1
|
Li D, Kong W, Hong Y, Zhang W, Sun B, Wang X, Wang K. Protocol for isolation and transplantation of rat pancreatic islets in the kidney capsule to treat diabetes. STAR Protoc 2025; 6:103486. [PMID: 39673701 PMCID: PMC11699416 DOI: 10.1016/j.xpro.2024.103486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/22/2024] [Accepted: 11/06/2024] [Indexed: 12/16/2024] Open
Abstract
Islet transplantation offers promise for those with type 1 and late-stage type 2 diabetes; however, islet isolation from the pancreas is challenging due to the interference of exocrine tissue. We describe steps for constructing a diabetes model and precise islet isolation by a perfusion-based technique, followed by gradient centrifugation and cultivation in RPMI 1640 for recovery. Transplanted rat islets in diabetic nude mice demonstrated functional recovery, confirming the effectiveness of this approach.
Collapse
Affiliation(s)
- Dayan Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China.
| | - Weijing Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Yi Hong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Wei Zhang
- TianXinFu (Beijing) Medical Appliance Co., Ltd., Beijing 102200, China
| | - Bingbing Sun
- TianXinFu (Beijing) Medical Appliance Co., Ltd., Beijing 102200, China
| | - Xi Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China; State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China.
| | - Kai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China.
| |
Collapse
|
2
|
Matta L, Weber P, Erener S, Walth-Hummel A, Hass D, Bühler LK, Klepac K, Szendroedi J, Guerra J, Rohm M, Sterr M, Lickert H, Bartelt A, Herzig S. Chronic intermittent fasting impairs β cell maturation and function in adolescent mice. Cell Rep 2025; 44:115225. [PMID: 39827461 DOI: 10.1016/j.celrep.2024.115225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/01/2024] [Accepted: 12/29/2024] [Indexed: 01/22/2025] Open
Abstract
Intermittent fasting (IF) is a nutritional lifestyle intervention with broad metabolic benefits, but whether the impact of IF depends on the individual's age is unclear. Here, we investigated the effects of IF on systemic metabolism and β cell function in old, middle-aged, and young mice. Short-term IF improves glucose homeostasis across all age groups without altering islet function and morphology. In contrast, while chronic IF is beneficial for adult mice, it results in impaired β cell function in the young. Using single-cell RNA sequencing (scRNA-seq), we delineate that the β cell maturation and function scores are reduced in young mice. In human islets, a similar pattern is observed in type 1 (T1D), but not type 2 (T2D), diabetes, suggesting that the impact of chronic IF in adolescence is linked to the development of β cell dysfunction. Our study suggests considering the duration of IF in younger persons, as it may worsen rather than reduce diabetes outcomes.
Collapse
Affiliation(s)
- Leonardo Matta
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany; Institute for Cardiovascular Prevention (IPEK), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Peter Weber
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Suheda Erener
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Alina Walth-Hummel
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg 69120, Germany; German Center for Diabetes Research, 85764 Neuherberg, Germany
| | - Daniela Hass
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Lea K Bühler
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg 69120, Germany; German Center for Diabetes Research, 85764 Neuherberg, Germany
| | - Katarina Klepac
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Julia Szendroedi
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg 69120, Germany; German Center for Diabetes Research, 85764 Neuherberg, Germany
| | - Joel Guerra
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany; Institute for Cardiovascular Prevention (IPEK), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Maria Rohm
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg 69120, Germany; German Center for Diabetes Research, 85764 Neuherberg, Germany
| | - Michael Sterr
- German Center for Diabetes Research, 85764 Neuherberg, Germany; Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany
| | - Heiko Lickert
- German Center for Diabetes Research, 85764 Neuherberg, Germany; Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany; School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Alexander Bartelt
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany; Institute for Cardiovascular Prevention (IPEK), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany; German Center for Diabetes Research, 85764 Neuherberg, Germany; German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Technische Universität München, Munich, Germany; Chair of Translational Nutritional Medicine, TUM School of Life Sciences, Research Department of Molecular Life Sciences, Technical University of Munich, Freising, Germany; Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Munich, Germany.
| | - Stephan Herzig
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany; Institute for Cardiovascular Prevention (IPEK), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg 69120, Germany; German Center for Diabetes Research, 85764 Neuherberg, Germany; German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Technische Universität München, Munich, Germany; Chair Molecular Metabolic Control, Technical University Munich, Munich 80333, Germany.
