1
|
Zhao W, Kodancha P, Das S. Gut Microbiome Changes in Anorexia Nervosa: A Comprehensive Review. PATHOPHYSIOLOGY 2024; 31:68-88. [PMID: 38390943 PMCID: PMC10885100 DOI: 10.3390/pathophysiology31010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/03/2024] [Accepted: 01/18/2024] [Indexed: 02/24/2024] Open
Abstract
Anorexia nervosa (AN) remains a challenging condition in psychiatric management and its pathogenesis is not yet fully understood. An imbalance in the gut microbiota composition may contribute to its pathophysiology. This review aims to explore the link between the human gut microbiota and AN (objective 1) or refeeding syndrome in AN (objective 2). The online databases MEDLINE and PsycINFO were searched for relevant studies. A total of 14 studies met the inclusion and exclusion criteria and only answered objective 1. A total of 476 AN patients, 554 healthy-weight (HC) controls, and 0 patients with other psychiatric disorders were included. Compared to HC, there were consistently reduced abundances of Faecalibacterium prausnitzii and Roseburia inulinivorans, and increased Methanobrevibacter smithii, in AN patients. Changes in alpha diversity were inconsistent, while beta diversity increased in four of six studies. Our model suggests that an imbalance in gut microbiota composition leads to reduced short-chain fatty acids, contributing to a proinflammatory state in AN, which is also common in other psychiatric comorbidities. Microbial changes may also contribute to the semistarvation state through endocrine changes and altered energy utilization.
Collapse
Affiliation(s)
- Wendi Zhao
- Department of Psychiatry, University of Melbourne, Parkville, Melbourne 3052, Australia
| | | | - Soumitra Das
- Unit of Psychiatry, Western Health, Melbourne 3021, Australia
| |
Collapse
|
2
|
Salaün C, Courvalet M, Rousseau L, Cailleux K, Breton J, Bôle-Feysot C, Guérin C, Huré M, Goichon A, do Rego JC, Déchelotte P, Ribet D, Achamrah N, Coëffier M. Sex-dependent circadian alterations of both central and peripheral clock genes expression and gut-microbiota composition during activity-based anorexia in mice. Biol Sex Differ 2024; 15:6. [PMID: 38217033 PMCID: PMC10785476 DOI: 10.1186/s13293-023-00576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/16/2023] [Indexed: 01/14/2024] Open
Abstract
RATIONALE Patients with anorexia nervosa (AN) often present sleep disorders and circadian hormonal dysregulation. The role of the microbiota-gut-brain axis in the regulation of feeding behavior has emerged during the last decades but its relationships with the circadian rhythm remains poorly documented. Thus, we aimed to characterize the circadian clock genes expression in peripheral and central tissues in the activity-based anorexia mouse model (ABA), as well as the dynamics of the gut-microbiota composition. METHODS From day 1 to day 17, male and female C57Bl/6 mice were submitted or not to the ABA protocol (ABA and control (CT) groups), which combines a progressive limited access to food and a free access to a running wheel. At day 17, fasted CT and ABA mice were euthanized after either resting (EoR) or activity (EoA) phase (n = 10-12 per group). Circadian clock genes expression was assessed by RT-qPCR on peripheral (liver, colon and ileum) and central (hypothalamic suprachiasmatic nucleus or SCN) tissues. Cecal bacterial taxa abundances were evaluated by qPCR. Data were compared by two-way ANOVA followed by post-tests. RESULTS ABA mice exhibited a lower food intake, a body weight loss and an increase of diurnal physical activity that differ according with the sex. Interestingly, in the SCN, only ABA female mice exhibited altered circadian clock genes expression (Bmal1, Per1, Per2, Cry1, Cry2). In the intestinal tract, modification of clock genes expression was also more marked in females compared to males. For instance, in the ileum, female mice showed alteration of Bmal1, Clock, Per1, Per2, Cry1, Cry2 and Rev-erbα mRNA levels, while only Per2 and Cry1 mRNAs were affected by ABA model in males. By contrast, in the liver, clock genes expression was more markedly affected in males compared to females in response to ABA. Finally, circadian variations of gut-bacteria abundances were observed in both male and female mice and sex-dependent alteration were observed in response to the ABA model. CONCLUSIONS This study shows that alteration of circadian clock genes expression at both peripheral and central levels occurs in response to the ABA model. In addition, our data underline that circadian variations of the gut-microbiota composition are sex-dependent.
Collapse
Affiliation(s)
- Colin Salaün
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR 1073, Nutrition Inflammation and Microbiota Gut Brain Axis, UFR Santé, 22 Boulevard Gambetta, 76183, Rouen Cedex, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
| | - Marine Courvalet
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR 1073, Nutrition Inflammation and Microbiota Gut Brain Axis, UFR Santé, 22 Boulevard Gambetta, 76183, Rouen Cedex, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
| | - Léna Rousseau
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR 1073, Nutrition Inflammation and Microbiota Gut Brain Axis, UFR Santé, 22 Boulevard Gambetta, 76183, Rouen Cedex, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
| | - Kévin Cailleux
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR 1073, Nutrition Inflammation and Microbiota Gut Brain Axis, UFR Santé, 22 Boulevard Gambetta, 76183, Rouen Cedex, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
| | - Jonathan Breton
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR 1073, Nutrition Inflammation and Microbiota Gut Brain Axis, UFR Santé, 22 Boulevard Gambetta, 76183, Rouen Cedex, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
| | - Christine Bôle-Feysot
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR 1073, Nutrition Inflammation and Microbiota Gut Brain Axis, UFR Santé, 22 Boulevard Gambetta, 76183, Rouen Cedex, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
| | - Charlène Guérin
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR 1073, Nutrition Inflammation and Microbiota Gut Brain Axis, UFR Santé, 22 Boulevard Gambetta, 76183, Rouen Cedex, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
| | - Marion Huré
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR 1073, Nutrition Inflammation and Microbiota Gut Brain Axis, UFR Santé, 22 Boulevard Gambetta, 76183, Rouen Cedex, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
| | - Alexis Goichon
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR 1073, Nutrition Inflammation and Microbiota Gut Brain Axis, UFR Santé, 22 Boulevard Gambetta, 76183, Rouen Cedex, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
| | - Jean-Claude do Rego
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
- Univ Rouen Normandie, Inserm, CNRS, Normandie Univ, HERACLES US 51 UAR 2026, Behavioural Analysis Platform SCAC, 76000, Rouen, France
| | - Pierre Déchelotte
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR 1073, Nutrition Inflammation and Microbiota Gut Brain Axis, UFR Santé, 22 Boulevard Gambetta, 76183, Rouen Cedex, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
- Department of Nutrition, CHU Rouen, 76000, Rouen, France
| | - David Ribet
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR 1073, Nutrition Inflammation and Microbiota Gut Brain Axis, UFR Santé, 22 Boulevard Gambetta, 76183, Rouen Cedex, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
| | - Najate Achamrah
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR 1073, Nutrition Inflammation and Microbiota Gut Brain Axis, UFR Santé, 22 Boulevard Gambetta, 76183, Rouen Cedex, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
- Department of Nutrition, CHU Rouen, 76000, Rouen, France
| | - Moïse Coëffier
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR 1073, Nutrition Inflammation and Microbiota Gut Brain Axis, UFR Santé, 22 Boulevard Gambetta, 76183, Rouen Cedex, France.
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France.
- Department of Nutrition, CHU Rouen, 76000, Rouen, France.
| |
Collapse
|
3
|
Anton-Păduraru DT, Trofin F, Nastase EV, Miftode RS, Miftode IL, Trandafirescu MF, Cojocaru E, Țarcă E, Mindru DE, Dorneanu OS. The Role of the Gut Microbiota in Anorexia Nervosa in Children and Adults-Systematic Review. Int J Mol Sci 2023; 25:41. [PMID: 38203211 PMCID: PMC10779038 DOI: 10.3390/ijms25010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Among the factors incriminated in the appearance of eating disorders, intestinal microbiota has recently been implicated. Now there is evidence that the composition of gut microbiota is different in anorexia nervosa. We gathered many surveys on the changes in the profile of gut microbiota in patients with anorexia nervosa. This review comprehensively examines the contemporary experimental evidence concerning the bidirectional communication between gut microbiota and the brain. Drawing from recent breakthroughs in this area of research, we propose that the gut microbiota significantly contributes to the intricate interplay between the body and the brain, thereby contributing to overall healthy homeostasis while concurrently impacting disease risk, including anxiety and mood disorders. Particular attention is devoted to elucidating the structure and functional relevance of the gut microbiota in the context of Anorexia Nervosa.
Collapse
Affiliation(s)
- Dana-Teodora Anton-Păduraru
- Department of Mother and Child Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.-T.A.-P.); (D.E.M.)
- “Sf. Maria” Children Emergency Hospital, 700309 Iasi, Romania; (E.C.); (E.Ț.)
| | - Felicia Trofin
- Department of Preventive Medicine and Interdisciplinarity—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Clinical Hospital of Infectious Diseases “Sf. Parascheva”, 700116 Iasi, Romania;
| | - Eduard Vasile Nastase
- Clinical Hospital of Infectious Diseases “Sf. Parascheva”, 700116 Iasi, Romania;
- Department of Internal Medicine II—Infectious Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Radu Stefan Miftode
- Department of Internal Medicine I—Cardiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- “Sf. Spiridon” Clinical Hospital, 700111 Iasi, Romania
| | - Ionela-Larisa Miftode
- Clinical Hospital of Infectious Diseases “Sf. Parascheva”, 700116 Iasi, Romania;
- Department of Internal Medicine II—Infectious Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Mioara Florentina Trandafirescu
- Department of Morphofunctional Sciences I—Histology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Elena Cojocaru
- “Sf. Maria” Children Emergency Hospital, 700309 Iasi, Romania; (E.C.); (E.Ț.)
