducing the overall time to information and increasing efficiency and throughput. While the 1st generation multi-attribute workflows focused on bottom-up characterization following peptide digestion, the more recent workflows have been focussing on characterization of intact biologics, preferably in native state. So far intact multi-attribute monitoring workflows suitable for comparability, utilizing single dimension chromatography coupled with MS have been published. In this study, we describe a native multi-dimensional multi-attribute monitoring workflow for at-line characterization of monoclonal antibody (mAb) titer, size, charge, and glycoform heterogeneities directly in cell culture supernatant. This has been achieved through coupling ProA in series with size exclusion chromatography in 1st dimension followed by cation exchange chromatography in the 2nd dimension. Intact paired glycoform characterization has been achieved through coupling 2D-LC with q-ToF-MS. The workflow with a single heart cut can be completed in 25 mins and utilizes 2D-liquid chromatography (2D-LC) to maximize separation and monitoring of titer, size as well as charge variants.
Collapse
Affiliation(s)
- Sanghati Bhattacharya
- Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India
| | - Srishti Joshi
- Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
10
|
Millán-Martín S, Jakes C, Carillo S, Rogers R, Ren D, Bones J. Comprehensive multi-attribute method workflow for biotherapeutic characterization and current good manufacturing practices testing. Nat Protoc 2023; 18:1056-1089. [PMID: 36526726 DOI: 10.1038/s41596-022-00785-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 10/04/2022] [Indexed: 12/23/2022]
Abstract
The multi-attribute method (MAM) is a liquid chromatography-mass spectrometry (LC-MS)-based method that is used to directly characterize and monitor numerous product quality attributes (PQAs) at the amino acid level of a biopharmaceutical product. MAM enables identity testing based on primary sequence verification, detection and quantitation of post-translational modifications and impurities. This ability to simultaneously and directly determine PQAs of therapeutic proteins makes MAM a more informative, streamlined and productive workflow than conventional chromatographic and electrophoretic assays. MAM relies on proteolytic digestion of the sample followed by reversed-phase chromatographic separation and high-resolution LC-MS analysis in two phases. First, a discovery study to determine quality attributes for monitoring is followed by the creation of a targeted library based on high-resolution retention time plus accurate mass analysis. The second aspect of MAM is the monitoring phase based on the target peptide library and new peak detection using differential analysis of the data to determine the presence, absence or change of any species that might affect the activity or stability of the biotherapeutic. The sample preparation process takes between 90 and 120 min, whereas the time spent on instrumental and data analyses might vary from one to several days for different sample sizes, depending on the complexity of the molecule, the number of attributes to be monitored and the information to be detailed in the final report. MAM is developed to be used throughout the product life cycle, from process development through upstream and downstream processes to quality control release or under current good manufacturing practices regulations enforced by regulatory agencies.
Collapse
Affiliation(s)
| | - Craig Jakes
- National Institute for Bioprocessing Research and Training, Dublin, Ireland
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Ireland
| | - Sara Carillo
- National Institute for Bioprocessing Research and Training, Dublin, Ireland
| | | | - Da Ren
- Amgen Inc., Process Development, Thousand Oaks, CA, USA
| | - Jonathan Bones
- National Institute for Bioprocessing Research and Training, Dublin, Ireland.
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Ireland.
| |
Collapse
|
11
|
Camperi J, Dahotre S, Guillarme D, Stella C. Monitoring multiple quality attributes of a complex Fc-fusion protein during cell culture production processes by mD-LC-MS peptide mapping. Talanta 2022; 246:123519. [PMID: 35525056 DOI: 10.1016/j.talanta.2022.123519] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 10/18/2022]
Abstract
Fc-fusion proteins represent a successful class of biopharmaceutical products. They are considered highly heterogeneous products due to the common degradation of amino acids that occurs during their production in upstream and downstream processes (e.g., oxidation and deamidation) and, above all, their complex glycosylation profile. Multi-dimensional liquid chromatography-mass spectrometry (mD-LC-MS) has recently gained much interest for process analytical technology, enabling the integration of this analytical technology in production and purification environments. In this study, an online mD-LC-MS/MS peptide mapping method was developed for monitoring multiple quality attributes, including the N-glycosylation state of a complex Fc-fusion protein, which is made by combining two heavily glycosylated cytokines with an Fc domain. This fully automated workflow includes sample purification, reduction, digestion, peptide mapping, and subsequent mass spectrometric analysis. Two immobilized enzyme cartridges based on trypsin and Lys-C protease were employed to generate a detailed glycosylation mapping, as trypsin allowed the identification of only one of four glycosylation sites, while Lys-C was more informative for two other sites. Site-specific glycosylation information such as antennarity, sialyation, and core fucosylation state was also determined. In addition to glycans, other post-translational modifications could be monitored simultaneously during the cell culture production processes by the mD-LC-MS/MS approach. In summary, the generated data demonstrate the applicability of mD-LC-MS for the monitoring and trending of multiple attributes for complex antibody formats over production processes in an automated and fast manner, compared to the complex and time-consuming traditional offline assays.
