1
|
Dar OI, Vinothkanna A, Ke X, Chen L, Gao Y, Wang P, Jia AQ. Triclosan-mediated metabolic oxidative stress-triggered cytoskeletal alterations in zebrafish gills and intestine: An integrated biomolecular and NMR-based metabolomics study. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138251. [PMID: 40239525 DOI: 10.1016/j.jhazmat.2025.138251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/09/2025] [Accepted: 04/09/2025] [Indexed: 04/18/2025]
Abstract
Triclosan (TCS) is a common disinfectant in consumer products, raising concerns about its effects on aquatic life. This study assessed the accumulation and impact of TCS on zebrafish (Danio rerio) by examining histological, biochemical, and NMR-based metabolomic changes in gill and intestinal tissue after 30 d of exposure to environmental concentrations (30, 50, and 70 µg/L). Both tissues showed TCS accumulation, which resulted in histopathological damage. The activity of catalase, lactate dehydrogenase, and acetylcholinesterase increased, while superoxide dismutase and glutathione S-transferase declined. Conversely, the content of malondialdehyde rose, but soluble protein decreased. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis displayed a varied spectrum of protein profiles, demonstrating alterations in the cytoskeletal proteins. Fourier-transform infrared spectroscopy indicated concentration-dependent alterations in the cytoskeletal protein secondary structures. Gene expression studies revealed alterations in the mRNA expression of genes associated with oxidative stress (sod-Cu/Zn, cat and mgst3b), metabolism (ldha), neural activity (ache), and cytoskeletal dynamics (actn4, myl9a, tpma, tuba1b and desmb). Nuclear magnetic resonance spectroscopy revealed significant changes in metabolic pathway profiles, validated by amino acid analysis. These results suggest that TCS can disrupt aquatic ecosystems by inducing oxidative stress, affecting cytoskeletal dynamics, and modifying metabolic processes.
Collapse
Affiliation(s)
- Owias Iqbal Dar
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China; Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Annadurai Vinothkanna
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China
| | - Xiaosu Ke
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Ligang Chen
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Yanan Gao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Peng Wang
- Hainan Key Laboratory of Marine Geological Resources and Environment; Hainan Geological Survey Institute, Haikou 570206, China.
| | - Ai-Qun Jia
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China.
| |
Collapse
|
2
|
Zhou X, Chen L, Zhao L, Mao W, Liu X, Zhang L, Xie Y, Li L. Effects of neostigmine on postoperative neurocognitive dysfunction: a systematic review and meta-analysis. Front Neurosci 2025; 19:1464272. [PMID: 40125478 PMCID: PMC11925933 DOI: 10.3389/fnins.2025.1464272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 02/24/2025] [Indexed: 03/25/2025] Open
Abstract
Introduction Postoperative neurocognitive dysfunction (PND) is a common and serious complication following surgery. Neostigmine, an acetylcholinesterase inhibitor commonly administered during anesthesia to reverse residual neuromuscular blockade, has been suggested in recent studies to potentially reduce the incidence of PND. However, findings have been inconsistent across studies. Therefore, this study conducts a systematic review and meta-analysis to evaluate the effect of neostigmine on PND. Methods We conducted a comprehensive literature search across multiple databases, including PubMed, EmBase, Web of Science, Cochrane Library, Scopus, SinoMed, and CNKI, to identify all relevant studies for inclusion. We included randomized controlled trials and cohort studies in our analysis. The risk of bias was assessed using the Risk of Bias 2 tool for randomized trials and the ROBINS-I tool for cohort studies. Results A total of 11 studies were included in this analysis, consisting of 8 randomized controlled trials and 3 cohort studies. The incidence of PND was significantly lower in the neostigmine group compared to the control group (log(OR): -0.54, 95% CI [-1.04, -0. 05]; OR: 0.58, 95% CI: [0.35, 0.95], p = 0.03, I2 = 81.95%). Sensitivity analysis led to the exclusion of one cohort study. Consequently, the final meta-analysis comprised 10 studies, encompassing a total of 50,881 participants. The results indicate that the incidence of PND was significantly lower in the neostigmine group compared to the control group (log(OR):-0. 27, 95% CI [-0.47, -0. 08]; OR: 0.76, 95% CI: [0.62, 0.91], p = 0.01, I2 = 2.50%). However, Meta-analysis of RCTs and cohort studies showed no significant difference. Subgroup analysis indicated that neostigmine reduced the incidence of delayed neurocognitive recovery (dNCR), but its impact on POD was unclear, with no significant association to nausea and vomiting. These findings suggest that neostigmine may reduce the risk of PND, but caution is needed in interpretation. Conclusion Neostigmine may have a potential positive effect in reducing the incidence of PND. However, no statistical difference was observed when meta-analyses were performed separately for randomized controlled trials (RCTs) and cohort studies. Given the limited number of studies available and the limitations of the current research, further investigation is needed to clarify the impact of neostigmine on PND. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/view/CRD42024537647, Identifier CRD42024537647.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Linji Li
- Department of Anesthesiology, The Second Clinical Medical College, North Sichuan Medical College, Beijing Anzhen Nanchong Hospital, Capital Medical University & Nanchong Central Hospital, Nanchong, China
| |
Collapse
|
3
|
Zeng FF, Chen ZH, Luo FH, Liu CJ, Yang X, Zhang FX, Shi W. Sophorae tonkinensis radix et rhizoma: A comprehensive review of the ethnopharmacology, phytochemistry, pharmacology, pharmacokinetics, toxicology and detoxification strategy. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118784. [PMID: 39244176 DOI: 10.1016/j.jep.2024.118784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sophorae tonkinensis Radix et Rhizoma (STR), the dried root and rhizome of Sophora tonkinensis Gagnep., is commonly used in the treatment of tonsillitis and pharyngitis, throat soreness and throat obstruction, swelling and aching of gum, etc. in China or other Asian countries. STR is usually used as the core herb in traditional Chinese medicine preparations, such as "Biyanling Tablets", "Fufang Muji Granules" and "Ganyanling Injections", etc. AIM OF THE REVIEW: This review aimed to provide a comprehensive analysis of STR in terms of botany, traditional use, phytochemistry, ethnopharmacology, pharmacology, pharmacokinetics, toxicology and detoxification strategy, to provide a rational application in future research. MATERIALS AND METHODS The information involved in the study was gathered from a variety of electronic resources, including China National Knowledge Infrastructure (CNKI), SciFinder, Google Scholar, PubMed, Web of Science, and Chinese Masters and Doctoral Dissertations. RESULTS Till now, a total of 333 chemical components have been identified in STR, including 85 alkaloids, 124 flavonoids, 24 triterpenes, 27 triterpene saponins, 34 organic acids, 8 polysaccharides, etc. STR and its main active constituents have cardiovascular protection, anti-tumor activity, anti-inflammatory activity, antipyretic activity, analgesic activity, antibacterial activity, antifungal activity, antiviral activity, and hepatoprotective activity, etc. However, toxic effects of STR on the liver, nerves, heart, and gastrointestinal tract have also been observed. To mitigate these risks, STR needs attenuation before use, with the most common detoxification methods being processing and combined use with other drugs. The pharmacokinetics of STR in vivo and traditional and clinical prescriptions containing STR have been sorted out. Despite the potential therapeutic benefits of STR, further research is warranted to elucidate its hepatotoxicity, particularly in vivo, exploring aspects such as in vivo metabolism, distribution, and mechanisms. CONCLUSION This review serves to emphasize the therapeutic potential of STR and highlights the crucial need to address its toxicity concerns before considering clinical application. Further research is required to comprehensively investigate the toxicological properties of STR, with particular emphasis on its hepatotoxicity and neurotoxicity. Such research endeavors have the potential to standardize the rational application of STR for optimal therapeutic outcomes.
Collapse
Affiliation(s)
- Fen-Fen Zeng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Zi-Hao Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Fu-Hui Luo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Cheng-Jun Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Xia Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Feng-Xiang Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| | - Wei Shi
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
4
|
Rössler J, Abramczyk E, Paredes S, Anusic N, Pu X, Maheshwari K, Turan A, Ruetzler K. Association of Intravenous Neostigmine and Anticholinergics or Sugammadex with Postoperative Delirium: A Retrospective Cohort Study. Anesth Analg 2025; 140:110-118. [PMID: 38446705 DOI: 10.1213/ane.0000000000006939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
BACKGROUND Administration of cholinesterase inhibitors in combination with anticholinergic drugs for reversal of neuromuscular blocks may precipitate delirium through impairment of central cholinergic transmission, which could be avoided by using sugammadex. Therefore, we tested the primary hypothesis that postoperative delirium is less common when neuromuscular block is reversed with sugammadex than with neostigmine combined with glycopyrrolate or atropine. METHODS We conducted a single-center retrospective cohort study, analyzing all adult patients having general anesthesia for noncardiac surgery who received neostigmine or sugammadex from January 2016 to March 2022. Inverse propensity score weighting and propensity score calibration were used to adjust for appropriate confounders. Our primary outcome was presence of delirium within the first 4 days after surgery, defined as at least 1 positive brief Confusion Assessment Method (bCAM) screening. The secondary outcome was the presence of early delirium within 24 hours of surgery. RESULTS Among 49,468 cases in our analysis, 6881 received sugammadex and 42,587 received neostigmine. After propensity weighting, the incidence of delirium was 1.09% in the sugammadex group and 0.82% in the neostigmine group. The odds of postoperative delirium did not differ between the sugammadex and neostigmine groups, with an estimated odds ratio (95% confidence interval) of 1.33 (0.91-1.95), P = .147. A sensitivity analysis restricted to only include cases with at least 6 bCAM measurements over postoperative day (POD) 1 to 4 had consistent results, as sugammadex compared with neostigmine was associated with an estimated odds ratio for postoperative delirium of 1.20 (0.82-1.77), P = .346. Sugammadex was significantly associated with an increased incidence of early postoperative delirium, with an estimated odds ratio of 1.71 (1.07-2.72), P = .025. Further analysis showed no treatment-by-age interaction for either postoperative delirium ( P = .637) or postoperative early delirium ( P = .904). CONCLUSIONS Compared to neostigmine, use of sugammadex for reversal of neuromuscular block was not associated with an increased risk of postoperative delirium in this retrospective single-center study. Though sugammadex was associated with a statistically significant increased risk of postoperative early delirium, the difference was small and not clinically relevant, and may reflect the presence of unknown confounders.