- Department of Morphofunctional Sciences I—Pathology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Elena Țarcă
- “Sf. Maria” Children Emergency Hospital, 700309 Iasi, Romania; (E.C.); (E.Ț.)
- Department of Surgery II—Pediatric Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Dana Elena Mindru
- Department of Mother and Child Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.-T.A.-P.); (D.E.M.)
- “Sf. Maria” Children Emergency Hospital, 700309 Iasi, Romania; (E.C.); (E.Ț.)
| | - Olivia Simona Dorneanu
- Department of Preventive Medicine and Interdisciplinarity—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Clinical Hospital of Infectious Diseases “Sf. Parascheva”, 700116 Iasi, Romania;
| |
Collapse
|
4
|
Loria-Kohen V, Montiel Fernández N, López-Plaza B, Aparicio A. [Anorexia nervosa, microbiota and brain]. NUTR HOSP 2023; 40:46-50. [PMID: 37929904 DOI: 10.20960/nh.04955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
Introduction Anorexia nervosa (AN) is a psychiatric disease with a high prevalence and comorbidities, characterized by a low response rate to treatment. It is considered as a multifactorial disease. In recent years, the focus has been placed on the presence of intestinal dysbiosis and its possible involvement as a causal factor as well as an alternative treatment. The objective of this work has been to review the current state of knowledge of alterations in the intestinal microbiota identified in patients with AN and the possibility of using probiotics as a therapeutic alternative. Significant changes in the diversity of species associated with weight loss have been described that could favor the perpetuation of the disorder, and that would explain many of the nutritional, gastrointestinal, psychological, and cognitive alterations present in these patients. The use of probiotics, still little studied in patients with AN, sheds some light on this matter to improve the treatment response, always hand in hand with conventional treatments.
Collapse
Affiliation(s)
- Viviana Loria-Kohen
- Departamento de Nutrición y Ciencia de los Alimentos. Facultad de Farmacia. Universidad Complutense de Madrid. Grupo de Investigación VALORNUT-UCM (920030)
| | - Natalia Montiel Fernández
- Máster Universitario en Nutrición Clínica. Universidad Europea. Facultad de Ciencias Biomédicas y de la Salud
| | - Bricia López-Plaza
- Instituto de Investigación Sanitaria La Paz (IdiPAZ). Hospital Universitario La Paz
| | - Aránzazu Aparicio
- Departamento de Nutrición y Ciencia de los Alimentos. Facultad de Farmacia. Universidad Complutense de Madrid. Grupo de Investigación VALORNUT-UCM (920030). IdISSC
| |
Collapse
|
5
|
Clemente-Suárez VJ, Ramírez-Goerke MI, Redondo-Flórez L, Beltrán-Velasco AI, Martín-Rodríguez A, Ramos-Campo DJ, Navarro-Jiménez E, Yáñez-Sepúlveda R, Tornero-Aguilera JF. The Impact of Anorexia Nervosa and the Basis for Non-Pharmacological Interventions. Nutrients 2023; 15:2594. [PMID: 37299557 PMCID: PMC10255390 DOI: 10.3390/nu15112594] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Anorexia nervosa is a psychiatric disorder with an unknown etiology that is characterized by an individual's preoccupation with their weight and body structure while denying the severity of their low body weight. Due to the fact that anorexia nervosa is multifaceted and may indicate the coexistence of genetic, social, hormonal, and psychiatric disorders, a description of non-pharmacological interventions can be used to ameliorate or reduce the symptoms of this condition. Consequently, the purpose of the present narrative review is to describe the profile's context in the anorexic person as well as the support they would require from their family and environment. In addition, it is aimed at examining preventative and non-pharmacological interventions, such as nutritional interventions, physical activity interventions, psychological interventions, psychosocial interventions, and physical therapy interventions. To reach the narrative review aims, a critical review was conducted utilizing both primary sources, such as scientific publications, and secondary sources, such as bibliographic indexes, web pages, and databases. Nutritional interventions include nutritional education and an individualized treatment for each patient, physical activity interventions include allowing patients to perform controlled physical activity, psychological interventions include family therapy and evaluation of the existence of other psychological disorders, psychosocial interventions include management of the relationship between the patient and social media and physical therapy interventions include relaxation massages and exercises to relieve pain. All these non-pharmacological interventions need to be individualized based on each patient's needs.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (M.I.R.-G.); (J.F.T.-A.)
| | - Maria Isabel Ramírez-Goerke
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (M.I.R.-G.); (J.F.T.-A.)
| | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n, Villaviciosa de Odón, 28670 Madrid, Spain;
| | - Ana Isabel Beltrán-Velasco
- Psychology Department, Facultad de Ciencias de la Vida y la Naturaleza, Universidad Antonio de Nebrija, 28240 Madrid, Spain;
| | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (M.I.R.-G.); (J.F.T.-A.)
| | - Domingo Jesús Ramos-Campo
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science-INEF, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | | | - Rodrigo Yáñez-Sepúlveda
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile;
| | - José Francisco Tornero-Aguilera
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (M.I.R.-G.); (J.F.T.-A.)
| |
Collapse
|
6
|
Barakat S, McLean SA, Bryant E, Le A, Marks P, Touyz S, Maguire S. Risk factors for eating disorders: findings from a rapid review. J Eat Disord 2023; 11:8. [PMID: 36650572 PMCID: PMC9847054 DOI: 10.1186/s40337-022-00717-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/04/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Risk factors represent a range of complex variables associated with the onset, development, and course of eating disorders. Understanding these risk factors is vital for the refinement of aetiological models, which may inform the development of targeted, evidence-based prevention, early intervention, and treatment programs. This Rapid Review aimed to identify and summarise research studies conducted within the last 12 years, focusing on risk factors associated with eating disorders. METHODS The current review forms part of a series of Rapid Reviews to be published in a special issue in the Journal of Eating Disorders, funded by the Australian Government to inform the development of the National Eating Disorder Research and Translation Strategy 2021-2031. Three databases were searched for studies published between 2009 and 2021, published in English, and comprising high-level evidence studies (meta-analyses, systematic reviews, moderately sized randomised controlled studies, moderately sized controlled-cohort studies, or population studies). Data pertaining to risk factors for eating disorders were synthesised and outlined in the current paper. RESULTS A total of 284 studies were included. The findings were divided into nine main categories: (1) genetics, (2) gastrointestinal microbiota and autoimmune reactions, (3) childhood and early adolescent exposures, (4) personality traits and comorbid mental health conditions, (5) gender, (6) socio-economic status, (7) ethnic minority, (8) body image and social influence, and (9) elite sports. A substantial amount of research exists supporting the role of inherited genetic risk in the development of eating disorders, with biological risk factors, such as the role of gut microbiota in dysregulation of appetite, an area of emerging evidence. Abuse, trauma and childhood obesity are strongly linked to eating disorders, however less conclusive evidence exists regarding developmental factors such as role of in-utero exposure to hormones. Comorbidities between eating disorders and mental health disorders, including personality and mood disorders, have been found to increase the severity of eating disorder symptomatology. Higher education attainment, body image-related factors, and use of appearance-focused social media are also associated with increased risk of eating disorder symptoms. CONCLUSION Eating disorders are associated with multiple risk factors. An extensive amount of research has been conducted in the field; however, further studies are required to assess the causal nature of the risk factors identified in the current review. This will assist in understanding the sequelae of eating disorder development and in turn allow for enhancement of existing interventions and ultimately improved outcomes for individuals.
Collapse
Affiliation(s)
- Sarah Barakat
- InsideOut Institute for Eating Disorders, University of Sydney, Sydney Local Health District, Sydney, Australia.
- Faculty of Medicine and Health, Charles Perkins Centre (D17), InsideOut Institute, University of Sydney, Level 2, Sydney, NSW, 2006, Australia.
| | - Siân A McLean
- School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Emma Bryant
- InsideOut Institute for Eating Disorders, University of Sydney, Sydney Local Health District, Sydney, Australia
| | - Anvi Le
- Healthcare Management Advisors, Melbourne, Australia
| | - Peta Marks
- InsideOut Institute for Eating Disorders, University of Sydney, Sydney Local Health District, Sydney, Australia
| | - Stephen Touyz
- InsideOut Institute for Eating Disorders, University of Sydney, Sydney Local Health District, Sydney, Australia
| | - Sarah Maguire
- InsideOut Institute for Eating Disorders, University of Sydney, Sydney Local Health District, Sydney, Australia
| |
Collapse
|
7
|
Garcia-Gil M, Ceccarini MR, Stoppini F, Cataldi S, Mazzeschi C, Delvecchio E, Albi E, Gizzi G. Brain and gut microbiota disorders in the psychopathology of anorexia nervosa. Transl Neurosci 2022; 13:516-526. [PMID: 36660007 PMCID: PMC9824428 DOI: 10.1515/tnsci-2022-0267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 01/08/2023] Open
Abstract
Studies of pathophysiological mechanisms involved in eating disorders (EDs) have intensified over the past several years, revealing their unprecedented and unanticipated complexity. Results from many articles highlight critical aspects in each member of ED family. Notably, anorexia nervosa (AN) is a disorder due to undefined etiology, frequently associated with symptoms of depression, anxiety, obsessive-compulsiveness, accompanied by endocrine alterations, altered immune response, increased inflammation, and dysbiosis of the gut microbiota. Hence, an advanced knowledge of how and why a multisystem involvement exists is of paramount importance to understand the pathogenetic mechanisms of AN. In this review, we describe the change in the brain structure/function focusing on hypothalamic endocrine disorders and the disequilibrium of gut microbiota in AN that might be responsible for the psychopathological complication.