Collapse
Affiliation(s)
- Julien Camperi
- Protein Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA.
| | - Sanket Dahotre
- iLabs, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet, 1, 1206, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, CMU-Rue Michel Servet 1, 1211, Geneva 4, Switzerland
| | - Cinzia Stella
- Protein Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| |
Collapse
|
12
|
Camperi J. Online HPLC–HRMS Platform: The Next-Generation Process Analytical Technology Tool for Real-Time Monitoring of Antibody Quality Attributes in Biopharmaceutical Processes. LCGC NORTH AMERICA 2022. [DOI: 10.56530/lcgc.na.op5766f2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Online monitoring of critical quality attributes (CQAs) directly within the bioreactor can provide the basis for advanced processing of therapeutics production, including automated real-time monitoring, feedback control process intensification, smart manufacturing, and real-time release testing. This paper presents recent developments in online high performance liquid chromatography–high-resolution mass spectrometry (HPLC–HRMS) platforms as a promising process analytical technology (PAT) tool for real-time monitoring of antibody quality attributes (QAs) in biopharmaceutical processes. This technology can be used to monitor multiple CQAs and process parameters during cell culture production, enabling real-time decisions.
Collapse
|
13
|
Jakes C, Bones J, Carillo S, Martín SM. Multi-Attribute Monitoring and the Multi-Attribute Method: A Powerful Double Act for Supporting Biopharmaceutical Manufacturing. LCGC NORTH AMERICA 2022. [DOI: 10.56530/lcgc.na.lg6280u5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As biopharmaceutical manufacturers look towards implementing solutions for real-time process monitoring, the availability of simple, yet informative analytical methods is required. In this article, we discuss the combination of multi-attribute monitoring using Protein A affinity chromatography coupled to mass spectrometry (MS) for rapid trending of product quality attributes (PQAs) during upstream processing, with the multi-attribute method (MAM) for site-specific analysis of PQAs and new peak detection to determine adherence to specifications. Working together, these multi-attribute approaches represent a powerful combination for advanced process control.
Collapse
Affiliation(s)
- Craig Jakes
- National Institute for Bioprocessing Research and Training
| | - Jonathan Bones
- National Institute for Bioprocessing Research and Training
| | - Sara Carillo
- National Institute for Bioprocessing Research and Training, Characterization and Comparability Laboratory
| | - Silvia Millán Martín
- National Institute for Bioprocessing Research and Training, Characterization and Comparability Laboratory
| |
Collapse
|
14
|
Numao E, Yanagisawa K, Hosono M, Yagi Y, Nishimura K, Yamazaki K. Development of a comprehensive approach for performance evaluation of a quantitative multi-attribute method as a quality control method. ANAL SCI 2022; 38:739-747. [PMID: 35297021 DOI: 10.1007/s44211-022-00090-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/18/2022] [Indexed: 11/28/2022]
Abstract
The multi-attribute method has been recognized as an elegant quantification tool for post-translational modifications (PTMs) of therapeutic proteins, since it can evaluate several attributes spontaneously and site-specifically. Here, the abundance of PTMs calculated by three different types of formula were compared and there was little difference among the results. For the method evaluation, two different kinds of peptides were used as internal standards (ISs) and one of the IS was used as the "standard peak" to define the signal strength of MS. They are also used for system suitability testing to verify whether the condition or sensitivity of mass spectrometry are high enough to evaluate the minor components by confirming the recovery rate of one IS to the another. This system is beneficial that since we have defined the limit of quantification as a certain ratio to IS, consistent MS intensity is applied as the threshold across all detected peaks.