Collapse
Affiliation(s)
| | | | - Stephania Paredes
- From the Departments of Outcomes Research
- General Anesthesiology, Anesthesiology Institute, Cleveland Clinic, Cleveland, Ohio
| | | | - Xuan Pu
- From the Departments of Outcomes Research
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio
| | - Kamal Maheshwari
- From the Departments of Outcomes Research
- General Anesthesiology, Anesthesiology Institute, Cleveland Clinic, Cleveland, Ohio
| | - Alparslan Turan
- From the Departments of Outcomes Research
- General Anesthesiology, Anesthesiology Institute, Cleveland Clinic, Cleveland, Ohio
| | - Kurt Ruetzler
- From the Departments of Outcomes Research
- General Anesthesiology, Anesthesiology Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
5
|
Gust CJ, Bryan AD. Cluster Randomized Controlled Trial of a Standard Versus Postures-Only Yoga Session: Potential Self-Regulatory and Neurophysiological Mechanisms of an Ancient Practice. Ann Behav Med 2024; 58:707-716. [PMID: 39313441 DOI: 10.1093/abm/kaae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND It is well-recognized that maintaining a regular yogic practice is associated with numerous physical and psychological health benefits. However, few studies have explored the possible psychological and neurophysiological mediators through which the component parts of yoga-ethics, breath regulation, postures, and meditation-work to produce salutary effects. PURPOSE To address this gap, we conducted a cluster randomized trial to test the following set of theory-based mechanisms: emotion regulation for ethics, self-control for breath regulation, discomfort and distress tolerance for postures, and mindfulness for meditation. We also explored yoga's effects on the autonomic nervous system by examining salivary acetylcholinesterase levels. METHODS Participants (N = 260) were randomly assigned in clusters (n = 37) to a single, hour-long standard or postures-only yoga class. RESULTS Findings suggest that a single yoga class may confer both psychological and neurophysiological benefits, yet there were few differences between the two types of yoga classes. Pre- to post-session main effects of time, all in the expected direction, emerged for five of eight theoretical mediators, as well as for salivary acetylcholinesterase levels. Time X condition interactions observed for three of the mediators-cognitive reappraisal, discomfort tolerance, and expressive suppression-along with findings from the exploratory mediation analysis suggest potential unique benefits of the two yoga sessions for certain outcomes. CONCLUSIONS Additional studies are needed to replicate these results and to test other potential mediators and/or primary outcomes through which yoga might work to promote health.
Collapse
Affiliation(s)
- Charleen J Gust
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Angela D Bryan
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
6
|
Lukowicz-Bedford RM, Eisen JS, Miller AC. Gap-junction-mediated bioelectric signaling required for slow muscle development and function in zebrafish. Curr Biol 2024; 34:3116-3132.e5. [PMID: 38936363 PMCID: PMC11265983 DOI: 10.1016/j.cub.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/11/2024] [Accepted: 06/04/2024] [Indexed: 06/29/2024]
Abstract
Bioelectric signaling, intercellular communication facilitated by membrane potential and electrochemical coupling, is emerging as a key regulator of animal development. Gap junction (GJ) channels can mediate bioelectric signaling by creating a fast, direct pathway between cells for the movement of ions and other small molecules. In vertebrates, GJ channels are formed by a highly conserved transmembrane protein family called the connexins. The connexin gene family is large and complex, creating challenges in identifying specific connexins that create channels within developing and mature tissues. Using the embryonic zebrafish neuromuscular system as a model, we identify a connexin conserved across vertebrate lineages, gjd4, which encodes the Cx46.8 protein, that mediates bioelectric signaling required for slow muscle development and function. Through mutant analysis and in vivo imaging, we show that gjd4/Cx46.8 creates GJ channels specifically in developing slow muscle cells. Using genetics, pharmacology, and calcium imaging, we find that spinal-cord-generated neural activity is transmitted to developing slow muscle cells, and synchronized activity spreads via gjd4/Cx46.8 GJ channels. Finally, we show that bioelectrical signal propagation within the developing neuromuscular system is required for appropriate myofiber organization and that disruption leads to defects in behavior. Our work reveals a molecular basis for GJ communication among developing muscle cells and reveals how perturbations to bioelectric signaling in the neuromuscular system may contribute to developmental myopathies. Moreover, this work underscores a critical motif of signal propagation between organ systems and highlights the pivotal role of GJ communication in coordinating bioelectric signaling during development.
Collapse
Affiliation(s)
| | - Judith S Eisen
- University of Oregon, Institute of Neuroscience, Eugene, OR 97405, USA
| | - Adam C Miller
- University of Oregon, Institute of Neuroscience, Eugene, OR 97405, USA.
| |
Collapse
|
7
|
Lukowicz-Bedford RM, Eisen JS, Miller AC. Gap junction mediated bioelectric coordination is required for slow muscle development, organization, and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572619. [PMID: 38187655 PMCID: PMC10769300 DOI: 10.1101/2023.12.20.572619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Bioelectrical signaling, intercellular communication facilitated by membrane potential and electrochemical coupling, is emerging as a key regulator of animal development. Gap junction (GJ) channels can mediate bioelectric signaling by creating a fast, direct pathway between cells for the movement of ions and other small molecules. In vertebrates, GJ channels are formed by a highly conserved transmembrane protein family called the Connexins. The connexin gene family is large and complex, presenting a challenge in identifying the specific Connexins that create channels within developing and mature tissues. Using the embryonic zebrafish neuromuscular system as a model, we identify a connexin conserved across vertebrate lineages, gjd4, which encodes the Cx46.8 protein, that mediates bioelectric signaling required for appropriate slow muscle development and function. Through a combination of mutant analysis and in vivo imaging we show that gjd4/Cx46.8 creates GJ channels specifically in developing slow muscle cells. Using genetics, pharmacology, and calcium imaging we find that spinal cord generated neural activity is transmitted to developing slow muscle cells and synchronized activity spreads via gjd4/Cx46.8 GJ channels. Finally, we show that bioelectrical signal propagation within the developing neuromuscular system is required for appropriate myofiber organization, and that disruption leads to defects in behavior. Our work reveals the molecular basis for GJ communication among developing muscle cells and reveals how perturbations to bioelectric signaling in the neuromuscular system_may contribute to developmental myopathies. Moreover, this work underscores a critical motif of signal propagation between organ systems and highlights the pivotal role played by GJ communication in coordinating bioelectric signaling during development.
Collapse
|
8
|
Kelly JJ, Wen H, Brehm P. Single-cell RNAseq analysis of spinal locomotor circuitry in larval zebrafish. eLife 2023; 12:RP89338. [PMID: 37975797 PMCID: PMC10656102 DOI: 10.7554/elife.89338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Identification of the neuronal types that form the specialized circuits controlling distinct behaviors has benefited greatly from the simplicity offered by zebrafish. Electrophysiological studies have shown that in addition to connectivity, understanding of circuitry requires identification of functional specializations among individual circuit components, such as those that regulate levels of transmitter release and neuronal excitability. In this study, we use single-cell RNA sequencing (scRNAseq) to identify the molecular bases for functional distinctions between motoneuron types that are causal to their differential roles in swimming. The primary motoneuron, in particular, expresses high levels of a unique combination of voltage-dependent ion channel types and synaptic proteins termed functional 'cassettes.' The ion channel types are specialized for promoting high-frequency firing of action potentials and augmented transmitter release at the neuromuscular junction, both contributing to greater power generation. Our transcriptional profiling of spinal neurons further assigns expression of this cassette to specific interneuron types also involved in the central circuitry controlling high-speed swimming and escape behaviors. Our analysis highlights the utility of scRNAseq in functional characterization of neuronal circuitry, in addition to providing a gene expression resource for studying cell type diversity.
Collapse
Affiliation(s)
- Jimmy J Kelly
- Vollum Institute, Oregon Health & Science UniversityPortlandUnited States
| | - Hua Wen
- Vollum Institute, Oregon Health & Science UniversityPortlandUnited States
| | - Paul Brehm
- Vollum Institute, Oregon Health & Science UniversityPortlandUnited States
| |
Collapse
|
9
|
Shi Q, Yang H, Zheng Y, Zheng N, Lei L, Li X, Ding W. Neurotoxicity of an emerging organophosphorus flame retardant, resorcinol bis(diphenyl phosphate), in zebrafish larvae. CHEMOSPHERE 2023; 334:138944. [PMID: 37211164 DOI: 10.1016/j.chemosphere.2023.138944] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/08/2023] [Accepted: 05/13/2023] [Indexed: 05/23/2023]
Abstract
Resorcinol bis(diphenyl phosphate) (RDP), an emerging organophosphorus flame retardant and alternative to triphenyl phosphate (TPHP), is a widespread environmental pollutant. The neurotoxicity of RDP has attracted much attention, as RDP exhibits a similar structure to TPHP, a neurotoxin. In this study, the neurotoxicity of RDP was investigated by using a zebrafish (Danio rerio) model. Zebrafish embryos were exposed to RDP (0, 0.3, 3, 90, 300 and 900 nM) from 2 to 144 h postfertilization. After this exposure, the decreased heart rates and body lengths and the increased malformation rates were observed. RDP exposure significantly reduced the locomotor behavior under light-dark transition stimulation and the flash stimulus response of larvae. Molecular docking results showed that RDP could bind to the active site of zebrafish AChE and that RDP and AChE exhibit potent binding affinity. RDP exposure also significantly inhibited AChE activity in larvae. The content of neurotransmitters (γ-aminobutyric, glutamate, acetylcholine, choline and epinephrine) was altered after RDP exposure. Key genes (α1-tubulin, mbp, syn2a, gfap, shhα, manf, neurogenin, gap-43 and ache) as well as proteins (α1-tubulin and syn2a) related to the development of the central nervous system (CNS) were downregulated. Taken together, our results showed that RDP can affect different parameters related to CNS development, eventually leading to neurotoxicity. This study indicated that more attention should be paid to the toxicity and environmental risk of emerging organophosphorus flame retardants.
Collapse
Affiliation(s)
- Qipeng Shi
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, 453007, China.
| | - Huaran Yang
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Yanan Zheng
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Na Zheng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Lei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyu Li
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Weikai Ding
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
10
|
Liu J, Zhang X, Zhang Q, Wang R, Ma J, Bai X, Wang D. Loxhd1b inhibits the hair cell development in zebrafish: Possible relation to the BDNF/TrkB/ERK pathway. Front Cell Neurosci 2022; 16:1065309. [PMID: 36505516 PMCID: PMC9729270 DOI: 10.3389/fncel.2022.1065309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
Background Mutations in lipoxygenase homology domain 1 (LOXHD1) cause autosomal recessive inheritance, leading to high-frequency and intermediate-frequency hearing losses in patients. To date, studies on the localization of LOXHD1 gene expression are limited. In this study, we aimed to observe the expressions of Loxhd1b in zebrafish, C57BL/6 murine cochlea, and HEI-OC1 cells. Methods The expression of Loxhd1b in the auditory system of zebrafish was explored by in situ hybridization experiments of zebrafish embryos. The expression of Loxhd1b in cochlear and HEI-OC1 cells of C57BL/6 mice was analyzed by immunofluorescence staining. Confocal microscopic in vivo imaging was used to detect the number and morphological characteristics of lateral line neuromasts and inner ear hair cells in zebrafish that knocked down Loxhd1b gene. The effect of knockdown Loxhd1b gene on the development of zebrafish otolith and semicircular canal was observed using microscopic. Transcriptome sequencing was used to identify downstream molecules and associated signaling pathways and validated by western blotting, immunostaining, and rescue experiments. Results Results of the in situ hybridization with zebrafish embryos at different time points showed that Loxhd1b was expressed in zebrafish at the inner ear and olfactory pores, while the immunostaining showed that Loxhd1 was expressed in both C57BL/6 mouse cochlea and HEI-OC1 cells. Loxhd1b knockdown causes a decrease in the number of spinal and lateral line neuromasts in the inner ear of zebrafish, accompanied by weakened hearing function, and also leads to developmental defects of otoliths and ear follicles. The results of transcriptomics analysis revealed the downstream molecule brain-derived neurotrophic factor (BDNF) and verified that Loxhd1b and BDNF regulate the formation of zebrafish hair cells by synergistic regulation of BDNF/TrkB/ERK pathway based on western blotting, immunostaining, and rescue experiments. Conclusion This was the first time that the BDNF/TrkB/ERK pathway was identified to play a critical role in the molecular regulation of the development of zebrafish hair cells and the auditory development by Loxhd1b.