| |
Collapse
|
3
|
Ma H, Peng G, Hu Y, Lu B, Zheng Y, Wu Y, Feng W, Shi Y, Pan X, Song L, Stützer I, Liu Y, Fei J. Revealing the biological features of the axolotl pancreas as a new research model. Front Cell Dev Biol 2025; 13:1531903. [PMID: 39958891 PMCID: PMC11825805 DOI: 10.3389/fcell.2025.1531903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/07/2025] [Indexed: 02/18/2025] Open
Abstract
Introduction The pancreas plays a crucial role in digestion and blood glucose regulation. Current animal models, primarily mice and zebrafish, have limited the exploration of pancreatic biology from an evolutionary-developmental perspective. Tetrapod vertebrate axolotl (Ambystoma mexicanum) serves as a valuable model in developmental, regenerative, and evolutionary biology. However, the fundamental biology of the axolotl pancreas remains underexplored. This study aims to characterize the unique developmental, functional, and evolutionary features of the axolotl pancreas to expand the understanding of pancreatic biology. Methods We conducted morphological, histological, and transcriptomic analyses to investigate the axolotl pancreas. Pancreatic development was observed using in situ hybridization and immunostaining for key pancreatic markers. RNA sequencing was performed to profile global gene expression during larva and adult stages. And differential gene expression analysis was used to characterize the conserved and unique gene patterns in the axolotl pancreas. Functional assays, including glucose tolerance tests and insulin tolerance tests, were optimized for individual axolotls. To assess pancreatic gene function, Pdx1 mutants were generated using CRISPR/Cas9-mediated gene editing, and their effects on pancreatic morphology, endocrine cell populations, and glucose homeostasis were analyzed. Results The axolotl pancreas contains all known pancreatic cell types and develops from dorsal and ventral buds. Both of buds contribute to exocrine and endocrine glands. The dorsal bud produces the major endocrine cell types, while the ventral bud generates α and δ cells, but not β cells. Differential gene expression analysis indicated a transition in global gene expression from pancreatic cell fate commitment and the cell cycle to glucose response, hormone synthesis, and secretion, following the development progression. Notably, the adult axolotl pancreas exhibits slower metabolic activity compared to mammals, as evidenced by the results of GTT and ITT. The mutation of Pdx1 resulted in hyperglycemia and a significant reduction in pancreatic cell mass, including a complete loss of endocrine cells, although it did not lead to a lethal phenotype. Discussion This study examines the axolotl pancreas, highlighting the conservation of pancreatic development. Our study highlights the unique features of the axolotl pancreas and broadens the scope of animal models available for pancreatic evolution and disease research.
Collapse
Affiliation(s)
- Hui Ma
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- BGI Research, Qingdao, China
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guangcong Peng
- Key Laboratory of Brain, Cognition and Education Sciences, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Yan Hu
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Binbin Lu
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yiying Zheng
- Key Laboratory of Brain, Cognition and Education Sciences, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Yingxian Wu
- Key Laboratory of Brain, Cognition and Education Sciences, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Weimin Feng
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Yu Shi
- Key Laboratory of Brain, Cognition and Education Sciences, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Xiangyu Pan
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Li Song
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Ina Stützer
- Deutsche Forschungsgemeinschaft (DFG)-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Yanmei Liu
- Key Laboratory of Brain, Cognition and Education Sciences, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Jifeng Fei
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
4
|
Kato Y, Ariyoshi K, Nohara Y, Matsunaga N, Shimauchi T, Shindo N, Nishimura A, Mi X, Kim SG, Ide T, Kawanishi E, Ojida A, Nakashima N, Mori Y, Nishida M. Inhibition of dynamin-related protein 1-filamin interaction improves systemic glucose metabolism. Br J Pharmacol 2024; 181:4328-4347. [PMID: 38986570 DOI: 10.1111/bph.16487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 05/05/2024] [Accepted: 05/18/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND AND PURPOSE Maintaining mitochondrial quality is attracting attention as a new strategy to treat diabetes and diabetic complications. We previously reported that mitochondrial hyperfission by forming a protein complex between dynamin-related protein (Drp) 1 and filamin, mediates chronic heart failure and cilnidipine, initially developed as an L/N-type Ca2+ channel blocker, improves heart failure by inhibiting Drp1-filamin protein complex. We investigated whether cilnidipine improves hyperglycaemia of various diabetic mice models. EXPERIMENTAL APPROACH Retrospective analysis focusing on haemoglobin A1c (HbA1c) was performed in hypertensive and hyperglycaemic patients taking cilnidipine and amlodipine. After developing diabetic mice by streptozotocin (STZ) treatment, an osmotic pump including drug was implanted intraperitoneally, followed by weekly measurements of blood glucose levels. Mitochondrial morphology was analysed by electron microscopy. A Ca2+ channel-insensitive cilnidipine derivative (1,4-dihydropyridine [DHP]) was synthesized and its pharmacological effect was evaluated using obese (ob/ob) mice fed with high-fat diet (HFD). KEY RESULTS In patients, cilnidipine was superior to amlodipine in HbA1c lowering effect. Cilnidipine treatment improved systemic hyperglycaemia and mitochondrial morphological abnormalities in STZ-exposed mice, without lowering blood pressure. Cilnidipine failed to improve hyperglycaemia of ob/ob mice, with suppressing insulin secretion. 1,4-DHP improved hyperglycaemia and mitochondria abnormality in ob/ob mice fed HFD. 1,4-DHP and cilnidipine improved basal oxygen consumption rate of HepG2 cells cultured under 25 mM glucose. CONCLUSION AND IMPLICATIONS Inhibition of Drp1-filamin protein complex formation becomes a new strategy for type 2 diabetes treatment.