Collapse
Affiliation(s)
- Eriko Numao
- Bio Process Research and Development Laboratories, Production Division, Kyowa Kirin Co., Ltd., Takasaki, Gunma, 370-0013, Japan.
| | - Kumi Yanagisawa
- Bio Process Research and Development Laboratories, Production Division, Kyowa Kirin Co., Ltd., Takasaki, Gunma, 370-0013, Japan
| | - Mayu Hosono
- Bio Process Research and Development Laboratories, Production Division, Kyowa Kirin Co., Ltd., Takasaki, Gunma, 370-0013, Japan
| | - Yuki Yagi
- Bio Process Research and Development Laboratories, Production Division, Kyowa Kirin Co., Ltd., Takasaki, Gunma, 370-0013, Japan
| | - Koichiro Nishimura
- Bio Process Research and Development Laboratories, Production Division, Kyowa Kirin Co., Ltd., Takasaki, Gunma, 370-0013, Japan
| | - Katsuyoshi Yamazaki
- Bio Process Research and Development Laboratories, Production Division, Kyowa Kirin Co., Ltd., Takasaki, Gunma, 370-0013, Japan
| |
Collapse
|
15
|
Liu Y, Zhang C, Chen J, Fernandez J, Vellala P, Kulkarni TA, Aguilar I, Ritz D, Lan K, Patel P, Liu A. A Fully Integrated Online Platform For Real Time Monitoring Of Multiple Product Quality Attributes In Biopharmaceutical Processes For Monoclonal Antibody Therapeutics. J Pharm Sci 2021; 111:358-367. [PMID: 34534574 DOI: 10.1016/j.xphs.2021.09.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 11/28/2022]
Abstract
In response to FDA's call for Quality by Design (QbD) in biopharmaceutical product development, the biopharmaceutical industry has been developing highly sensitive and specific technologies in the monitoring and controlling of product quality attributes for bioprocesses. We previously published the successful application of an off-line multi-attribute method (MAM) to monitor more than 20 critical quality attributes (CQA) with superior sensitivity for the upstream process. To further remove the hurdles of laborious process sampling and sample preparation associated with the offline method, we present here a fully integrated MAM based online platform for automated real time online process monitoring. This integrated system includes Modular Automated Sampling Technology (MAST) based aseptic sampling, multi-function Sequential Injection Analysis (SIA) sample preparation, UHPLC separation and high-resolution mass spectrometry (HRMS) analysis. Continuous automated daily monitoring of a 17-day cell culture process was successfully demonstrated for a model monoclonal antibody (mAb) molecule with similar specificity and sensitivity as we reported earlier. To the best of our knowledge, this is the first report of an end-to-end automated online MAM system, which would allow the MAM to be applied to routine bioprocess monitoring, potentially replacing multiple conventional low resolution and low sensitivity off-line methods. The online HPLC or HPLC/MS platform could be easily adapted to support other processing steps such as downstream purification with minimal software re-configuration.
Collapse
Affiliation(s)
- Yang Liu
- Biopharm Product Development & Supply, GlaxoSmithKline, PA 19406, United States.