Collapse
Affiliation(s)
- Jingwen Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China,Department of Ophthalmology, Jinan Second People’s Hospital, Jinan, China
| | - Xu Zhang
- Translational Medical Research Center, Wuxi No.2 People’s Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, China,Key Laboratory of Neuroregeneration of MOE, Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Qingchen Zhang
- Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Rongrong Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingyu Ma
- Department of Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaohui Bai
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dawei Wang
- Department of Orthopedics, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China,Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,*Correspondence: Dawei Wang,
| |
Collapse
|
11
|
Hassan AA, Bel Hadj Salah K, Fahmy EM, Mansour DA, Mohamed SAM, Abdallah AA, Ashkan MF, Majrashi KA, Melebary SJ, El-Sheikh ESA, El-Shaer N. Olive Leaf Extract Attenuates Chlorpyrifos-Induced Neuro- and Reproductive Toxicity in Male Albino Rats. Life (Basel) 2022; 12:1500. [PMID: 36294935 PMCID: PMC9605092 DOI: 10.3390/life12101500] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/24/2022] Open
Abstract
Chlorpyrifos (CPF) is a common organophosphorus insecticide. It is associated with negative consequences such as neurotoxicity and reproductive injury. This study aimed to observe the ability of olive leaf extract to attenuate chlorpyrifos toxicity, which induced neuro- and reproductive toxicity in male albino rats. Olive leaf extract (OLE) exhibits potent antioxidant and antiapoptotic properties. Twenty-two mature male rats were divided into four groups: control (saline), CPF (9 mg/kg), OLE (150 mg/kg), and CPF + OLE. Treatment was administered orally for 80 days. The CPF significantly reduced serum sex hormones, sperm counts and motility, high oxidants (MDA), and depleted antioxidants (GSH, SOD, TAC) in the brain and testes homogenate; additionally, it decreased serum AChE and brain neurotransmitters, increased Bax, decreased Bcl-2, and boosted caspase-3 immune expression in neural and testicular cells. Immunological expression of Ki 67 in the cerebrum, cerebellum, choroid plexus, and hippocampus was reduced, and α-SMA in testicular tissue also decreased. Histopathological findings were consistent with the above impacts. OLE co-administration significantly normalized all these abnormalities. OLE showed significant protection against neural and reproductive damage caused by CPF.
Collapse
Affiliation(s)
- Arwa A. Hassan
- Pharmacology & Toxicology Department, Faculty of Pharmacy & Pharmaceutical Industries, Sinai University, El-Arish 45518, Egypt
| | - Karima Bel Hadj Salah
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
- Laboratory of Transmissible Diseases and Biologically Active Substances, Faculty of Pharmacy, University of Monastir, Monastir 5019, Tunisia
| | - Esraa M. Fahmy
- Pharmacology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Doaa A. Mansour
- Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Sally A. M. Mohamed
- Histology and Cytology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Asmaa A. Abdallah
- Theriogenology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mada F. Ashkan
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Kamlah Ali Majrashi
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Sahar J. Melebary
- Department of Biology, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia
| | - El-Sayed A. El-Sheikh
- Department of Plant Protection, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Nashwa El-Shaer
- Department of Plant Protection, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
12
|
Thirumurthi NA, Raghunath A, Balasubramanian S, Perumal E. Evaluation of Maghemite Nanoparticles-Induced Developmental Toxicity and Oxidative Stress in Zebrafish Embryos/Larvae. Biol Trace Elem Res 2022; 200:2349-2364. [PMID: 34297274 DOI: 10.1007/s12011-021-02830-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/08/2021] [Indexed: 12/31/2022]
Abstract
Maghemite nanoparticles ([Formula: see text] NPs) have a wide array of applications in various industries including biomedical field. There is an absence of legislation globally for the regulation of the production, use, and disposal of such NPs as they are eventually dumped into the environment where these NPs might affect the living systems. This study evaluates the effect of the [Formula: see text] NP-induced developmental toxicity in zebrafish embryos/larvae. The commercially available Fe2O3 NPs were purchased, and zebrafish embryos toxicity test was done by exposing embryos to various concentrations of [Formula: see text] NPs at 1 hpf and analyzed at 96 hpf. Based on the LC50 value (60.17 ppm), the sub-lethal concentrations of 40 and 60 ppm were used for further experiments. Hatching, lethality, developmental malformations, and heartbeat rate were measured in the control and treated embryos/larvae. The ionic Fe content in the media, and the larvae was quantified using ICP-MS and AAS. The biomolecular alterations in the control and treated groups were analyzed using FT-IR. The Fe ions present in the larvae were visualized using SEM-EDXS. In situ detection of AChE and apoptotic bodies was done using staining techniques. Biochemical markers (total protein content, AChE, and Na+ K+-ATPase) along with oxidants and antioxidants were assessed. A significant decrease in the heartbeat rate and hatching delay was observed in the treated groups affecting the developmental processes. Teratogenic analysis showed increased developmental deformity incidence in treated groups in a dose-dependent manner. The accumulation of Fe was evidenced from the ICP-MS, AAS, and SEM-EDXS. Alterations in AChE and Na+ K+-ATPase activity were observed along with an increment in the oxidants level with a concomitant decrease in antioxidant enzymes. These results show [Formula: see text] NP exposure leads to developmental malformation and results in the alteration of redox homeostasis.
Collapse
Affiliation(s)
| | - Azhwar Raghunath
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, India
| | | | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, India.
| |
Collapse
|
13
|
Zheng YQ, Suo GH, Liu D, Li HY, Wu YJ, Ni H. Nexmifa Regulates Axon Morphogenesis in Motor Neurons in Zebrafish. Front Mol Neurosci 2022; 15:848257. [PMID: 35431796 PMCID: PMC9009263 DOI: 10.3389/fnmol.2022.848257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Nexmif is mainly expressed in the central nervous system (CNS) and plays important roles in cell migration, cell to cell and cell-matrix adhesion, and maintains normal synaptic formation and function. Nevertheless, it is unclear how nexmif is linked to motor neuron morphogenesis. Here, we provided in situ hybridization evidence that nexmifa (zebrafish paralog) was localized to the brain and spinal cord and acted as a vital regulator of motor neuron morphogenesis. Nexmifa deficiency in zebrafish larvae generated abnormal primary motor neuron (PMN) development, including truncated Cap axons and decreased branches in Cap axons. Importantly, RNA-sequencing showed that nexmifa-depleted zebrafish embryos caused considerable CNS related gene expression alterations. Differentially expressed genes (DEGs) were mainly involved in axon guidance and several synaptic pathways, including glutamatergic, GABAergic, dopaminergic, cholinergic, and serotonergic synapse pathways, according to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation. In particular, when compared with other pathways, DEGs were highest (84) in the axon guidance pathway, according to Organismal Systems. Efna5b, bmpr2b, and sema6ba were decreased markedly in nexmifa-depleted zebrafish embryos. Moreover, both overexpression of efna5b mRNA and sema6ba mRNA could partially rescued motor neurons morphogenesis. These observations supported nexmifa as regulating axon morphogenesis of motor neurons in zebrafish. Taken together, nexmifa elicited crucial roles during motor neuron development by regulating the morphology of neuronal axons.
Collapse
Affiliation(s)
- Yu-qin Zheng
- Division of Brain Science, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Gui-hai Suo
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Dong Liu
- School of Life Sciences, Nantong University, Nantong, China
| | - Hai-ying Li
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
| | - You-jia Wu
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
- You-jia Wu,
| | - Hong Ni
- Division of Brain Science, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
- *Correspondence: Hong Ni,
| |
Collapse
|
14
|
Gong J, Qian P, Hu Y, Guo C, Wei G, Wang C, Cai C, Wang H, Liu D. Claudin h Is Essential for Hair Cell Morphogenesis and Auditory Function in Zebrafish. Front Cell Dev Biol 2021; 9:663995. [PMID: 34046408 PMCID: PMC8147561 DOI: 10.3389/fcell.2021.663995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/18/2021] [Indexed: 01/15/2023] Open
Abstract
Hereditary hearing loss caused by defective hair cells is one of the most common congenital diseases, whose nosogenesis is still unclear because many of the causative genes remain unidentified. Claudins are one kind of transmembrane proteins that constitute the most important components of the tight junctions and paracellular barrier and play important roles in neurodevelopment. In this study, we investigated the function of claudin h in morphogenesis and auditory function of the hair cell in zebrafish. The results of in situ hybridization showed that claudin h was specifically localized in the otic vesicle and neuromasts in zebrafish embryos. The deficiency of claudin h caused significant reduction of otic vesicle size and loss of utricle otolith. Moreover, the startle response and vestibulo-ocular reflex experiments revealed that loss of claudin h led to serious hearing loss and vestibular dysfunction. Importantly, the confocal microscopy observation found that compared to the control zebrafish, the claudin h morphants and mutants displayed significantly reduced the number of cristae hair cells and shortened kinocilia. Besides, the deficiency of claudin h also caused the loss of hair cells in neuromasts which could be rescued by injecting claudin h mRNA into the mutant embryos at one cell stage. Furthermore, the immunohistochemistry experiments demonstrated remarkable apoptosis of hair cells in the neuromasts, which might contribute to the loss of hair cells number. Overall, these data indicated that claudin h is indispensable for the development of hair cells, vestibular function, and hearing ability of zebrafish.