Collapse
Affiliation(s)
- Mercedes Garcia-Gil
- Department of Biology, University of Pisa, 56127, Pisa, Italy,Department of Biology, Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56127 Pisa, Italy,Department of Biology, CISUP, Center for Instrument Sharing of the University of Pisa, 56127 Pisa, Italy
| | | | - Fabrizio Stoppini
- Department of Pharmaceutical Science, University of Perugia, 06126 Perugia, Italy
| | - Samuela Cataldi
- Department of Pharmaceutical Science, University of Perugia, 06126 Perugia, Italy
| | - Claudia Mazzeschi
- Department of Philosophy, Social Sciences and Education, University of Perugia, 06126 Perugia, Italy
| | - Elisa Delvecchio
- Department of Philosophy, Social Sciences and Education, University of Perugia, 06126 Perugia, Italy
| | - Elisabetta Albi
- Department of Pharmaceutical Science, University of Perugia, 06126 Perugia, Italy
| | - Giulia Gizzi
- Department of Philosophy, Social Sciences and Education, University of Perugia, 06126 Perugia, Italy
| |
Collapse
|
8
|
Syromyatnikov M, Nesterova E, Gladkikh M, Smirnova Y, Gryaznova M, Popov V. Characteristics of the Gut Bacterial Composition in People of Different Nationalities and Religions. Microorganisms 2022; 10:microorganisms10091866. [PMID: 36144468 PMCID: PMC9501501 DOI: 10.3390/microorganisms10091866] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022] Open
Abstract
High-throughput sequencing has made it possible to extensively study the human gut microbiota. The links between the human gut microbiome and ethnicity, religion, and race remain rather poorly understood. In this review, data on the relationship between gut microbiota composition and the nationality of people and their religion were generalized. The unique gut microbiome of a healthy European (including Slavic nationality) is characterized by the dominance of the phyla Firmicutes, Bacteroidota, Actinobacteria, Proteobacteria, Fusobacteria, and Verrucomicrobia. Among the African population, the typical members of the microbiota are Bacteroides and Prevotella. The gut microbiome of Asians is very diverse and rich in members of the genera Prevotella, Bacteroides Lactobacillus, Faecalibacterium, Ruminococcus, Subdoligranulum, Coprococcus, Collinsella, Megasphaera, Bifidobacterium, and Phascolarctobacterium. Among Buddhists and Muslims, the Prevotella enterotype is characteristic of the gut microbiome, while other representatives of religions, including Christians, have the Bacteroides enterotype. Most likely, the gut microbiota of people of different nationalities and religions are influenced by food preferences. The review also considers the influences of pathologies such as obesity, Crohn’s disease, cancer, diabetes, etc., on the bacterial composition of the guts of people of different nationalities.
Collapse
Affiliation(s)
- Mikhail Syromyatnikov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
- Correspondence:
| | - Ekaterina Nesterova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Maria Gladkikh
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Yuliya Smirnova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Mariya Gryaznova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Vasily Popov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| |
Collapse
|
9
|
Tirelle P, Salaün C, Kauffmann A, Bôle-Feysot C, Guérin C, Huré M, Goichon A, Amamou A, Breton J, do Rego JL, Déchelotte P, Achamrah N, Coëffier M. Intestinal Epithelial Toll-like Receptor 4 Deficiency Modifies the Response to the Activity-Based Anorexia Model in a Sex-Dependent Manner: A Preliminary Study. Nutrients 2022; 14:nu14173607. [PMID: 36079861 PMCID: PMC9460860 DOI: 10.3390/nu14173607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/24/2022] [Accepted: 08/28/2022] [Indexed: 11/21/2022] Open
Abstract
The role of microbiota in eating disorders has recently emerged. Previous data reported that lipopolysaccharides induce anorexia and a decrease of body weight through the activation of toll-like receptor 4 (TLR4). In the activity-based anorexia (ABA) mouse model, an increase of TLR4 expression in intestinal epithelial cells (IEC) has been described. We thus aimed to characterize the role of TLR4 in IEC in the ABA model in male and female mice. For this purpose, Vill-CreERT2-TLR4 LoxP, which are depleted for TLR4 in IEC in response to 4-OH tamoxifen, were submitted (ABA) or not (CT) to the ABA procedure that combined free access to a running wheel and progressive time-limited access to food. We thus compared CT and ABA TLR4IEC−/− mice to CT and ABA TLR4IEC+/+ mice. In response to the ABA model, TLR4IEC+/+ male and female mice exhibited a body weight loss associated to a decrease of lean mass. In TLR4IEC−/− male mice, body weight loss was delayed and less pronounced compared to TLR4IEC+/+ male mice. We did not observe a difference of body weight loss in female mice. The body composition remained unchanged between TLR4IEC−/− and TLR4IEC+/+ mice in both sexes. In both sexes, ABA TLR4IEC+/+ mice exhibited an increase of food-anticipatory activity, as well as an increase of immobility time during the open field test. However, female TLR4IEC−/− mice showed a decrease of the time spent at the centre and an increase of the time spent at the periphery of the open field area, whereas we did not observe differences in the male mice. In conclusion, the invalidation of TLR4 in IEC modified the response to the ABA model in a sex-dependent manner. Further studies should decipher the underlying mechanisms.
Collapse
Affiliation(s)
- Pauline Tirelle
- Université de Rouen Normandie, INSERM UMR 1073 “Nutrition, Inflammation and Microbiota–Gut–Brain Axis”, 76183 Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Université de Rouen Normandie, 76183 Rouen, France
| | - Colin Salaün
- Université de Rouen Normandie, INSERM UMR 1073 “Nutrition, Inflammation and Microbiota–Gut–Brain Axis”, 76183 Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Université de Rouen Normandie, 76183 Rouen, France
| | - Alexandre Kauffmann
- Université de Rouen Normandie, INSERM UMR 1073 “Nutrition, Inflammation and Microbiota–Gut–Brain Axis”, 76183 Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Université de Rouen Normandie, 76183 Rouen, France
| | - Christine Bôle-Feysot
- Université de Rouen Normandie, INSERM UMR 1073 “Nutrition, Inflammation and Microbiota–Gut–Brain Axis”, 76183 Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Université de Rouen Normandie, 76183 Rouen, France
| | - Charlène Guérin
- Université de Rouen Normandie, INSERM UMR 1073 “Nutrition, Inflammation and Microbiota–Gut–Brain Axis”, 76183 Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Université de Rouen Normandie, 76183 Rouen, France
| | - Marion Huré
- Université de Rouen Normandie, INSERM UMR 1073 “Nutrition, Inflammation and Microbiota–Gut–Brain Axis”, 76183 Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Université de Rouen Normandie, 76183 Rouen, France
| | - Alexis Goichon
- Université de Rouen Normandie, INSERM UMR 1073 “Nutrition, Inflammation and Microbiota–Gut–Brain Axis”, 76183 Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Université de Rouen Normandie, 76183 Rouen, France
| | - Asma Amamou
- Université de Rouen Normandie, INSERM UMR 1073 “Nutrition, Inflammation and Microbiota–Gut–Brain Axis”, 76183 Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Université de Rouen Normandie, 76183 Rouen, France
| | - Jonathan Breton
- Université de Rouen Normandie, INSERM UMR 1073 “Nutrition, Inflammation and Microbiota–Gut–Brain Axis”, 76183 Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Université de Rouen Normandie, 76183 Rouen, France
- Department of Nutrition, Rouen University Hospital, CHU Rouen, 76031 Rouen, France
| | - Jean-Luc do Rego
- Institute for Research and Innovation in Biomedicine (IRIB), Université de Rouen Normandie, 76183 Rouen, France
- Université de Rouen Normandie, INSERM US51-CNRS UAR2026, Animal Behavioural Platform, SCAC-HeRacLeS “High-Tech Research Infrastructures for Life”, 76183 Rouen, France
| | - Pierre Déchelotte
- Université de Rouen Normandie, INSERM UMR 1073 “Nutrition, Inflammation and Microbiota–Gut–Brain Axis”, 76183 Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Université de Rouen Normandie, 76183 Rouen, France
- Department of Nutrition, Rouen University Hospital, CHU Rouen, 76031 Rouen, France
| | - Najate Achamrah
- Université de Rouen Normandie, INSERM UMR 1073 “Nutrition, Inflammation and Microbiota–Gut–Brain Axis”, 76183 Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Université de Rouen Normandie, 76183 Rouen, France
- Department of Nutrition, Rouen University Hospital, CHU Rouen, 76031 Rouen, France
| | - Moïse Coëffier
- Université de Rouen Normandie, INSERM UMR 1073 “Nutrition, Inflammation and Microbiota–Gut–Brain Axis”, 76183 Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Université de Rouen Normandie, 76183 Rouen, France
- Department of Nutrition, Rouen University Hospital, CHU Rouen, 76031 Rouen, France
- Correspondence: ; Tel.: +33-23-5148240
| |
Collapse
|
10
|
Yuan R, Yang L, Yao G, Geng S, Ge Q, Bo S, Li X. Features of gut microbiota in patients with anorexia nervosa. Chin Med J (Engl) 2022; 135:1993-2002. [PMID: 36191590 PMCID: PMC9746762 DOI: 10.1097/cm9.0000000000002362] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Anorexia nervosa (AN) is a psychological disorder, which is characterized by the misunderstanding of body image, food restriction, and low body weight. An increasing number of studies have reported that the pathophysiological mechanism of AN might be associated with the dysbiosis of gut microbiota. The purpose of our study was to explore the features of gut microbiota in patients with AN, hoping to provide valuable information on its pathogenesis and treatment. METHODS In this cross-sectional study, from August 2020 to June 2021, patients with AN who were admitted into Peking University Third Hospital and Peking University Sixth Hospital ( n = 30) were recruited as the AN group, and healthy controls (HC) were recruited from a middle school and a university in Beijing ( n = 30). Demographic data, Hamilton Depression Scale (HAMD) scores of the two groups, and length of stay of the AN group were recorded. Microbial diversity analysis of gut microbiota in stool samples from the two groups was analyzed by 16S ribosomal RNA (rRNA) gene sequencing. RESULTS The weight (AN vs. HC, [39.31 ± 7.90] kg vs. [56.47 ± 8.88] kg, P < 0.001) and body mass index (BMI, AN vs. HC, [14.92 ± 2.54] kg/m 2vs. [20.89 ± 2.14] kg/m 2 , P < 0.001) of patients with AN were statistically significantly lower than those of HC, and HAMD scores in AN group were statistically significantly higher than those of HC. For alpha diversity, there were no statistically significant differences between the two groups; for beta diversity, the two groups differed obviously regarding community composition. Compared to HC, the proportion of Lachnospiraceae in patients with AN was statistically significantly higher (AN vs. HC, 40.50% vs. 31.21%, Z = -1.981, P = 0.048), while that of Ruminococcaceae was lower (AN vs. HC, 12.17% vs. 19.15%, Z = -2.728, P = 0.007); the proportion of Faecalibacterium (AN vs. HC, 3.97% vs. 9.40%, Z = -3.638, P < 0.001) and Subdoligranulum (AN vs. HC, 4.60% vs. 7.02%, Z = -2.369, P = 0.018) were statistically significantly lower, while that of Eubacterium_hallii_group was significantly higher (AN vs. HC, 7.63% vs. 3.43%, Z = -2.115, P = 0.035). Linear discriminant effect (LEfSe) analysis (LDA score >3.5) showed that o_Lachnospirales, f_Lachnospiraceae, and g_Eubacterium_hallii_group (o, f and g represents order, family and genus respectively) were enriched in patients with AN. Microbial function of nutrient transport and metabolism in AN group were more abundant ( P > 0.05). In AN group, weight and BMI were significantly negatively correlated with the abundance of Bacteroidota and Bacteroides , while positively correlated with Subdoligranulum . BMI was significantly positively correlated with Firmicutes; HAMD scores were significantly negatively correlated with Faecalibacterium. CONCLUSIONS The composition of gut microbiota in patients with AN was different from that of healthy people. Clinical indicators have correlations with the abundance of gut microbiota in patients with AN.