| | - Chi Zhang
- CMC Analytical, Product Development & Supply, GlaxoSmithKline, PA 19406, United States
| | - Jiangchao Chen
- CMC Analytical, Product Development & Supply, GlaxoSmithKline, PA 19406, United States
| | - Janice Fernandez
- Biopharm Product Development & Supply, GlaxoSmithKline, PA 19406, United States
| | - Pragna Vellala
- Biopharm Product Development & Supply, GlaxoSmithKline, PA 19406, United States
| | - Tanmay A Kulkarni
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, NE 68198, United States
| | - Isaiah Aguilar
- Department of Chemistry, Yale University, CT 06511, United States
| | - Diana Ritz
- Biopharm Product Development & Supply, GlaxoSmithKline, PA 19406, United States
| | - Kevin Lan
- CMC Analytical, Product Development & Supply, GlaxoSmithKline, PA 19406, United States
| | - Pramthesh Patel
- Biopharm Product Development & Supply, GlaxoSmithKline, PA 19406, United States
| | - Aston Liu
- CMC Analytical, Product Development & Supply, GlaxoSmithKline, PA 19406, United States
| |
Collapse
|
16
|
São Pedro MN, Silva TC, Patil R, Ottens M. White paper on high-throughput process development for integrated continuous biomanufacturing. Biotechnol Bioeng 2021; 118:3275-3286. [PMID: 33749840 PMCID: PMC8451798 DOI: 10.1002/bit.27757] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/15/2021] [Accepted: 03/12/2021] [Indexed: 12/25/2022]
Abstract
Continuous manufacturing is an indicator of a maturing industry, as can be seen by the example of the petrochemical industry. Patent expiry promotes a price competition between manufacturing companies, and more efficient and cheaper processes are needed to achieve lower production costs. Over the last decade, continuous biomanufacturing has had significant breakthroughs, with regulatory agencies encouraging the industry to implement this processing mode. Process development is resource and time consuming and, although it is increasingly becoming less expensive and faster through high-throughput process development (HTPD) implementation, reliable HTPD technology for integrated and continuous biomanufacturing is still lacking and is considered to be an emerging field. Therefore, this paper aims to illustrate the major gaps in HTPD and to discuss the major needs and possible solutions to achieve an end-to-end Integrated Continuous Biomanufacturing, as discussed in the context of the 2019 Integrated Continuous Biomanufacturing conference. The current HTPD state-of-the-art for several unit operations is discussed, as well as the emerging technologies which will expedite a shift to continuous biomanufacturing.
Collapse
Affiliation(s)
| | - Tiago C. Silva
- Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
| | - Rohan Patil
- Global CMC DevelopmentSanofiFraminghamMassachusettsUSA
| | - Marcel Ottens
- Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
| |
Collapse
|
17
|
Fung Shek C, Betenbaugh M. Taking the pulse of bioprocesses: at-line and in-line monitoring of mammalian cell cultures. Curr Opin Biotechnol 2021; 71:191-197. [PMID: 34454382 DOI: 10.1016/j.copbio.2021.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 08/01/2021] [Accepted: 08/06/2021] [Indexed: 01/01/2023]
Abstract
Real-time and near real-time monitoring of cell culture processes are critical to the evolving process analytical technology (PAT) paradigm for upstream bioprocessing. The responses measured from these analytical instruments can enable rapid feedback to perturbations that can otherwise lead to batch failures. Historically, real-time monitoring of bioreactor processes has been relegated to parameters such as pH, dissolved oxygen, and temperature. Other analytical results, such as cell growth and metabolites, are provided through manual daily sampling. In order to reduce sample error and increase throughput, real-time and near real-time instruments have been developed. Here we discuss recent advances in these technologies. This article aims to focus on other developing at-line and in-line technologies that enable monitoring of bioreactor processes, including dielectric spectroscopy, NIR, off-gas spectrometry, integrated at-line HPLC, and nanofluidic devices for monitoring cell growth and health, metabolites, titer, and product quality.
Collapse
Affiliation(s)
- Coral Fung Shek
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States; Pivotal Bioprocess Sciences and Technologies, Amgen, 360 Binney Street, Cambridge, MA 02141, United States.
| | - Michael Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| |
Collapse
|
18
|
Jakes C, Millán-Martín S, Carillo S, Scheffler K, Zaborowska I, Bones J. Tracking the Behavior of Monoclonal Antibody Product Quality Attributes Using a Multi-Attribute Method Workflow. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1998-2012. [PMID: 33513021 DOI: 10.1021/jasms.0c00432] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The multi-attribute method (MAM) is a liquid chromatography-mass spectrometry based method that is used to directly characterize and monitor many product quality attributes and impurities on biotherapeutics, most commonly at the peptide level. It utilizes high-resolution accurate mass spectral data which are analyzed in an automated fashion. MAM is a promising approach that is intended to replace or supplement several conventional assays with a single LC-MS analysis and can be implemented in a Current Good Manufacturing Practice environment. MAM provides accurate site-specific quantitation information on targeted attributes and the nontargeted new peak detection function allows to detect new peaks as impurities, modifications, or sequence variants when comparing to a reference sample. The high resolution MAM workflow was applied here for three independent case studies. First, to monitor the behavior of monoclonal antibody product quality attributes over the course of a 12-day cell culture experiment providing an insight into the behavior and dynamics of product attributes throughout the process. Second, the workflow was applied to test the purity and identity of a product through analysis of samples spiked with host cell proteins. Third, through the comparison of a drug product and a biosimilar with known sequence variants. The three case studies presented here, clearly demonstrate the robustness and accuracy of the MAM workflow that implies suitability for deployment in the regulated environment.