Collapse
Affiliation(s)
- Jie Gong
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and MOE, Nantong University, Nantong, China
| | - Peipei Qian
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and MOE, Nantong University, Nantong, China
| | - Yuebo Hu
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and MOE, Nantong University, Nantong, China
| | - Chao Guo
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and MOE, Nantong University, Nantong, China
| | - Guanyun Wei
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and MOE, Nantong University, Nantong, China
| | - Cheng Wang
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and MOE, Nantong University, Nantong, China
| | - Chengyun Cai
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and MOE, Nantong University, Nantong, China
| | - Haibo Wang
- Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dong Liu
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and MOE, Nantong University, Nantong, China
| |
Collapse
|
15
|
Shi Q, Guo W, Shen Q, Han J, Lei L, Chen L, Yang L, Feng C, Zhou B. In vitro biolayer interferometry analysis of acetylcholinesterase as a potential target of aryl-organophosphorus flame-retardants. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124999. [PMID: 33454525 DOI: 10.1016/j.jhazmat.2020.124999] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/20/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Organophosphorus flame retardants (OPFRs) have been implicated as neurotoxicants, but their potential neurotoxicity and mechanisms remain poorly understood. Herein, we investigated the neurotoxicity of selected OPFRs using zebrafish as a model organism. Environmentally relevant concentrations (3-1500 nM) of three classes of OPFRs (aryl-OPFRs, chlorinated-OPFRs, and alkyl-OPFRs) were tested in zebrafish larvae (2-144 h post-fertilisation) alongside the neurotoxic chemical chlorpyrifos (CPF) that inhibits acetylcholinesterase (AChE). Exposure to aryl-OPFRs and CPF inhibited AChE activities, while chlorinated- and alkyl-OPFRs did not inhibit these enzymes. Biolayer interferometry (BLI) was used to probe interactions between OPFRs and AChE. The association and dissociation response curves showed that, like CPF, all three selected aryl-OPFRs, triphenyl phosphate (TPHP), tricresyl phosphate (TCP) and cresyl diphenyl phosphate (CDP), bound directly to AChE. The affinity constant (KD) for TPHP, TCP, CDP and CPF was 2.18 × 10-4, 5.47 × 10-5, 1.05 × 10-4 and 1.70 × 10-5 M, respectively. In addition, molecular docking revealed that TPHP, TCP, CDP and CPF bound to AChE with glide scores of - 7.8, - 8.3, - 8.1 and - 7.3, respectively. Furthermore, the calculated binding affinity between OPFRs and AChE correlated well with the KD values measured by BLI. The present study revealed that aryl-OPFRs can act as potent AChE inhibitors, and may therefore present a significant ecological risk to aquatic organisms.
Collapse
Affiliation(s)
- Qipeng Shi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Wei Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; State Key Laboratory for Conservation and Utilization of Bio-Resources, School of Life Sciences, Center for Life Sciences, Yunnan University, Kunming 650091, China
| | - Qiancheng Shen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Jian Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lei Lei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
16
|
Fitzgerald JA, Könemann S, Krümpelmann L, Županič A, Vom Berg C. Approaches to Test the Neurotoxicity of Environmental Contaminants in the Zebrafish Model: From Behavior to Molecular Mechanisms. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:989-1006. [PMID: 33270929 DOI: 10.1002/etc.4951] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/15/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
The occurrence of neuroactive chemicals in the aquatic environment is on the rise and poses a potential threat to aquatic biota of currently unpredictable outcome. In particular, subtle changes caused by these chemicals to an organism's sensation or behavior are difficult to tackle with current test systems that focus on rodents or with in vitro test systems that omit whole-animal responses. In recent years, the zebrafish (Danio rerio) has become a popular model organism for toxicological studies and testing strategies, such as the standardized use of zebrafish early life stages in the Organisation for Economic Co-operation and Development's guideline 236. In terms of neurotoxicity, the zebrafish provides a powerful model to investigate changes to the nervous system from several different angles, offering the ability to tackle the mechanisms of action of chemicals in detail. The mechanistic understanding gained through the analysis of this model species provides a good basic knowledge of how neuroactive chemicals might interact with a teleost nervous system. Such information can help infer potential effects occurring to other species exposed to neuroactive chemicals in their aquatic environment and predicting potential risks of a chemical for the aquatic ecosystem. In the present article, we highlight approaches ranging from behavioral to structural, functional, and molecular analysis of the larval zebrafish nervous system, providing a holistic view of potential neurotoxic outcomes. Environ Toxicol Chem 2021;40:989-1006. © 2020 SETAC.
Collapse
Affiliation(s)
- Jennifer A Fitzgerald
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Sarah Könemann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- EPF Lausanne, School of Architecture, Civil and Environmental Engineering, Lausanne, Switzerland
| | - Laura Krümpelmann
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Anže Županič
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- National Institute of Biology, Ljubljana, Slovenia
| | - Colette Vom Berg
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| |
Collapse
|
17
|
Akyuz E, Doganyigit Z, Paudel YN, Koklu B, Kaymak E, Villa C, Arulsamy A, Shaikh MF, Devinsky O. Immunoreactivity of Muscarinic Acetylcholine M2 and Serotonin 5-HT2B Receptors, Norepinephrine Transporter and Kir Channels in a Model of Epilepsy. Life (Basel) 2021; 11:life11040276. [PMID: 33810231 PMCID: PMC8066555 DOI: 10.3390/life11040276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 11/23/2022] Open
Abstract
Epilepsy is characterized by an imbalance in neurotransmitter activity; an increased excitatory to an inhibitory activity. Acetylcholine (ACh), serotonin, and norepinephrine (NE) may modulate neural activity via several mechanisms, mainly through its receptors/transporter activity and alterations in the extracellular potassium (K+) concentration via K+ ion channels. Seizures may disrupt the regulation of inwardly rectifying K+ (Kir) channels and alter the receptor/transporter activity. However, there are limited data present on the immunoreactivity pattern of these neurotransmitter receptors/transporters and K+ channels in chronic models of epilepsy, which therefore was the aim of this study. Changes in the immunoreactivity of epileptogenesis-related neurotransmitter receptors/transporters (M2, 5-HT2B, and NE transporter) as well as Kir channels (Kir3.1 and Kir6.2) were determined in the cortex, hippocampus and medulla of adult Wistar rats by utilizing a Pentylenetetrazol (PTZ)-kindling chronic epilepsy model. Increased immunoreactivity of the NE transporter, M2, and 5-HT2B receptors was witnessed in the cortex and medulla. While the immunoreactivity of the 5-HT2B receptor was found increased in the cortex and medulla, it was decreased in the hippocampus, with no changes observed in the M2 receptor in this region. Kir3.1 and Kir6.2 staining showed increase immunoreactivity in the cerebral cortex, but channel contrasting findings in the hippocampus and medulla. Our results suggest that seizure kindling may result in significant changes in the neurotransmitter system which may contribute or propagate to future epileptogenesis, brain damage and potentially towards sudden unexpected death in epilepsy (SUDEP). Further studies on the pathogenic role of these changes in neurotransmitter receptors/transporters and K+ channel immunoreactivity may identify newer possible targets to treat seizures or prevent epilepsy-related comorbidities.
Collapse
Affiliation(s)
- Enes Akyuz
- Department of Biophysics, Faculty of International Medicine, University of Health Sciences, Istanbul 34668, Turkey
- Correspondence: (E.A.); (O.D.); Tel.: +90-535-7629979 (E.A.); +1-646-558-0803 (O.D.)
| | - Zuleyha Doganyigit
- Department of Histology and Embryology, Faculty of Medicine, Yozgat Bozok University, Yozgat 66100, Turkey; (Z.D.); (E.K.)
| | - Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia; (Y.N.P.); (A.A.); (M.F.S.)
| | - Betul Koklu
- Faculty of Medicine, Yozgat Bozok University, Yozgat 66100, Turkey;
| | - Emin Kaymak
- Department of Histology and Embryology, Faculty of Medicine, Yozgat Bozok University, Yozgat 66100, Turkey; (Z.D.); (E.K.)
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Alina Arulsamy
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia; (Y.N.P.); (A.A.); (M.F.S.)
| | - Mohd. Farooq Shaikh
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia; (Y.N.P.); (A.A.); (M.F.S.)
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, Department of Neurology, NYU Langone School of Medicine, New York, NY 10010, USA
- Correspondence: (E.A.); (O.D.); Tel.: +90-535-7629979 (E.A.); +1-646-558-0803 (O.D.)
| |
Collapse
|
18
|
TDP-43 Regulation of AChE Expression Can Mediate ALS-Like Phenotype in Zebrafish. Cells 2021; 10:cells10020221. [PMID: 33499374 PMCID: PMC7911940 DOI: 10.3390/cells10020221] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
The "distal axonopathy" hypothesis in amyotrophic lateral sclerosis (ALS) proposes that pathological changes occur at the neuromuscular junction (NMJ) early in the disease. While acetylcholinesterase (AChE) plays an important role in the functionality of the NMJ, its potential role in ALS remains unexplored. Here, we identified AChE as a limiting factor regulating muscle/motor neuron connection in a vertebrate model of ALS. Knockdown of the TAR DNA-binding protein 43 (TDP-43) orthologue in zebrafish resulted in early defects of motor functions coupled with NMJ disassembly. We found that a partially depleted tdp-43 caused a decrease of ache expression. Importantly, human AChE overexpression reduced the phenotypic defects in the tdp-43 loss of function model, with amelioration of post- and pre-synaptic deficits at the NMJ. In conclusion, our results provide a better understanding of the role of TDP-43 in the NMJ organization and indicate AChE as a contributing factor in the pathology of ALS. In particular, it may be implicated in the early defects that characterize NMJs in this major neurodegenerative disorder.
Collapse
|
19
|
Cloning and characterization of nicotinic acetylcholine receptor γ-like gene in adult transparent Pristella maxillaris. Gene 2020; 769:145193. [PMID: 33007374 DOI: 10.1016/j.gene.2020.145193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 08/26/2020] [Accepted: 09/24/2020] [Indexed: 11/23/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) play an important role in regulating the development and function of nervous system. The muscle AChR is composed of four homologous glycoprotein subunits with a stoichiometry α2βγδ in fetal or α2βεδ in adult. But the mechanism controlling the transition of fetal AChR γ-subunit to adult AChR ε is still unknown. Here a gene annoted AChR γ-like in Pristella maxillaris was first cloned by rapid amplification of cDNA ends (RACE) based on a transcriptome of dorsal fins. The full length of AChR γ-like was 1984 bp and it encoded 518 amino acids from 100 bp to 1653 bp. The multiple alignment analysis showed that AChR γ-like had 98% protein identity to AChR γ-like in Astyanax mexicanus. Then an 11647 bp DNA from 5'-UTR to 3'-UTR was cloned based on gene structure of AChR γ-like in A.mexicanus. Additionally a 2768 bp DNA upstream 5'-UTR was cloned by chromosome walking method. Furthermore, the results from semi-quantitative PCR showed that AChR γ-like was highly expressed in embryo and adult tissues, such as the muscle, eye, heart and intestine. While it showed low expression in the brain and gill. Significantly, the results of in situ hybridization showed strong diffused expression of AChR γ-like in the muscle of 1 dpf (day post-fertilization) embryo. And weak signal was observed in the muscle of 2-4 dpf embryos. All these data indicated that AChR γ-like could be one subunit of AChRs in the muscle and it could be used to study the development of the neuromuscular junction in adult transparent Pristella maxillaris. Thus our work will lay the foundation for using Pristella maxillaris to analyze the in vivo function of the nAChRs in adult vertebrate.