Collapse
Affiliation(s)
- Yuri Kato
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Kohei Ariyoshi
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasunobu Nohara
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Naoya Matsunaga
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Tsukasa Shimauchi
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Naoya Shindo
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Akiyuki Nishimura
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Xinya Mi
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Sang Geon Kim
- College of Pharmacy, Dongguk University-Seoul, Goyang-si, South Korea
| | - Tomomi Ide
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiji Kawanishi
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Akio Ojida
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoki Nakashima
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuo Mori
- Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Motohiro Nishida
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| |
Collapse
|
5
|
Zhou Y, Liu K, Tang W, Zhang Y, Sun Y, Wu Y, Shi Y, Yao Z, Li Y, Bai R, Liang R, Sun P, Chang X, Wang S, Zhu Y, Han X. β-Cell miRNA-503-5p Induced by Hypomethylation and Inflammation Promotes Insulin Resistance and β-Cell Decompensation. Diabetes 2024; 73:57-74. [PMID: 37847900 DOI: 10.2337/db22-1044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Abstract
Chronic inflammation promotes pancreatic β-cell decompensation to insulin resistance because of local accumulation of supraphysiologic interleukin 1β (IL-1β) levels. However, the underlying molecular mechanisms remain elusive. We show that miR-503-5p is exclusively upregulated in islets from humans with type 2 diabetes and diabetic rodents because of its promoter hypomethylation and increased local IL-1β levels. β-Cell-specific miR-503 transgenic mice display mild or severe diabetes in a time- and expression-dependent manner. By contrast, deletion of the miR-503 cluster protects mice from high-fat diet-induced insulin resistance and glucose intolerance. Mechanistically, miR-503-5p represses c-Jun N-terminal kinase-interacting protein 2 (JIP2) translation to activate mitogen-activated protein kinase signaling cascades, thus inhibiting glucose-stimulated insulin secretion (GSIS) and compensatory β-cell proliferation. In addition, β-cell miR-503-5p is packaged in nanovesicles to dampen insulin signaling transduction in liver and adipose tissues by targeting insulin receptors. Notably, specifically blocking the miR-503 cluster in β-cells effectively remits aging-associated diabetes through recovery of GSIS capacity and insulin sensitivity. Our findings demonstrate that β-cell miR-503-5p is required for the development of insulin resistance and β-cell decompensation, providing a potential therapeutic target against diabetes. ARTICLE HIGHLIGHTS Promoter hypomethylation during natural aging permits miR-503-5p overexpression in islets under inflammation conditions, conserving from rodents to humans. Impaired β-cells release nanovesicular miR-503-5p to accumulate in liver and adipose tissue, leading to their insulin resistance via the miR-503-5p/insulin receptor/phosphorylated AKT axis. Accumulated miR-503-5p in β-cells impairs glucose-stimulated insulin secretion via the JIP2-coordinated mitogen-activated protein kinase signaling cascades. Specific blockage of β-cell miR-503-5p improves β-cell function and glucose tolerance in aging mice.
Collapse
Affiliation(s)
- Yuncai Zhou
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kerong Liu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Tang
- Department of Endocrinology, Geriatric Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yi Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yangyang Wu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying Shi
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhengjian Yao
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yating Li
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rongjie Bai
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rui Liang
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Peng Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoai Chang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shusen Wang
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Yunxia Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Zhao X, Ma Y, Shi M, Huang M, Xin J, Ci S, Chen M, Jiang T, Hu Z, He L, Pan F, Guo Z. Excessive iron inhibits insulin secretion via perturbing transcriptional regulation of SYT7 by OGG1. Cell Mol Life Sci 2023; 80:159. [PMID: 37209177 PMCID: PMC11072990 DOI: 10.1007/s00018-023-04802-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 05/22/2023]
Abstract
Although iron overload is closely related to the occurrence of type 2 diabetes mellitus (T2DM), the specific mechanism is unclear. Here, we found that excessive iron inhibited the secretion of insulin (INS) and impaired islet β cell function through downregulating Synaptotagmin 7 (SYT7) in iron overload model in vivo and in vitro. Our results further demonstrated that 8-oxoguanine DNA glycosylase (OGG1), a key protein in the DNA base excision repair, was an upstream regulator of SYT7. Interestingly, such regulation could be suppressed by excessive iron. Ogg1-null mice, iron overload mice and db/db mice exhibit reduced INS secretion, weakened β cell function and subsequently impaired glucose tolerance. Notably, SYT7 overexpression could rescue these phenotypes. Our data revealed an intrinsic mechanism by which excessive iron inhibits INS secretion through perturbing the transcriptional regulation of SYT7 by OGG1, which suggested that SYT7 was a potential target in clinical therapy for T2DM.