Collapse
Affiliation(s)
- Craig Jakes
- National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Co., Dublin, A94 X099 Ireland
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland
| | - Silvia Millán-Martín
- National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Co., Dublin, A94 X099 Ireland
| | - Sara Carillo
- National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Co., Dublin, A94 X099 Ireland
| | - Kai Scheffler
- Thermo Fisher Scientific, Dornierstrasse 4, 82110 Germering, Germany
| | - Izabela Zaborowska
- National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Co., Dublin, A94 X099 Ireland
| | - Jonathan Bones
- National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Co., Dublin, A94 X099 Ireland
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland
| |
Collapse
|
19
|
Cao L, Fabry D, Lan K. Rapid and comprehensive monoclonal antibody Characterization using microfluidic CE-MS. J Pharm Biomed Anal 2021; 204:114251. [PMID: 34265486 DOI: 10.1016/j.jpba.2021.114251] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
The identification and control of monoclonal antibody (mAb) critical quality attributes (CQAs) is a key component of quality by design (QbD). In this work, rapid peptide mapping and native intact charge variants analysis have been developed to comprehensively characterize and monitor mAb CQAs using a microfluidic capillary electrophoresis - mass spectrometry (CE-MS) platform. The ultrafast peptide mapping simultaneously analyzed multiple CQAs, including protein primary structure, oxidation, deamidation, succinimide, C-terminal lysine (Lys) clipping, N-terminal cyclization, and glycosylation. The microfluidic CE-MS based peptide mapping acquired results comparable to conventional but lengthy liquid chromatography - MS (LC-MS) based approach. The native intact analysis resolved mAb charge variants with a comparable resolution as commonly achieved using capillary isoelectric focusing (cIEF). Charge variants' identities were assigned based on characteristic mass shifts, knowledge learned from peptide mapping, and changes in electrophoretic mobility. Major mAb glycoforms of each charge variants were resolved and identified in the deconvoluted mass spectra. Furthermore, a model simulation was performed to reconstruct intact deconvoluted mass spectra using peptide mapping results. The reconstructed and experimentally determined intact deconvoluted mass spectra were highly correlated, suggesting that our data collected at the peptide level and intact level were consistent and highly comparable. Overall, the microfluidic CE-MS based peptide mapping and native intact charge variants analysis are high-throughput methods that have great potential to support biopharmaceutical development.
Collapse
Affiliation(s)
- Li Cao
- CMC Analytical, GlaxoSmithKline, 1250 S. Collegeville Road, UP 1400, Collegeville, PA, 19426, USA.
| | - Daniel Fabry
- CMC Analytical, GlaxoSmithKline, 1250 S. Collegeville Road, UP 1400, Collegeville, PA, 19426, USA
| | - Kevin Lan
- CMC Analytical, GlaxoSmithKline, 1250 S. Collegeville Road, UP 1400, Collegeville, PA, 19426, USA
| |
Collapse
|
20
|
Evans AR, Hebert AS, Mulholland J, Lewis MJ, Hu P. ID-MAM: A Validated Identity and Multi-Attribute Monitoring Method for Commercial Release and Stability Testing of a Bispecific Antibody. Anal Chem 2021; 93:9166-9173. [PMID: 34161073 DOI: 10.1021/acs.analchem.1c01029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Post-translational modifications (PTMs) that impact the safety or efficacy of protein therapeutics are critical quality attributes (CQAs) that need to be controlled to ensure product quality. Peptide mapping with online mass spectrometry (MS) is a powerful tool that has been used for many years to monitor PTM CQAs during product development. However, operating peptide mapping methods with high-resolution mass spectrometers in GMP compliant, commercial quality control (QC) labs can be difficult. Peptide mapping is also required as an identity test in several countries. To address these two different needs, we utilized high-resolution peptide mapping for comprehensive characterization during development and then developed and validated a targeted multi-attribute monitoring (MAM) method using the low-resolution Waters QDa MS system with a fully automated data processing workflow that is suitable for identity (ID) testing, sequence variant control, and CQA quantitation in commercial QC labs. The ID-MAM method was validated for the quantitation of three selected PTM CQAs (CDR isomerization, Fc Met oxidation, and CDR Met oxidation) to ensure control of the oxidation and isomerization degradation pathways of a bispecific antibody (BsAb). This ID-MAM method was successfully validated in six labs (three analytical development and three QC labs) across four countries for commercial release and stability testing of a BsAb. CQA results obtained with the ID-MAM method were similar to results obtained using high-resolution peptide mapping, and the method was robust and reproducible. To our knowledge, this ID-MAM method is the first MS-based peptide mapping method implemented in GMP compliant QC labs for commercial release and stability testing of a biotherapeutic.