Collapse
|
20
|
Rivero-Wendt CLG, Miranda-Vilela AL, Domingues I, Oliveira R, Monteiro MS, Moura-Mello MAM, Matias R, Soares AMVM, Grisolia CK. Steroid androgen 17 alpha methyltestosterone used in fish farming induces biochemical alterations in zebrafish adults. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:1321-1332. [PMID: 32654587 DOI: 10.1080/10934529.2020.1790954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
The 17 alpha methyltestosterone (MT) hormone is fed to Oreochromis niloticus larvae in fish farms with the purpose of inducing sex reversal. The aim of this study was to evaluate the toxicity and sub-lethality of MT (99.9% purity) and cMT (a commercial MT with 90% purity) in zebrafish (Danio rerio) adults, where the animals were exposed to concentrations of 0, 4, 23, 139, 833 and 5000 µg/L for 96 hours. Genotoxicity was evaluated by micronucleus test (MN), nuclear abnormalities (NA) and comet assay. A low genotoxic potential of MT was showed, inducing micronucleus, nuclear abnormalities and DNA damage in Danio rerio, depending on the use of MT or cMT, gender and tested concentrations. In the sub-lethality trials, there was a basal difference in the activity of the enzymatic biochemical markers for males and females, while the Glutatione S transferase (GST) activity decreased in all analyzed tissues, and for males the enzymatic activity decreased only in the intestine. Results suggest that MT has a toxic potential to fish because it alters enzymatic metabolic pathways and may pose a risk to the ecosystems.
Collapse
Affiliation(s)
| | - Ana Luisa Miranda-Vilela
- Department of Genetics and Morphology, Institute of Biological Sciences, Universidade de Brasília, Brasília, DF, Brazil
| | - Inês Domingues
- Department of Biology & CESAM, Universidade de Aveiro, Aveiro, Portugal
| | - Rhaul Oliveira
- Department of Biology & CESAM, Universidade de Aveiro, Aveiro, Portugal
| | | | | | | | - Amadeu Mortágua Velho Maia Soares
- Department of Biology & CESAM, Universidade de Aveiro, Aveiro, Portugal
- Graduate Program in Vegetal Production, Universidade Federal do Tocantins, Gurupi, TO, Brazil
| | - Cesar Koppe Grisolia
- Department of Genetics and Morphology, Institute of Biological Sciences, Universidade de Brasília, Brasília, DF, Brazil
| |
Collapse
|
21
|
Increased ACh-Associated Immunoreactivity in Autonomic Centers in PTZ Kindling Model of Epilepsy. Biomedicines 2020; 8:biomedicines8050113. [PMID: 32397136 PMCID: PMC7277646 DOI: 10.3390/biomedicines8050113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022] Open
Abstract
Experimental and clinical studies of cardiac pathology associated with epilepsy have demonstrated an impact on the autonomic nervous system (ANS). However, the underlying molecular mechanism has not been fully elucidated. Molecular investigation of the neurotransmitters related receptor and ion channel directing ANS might help in understanding the associated mechanism. In this paper, we investigated the role of acetylcholine (ACh), which demonstrates both sympathetic and parasympathetic roles in targeted expression in terms of the relevant receptor and ion channel. Inwardly rectifying potassium (Kir) channels play a significant role in maintaining the resting membrane potential and controlling cell excitability and are prominently expressed in both the excitable and non-excitable tissues. The immunoreactivity of ACh-activated Kir3.1 channel and muscarinic ACh receptors (M2) in autonomic centers such as the brainstem, vagus nerve (VN) and atria of heart was confirmed by both histological staining and pathological tissue analysis. Significant upregulations of Kir3.1 and M2 receptors were observed in pentylenetetrazol (PTZ)-kindled epileptic rats for all related tissues investigated, whereas no pathological difference was observed. These findings provide proof-of-concept that changes in ACh-associated immunoreactivity might be linked to the ANS dysfunctions associated with epilepsy.
Collapse
|
22
|
Leong WH, Teh SY, Hossain MM, Nadarajaw T, Zabidi-Hussin Z, Chin SY, Lai KS, Lim SHE. Application, monitoring and adverse effects in pesticide use: The importance of reinforcement of Good Agricultural Practices (GAPs). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 260:109987. [PMID: 32090796 DOI: 10.1016/j.jenvman.2019.109987] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
This review intends to integrate the relevant information that is related to pesticide applications in food commodities and will cover three main sections. The first section encompasses some of the guidelines that have been implemented on management of pesticide application worldwide, such as the establishment of a value called Maximum Residue Level (MRL) through the application of Good Agricultural Practices (GAPs) into daily agricultural activities. A brief overview of the methods adopted in quantification of these trace residues in different food samples will also be covered. Briefly, pesticide analysis is usually performed in two stages: sample preparation and analytical instrumentation. Some of the preparation methods such as QuEChERs still remain as the technique of choice for most of the analytical scientists. In terms of the instrumentation such as the gas chromatography-mass spectrophotometry (GC-MS) and high performance-liquid chromatography (HPLC), these are still widely used, in spite of new inventions that are more sustainable and efficient such as the capillary electrophoresis (CE). Finally, the third section emphasizes on how pesticides can affect our health significantly whereby different types of pesticides result in different adverse health implications, despite its application benefits in agriculture in controlling pests. To date, there are limited reviews on pesticide usage in many agricultural-based nations; for the purpose of this review, Malaysia is selected to better illustrate pesticide regulations and implementation of policies. Finally, the review aims to provide an insight on how implementation of GAP and food safety assurance are inter-related and with this established correlation, to identify further measures for improvement to enable reinforcement of optimised agricultural practices specifically in these countries.
Collapse
Affiliation(s)
- Wye-Hong Leong
- Perdana University- Royal College of Surgeons in Ireland, School of Medicine, 43400 Serdang, Selangor, Malaysia.
| | - Shu-Yi Teh
- Perdana University- Royal College of Surgeons in Ireland, School of Medicine, 43400 Serdang, Selangor, Malaysia
| | - Mohammad Moshaddeque Hossain
- Faculty of Public Health and Health Sciences, Hamdard University Bangladesh, Hamdard City of Science, Education and Culture, Gazaria, Munshiganj, 1510, Bangladesh
| | - Thiyagar Nadarajaw
- Department of Paediatrics, Hospital Sultanah Bahiyah, 05460, Alor Setar, Kedah, Malaysia
| | - Zabidi Zabidi-Hussin
- School of Medicine, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Swee-Yee Chin
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Kok-Song Lai
- Division of Health Sciences, Abu Dhabi Women's College, Higher Colleges of Technology, 41012, Abu Dhabi, United Arab Emirates
| | - Swee-Hua Erin Lim
- Perdana University- Royal College of Surgeons in Ireland, School of Medicine, 43400 Serdang, Selangor, Malaysia; Division of Health Sciences, Abu Dhabi Women's College, Higher Colleges of Technology, 41012, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
23
|
Gong J, Hu S, Huang Z, Hu Y, Wang X, Zhao J, Qian P, Wang C, Sheng J, Lu X, Wei G, Liu D. The Requirement of Sox2 for the Spinal Cord Motor Neuron Development of Zebrafish. Front Mol Neurosci 2020; 13:34. [PMID: 32292330 PMCID: PMC7135881 DOI: 10.3389/fnmol.2020.00034] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
Sex-determining region Y box 2 (Sox2), expressed in neural tissues, plays an important role as a transcription factor not only in the pluripotency and proliferation of neuronal cells but also in the opposite function of cell differentiation. Nevertheless, how Sox2 is linked to motor neuron development remains unknown. Here, we showed that Sox2 was localized in the motor neurons of spinal cord by in situ hybridization and cell separation, which acted as a positive regulator of motor neuron development. The deficiency of Sox2 in zebrafish larvae resulted in abnormal PMN development, including truncated but excessively branched CaP axons, loss of MiP, and increase of undifferentiated neuron cells. Importantly, transcriptome analysis showed that Sox2-depleted embryos caused many neurogenesis, axonogenesis, axon guidance, and differentiation-related gene expression changes, which further support the vital function of Sox2 in motor neuron development. Taken together, these data indicate that Sox2 plays a crucial role in the motor neuron development by regulating neuron differentiation and morphology of neuron axons.
Collapse
Affiliation(s)
- Jie Gong
- School of Life Science, Nantong University, Nantong, China
| | - Songqun Hu
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Zigang Huang
- School of Life Science, Nantong University, Nantong, China
| | - Yuebo Hu
- Key Laboratory of Neuroregeneration of Jiangsu and MOE, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaoning Wang
- Key Laboratory of Neuroregeneration of Jiangsu and MOE, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jinxiang Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and MOE, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Peipei Qian
- Key Laboratory of Neuroregeneration of Jiangsu and MOE, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Cheng Wang
- School of Life Science, Nantong University, Nantong, China
| | - Jiajing Sheng
- School of Life Science, Nantong University, Nantong, China
| | - Xiaofeng Lu
- School of Life Science, Nantong University, Nantong, China
| | - Guanyun Wei
- School of Life Science, Nantong University, Nantong, China
| | - Dong Liu
- School of Life Science, Nantong University, Nantong, China.,Key Laboratory of Neuroregeneration of Jiangsu and MOE, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
24
|
Adam EH, Haas V, Lindau S, Zacharowski K, Scheller B. Cholinesterase alterations in delirium after cardiosurgery: a German monocentric prospective study. BMJ Open 2020; 10:e031212. [PMID: 31941763 PMCID: PMC7044931 DOI: 10.1136/bmjopen-2019-031212] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES Postoperative delirium (POD) is a common complication after elective cardiac surgery. Recent evidence indicates that a disruption in the normal activity of the cholinergic system may be associated with delirium. DESIGN Prospective observational study. SETTING Single-centre at a European academic hospital. PRIMARY AND SECONDARY OUTCOME MEASURES In our study the enzyme activities of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) were determined preoperatively as well as on the first and second postoperative day. The confusion assessment method for the intensive care unit was used to screen patients for the presence of POD. RESULTS A total of 114 patients were included in the study. POD was associated with a decrease in BChE activity on postoperative day 1 (p=0.03). In addition, patients who developed POD, had significantly lower preoperative AChE activity than patients without POD (p<0.01). Multivariate analysis identified a preoperatively decreased AChE activity (OR 3.1; 95% CI 1.14 to 8.46), anticholinergic treatment (OR 5.09; 95% CI 1.51 to 17.23), elevated European System for Cardiac Operative Risk Evaluation (OR 3.68; 95% CI 1.04 to 12.99) and age (OR 3.02; 95% CI 1.06 to 8.62) to be independently associated with the development of POD. CONCLUSIONS We conclude that a reduction in the acetylcholine hydrolysing enzyme activity in patients undergoing cardiac surgery may correlate with the development of POD.