Collapse
Affiliation(s)
- Runxue Yuan
- Department of Intensive Care Unit, Peking University Third Hospital, Beijing 100191, China
| | - Lei Yang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Health Council Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100083, China
| | - Gaiqi Yao
- Department of Intensive Care Unit, Peking University Third Hospital, Beijing 100191, China
| | - Shuxia Geng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Health Council Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100083, China
| | - Qinggang Ge
- Department of Intensive Care Unit, Peking University Third Hospital, Beijing 100191, China
| | - Shining Bo
- Department of Intensive Care Unit, Peking University Third Hospital, Beijing 100191, China
| | - Xueni Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Health Council Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100083, China
| |
Collapse
|
11
|
Frostad S. Are the Effects of Malnutrition on the Gut Microbiota–Brain Axis the Core Pathologies of Anorexia Nervosa? Microorganisms 2022; 10:microorganisms10081486. [PMID: 35893544 PMCID: PMC9329996 DOI: 10.3390/microorganisms10081486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/29/2022] Open
Abstract
Anorexia nervosa (AN) is a disabling, costly, and potentially deadly illness. Treatment failure and relapse after treatment are common. Several studies have indicated the involvement of the gut microbiota–brain (GMB) axis. This narrative review hypothesizes that AN is driven by malnutrition-induced alterations in the GMB axis in susceptible individuals. According to this hypothesis, initial weight loss can voluntarily occur through dieting or be caused by somatic or psychiatric diseases. Malnutrition-induced alterations in gut microbiota may increase the sensitivity to anxiety-inducing gastrointestinal hormones released during meals, one of which is cholecystokinin (CCK). The experimental injection of a high dose of its CCK-4 fragment in healthy individuals induces panic attacks, probably via the stimulation of CCK receptors in the brain. Such meal-related anxiety attacks may take part in developing the clinical picture of AN. Malnutrition may also cause increased effects from appetite-reducing hormones that also seem to have roles in AN development and maintenance. The scientific background, including clinical, microbiological, and biochemical factors, of AN is discussed. A novel model for AN development and maintenance in accordance with this hypothesis is presented. Suggestions for future research are also provided.
Collapse
Affiliation(s)
- Stein Frostad
- Division of Psychiatry, Haukeland University Hospital, 5021 Bergen, Norway
| |
Collapse
|
12
|
Grigioni S, Achamrah N, Chan P, Guérin C, Bôle-Feysot C, Delay J, Colange G, Quillard M, Coquard A, Bubenheim M, Jésus P, Tavolacci MP, Déchelotte P, Coëffier M. Intestinal permeability and appetite regulating peptides-reactive immunoglobulins in severely malnourished women with anorexia nervosa. Clin Nutr 2022; 41:1752-1758. [PMID: 35810568 DOI: 10.1016/j.clnu.2022.06.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/07/2022] [Accepted: 06/24/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND & AIMS In the last decades, the role of microbiota-gut-brain axis has emerged in the regulation of eating behavior and in the pathophysiology of anorexia nervosa (AN) that remains poorly understood. Particularly, a gut-derived dysregulation of immune response has been proposed leading to immunoglobulins directed against appetite-regulating peptides. However, intestinal permeability in patients with anorexia nervosa has been poorly documented. METHODS In the present prospective case-control study, we thus compared intestinal permeability, appetite-regulating peptides and their reactive immunoglobulins measured in severely malnourished women with AN (n = 17; 28 [21-35] y; 14.9 [14.1-15.2] kg/m2) to healthy volunteers (HV, n = 34; 26 [23-35] y; 22.3 [20.6-23.6] kg/m2). RESULTS Patients with AN exhibited an increased urinary lactulose/mannitol ratio, both in 0-5 h (0.033 [0.013-0.116]) and 5-24 h samples (0.115 [0.029-0.582]), when compared to HV (0.02 [0.008-0.045], p = 0.0074 and 0.083 [0.019-0.290], p = 0.0174, respectively), suggesting an increased intestinal permeability. Urinary excretion of sucralose and plasma zonulin were not different. The levels of plasma total ghrelin and desacyl-ghrelin were increased in patients with AN compared to HV, whereas plasma leptin concentration was decreased. In addition, αMSH remained unchanged compared to HV. Finally, we did not observe any modification of the levels of total or free αMSH, leptin or ghrelin-reactive immunoglobulin G and M, as well as for their affinity properties. Only, a weak decrease of the dissociation constant (kd) for acyl-ghrelin-reactive IgG was observed in patients with AN (p = 0.0411). CONCLUSIONS In conclusion, severely malnourished patients with AN show a higher intestinal permeability than HV without evidence of an effect on appetite regulating peptides-reactive immunoglobulins.
Collapse
Affiliation(s)
- Sébastien Grigioni
- Department of Nutrition, Rouen University Hospital, CHU Rouen, France; Université de Rouen Normandie, Inserm UMR1073 « Nutrition, Inflammation and Microbiota-gut-brain Axis », Institute for Research and Innovation in Biomedicine, Rouen, France; Clinical Investigation Center CIC 1404 - Biological Resources Centre, Inserm, Rouen University Hospital, CHU Rouen, France
| | - Najate Achamrah
- Department of Nutrition, Rouen University Hospital, CHU Rouen, France; Université de Rouen Normandie, Inserm UMR1073 « Nutrition, Inflammation and Microbiota-gut-brain Axis », Institute for Research and Innovation in Biomedicine, Rouen, France; Clinical Investigation Center CIC 1404 - Biological Resources Centre, Inserm, Rouen University Hospital, CHU Rouen, France
| | - Philippe Chan
- PISSARO Proteomics Platform, HeRacLeS High-tech Research Infrastructures for Life, UMS 51 - UAR 2026, Inserm, CNRS, Université de Rouen Normandie, Rouen, France
| | - Charlène Guérin
- Department of Nutrition, Rouen University Hospital, CHU Rouen, France; Université de Rouen Normandie, Inserm UMR1073 « Nutrition, Inflammation and Microbiota-gut-brain Axis », Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Christine Bôle-Feysot
- Department of Nutrition, Rouen University Hospital, CHU Rouen, France; Université de Rouen Normandie, Inserm UMR1073 « Nutrition, Inflammation and Microbiota-gut-brain Axis », Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Julie Delay
- Department of Nutrition, Rouen University Hospital, CHU Rouen, France
| | - Guillaume Colange
- Department of Nutrition, Rouen University Hospital, CHU Rouen, France
| | - Muriel Quillard
- Université de Rouen Normandie, Inserm UMR1073 « Nutrition, Inflammation and Microbiota-gut-brain Axis », Institute for Research and Innovation in Biomedicine, Rouen, France; Clinical Investigation Center CIC 1404 - Biological Resources Centre, Inserm, Rouen University Hospital, CHU Rouen, France
| | - Aude Coquard
- Department of Pharmacy, Rouen University Hospital, CHU Rouen, France
| | - Michael Bubenheim
- Department of Clinical Research and Innovation, Rouen University Hospital, CHU Rouen, France
| | - Pierre Jésus
- Nutrition Unit, Limoges University Hospital, Inserm UMR 1094 Tropical Neuro-epidemiology, Limoges, France
| | - Marie-Pierre Tavolacci
- Université de Rouen Normandie, Inserm UMR1073 « Nutrition, Inflammation and Microbiota-gut-brain Axis », Institute for Research and Innovation in Biomedicine, Rouen, France; Clinical Investigation Center CIC 1404 - Biological Resources Centre, Inserm, Rouen University Hospital, CHU Rouen, France
| | - Pierre Déchelotte
- Department of Nutrition, Rouen University Hospital, CHU Rouen, France; Université de Rouen Normandie, Inserm UMR1073 « Nutrition, Inflammation and Microbiota-gut-brain Axis », Institute for Research and Innovation in Biomedicine, Rouen, France; Clinical Investigation Center CIC 1404 - Biological Resources Centre, Inserm, Rouen University Hospital, CHU Rouen, France
| | - Moïse Coëffier
- Department of Nutrition, Rouen University Hospital, CHU Rouen, France; Université de Rouen Normandie, Inserm UMR1073 « Nutrition, Inflammation and Microbiota-gut-brain Axis », Institute for Research and Innovation in Biomedicine, Rouen, France; Clinical Investigation Center CIC 1404 - Biological Resources Centre, Inserm, Rouen University Hospital, CHU Rouen, France.