Collapse
Affiliation(s)
- Xingqi Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Ying Ma
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Munan Shi
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Miaoling Huang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Jingyu Xin
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Shusheng Ci
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Meimei Chen
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210000, Jiangsu, China
| | - Tao Jiang
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210000, Jiangsu, China
| | - Zhigang Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Lingfeng He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Feiyan Pan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China.
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China.
| |
Collapse
|
7
|
He X, Wu D, Xu Y, Zhang Y, Sun Y, Chang X, Zhu Y, Tang W. Perfluorooctanoic acid promotes pancreatic β cell dysfunction and apoptosis through ER stress and the ATF4/CHOP/TRIB3 pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:84532-84545. [PMID: 35788477 DOI: 10.1007/s11356-022-21188-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Perfluorooctanoic acid (PFOA), a widely used chemical substance, causes an increased risk of human type 2 diabetes (T2D), but its underlying mechanism is not well elucidated. The aim of the present study was to investigate whether PFOA regulates the functions of pancreatic β cells, which are specialized for the biosynthesis and secretion of insulin. The treatment of the mouse pancreatic β cell line (MIN6 cells) with PFOA caused a time- and dose-dependent inhibition of cell viability in CCK-8 assays. Annexin V/PI and TUNEL staining results confirmed that exposure to a high PFOA dose (500 μM) promoted apoptosis of β cells, while a low dose (300 μM) had no effects on β cell survival. PFOA treatment, even at a low dose, diminished glucose-stimulated insulin secretion (GSIS) in both primary islet perfusion and MIN6 cell experiments. RNA-sequencing data showed significantly increased expression of endoplasmic reticulum (ER) stress-associated genes, with tribbles homolog 3 (Trib3) ranking first among the altered genes. The activation of ER stress pathways was verified by qRT-PCR assays, and the ATF4/CHOP/TRIB3 pathway contributed to PFOA-induced β cell damage. The inhibition of TRIB3 expression significantly protected MIN6 cells from PFOA-induced GSIS defects and apoptosis by ameliorating ER stress. These findings reveal a link between ER stress and PFOA-induced β cell defects, opening up a new set of questions about the pathogenesis of T2D due to environmental chemicals.
Collapse
Affiliation(s)
- Xiaowei He
- Department of Endocrinology, Islet Cell Senescence and Function Research Laboratory, Nanjing Medical University Affiliated Geriatric Hospital/Jiangsu Province Geriatric Hospital, 30 Luojia Road, Nanjing, 210024, Jiangsu, China
| | - Dan Wu
- Department of Endocrinology, Islet Cell Senescence and Function Research Laboratory, Nanjing Medical University Affiliated Geriatric Hospital/Jiangsu Province Geriatric Hospital, 30 Luojia Road, Nanjing, 210024, Jiangsu, China
| | - Yanan Xu
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjia Yuan, Nanjing, 210011, Jiangsu, China
| | - Yaqin Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Yue Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Xiaoai Chang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Yunxia Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Wei Tang
- Department of Endocrinology, Islet Cell Senescence and Function Research Laboratory, Nanjing Medical University Affiliated Geriatric Hospital/Jiangsu Province Geriatric Hospital, 30 Luojia Road, Nanjing, 210024, Jiangsu, China.
| |
Collapse
|
8
|
Abstract
Glucose tolerance test and glucose stimulated insulin secretion are important measures to determine glucose homeostasis and islet function and assess diabetes. Here, we provide a protocol where glucose tolerance test is used to study glucose homeostasis and insulin secretion in vivo, followed by islet isolation and glucose stimulated insulin secretion to determine islet function ex vivo. This protocol enables evaluation of glucose homeostasis and islets in mice which can also be applied to rat, beta cell lines and human studies. For complete details on the use and execution of this profile, please refer to Al Rijjal et al. (2021).
Collapse
Affiliation(s)
- Dana Al Rijjal
- Department of Physiology, University of Toronto, 1 King's College Circle, Medical Science Building Rm#3352, Toronto, ON M5S 1A8, Canada
- Corresponding author
| | - Michael B. Wheeler
- Department of Physiology, University of Toronto, 1 King's College Circle, Medical Science Building Rm#3352, Toronto, ON M5S 1A8, Canada
- Division of Advanced Diagnostics, Metabolism, Toronto General Research Institute, Toronto, ON, Canada
- Corresponding author
| |
Collapse
|