Collapse
Affiliation(s)
- Elisabeth Hannah Adam
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Victoria Haas
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Simone Lindau
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Kai Zacharowski
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Bertram Scheller
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Evangelisches Krankenhaus Düsseldorf, Dusseldorf, Germany
| |
Collapse
|
25
|
Alam M, Park S. Spectroscopic Identifications, Molecular Docking, Neuronal Growth and Enzyme Inhibitory Activities of Steroidal Nitro Olefin: Quantum Chemical Study. ChemistrySelect 2019. [DOI: 10.1002/slct.201902093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mahboob Alam
- Division of Chemistry and BiotechnologyDongguk University Gyeongju 780-714 South Korea
| | - Soonheum Park
- Department of Advanced Materials ChemistryDongguk University Gyeongju 780-714 South Korea
| |
Collapse
|
26
|
Brehm P, Wen H. Zebrafish neuromuscular junction: The power of N. Neurosci Lett 2019; 713:134503. [PMID: 31557523 DOI: 10.1016/j.neulet.2019.134503] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 11/26/2022]
Abstract
In the early 1950s, Katz and his colleagues capitalized on the newly developed intracellular microelectrode recording technique to investigate synaptic transmission. For study they chose frog neuromuscular junction (NMJ), which was ideally suited due to the accessibility and large size of the muscle cells. Paradoxically, the large size precluded the use of next generation patch clamp technology. Consequently, electrophysiological study of synaptic function shifted to small central synapses made amenable by patch clamp. Recently, however, the unique features offered by zebrafish have rekindled interest in the NMJ as a model for electrophysiological study of synaptic transmission. The small muscle size and synaptic simplicity provide the singular opportunity to perform in vivo spinal motoneuron-target muscle patch clamp recordings. Additional incentive is provided by zebrafish lines harboring mutations in key synaptic proteins, many of which are embryonic lethal in mammals, but all of which are able to survive well past synapse maturation in zebrafish. This mini-review will highlight features that set zebrafish NMJs apart from traditional NMJs. We also draw into focus findings that offer the promise of identifying features that define release sites, which serve to set the upper limit of transmitter release. Since its conception several candidates representing release sites have been proposed, most of which are based on distinctions among vesicle pools in their state of readiness for release. However, models based on distinctions among vesicles have become enormously complicated and none adequately account for setting an upper limit for exocytosis in response to an action potential (AP). Specifically, findings from zebrafish NMJ point to an alternative model, positing that elements other than vesicles per se set the upper limits of release.
Collapse
Affiliation(s)
- Paul Brehm
- Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, USA.
| | - Hua Wen
- Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, USA
| |
Collapse
|
27
|
Elemental imaging (LA-ICP-MS) of zebrafish embryos to study the toxicokinetics of the acetylcholinesterase inhibitor naled. Anal Bioanal Chem 2018; 411:617-627. [PMID: 30443774 PMCID: PMC6338705 DOI: 10.1007/s00216-018-1471-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/25/2018] [Accepted: 11/02/2018] [Indexed: 12/16/2022]
Abstract
The zebrafish embryo is an important model in ecotoxicology but the spatial distribution of chemicals and the relation to observed effects is not well understood. Quantitative imaging can help to gain insights into the distribution of chemicals in the zebrafish embryo. Laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) is used to quantify the uptake and the uptake kinetics of the bromine (Br) containing organophosphate naled (Dibrom®, dimethyl-1,2-dibromo-2,2-dichloroethylphosphate) and its distribution in zebrafish embryos using Br as the marker element. During exposure, the Br amounts increase in the embryos parallel to the irreversible inhibition of the acetylcholinesterase (AChE). The final amount of Br in the embryo (545 pmol/embryo) corresponds to a 280-fold enrichment of naled from the exposure solution. However, LC-MS/MS analyses showed that the internal concentration of naled remained below the LOD (7.8 fmol/embryo); also the concentration of its known transformation product dichlorvos remained low (0.85 to 2.8 pmol/embryo). These findings indicate the high reactivity and high transformation rate of naled to other products than dichlorvos. 12C normalized intensity distributions of Br in the zebrafish embryo showed an enrichment of Br in its head region. Kernel density estimates of the LA-ICP-MS data were calculated and outline the high reproducibility between replicated and the shift in the Br distribution during exposure. The Br enrichment indicates a preferential debromination or direct covalent reaction of naled with AChE in this region. ᅟ ![]()
Collapse
|
28
|
Ma S, Zeng X, Chen H, Geng S, Yan L, Luo Y, Xie L, Zhang Q. The differences in bioaccumulation and effects between Se(IV) and Se(VI) in the topmouth gudgeon Pseudorasbora parva. Sci Rep 2018; 8:13860. [PMID: 30218092 PMCID: PMC6138650 DOI: 10.1038/s41598-018-32270-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/02/2018] [Indexed: 11/09/2022] Open
Abstract
Selenium (Se) might be protective against oxidative stress at nutritional levels, but elevated Se concentrations in the diet has been revealed as the main culprit for the extinction of natural fish populations in Se-contaminated lakes. Though Se predominate as waterborne selenite (IV) and selenate (VI) in the water, the differences in bioaccumulation, effects (e.g., oxidative stress, antioxidants etc.) and molecular mechanisms between Se(IV) and Se(VI) have been relatively understudied in wild fish. In this study, the P. parva were exposed to waterborne Se (10, 200 and 1000 μg/L of Se(IV) or Se(VI)) and sampled at 4, 14 and 28 days. Bioaccumulation, tissue distributions of Se and following effects in different tissues were evaluated. The results showed that the levels of Se in the gills and intestine were significantly elevated with a seemingly concentration-dependent pattern in the Se(IV) treatment, with respectively 173.3% and 57.2% increase after 28 days of exposure, relative to that of Se(VI) treatment. Additionally, significant accumulation of Se was also observed in the muscle of Se(IV) treated fish. Se exposure increased the MDA levels in the brain and gills in the Se(IV) treatment, but less apparent in the Se(VI) treatment. Meanwhile, Se exposure lowered (at least 56%) the activity of GST in the gills, but increased the activity of AChE in the muscle (~69%) and brain (~50%) after 28 d. Most importantly, after 28 d of exposure, Se exposure caused significant decrease in GSH levels in the gills (at least 35%) and in all tissues examined at the highest test concentration. In general, the results showed that Se(IV) led to faster accumulation of Se than Se(VI) in P. parva, and the resulted lipid peroxidation was closely related to the levels of antioxidants, especially GSH. Our results suggest that the ecotoxicological effects of waterborne selenite and selenate differ in this freshwater species in the field.
Collapse
Affiliation(s)
- Shanshan Ma
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.,The Key Laboratory of Clean Combustion for Electricity Generation and Heat-Supply Technology, College of Energy and Power, Shenyang Institute of Engineering, Shenyang, 110136, China
| | - Xiangfeng Zeng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.,Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Hongxing Chen
- The Environmental Research Institute, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Shicong Geng
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Liang Yan
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Yongju Luo
- Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Lingtian Xie
- The Environmental Research Institute, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Qianru Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| |
Collapse
|
29
|
Egashira Y, Zempo B, Sakata S, Ono F. Recent advances in neuromuscular junction research prompted by the zebrafish model. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
30
|
Maharajan K, Muthulakshmi S, Nataraj B, Ramesh M, Kadirvelu K. Toxicity assessment of pyriproxyfen in vertebrate model zebrafish embryos (Danio rerio): A multi biomarker study. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 196:132-145. [PMID: 29407799 DOI: 10.1016/j.aquatox.2018.01.010] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
Pyriproxyfen (2-[1-methyl-2-(4-phenoxyphenoxy) ethoxy] pyridine) (PPF), a pyridine-based pesticide widely used to control agricultural insect pests and mosquitoes in drinking water sources. However, its ecotoxicological data is limited in aquatic vertebrates particularly in fish. Hence, the present study aimed to evaluate the adverse effect of PPF in zebrafish embryo development (Danio rerio). In order to investigate the impact of PPF, embryos were exposed to 0.16, 0.33 and 1.66 μg/mL (0.52, 1.04 and 5.2 μM, respectively) for 96 hpf and various biomarker indices such as developmental toxicity (edema formation, hyperemia, heart size and scoliosis), oxidative stress (reactive oxygen species (ROS), lipid peroxidation (LPO) and nitric oxide (NO)), antioxidant responses (superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), glutathione peroxidase (GPx) and reduced glutathione (GSH)), biochemical (lactate dehydrogenase (LDH) and acid phosphatase (AP)), neurotoxicity (acetylcholinesterase (AChE)), genotoxicity (apoptosis and DNA damage) and histopathological changes were determined. The results showed that severe developmental deformities and changes in heart rate were observed in embryos treated with highest (1.66 μg/mL) concentration than the control (P < 0.05). Heart size measurement showed that, significant change in heart size (P < 0.01) was observed in embryos of 96 hpf only at 1.66 μg/mL PPF exposure. The oxidative stress was apparent at highest test concentration (1.66 μg/mL) as reflected by the elevated ROS, LPO and NO and changes in antioxidant enzyme activities including SOD, CAT, GST and GPx (P < 0.05). Besides, GSH level and AChE activity were significantly lowered in 1.66 μg/mL PPF exposed group than the control. After 96 hpf of PPF exposure, no significant changes were found in AP activity whereas, a biphasic response was observed in the LDH activity. There was no genotoxic effect in embryos exposed to PPF at 0.16 and 0.33 μg/mL, while significant (P < 0.05) DNA damage and apoptosis were found in 1.66 μg/mL treated group. Histopathological analysis revealed that exposure to PPF at 1.66 μg/mL resulted in thinning of heart muscles, pericardial edema and hyperemia while there was no obvious changes were observed in other treatment groups. Hence, the results of the present study demonstrate that PPF could cause adverse effect on early developmental stages of zebrafish at higher concentration.
Collapse
Affiliation(s)
- Kannan Maharajan
- DRDO-BU Center for Life Sciences, Bharathiar University Campus, Coimbatore, India
| | | | - Bojan Nataraj
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore, India
| | - Mathan Ramesh
- DRDO-BU Center for Life Sciences, Bharathiar University Campus, Coimbatore, India; Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore, India.
| | - Krishna Kadirvelu
- DRDO-BU Center for Life Sciences, Bharathiar University Campus, Coimbatore, India
| |
Collapse
|
31
|
Islam MM, Rohman MA, Gurung AB, Bhattacharjee A, Aguan K, Mitra S. Correlation of cholinergic drug induced quenching of acetylcholinesterase bound thioflavin-T fluorescence with their inhibition activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 189:250-257. [PMID: 28822269 DOI: 10.1016/j.saa.2017.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/17/2017] [Accepted: 08/02/2017] [Indexed: 06/07/2023]
Abstract
The development of new acetylcholinesterase inhibitors (AChEIs) and subsequent assay of their inhibition efficiency is considered to be a key step for AD treatment. The fluorescence intensity of thioflavin-T (ThT) bound in the active site of acetylcholinesterase (AChE) quenches substantially in presence of standard AChEI drugs due to the dynamic replacement of the fluorophore from the AChE active site as confirmed from steady state emission as well as time-resolved fluorescence anisotropy measurement and molecular dynamics simulation in conjunction with docking calculation. The parametrized % quenching data for individual system shows excellent correlation with enzyme inhibition activity measured independently by standard Ellman AChE assay method in a high throughput plate reader system. The results are encouraging towards design of a fluorescence intensity based AChE inhibition assay method and may provide a better toolset to rapidly evaluate as well as develop newer AChE-inhibitors for AD treatment.