| |
Collapse
|
13
|
Kleppe MM, Brønstad I, Lied GA, Danielsen Y, Rekkedal GÅ, Kessler U. Intestinal barrier integrity in anorexia nervosa (a pilot study). Int J Eat Disord 2022; 55:703-708. [PMID: 35040160 PMCID: PMC9303537 DOI: 10.1002/eat.23678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVE There is no conclusive evidence for involvement of intestinal barrier alteration in the etiology of anorexia nervosa (AN). The aims of this pilot study were to identify serum markers of intestinal barrier integrity in patients with AN and to determine the relationships between those markers and body mass index (BMI), eating disorder symptoms, gastrointestinal complaints, and liver synthesis function (international normalized ratio [INR]). METHOD Twenty-five outpatients with AN prior to starting treatment and 28 healthy controls (HC) were assessed. BMI and serum markers of intestinal barrier integrity were measured, including zonulin family peptides (ZFP), lipopolysaccharide-binding protein (LBP), and intestinal fatty-acid-binding protein (i-FABP). Eating disorder symptoms and gastrointestinal complaints were evaluated via questionnaires. RESULTS The serum ZFP concentration was significantly lower in patients with AN than in HC (44.2 [7.4] vs. 49.2 [5.6] ng/ml, mean [standard deviation], p = .008). LBP and i-FABP did not differ between the two groups. In patients with AN, serum ZFP was significantly predicted by BMI (β = 0.479, p = .009), age (β = 0.411, p = .020), and INR (β = -0.388, p = .028). No such associations were found for either gastrointestinal complaints or eating disorder symptoms. DISCUSSION Abnormal levels of serum ZFP were observed in patients with AN. Further studies with other assessment methods are warranted to examine intestinal barrier function in AN. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02745067.
Collapse
Affiliation(s)
- Malin M. Kleppe
- Department of PsychiatryHaukeland University HospitalBergenNorway
| | - Ingeborg Brønstad
- Division of Gastroenterology, Department of MedicineHaukeland University HospitalBergenNorway
| | - Gülen A. Lied
- Division of Gastroenterology, Department of MedicineHaukeland University HospitalBergenNorway
- Center for Nutrition, Department of Clinical MedicineUniversity of BergenBergenNorway
- National Center for Functional Gastrointestinal Disorders, Medical DepartmentHaukeland University HospitalBergenNorway
| | | | - Guro Å. Rekkedal
- Department of PsychiatryHaukeland University HospitalBergenNorway
- Department of Clinical PsychologyUniversity of BergenBergenNorway
| | - Ute Kessler
- Department of PsychiatryHaukeland University HospitalBergenNorway
- Department of Clinical MedicineUniversity of BergenBergenNorway
| |
Collapse
|
14
|
Unveiling Metabolic Phenotype Alterations in Anorexia Nervosa through Metabolomics. Nutrients 2021; 13:nu13124249. [PMID: 34959800 PMCID: PMC8706417 DOI: 10.3390/nu13124249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
Anorexia nervosa (AN) is a mental disorder characterized by an intense fear of weight gain that affects mainly young women. It courses with a negative body image leading to altered eating behaviors that have devastating physical, metabolic, and psychological consequences for the patients. Although its origin is postulated to be multifactorial, the etiology of AN remains unknown, and this increases the likelihood of chronification and relapsing. Thus, expanding the available knowledge on the pathophysiology of AN is of enormous interest. Metabolomics is proposed as a powerful tool for the elucidation of disease mechanisms and to provide new insights into the diagnosis, treatment, and prognosis of AN. A review of the literature related to studies of AN patients by employing metabolomic strategies to characterize the main alterations associated with the metabolic phenotype of AN during the last 10 years is described. The most common metabolic alterations are derived from chronic starvation, including amino acid, lipid, and carbohydrate disturbances. Nonetheless, recent findings have shifted the attention to gut-microbiota metabolites as possible factors contributing to AN development, progression, and maintenance. We have identified the areas of ongoing research in AN and propose further perspectives to improve our knowledge and understanding of this disease.
Collapse
|
15
|
Galmiche M, Achamrah N, Déchelotte P, Ribet D, Breton J. Role of microbiota-gut-brain axis dysfunctions induced by infections in the onset of anorexia nervosa. Nutr Rev 2021; 80:381-391. [PMID: 34010427 DOI: 10.1093/nutrit/nuab030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Anorexia nervosa (AN) is an eating disorder characterized by low food intake, severe body weight loss, intense fear of gaining weight, and dysmorphophobia. This chronic disease is associated with both psychiatric and somatic comorbidities. Over the years, clinical studies have accumulated evidence that viral or bacterial infections may promote the onset of eating disorders such as AN. This review aims to describe how infections and the subsequent immune responses affect food intake regulation in the short term and also how these processes may lead to long-term intestinal disorders, including gut barrier disruption and gut microbiota dysbiosis, even after the clearance of the pathogens. We discuss in particular how infection-mediated intestinal dysbiosis may promote the onset of several AN symptoms and comorbidities, including appetite dysregulation, functional gastrointestinal disorders, and mood disorders.
Collapse
Affiliation(s)
- Marie Galmiche
- M. Galmiche, N. Achamrah, P. Déchelotte, and J. Breton are with Nutrition Department, CHU Rouen, F-76000 Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, INSERM UMR 1073, Nutrition, Gut and Brain Laboratory, Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, Institute for Research and Innovation in Biomedicine, Normandie University, Rouen, France
| | - Najate Achamrah
- M. Galmiche, N. Achamrah, P. Déchelotte, and J. Breton are with Nutrition Department, CHU Rouen, F-76000 Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, INSERM UMR 1073, Nutrition, Gut and Brain Laboratory, Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, Institute for Research and Innovation in Biomedicine, Normandie University, Rouen, France
| | - Pierre Déchelotte
- M. Galmiche, N. Achamrah, P. Déchelotte, and J. Breton are with Nutrition Department, CHU Rouen, F-76000 Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, INSERM UMR 1073, Nutrition, Gut and Brain Laboratory, Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, Institute for Research and Innovation in Biomedicine, Normandie University, Rouen, France
| | - David Ribet
- M. Galmiche, N. Achamrah, P. Déchelotte, and J. Breton are with Nutrition Department, CHU Rouen, F-76000 Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, INSERM UMR 1073, Nutrition, Gut and Brain Laboratory, Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, Institute for Research and Innovation in Biomedicine, Normandie University, Rouen, France
| | - Jonathan Breton
- M. Galmiche, N. Achamrah, P. Déchelotte, and J. Breton are with Nutrition Department, CHU Rouen, F-76000 Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, INSERM UMR 1073, Nutrition, Gut and Brain Laboratory, Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, Institute for Research and Innovation in Biomedicine, Normandie University, Rouen, France
| |
Collapse
|
16
|
Tirelle P, Breton J, Kauffmann A, Bahlouli W, L'Huillier C, Salameh E, Amamou A, Jarbeau M, Guérin C, Goichon A, do Rego JC, Déchelotte P, Ribet D, Coëffier M. Gut microbiota depletion affects nutritional and behavioral responses to activity-based anorexia model in a sex-dependent manner. Clin Nutr 2021; 40:2734-2744. [PMID: 33933739 DOI: 10.1016/j.clnu.2021.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/29/2021] [Accepted: 04/03/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND & AIMS In the last decade, the role of the microbiota-gut-brain axis in eating behavior and anxiety-depressive disorders has gained increasing attention. Although a gut microbiota dysbiosis has been reported in anorectic patients, its pathophysiological role remains poorly understood. Thus, we aimed to characterize the potential role of gut microbiota by evaluating the effects of its depletion in the Activity-Based Anorexia (ABA) mouse model both in male and female mice. METHODS Male and female C57Bl/6 mice were submitted (ABA group) or not (CT group) to the ABA protocol, which combines access to a running wheel with a progressive limited food access. Gut microbiota was previously depleted or not by a cocktail of antibiotics (ATB) delivered by oral gavages. We monitored body composition, anxiety-like behavior, leptin and adiponectin plasma levels, hypothalamic and hippocampal neuropeptides mRNA levels, as well as dopamine (DRD) and serotonin (5HT1 and 4) receptors mRNA expression. RESULTS In response to the ABA model, the body weight loss was less pronounced in ATB-treated ABA compared to untreated ABA, while food intake remained unaffected by ATB treatment. ATB-treated ABA exhibited increased fat mass and decreased lean mass compared to untreated ABA both in male and female mice, whereas but plasma adipokine concentrations were affected in a sex-dependent manner. Only male ABA mice showed a reduced anticipatory physical activity in response to ATB treatment. Similarly, anxiety-like behavior was mainly affected in ATB-treated ABA male mice compared to ATB-treated ABA female mice, which was associated with male-specific alterations of hypothalamic CRH mRNA and hippocampal DRD and 5-HT1A mRNA levels. CONCLUSIONS Our study provides evidence that ATB-induced gut microbiota depletion triggers alterations of nutritional and behavioral responses to the activity-based anorexia model in a sex-dependent manner.