Collapse
Affiliation(s)
- Adam R Evans
- BioTherapeutics Development & Supply-Analytical Development, Janssen Research and Development, LLC, Malvern, Pennsylvania 19355, United States
| | - Alexander S Hebert
- BioTherapeutics Development & Supply-Analytical Development, Janssen Research and Development, LLC, Malvern, Pennsylvania 19355, United States
| | - Joseph Mulholland
- BioTherapeutics Development & Supply-Analytical Development, Janssen Research and Development, LLC, Malvern, Pennsylvania 19355, United States
| | - Michael J Lewis
- BioTherapeutics Development & Supply-Analytical Development, Janssen Research and Development, LLC, Malvern, Pennsylvania 19355, United States
| | - Ping Hu
- BioTherapeutics Development & Supply-Analytical Development, Janssen Research and Development, LLC, Malvern, Pennsylvania 19355, United States
| |
Collapse
|
21
|
Song YE, Dubois H, Hoffmann M, D́Eri S, Fromentin Y, Wiesner J, Pfenninger A, Clavier S, Pieper A, Duhau L, Roth U. Automated mass spectrometry multi-attribute method analyses for process development and characterization of mAbs. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1166:122540. [DOI: 10.1016/j.jchromb.2021.122540] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 10/22/2022]
|
22
|
Fully automated peptide mapping multi-attribute method by liquid chromatography-mass spectrometry with robotic liquid handling system. J Pharm Biomed Anal 2021; 198:113988. [PMID: 33676166 DOI: 10.1016/j.jpba.2021.113988] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/02/2021] [Accepted: 02/20/2021] [Indexed: 11/20/2022]
Abstract
The multi-attribute method (MAM) based on liquid chromatography (LC)-tandem mass spectrometry is emerging as a powerful tool to directly monitor multiple product quality attributes simultaneously. To better implement MAM, either for product characterization or for quality control (QC), there is a need for a robust, universal, and high-throughput workflow that can be broadly adopted in different laboratories with minimal barriers to implementation. Manual preparation of samples for MAM, however, is labor intensive and produces nontrivial variations across analysts and laboratories. We describe the development of a fully automated peptide mapping procedure with a high-throughput robotic liquid handling system to improve sample handling capacity and outcome reproducibility while saving analyst hands-on time. Our procedure features the automation of a "microdialysis" step, an efficient desalting approach prior to proteolytic digestion that optimizes digestion completeness and consistency each time. The workflow is completely hands-free and requires the analyst only to pre-normalize the sample concentrations and to load buffers and reagents at their designated positions on the robotic deck. The robotic liquid handler performs all the subsequent preparation steps and stores the digested samples on a chiller unit to await retrieval for further analysis. We also demonstrate that the manual and automated procedures are comparable with regard to protein sequence coverage, digestion completeness and consistency, and quantification of posttranslational modifications. Notably, in contrast to a previously reported automated sample preparation protocol that relied on customized accessories, all components in our automation procedure are commercial products that are readily available. In addition, we also present the high-throughput data analysis workflow by using Protein Metrics. The automation procedure can be applied cross-functionally in the biopharmaceutical industry and, given its practicality and reproducibility, can pave the way for MAM implementation in QC laboratories.
Collapse
|