Collapse
Affiliation(s)
- Mullah Muhaiminul Islam
- Center for Advanced Studies in Chemistry, North-Eastern Hill University, Shillong 793 022, India
| | - Mostofa Ataur Rohman
- Center for Advanced Studies in Chemistry, North-Eastern Hill University, Shillong 793 022, India
| | - Arun Bahadur Gurung
- Department of Biotechnology & Bio-informatics, North-Eastern Hill University, Shillong 793 022, India
| | - Atanu Bhattacharjee
- Department of Biotechnology & Bio-informatics, North-Eastern Hill University, Shillong 793 022, India
| | - Kripamoy Aguan
- Department of Biotechnology & Bio-informatics, North-Eastern Hill University, Shillong 793 022, India
| | - Sivaprasad Mitra
- Center for Advanced Studies in Chemistry, North-Eastern Hill University, Shillong 793 022, India.
| |
Collapse
|
32
|
Mansour SZ, Moawed FSM, Elmarkaby SM. Protective effect of 5, 7-dihydroxyflavone on brain of rats exposed to acrylamide or γ-radiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 175:149-155. [PMID: 28888167 DOI: 10.1016/j.jphotobiol.2017.08.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/18/2017] [Accepted: 08/26/2017] [Indexed: 12/27/2022]
Abstract
5, 7-Dihydroxyflavone (DHF), a natural plant flavonoid, have shown a variety of beneficial effects. Neurotoxic effects of acrylamide (ACR) or gamma irradiation (IR) have been established in humans and animals. The current study was designed to evaluate whether DHF could restrain ACR or IR induced neurotoxicity in rats and to explore the underlying mechanisms. The study was carried out by investigating some biochemical and biophysical parameters as well as histopathological examination. The daily oral administration of ACR (25mg/kg b.wt.) for 21days or exposure to single dose of IR (5Gy) induced brain damage throughout the significant decrease in catecholamine contents and brain derived neurotrophic factor (BDNF) in brain tissue with a concomitant significant decrease in serum activity of creatinine kinase-BB. Moreover, the brain levels of MDA and β-amyloid and activities of acetylcholinesterase and caspase-3 were remarkably augmented in ACR-induced rats. Additionally, the electrical properties of erythrocytes membrane were significantly disturbed. The administration of DHF (50mg/kg b.wt. daily for 21day) to rats exposed to either ACR or IR significantly reversed the alteration in all studied parameters. Histopathological investigation of brain tissues supported the neuroprotective effect of DHF on brain. From the obtained data, it can be concluded that the DHF has neuroprotective effect against ACR or IR induced-neurotoxicity.
Collapse
Affiliation(s)
- Somaya Z Mansour
- Radiation Biology Department, National Center for Radiation Research and Technology, Atomic Energy Authority, B. O. Box: 29, Nasr City, Egypt
| | - Fatma S M Moawed
- Health Radiation Research Department, National Center for Radiation Research and Technology, Atomic Energy Authority, B. O. Box: 29, Nasr City, Egypt.
| | - Seham M Elmarkaby
- Radiation Physics Department, National Center for Radiation Research and Technology, Atomic Energy Authority, B. O. Box: 29, Nasr City, Egypt
| |
Collapse
|
33
|
Gong J, Wang X, Zhu C, Dong X, Zhang Q, Wang X, Duan X, Qian F, Shi Y, Gao Y, Zhao Q, Chai R, Liu D. Insm1a Regulates Motor Neuron Development in Zebrafish. Front Mol Neurosci 2017; 10:274. [PMID: 28894416 PMCID: PMC5581358 DOI: 10.3389/fnmol.2017.00274] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 08/14/2017] [Indexed: 11/30/2022] Open
Abstract
Insulinoma-associated1a (insm1a) is a zinc-finger transcription factor playing a series of functions in cell formation and differentiation of vertebrate central and peripheral nervous systems and neuroendocrine system. However, its roles on the development of motor neuron have still remained uncovered. Here, we provided evidences that insm1a was a vital regulator of motor neuron development, and provided a mechanistic understanding of how it contributes to this process. Firstly, we showed the localization of insm1a in spinal cord, and primary motor neurons (PMNs) of zebrafish embryos by in situ hybridization, and imaging analysis of transgenic reporter line Tg(insm1a: mCherry)ntu805. Then we demonstrated that the deficiency of insm1a in zebrafish larvae lead to the defects of PMNs development, including the reduction of caudal primary motor neurons (CaP), and middle primary motor neurons (MiP), the excessive branching of motor axons, and the disorganized distance between adjacent CaPs. Additionally, knockout of insm1 impaired motor neuron differentiation in the spinal cord. Locomotion analysis showed that swimming activity was significantly reduced in the insm1a-null zebrafish. Furthermore, we showed that the insm1a loss of function significantly decreased the transcript levels of both olig2 and nkx6.1. Microinjection of olig2 and nkx6.1 mRNA rescued the motor neuron defects in insm1a deficient embryos. Taken together, these data indicated that insm1a regulated the motor neuron development, at least in part, through modulation of the expressions of olig2 and nkx6.1.
Collapse
Affiliation(s)
- Jie Gong
- School of Life Science, Nantong UniversityNantong, China
| | - Xin Wang
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong UniversityNantong, China
| | - Chenwen Zhu
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong UniversityNantong, China
| | - Xiaohua Dong
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing UniversityNanjing, China
| | - Qinxin Zhang
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing UniversityNanjing, China
| | - Xiaoning Wang
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong UniversityNantong, China
| | - Xuchu Duan
- School of Life Science, Nantong UniversityNantong, China
| | - Fuping Qian
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong UniversityNantong, China.,Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing, China
| | - Yunwei Shi
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong UniversityNantong, China
| | - Yu Gao
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong UniversityNantong, China
| | - Qingshun Zhao
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing UniversityNanjing, China
| | - Renjie Chai
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong UniversityNantong, China.,Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing, China
| | - Dong Liu
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong UniversityNantong, China
| |
Collapse
|
34
|
Fatigue in Rapsyn-Deficient Zebrafish Reflects Defective Transmitter Release. J Neurosci 2017; 36:10870-10882. [PMID: 27798141 DOI: 10.1523/jneurosci.0505-16.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 09/03/2016] [Indexed: 12/29/2022] Open
Abstract
Rapsyn-deficient myasthenic syndrome is characterized by a weakness in voluntary muscle contraction, a direct consequence of greatly reduced synaptic responses that result from poorly clustered acetylcholine receptors. As with other myasthenic syndromes, the general muscle weakness is also accompanied by use-dependent fatigue. Here, we used paired motor neuron target muscle patch-clamp recordings from a rapsyn-deficient mutant line of zebrafish to explore for the first time the mechanisms causal to fatigue. We find that synaptic responses in mutant fish can follow faithfully low-frequency stimuli despite the reduced amplitude. This is in part helped by a compensatory increase in the number of presynaptic release sites in the mutant fish. In response to high-frequency stimulation, both wild-type and mutant neuromuscular junctions depress to steady-state response levels, but the latter shows exaggerated depression. Analysis of the steady-state transmission revealed that vesicle reloading and release at individual release sites is significantly slower in mutant fish during high-frequency activities. Therefore, reductions in postsynaptic receptor density and compromised presynaptic release collectively serve to reduce synaptic strength to levels that fall below the threshold for muscle action potential generation, thus accounting for use-dependent fatigue. Our findings raise the possibility that defects in motor neuron function may also be at play in other myasthenic syndromes that have been mapped to mutations in muscle-specific proteins. SIGNIFICANCE STATEMENT Use-dependent fatigue accompanies many neuromuscular myasthenic syndromes, including muscle rapsyn deficiency. Here, using a rapsyn-deficient line of zebrafish, we performed paired motor neuron target muscle patch-clamp recordings to investigate the mechanisms causal to this phenomenon. Our findings indicate that the reduced postsynaptic receptor density resulting from defective rapsyn contributes to weakness, but is not solely responsible for use-dependent fatigue. Instead, we find unexpected involvement of altered transmitter release from the motor neuron. Specifically, slowed reloading of vesicle release sites leads to augmented synaptic depression during repeated action potentials. Even at moderate stimulus frequencies, the depression levels for evoked synaptic responses fall below the threshold for the generation of muscle action potentials. The associated contraction failures are manifest as use-dependent fatigue.
Collapse
|
35
|
Pickett MA, Dush MK, Nascone-Yoder NM. Acetylcholinesterase plays a non-neuronal, non-esterase role in organogenesis. Development 2017; 144:2764-2770. [PMID: 28684626 DOI: 10.1242/dev.149831] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/19/2017] [Indexed: 01/10/2023]
Abstract
Acetylcholinesterase (AChE) is crucial for degrading acetylcholine at cholinergic synapses. In vitro studies suggest that, in addition to its role in nervous system signaling, AChE can also modulate non-neuronal cell properties, although it remains controversial whether AChE functions in this capacity in vivo Here, we show that AChE plays an essential non-classical role in vertebrate gut morphogenesis. Exposure of Xenopus embryos to AChE-inhibiting chemicals results in severe defects in intestinal development. Tissue-targeted loss-of-function assays (via microinjection of antisense morpholino or CRISPR-Cas9) confirm that AChE is specifically required in the gut endoderm tissue, a non-neuronal cell population, where it mediates adhesion to fibronectin and regulates cell rearrangement events that drive gut lengthening and digestive epithelial morphogenesis. Notably, the classical esterase activity of AChE is dispensable for this activity. As AChE is deeply conserved, widely expressed outside of the nervous system, and the target of many environmental chemicals, these results have wide-reaching implications for development and toxicology.