Collapse
Affiliation(s)
- Pauline Tirelle
- Normandie University, UNIROUEN, INSERM UMR 1073 "Nutrition, Inflammation and Gut-brain Axis", Rouen, France; Institute for Research and Innovation in Biomedicine (IRIB), UNIROUEN, Rouen, France
| | - Jonathan Breton
- Normandie University, UNIROUEN, INSERM UMR 1073 "Nutrition, Inflammation and Gut-brain Axis", Rouen, France; Institute for Research and Innovation in Biomedicine (IRIB), UNIROUEN, Rouen, France; Department of Nutrition, CHU Rouen, Rouen, France
| | - Alexandre Kauffmann
- Normandie University, UNIROUEN, INSERM UMR 1073 "Nutrition, Inflammation and Gut-brain Axis", Rouen, France; Institute for Research and Innovation in Biomedicine (IRIB), UNIROUEN, Rouen, France
| | - Wafa Bahlouli
- Normandie University, UNIROUEN, INSERM UMR 1073 "Nutrition, Inflammation and Gut-brain Axis", Rouen, France; Institute for Research and Innovation in Biomedicine (IRIB), UNIROUEN, Rouen, France
| | - Clément L'Huillier
- Normandie University, UNIROUEN, INSERM UMR 1073 "Nutrition, Inflammation and Gut-brain Axis", Rouen, France; Institute for Research and Innovation in Biomedicine (IRIB), UNIROUEN, Rouen, France
| | - Emmeline Salameh
- Normandie University, UNIROUEN, INSERM UMR 1073 "Nutrition, Inflammation and Gut-brain Axis", Rouen, France; Institute for Research and Innovation in Biomedicine (IRIB), UNIROUEN, Rouen, France
| | - Asma Amamou
- Normandie University, UNIROUEN, INSERM UMR 1073 "Nutrition, Inflammation and Gut-brain Axis", Rouen, France; Institute for Research and Innovation in Biomedicine (IRIB), UNIROUEN, Rouen, France
| | - Marine Jarbeau
- Normandie University, UNIROUEN, INSERM UMR 1073 "Nutrition, Inflammation and Gut-brain Axis", Rouen, France; Institute for Research and Innovation in Biomedicine (IRIB), UNIROUEN, Rouen, France
| | - Charlène Guérin
- Normandie University, UNIROUEN, INSERM UMR 1073 "Nutrition, Inflammation and Gut-brain Axis", Rouen, France; Institute for Research and Innovation in Biomedicine (IRIB), UNIROUEN, Rouen, France
| | - Alexis Goichon
- Normandie University, UNIROUEN, INSERM UMR 1073 "Nutrition, Inflammation and Gut-brain Axis", Rouen, France; Institute for Research and Innovation in Biomedicine (IRIB), UNIROUEN, Rouen, France
| | - Jean-Claude do Rego
- Institute for Research and Innovation in Biomedicine (IRIB), UNIROUEN, Rouen, France; Animal Behavior Facility, SCAC, UNIROUEN, France
| | - Pierre Déchelotte
- Normandie University, UNIROUEN, INSERM UMR 1073 "Nutrition, Inflammation and Gut-brain Axis", Rouen, France; Institute for Research and Innovation in Biomedicine (IRIB), UNIROUEN, Rouen, France; Department of Nutrition, CHU Rouen, Rouen, France
| | - David Ribet
- Normandie University, UNIROUEN, INSERM UMR 1073 "Nutrition, Inflammation and Gut-brain Axis", Rouen, France; Institute for Research and Innovation in Biomedicine (IRIB), UNIROUEN, Rouen, France
| | - Moïse Coëffier
- Normandie University, UNIROUEN, INSERM UMR 1073 "Nutrition, Inflammation and Gut-brain Axis", Rouen, France; Institute for Research and Innovation in Biomedicine (IRIB), UNIROUEN, Rouen, France; Department of Nutrition, CHU Rouen, Rouen, France.
| |
Collapse
|
17
|
Anorexia nervosa and gut microbiota: A systematic review and quantitative synthesis of pooled microbiological data. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110114. [PMID: 32971217 DOI: 10.1016/j.pnpbp.2020.110114] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/02/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Alterations of gut microbiota may play a role in Anorexia Nervosa (AN) through perturbations of the gut-brain axis. Some studies found differences in the gut microbiota of patients with AN compared to healthy controls, but results are heterogeneous. The aim of this work was to systematically review the existing studies comparing gut microbial composition in AN and healthy controls, and to perform a quantitative synthesis of the pooled clinical and microbiological data, when available. METHODS A comprehensive literature search was performed to identify human studies investigating relationships between AN and gut microbiota. Microbiome datasets from studies were pooled and analysed focusing on alpha and beta-diversity and the relative abundance of microbial species in patients' gut microbiota compared to healthy controls. RESULTS Nine studies were eligible for the systematic review, of which 4 were included in the quantitative synthesis. Preserved alpha-diversity and decreased beta-diversity in AN emerged from the qualitative synthesis, while a slight increase of alpha-diversity (d < 0.4) and comparable beta-diversity were reported by the quantitative synthesis. Out of the 46 common species compared, three had a large combined effect size (d ≥ 0.9) to differentiate patients from controls, namely Alistipes, Parabacterioides and Roseburia. The latter was also correlated with BMI (ρ = 0.29). CONCLUSIONS The decrease of butyrate-producing species and the increase of mucine-degrading species may represent hallmarks of the gut microbiota alterations in AN, and therefore potentially interesting therapeutic targets. The heterogeneity of clinical and methodological characteristics hampers the generalizability of the results. Standardized research methods could improve comparability among studies to better identify the alterations of gut microbiota in AN.
Collapse
|
18
|
Smitka K, Prochazkova P, Roubalova R, Dvorak J, Papezova H, Hill M, Pokorny J, Kittnar O, Bilej M, Tlaskalova-Hogenova H. Current Aspects of the Role of Autoantibodies Directed Against Appetite-Regulating Hormones and the Gut Microbiome in Eating Disorders. Front Endocrinol (Lausanne) 2021; 12:613983. [PMID: 33953692 PMCID: PMC8092392 DOI: 10.3389/fendo.2021.613983] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 03/09/2021] [Indexed: 12/12/2022] Open
Abstract
The equilibrium and reciprocal actions among appetite-stimulating (orexigenic) and appetite-suppressing (anorexigenic) signals synthesized in the gut, brain, microbiome and adipose tissue (AT), seems to play a pivotal role in the regulation of food intake and feeding behavior, anxiety, and depression. A dysregulation of mechanisms controlling the energy balance may result in eating disorders such as anorexia nervosa (AN) and bulimia nervosa (BN). AN is a psychiatric disease defined by chronic self-induced extreme dietary restriction leading to an extremely low body weight and adiposity. BN is defined as out-of-control binge eating, which is compensated by self-induced vomiting, fasting, or excessive exercise. Certain gut microbiota-related compounds, like bacterial chaperone protein Escherichia coli caseinolytic protease B (ClpB) and food-derived antigens were recently described to trigger the production of autoantibodies cross-reacting with appetite-regulating hormones and neurotransmitters. Gut microbiome may be a potential manipulator for AT and energy homeostasis. Thus, the regulation of appetite, emotion, mood, and nutritional status is also under the control of neuroimmunoendocrine mechanisms by secretion of autoantibodies directed against neuropeptides, neuroactive metabolites, and peptides. In AN and BN, altered cholinergic, dopaminergic, adrenergic, and serotonergic relays may lead to abnormal AT, gut, and brain hormone secretion. The present review summarizes updated knowledge regarding the gut dysbiosis, gut-barrier permeability, short-chain fatty acids (SCFA), fecal microbial transplantation (FMT), blood-brain barrier permeability, and autoantibodies within the ghrelin and melanocortin systems in eating disorders. We expect that the new knowledge may be used for the development of a novel preventive and therapeutic approach for treatment of AN and BN.
Collapse
Affiliation(s)
- Kvido Smitka
- First Faculty of Medicine, Institute of Physiology, Charles University, Prague, Czechia
- First Faculty of Medicine, Institute of Pathological Physiology, Charles University, Prague, Czechia
- *Correspondence: Kvido Smitka,
| | - Petra Prochazkova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Radka Roubalova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Jiri Dvorak
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Hana Papezova
- Psychiatric Clinic, Eating Disorder Center, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Martin Hill
- Steroid Hormone and Proteofactors Department, Institute of Endocrinology, Prague, Czechia
| | - Jaroslav Pokorny
- First Faculty of Medicine, Institute of Physiology, Charles University, Prague, Czechia
| | - Otomar Kittnar
- First Faculty of Medicine, Institute of Physiology, Charles University, Prague, Czechia
| | - Martin Bilej
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Helena Tlaskalova-Hogenova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
19
|
Influence of Glutamine and Branched-Chain Amino Acids Supplementation during Refeeding in Activity-Based Anorectic Mice. Nutrients 2020; 12:nu12113510. [PMID: 33202638 PMCID: PMC7696484 DOI: 10.3390/nu12113510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/03/2020] [Accepted: 11/12/2020] [Indexed: 01/20/2023] Open
Abstract
Background: Optimizing the refeeding of patients with anorexia nervosa remains important to limit somatic complications of malnutrition, as well as to avoid disease relapses by targeting persistent mood and intestinal disorders. We aimed to evaluate the effects of glutamine (Gln) and branched-chain amino acids (BCAA) supplementation during refeeding in activity-based anorectic (ABA) mice. Method: Male C57Bl/6 mice were randomized in control and ABA groups. Once ABA-induced malnutrition was established, mice were progressively refed or not. Refed mice had free access to drinking water supplemented or not with 1% Gln or 2.5% BCAA for 10 days. Results: A progressive refeeding was associated with a partial restoration of body weight and lean mass, while a fat mass rebound was observed. In addition, refeeding restored glucose and leptin. Gln did not affect these parameters, while BCAA tended to increase body weight, fat mass, and glycaemia. In the colon, refeeding improved total protein synthesis and restored the LC3II/LC3I ratio, a marker of autophagy. Gln supplementation enhanced colonic protein synthesis, which was associated with an increased p-p70S6kinase/p70S6kinase ratio, whereas these effects were blunted by BCCA supplementation. Conclusions: In ABA mice, Gln and BCAA supplementations during a progressive refeeding fail to restore body weight and lean mass. However, Gln supplementation improves total colonic protein synthesis conversely to BCAA. Further studies are needed to decipher the underlying mechanisms involved in these opposite results.
Collapse
|
20
|
Tirelle P, Breton J, Riou G, Déchelotte P, Coëffier M, Ribet D. Comparison of different modes of antibiotic delivery on gut microbiota depletion efficiency and body composition in mouse. BMC Microbiol 2020; 20:340. [PMID: 33176677 PMCID: PMC7657353 DOI: 10.1186/s12866-020-02018-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Background The use of animal models with depleted intestinal microbiota has recently increased thanks to the huge interest in the potential role of these micro-organisms in human health. In particular, depletion of gut bacteria using antibiotics has recently become popular as it represents a low cost and easy alternative to germ-free animals. Various regimens of antibiotics are used in the literature, which differ in composition, dose, length of treatment and mode of administration. In order to help investigators in choosing the most appropriate protocol for their studies, we compared here three modes of antibiotic delivery to deplete gut bacteria in C57Bl/6 mice. We delivered one of the most frequently used combination of antibiotics (a mix of ampicillin, neomycin, metronidazole and vancomycin) either ad libitum in drinking water or by oral gavage once or twice per day. Results We quantified the global bacterial density, as well as the abundance of specific bacterial and fungal taxa, in mouse feces in response to antibiotics exposure. We observed that oral gavage once a day with antibiotics is not a reliable method as it occasionally triggers hyperproliferation of bacteria belonging to the Escherichia/Shigella taxon and leads, as a consequence, to a moderate decrease in fecal bacterial density. Antibiotics delivery by oral gavage twice a day or in drinking water induces in contrast a robust and consistent depletion of mouse fecal bacteria, as soon as 4 days of treatment, and is associated with an increase in fecal moisture content. Extending exposure to antibiotics beyond 7 days does not improve total bacteria depletion efficiency and promotes fungal overgrowth. We show in addition that all tested protocols impact neither gut microbiota recolonization efficiency, 1 or 2 weeks after the stop of antibiotics, nor mice body composition after 1 week of treatment. Conclusions Our study provides key experimental data and highlights important parameters to consider before selecting an appropriate protocol for antibiotic-mediated depletion of gut bacteria, in order to optimize the accuracy and the reproducibility of results and to facilitate comparison between studies. Supplementary Information Supplementary information accompanies this paper at 10.1186/s12866-020-02018-9.
Collapse
Affiliation(s)
- Pauline Tirelle
- UNIROUEN, INSERM UMR 1073, Nutrition, Inflammation et dysfonction de l'axe intestin-cerveau, Normandie University, Rouen, France.,UNIROUEN, Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, Rouen, France
| | - Jonathan Breton
- UNIROUEN, INSERM UMR 1073, Nutrition, Inflammation et dysfonction de l'axe intestin-cerveau, Normandie University, Rouen, France.,UNIROUEN, Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, Rouen, France.,Nutrition Department, Rouen University Hospital, Rouen, France
| | - Gaëtan Riou
- UNIROUEN, Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, Rouen, France.,UNIROUEN, INSERM UMR 1234, PANTHER, Flow cytometry facility, Normandie University, Rouen, France
| | - Pierre Déchelotte
- UNIROUEN, INSERM UMR 1073, Nutrition, Inflammation et dysfonction de l'axe intestin-cerveau, Normandie University, Rouen, France.,UNIROUEN, Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, Rouen, France.,Nutrition Department, Rouen University Hospital, Rouen, France
| | - Moïse Coëffier
- UNIROUEN, INSERM UMR 1073, Nutrition, Inflammation et dysfonction de l'axe intestin-cerveau, Normandie University, Rouen, France.,UNIROUEN, Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, Rouen, France.,Nutrition Department, Rouen University Hospital, Rouen, France
| | - David Ribet
- UNIROUEN, INSERM UMR 1073, Nutrition, Inflammation et dysfonction de l'axe intestin-cerveau, Normandie University, Rouen, France. .,UNIROUEN, Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, Rouen, France. .,INSERM UMR1073, Université de Rouen, UFR Santé - 22 Boulevard Gambetta, 76183, Rouen Cedex, France.
| |
Collapse
|
21
|
Skowron K, Kurnik-Łucka M, Dadański E, Bętkowska-Korpała B, Gil K. Backstage of Eating Disorder-About the Biological Mechanisms behind the Symptoms of Anorexia Nervosa. Nutrients 2020; 12:E2604. [PMID: 32867089 PMCID: PMC7551451 DOI: 10.3390/nu12092604] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
Anorexia nervosa (AN) represents a disorder with the highest mortality rate among all psychiatric diseases, yet our understanding of its pathophysiological components continues to be fragmentary. This article reviews the current concepts regarding AN pathomechanisms that focus on the main biological aspects involving central and peripheral neurohormonal pathways, endocrine function, as well as the microbiome-gut-brain axis. It emerged from the unique complexity of constantly accumulating new discoveries, which hamper the ability to look at the disease in a more comprehensive way. The emphasis is placed on the mechanisms underlying the main symptoms and potential new directions that require further investigation in clinical settings.
Collapse
Affiliation(s)
- Kamil Skowron
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St 18, 31-121 Krakow, Poland; (K.S.); (M.K.-Ł.); (E.D.)
| | - Magdalena Kurnik-Łucka
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St 18, 31-121 Krakow, Poland; (K.S.); (M.K.-Ł.); (E.D.)
| | - Emil Dadański
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St 18, 31-121 Krakow, Poland; (K.S.); (M.K.-Ł.); (E.D.)
| | - Barbara Bętkowska-Korpała
- Department of Psychiatry, Jagiellonian University Medical College, Institute of Medical Psychology, Jakubowskiego St 2, 30-688 Krakow, Poland;
| | - Krzysztof Gil
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St 18, 31-121 Krakow, Poland; (K.S.); (M.K.-Ł.); (E.D.)
| |
Collapse
|
22
|
Gut microbiota alteration in a mouse model of Anorexia Nervosa. Clin Nutr 2020; 40:181-189. [PMID: 32460959 DOI: 10.1016/j.clnu.2020.05.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/20/2020] [Accepted: 05/02/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Anorexia Nervosa is a severe disease depending on both biological, psychological and environmental factors. The gut microbiota has recently been proposed as one of the biological factors potentially involved in the onset or maintenance of Anorexia Nervosa. To unravel the potential role of the gut microbiota in this disease, we characterized the dysbiosis occurring in a mouse model of Anorexia and correlated bacteria level changes with different physiological parameters such as body weight, food intake or levels of hypothalamic neuropeptides. METHODS We used the Activity-Based Anorexia (ABA) mouse model, which combines food restriction and physical activity, and which mimics core features of Anorexia Nervosa. We characterized the gut microbiota alteration in ABA mice by combining 16S rRNA gene sequencing and quantitative PCR analyses of targeted genera or species. RESULTS We identified 68 amplicon sequence variants (ASVs) with decreased levels and 8 ASVs with increased levels in the cecal content of ABA mice compared to control mice. We observed in particular in ABA mice increases in the abundance of Clostridium cocleatum and several Lactobacillus species and a decrease in the abundance of Burkholderiales compared to control mice. Interestingly, we show that most of the observed gut microbiota alterations are due to food restriction and are not affected by physical activity. In addition, we identified several bacterial groups that correlate with mice body weight, food intake, lean and fat masses as well as with hypothalamic mRNA levels of NPY (Neuropeptide Y) and POMC (Pro-opiomelanocortin). CONCLUSIONS Our study provides a comprehensive characterization of the gut microbiota dysbiosis occurring in the Activity-Based Anorexia mouse model. These data constitute a valuable resource to further decipher the role of the gut microbiota in the different facets of anorexia pathophysiology, such as functional gastrointestinal disorders, appetite regulation and mood disorders.
Collapse
|
23
|
Coëffier M. Editorial – Anorexia Nervosa. CLINICAL NUTRITION EXPERIMENTAL 2019. [DOI: 10.1016/j.yclnex.2019.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Dominique M, Legrand R, Galmiche M, Azhar S, Deroissart C, Guérin C, do Rego JL, Leon F, Nobis S, Lambert G, Lucas N, Déchelotte P. Changes in Microbiota and Bacterial Protein Caseinolytic Peptidase B During Food Restriction in Mice: Relevance for the Onset and Perpetuation of Anorexia Nervosa. Nutrients 2019; 11:E2514. [PMID: 31635300 PMCID: PMC6835841 DOI: 10.3390/nu11102514] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 02/06/2023] Open
Abstract
Microbiota contributes to the regulation of eating behavior and might be implicated in the pathophysiology of anorexia nervosa. ClpB (Caseinolytic peptidase B) protein produced mainly by the Enterobacteriaceae family has been identified as a conformational mimetic of α-MSH, which could result in similar anorexigenic effects. The aim of this study was to highlight the role of the microbiome and the ClpB protein in deregulation and self-maintenance of anorexia pathology. Male C57Bl/6 mice were undergone to the ABA (Activity-Based Anorexia) protocol: after 5 days of acclimatization, both ABA and LFA (Limited Food Access) mice had progressively limited access to food until D17. At the end of protocol, the plasma ClpB concentration and Enterobacteriaceae DNA in colonic content were measured. As expected, dietary restriction induced lost weight in LFA and ABA mice. At D10, colonic permeability and plasma concentration of the ClpB protein were significantly increased in LFA and ABA mice vs. controls. At D17, plasma concentration of ClpB was increased in LFA and ABA mice and, it was correlated with proportion of Enterobacteriaceae in the faeces. These abnormally high ClpB concentrations and all associated factors, and therefore might contribute to the initiation and/or perpetuation of anorexia nervosa by interfering with satiety signaling.
Collapse
Affiliation(s)
- Manon Dominique
- TargEDys SA, University of Rouen Normandy, 76183 Rouen, France.
- Inserm UMR1073, Nutrition, Gut and Brain Laboratory, University of Rouen Normandy, Unirouen, 76183 Rouen, France.
- Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandy, Unirouen, 76183 Rouen, France.
| | - Romain Legrand
- TargEDys SA, University of Rouen Normandy, 76183 Rouen, France.
| | - Marie Galmiche
- TargEDys SA, University of Rouen Normandy, 76183 Rouen, France.
- Inserm UMR1073, Nutrition, Gut and Brain Laboratory, University of Rouen Normandy, Unirouen, 76183 Rouen, France.
- Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandy, Unirouen, 76183 Rouen, France.
| | - Saïda Azhar
- TargEDys SA, University of Rouen Normandy, 76183 Rouen, France.
| | | | - Charlène Guérin
- Inserm UMR1073, Nutrition, Gut and Brain Laboratory, University of Rouen Normandy, Unirouen, 76183 Rouen, France.
- Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandy, Unirouen, 76183 Rouen, France.
| | - Jean-Luc do Rego
- Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandy, Unirouen, 76183 Rouen, France.
- Animal Behavior Platform, Service Commun d'Analyse Comportementale (SCAC), University of Rouen Normandy, 76183 Rouen, France.
| | - Fatima Leon
- Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandy, Unirouen, 76183 Rouen, France.
- Animal Behavior Platform, Service Commun d'Analyse Comportementale (SCAC), University of Rouen Normandy, 76183 Rouen, France.
| | - Séverine Nobis
- Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandy, Unirouen, 76183 Rouen, France.
- Animal Behavior Platform, Service Commun d'Analyse Comportementale (SCAC), University of Rouen Normandy, 76183 Rouen, France.
| | - Grégory Lambert
- TargEDys SA, University of Rouen Normandy, 76183 Rouen, France.
| | - Nicolas Lucas
- TargEDys SA, University of Rouen Normandy, 76183 Rouen, France.
| | - Pierre Déchelotte
- TargEDys SA, University of Rouen Normandy, 76183 Rouen, France.
- Inserm UMR1073, Nutrition, Gut and Brain Laboratory, University of Rouen Normandy, Unirouen, 76183 Rouen, France.
- Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandy, Unirouen, 76183 Rouen, France.
- Rouen University Hospital, CHU Charles Nicolle, 76183 Rouen, France.
| |
Collapse
|
25
|
L'Huillier C, Jarbeau M, Achamrah N, Belmonte L, Amamou A, Nobis S, Goichon A, Salameh E, Bahlouli W, do Rego JL, Déchelotte P, Coëffier M. Glutamine, but not Branched-Chain Amino Acids, Restores Intestinal Barrier Function during Activity-Based Anorexia. Nutrients 2019; 11:nu11061348. [PMID: 31208031 PMCID: PMC6628073 DOI: 10.3390/nu11061348] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/21/2022] Open
Abstract
Background: During activity-based anorexia (ABA) in mice, enhanced paracellular permeability and reduced protein synthesis have been shown in the colon while the gut–brain axis has received increasing attention in the regulation of intestinal and mood disorders that frequently occur during anorexia nervosa, a severe eating disorder for which there is no specific treatment. In the present study, we assessed the effects of oral glutamine (Gln) or branched-chain amino acids (BCAA) supplementation during ABA to target intestinal functions, body composition and feeding behavior. Methods: C57BL/6 male mice were randomized in Control (CTRL) and ABA groups. After ABA induction, mice received, or not, either 1% Gln or 2.5% BCAA (Leu, Ile, Val) for one week in drinking water. Results: Neither Gln nor BCAA supplementation affected body weight and body composition, while only Gln supplementation slightly increased food intake. ABA mice exhibited increased paracellular permeability and reduced protein synthesis in the colonic mucosa. Oral Gln restored colonic paracellular permeability and protein synthesis and increased the mucin-2 mRNA level, whereas BCAA did not affect colonic parameters. Conclusion: In conclusion, oral Gln specifically improves colonic response during ABA. These data should be further confirmed in AN patients.
Collapse
Affiliation(s)
- Clément L'Huillier
- UNIROUEN, INSERM UMR 1073 "Nutrition, Inflammation and Gut-Brain Axis", Normandie University, 76183 Rouen, France.
- Institute of Research and Innovation in Biomedicine (IRIB), UNIROUEN, Normandie University, 76183 Rouen, France.
| | - Marine Jarbeau
- UNIROUEN, INSERM UMR 1073 "Nutrition, Inflammation and Gut-Brain Axis", Normandie University, 76183 Rouen, France.
- Institute of Research and Innovation in Biomedicine (IRIB), UNIROUEN, Normandie University, 76183 Rouen, France.
| | - Najate Achamrah
- UNIROUEN, INSERM UMR 1073 "Nutrition, Inflammation and Gut-Brain Axis", Normandie University, 76183 Rouen, France.
- Institute of Research and Innovation in Biomedicine (IRIB), UNIROUEN, Normandie University, 76183 Rouen, France.
- Department of Nutrition, Rouen University Hospital, 76183 Rouen, France.
| | - Liliana Belmonte
- UNIROUEN, INSERM UMR 1073 "Nutrition, Inflammation and Gut-Brain Axis", Normandie University, 76183 Rouen, France.
- Institute of Research and Innovation in Biomedicine (IRIB), UNIROUEN, Normandie University, 76183 Rouen, France.
- Department of Nutrition, Rouen University Hospital, 76183 Rouen, France.
| | - Asma Amamou
- UNIROUEN, INSERM UMR 1073 "Nutrition, Inflammation and Gut-Brain Axis", Normandie University, 76183 Rouen, France.
- Institute of Research and Innovation in Biomedicine (IRIB), UNIROUEN, Normandie University, 76183 Rouen, France.
| | - Séverine Nobis
- UNIROUEN, INSERM UMR 1073 "Nutrition, Inflammation and Gut-Brain Axis", Normandie University, 76183 Rouen, France.
- Institute of Research and Innovation in Biomedicine (IRIB), UNIROUEN, Normandie University, 76183 Rouen, France.
| | - Alexis Goichon
- UNIROUEN, INSERM UMR 1073 "Nutrition, Inflammation and Gut-Brain Axis", Normandie University, 76183 Rouen, France.
- Institute of Research and Innovation in Biomedicine (IRIB), UNIROUEN, Normandie University, 76183 Rouen, France.
| | - Emmeline Salameh
- UNIROUEN, INSERM UMR 1073 "Nutrition, Inflammation and Gut-Brain Axis", Normandie University, 76183 Rouen, France.
- Institute of Research and Innovation in Biomedicine (IRIB), UNIROUEN, Normandie University, 76183 Rouen, France.
| | - Wafa Bahlouli
- UNIROUEN, INSERM UMR 1073 "Nutrition, Inflammation and Gut-Brain Axis", Normandie University, 76183 Rouen, France.
- Institute of Research and Innovation in Biomedicine (IRIB), UNIROUEN, Normandie University, 76183 Rouen, France.
| | - Jean-Luc do Rego
- Institute of Research and Innovation in Biomedicine (IRIB), UNIROUEN, Normandie University, 76183 Rouen, France.
- Animal Behavior Facility, SCAC, UNIROUEN, 76183 Rouen, France.
| | - Pierre Déchelotte
- UNIROUEN, INSERM UMR 1073 "Nutrition, Inflammation and Gut-Brain Axis", Normandie University, 76183 Rouen, France.
- Institute of Research and Innovation in Biomedicine (IRIB), UNIROUEN, Normandie University, 76183 Rouen, France.
- Department of Nutrition, Rouen University Hospital, 76183 Rouen, France.
| | - Moïse Coëffier
- UNIROUEN, INSERM UMR 1073 "Nutrition, Inflammation and Gut-Brain Axis", Normandie University, 76183 Rouen, France.
- Institute of Research and Innovation in Biomedicine (IRIB), UNIROUEN, Normandie University, 76183 Rouen, France.
- Department of Nutrition, Rouen University Hospital, 76183 Rouen, France.
| |
Collapse
|