Collapse
Affiliation(s)
- Melissa A Pickett
- Department of Biology, Environmental and Molecular Toxicology Program, North Carolina State University, Raleigh, NC 27606, USA
| | - Michael K Dush
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Nanette M Nascone-Yoder
- Department of Biology, Environmental and Molecular Toxicology Program, North Carolina State University, Raleigh, NC 27606, USA .,Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
36
|
Ranade DS, Shravage BV, Kumbhar AA, Sonawane UB, Jani VP, Joshi RR, Kulkarni PP. Thiosemicarbazone Moiety Assist in Interaction of Planar Aromatic Molecules with Amyloid Beta Peptide and Acetylcholinesterase. ChemistrySelect 2017. [DOI: 10.1002/slct.201700588] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Dnyanesh S. Ranade
- Bioprospecting group Agharkar Research Institute, Pune G. G. Agarkar Road Pune-411004 India
| | - Bhupendra V. Shravage
- Development Biology group Agharkar Research Institute, Pune G. G. Agarkar Road Pune-411004 India
| | - Anupa A. Kumbhar
- Department of Chemistry Savitribai Phule Pune University Ganeshkhind Road Pune-411007 India
| | - Uddhavesh B. Sonawane
- Centre for Development of Advanced Computing (C–DAC) Savitribai Phule University of Pune Campus Pune-411007 India
| | - Vinod P. Jani
- Centre for Development of Advanced Computing (C–DAC) Savitribai Phule University of Pune Campus Pune-411007 India
| | - Rajendra R. Joshi
- Centre for Development of Advanced Computing (C–DAC) Savitribai Phule University of Pune Campus Pune-411007 India
| | - Prasad P. Kulkarni
- Bioprospecting group Agharkar Research Institute, Pune G. G. Agarkar Road Pune-411004 India
| |
Collapse
|
37
|
Campanari ML, García-Ayllón MS, Ciura S, Sáez-Valero J, Kabashi E. Neuromuscular Junction Impairment in Amyotrophic Lateral Sclerosis: Reassessing the Role of Acetylcholinesterase. Front Mol Neurosci 2016; 9:160. [PMID: 28082868 PMCID: PMC5187284 DOI: 10.3389/fnmol.2016.00160] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/12/2016] [Indexed: 01/13/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a highly debilitating disease caused by progressive degeneration of motorneurons (MNs). Due to the wide variety of genes and mutations identified in ALS, a highly varied etiology could ultimately converge to produce similar clinical symptoms. A major hypothesis in ALS research is the “distal axonopathy” with pathological changes occurring at the neuromuscular junction (NMJ), at very early stages of the disease, prior to MNs degeneration and onset of clinical symptoms. The NMJ is a highly specialized cholinergic synapse, allowing signaling between muscle and nerve necessary for skeletal muscle function. This nerve-muscle contact is characterized by the clustering of the collagen-tailed form of acetylcholinesterase (ColQ-AChE), together with other components of the extracellular matrix (ECM) and specific key molecules in the NMJ formation. Interestingly, in addition to their cholinergic role AChE is thought to play several “non-classical” roles that do not require catalytic function, most prominent among these is the facilitation of neurite growth, NMJ formation and survival. In all this context, abnormalities of AChE content have been found in plasma of ALS patients, in which AChE changes may reflect the neuromuscular disruption. We review these findings and particularly the evidences of changes of AChE at neuromuscular synapse in the pre-symptomatic stages of ALS.
Collapse
Affiliation(s)
- Maria-Letizia Campanari
- Sorbonne Université, Université Pierre et Marie Curie (UPMC), Université de Paris 06, Unité Mixte 75, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1127, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 7225 Institut du Cerveau et de la Moelle Épinière (ICM) Paris, France
| | - María-Salud García-Ayllón
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'AlacantSpain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Madrid, Spain; Unidad de Investigación, Hospital General Universitario de Elche, FISABIOElche, Spain
| | - Sorana Ciura
- Sorbonne Université, Université Pierre et Marie Curie (UPMC), Université de Paris 06, Unité Mixte 75, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1127, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 7225 Institut du Cerveau et de la Moelle Épinière (ICM) Paris, France
| | - Javier Sáez-Valero
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'AlacantSpain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Madrid, Spain
| | - Edor Kabashi
- Sorbonne Université, Université Pierre et Marie Curie (UPMC), Université de Paris 06, Unité Mixte 75, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1127, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 7225 Institut du Cerveau et de la Moelle Épinière (ICM) Paris, France
| |
Collapse
|
38
|
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute Northern Sydney Local Health District, St. Leonards, NSW, Australia
- Sydney Medical School, Royal North Shore Hospital, The University of Sydney, Camperdown, NSW, Australia
- School of Biomedical Engineering, The University of New South Wales, Kensington, NSW, Australia
| |
Collapse
|
39
|
Dubińska-Magiera M, Daczewska M, Lewicka A, Migocka-Patrzałek M, Niedbalska-Tarnowska J, Jagla K. Zebrafish: A Model for the Study of Toxicants Affecting Muscle Development and Function. Int J Mol Sci 2016; 17:E1941. [PMID: 27869769 PMCID: PMC5133936 DOI: 10.3390/ijms17111941] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 01/08/2023] Open
Abstract
The rapid progress in medicine, agriculture, and allied sciences has enabled the development of a large amount of potentially useful bioactive compounds, such as drugs and pesticides. However, there is another side of this phenomenon, which includes side effects and environmental pollution. To avoid or minimize the uncontrollable consequences of using the newly developed compounds, researchers seek a quick and effective means of their evaluation. In achieving this goal, the zebrafish (Danio rerio) has proven to be a highly useful tool, mostly because of its fast growth and development, as well as the ability to absorb the molecules diluted in water through its skin and gills. In this review, we focus on the reports concerning the application of zebrafish as a model for assessing the impact of toxicants on skeletal muscles, which share many structural and functional similarities among vertebrates, including zebrafish and humans.
Collapse
Affiliation(s)
- Magda Dubińska-Magiera
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland.
| | - Małgorzata Daczewska
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland.
| | - Anna Lewicka
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland.
| | - Marta Migocka-Patrzałek
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland.
| | - Joanna Niedbalska-Tarnowska
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland.
| | - Krzysztof Jagla
- GReD-Genetics, Reproduction and Development Laboratory, INSERM U1103, CNRS UMR6293, University of Clermont-Auvergne, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France.
| |
Collapse
|
40
|
Suchiang K, Sharma R. Age-dependent modulation of fasting and long-term dietary restriction on acetylcholinesterase in non-neuronal tissues of mice. Mol Cell Biochem 2016; 419:135-45. [PMID: 27379505 DOI: 10.1007/s11010-016-2757-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/21/2016] [Indexed: 12/18/2022]
Abstract
Dietary restriction (DR) without malnutrition is a robust intervention that extends lifespan and slows the onset of nervous system deficit and age-related diseases in diverse organisms. Acetylcholinesterase (AChE), a thoroughly studied enzyme better known for hydrolyzing acetylcholine (ACh) in neuronal tissues, has recently been linked with multiple unrelated biological functions in different non-neuronal tissues. In the present study, the activity and protein expression level of AChE in liver, heart, and kidney of young (1 month), adult (6 month), and aged (18 month) mice were investigated. We also studied age- and tissue-specific changes in AChE activity and protein expression level after the mice were subjected to 24-h fasting and long-term DR. Our results showed that AChE activity and protein expression in kidney and heart of aged mice decreased significantly in comparison with young mice. On the contrary, long-term DR decreases the AChE activity and the protein expression level in all tissues irrespective of ages studied. We summarized that changes in AChE with age in different tissues studied reflects its different roles at different phases of an organism's life. Conversely, the cumulative modulation manifested in the form of lowering AChE by long-term DR may prevent the futile synthesis and accumulation of unwanted AChE besides the added compensatory benefit of enhanced ACh availability needed during the period of starvation. This, in turn, may help in preventing the declining homeostatic roles of this important neurotransmitter in different tissues.
Collapse
Affiliation(s)
- Kitlangki Suchiang
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, 605 014, India.
| | - Ramesh Sharma
- Department of Biochemistry, North-Eastern Hill University, Shillong, Meghalaya, 793 022, India
| |
Collapse
|
41
|
Ogino K, Hirata H. Defects of the Glycinergic Synapse in Zebrafish. Front Mol Neurosci 2016; 9:50. [PMID: 27445686 PMCID: PMC4925712 DOI: 10.3389/fnmol.2016.00050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/13/2016] [Indexed: 12/26/2022] Open
Abstract
Glycine mediates fast inhibitory synaptic transmission. Physiological importance of the glycinergic synapse is well established in the brainstem and the spinal cord. In humans, the loss of glycinergic function in the spinal cord and brainstem leads to hyperekplexia, which is characterized by an excess startle reflex to sudden acoustic or tactile stimulation. In addition, glycinergic synapses in this region are also involved in the regulation of respiration and locomotion, and in the nociceptive processing. The importance of the glycinergic synapse is conserved across vertebrate species. A teleost fish, the zebrafish, offers several advantages as a vertebrate model for research of glycinergic synapse. Mutagenesis screens in zebrafish have isolated two motor defective mutants that have pathogenic mutations in glycinergic synaptic transmission: bandoneon (beo) and shocked (sho). Beo mutants have a loss-of-function mutation of glycine receptor (GlyR) β-subunit b, alternatively, sho mutant is a glycinergic transporter 1 (GlyT1) defective mutant. These mutants are useful animal models for understanding of glycinergic synaptic transmission and for identification of novel therapeutic agents for human diseases arising from defect in glycinergic transmission, such as hyperekplexia or glycine encephalopathy. Recent advances in techniques for genome editing and for imaging and manipulating of a molecule or a physiological process make zebrafish more attractive model. In this review, we describe the glycinergic defective zebrafish mutants and the technical advances in both forward and reverse genetic approaches as well as in vivo visualization and manipulation approaches for the study of the glycinergic synapse in zebrafish.
Collapse
Affiliation(s)
- Kazutoyo Ogino
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University Sagamihara, Japan
| | - Hiromi Hirata
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University Sagamihara, Japan
| |
Collapse
|
42
|
González-Alzaga B, Hernández AF, Rodríguez-Barranco M, Gómez I, Aguilar-Garduño C, López-Flores I, Parrón T, Lacasaña M. Pre- and postnatal exposures to pesticides and neurodevelopmental effects in children living in agricultural communities from South-Eastern Spain. ENVIRONMENT INTERNATIONAL 2015; 85:229-37. [PMID: 26425806 DOI: 10.1016/j.envint.2015.09.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/11/2015] [Accepted: 09/16/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND Childrens exposure to neurotoxic compounds poses a major problem to public health because oftheir actively developing brain that makes them highly vulnerable. However, limited information is available on neuropsychological effects in children associated with pre- and postnatal exposures to pesticides. OBJECTIVE To evaluate the association between current and pre- and postnatal exposures to pesticides and their effects on neurodevelopment in children aged 6–11 years living in agricultural communities from South-Eastern Spain. METHODS An ambispective study was conducted on 305 children aged 6–11 years randomly selected from public schools of the study area. Current exposure to organophosphate pesticides was assessed measuring children's urinary levels of dialkylphosphates (DAPs). Both prenatal and postnatal residential exposure to pesticides was estimated by developing a geographical information system (GIS) technology-based index that integrated distance-weighted measure of agricultural surface, time-series of crop areas per municipality and year, and land-use maps. Neuropsychological performance was evaluated with the Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV). The association of pre- and postnatal and current pesticide exposure with WISC-IV scale scores was assessed using multivariate linear regression models and generalized estimating equation (GEE) models, respectively. RESULTS Greater urinary DAP levels were associated with a poorer performance on intelligence quotient and verbal comprehension domain, with effects being more prominent in boys than in girls. The influence of an increase in 10 ha per year in crop surface around the child's residence during the postnatal period was associated with decreased intelligence quotient, processing speed and verbal comprehension scores. As regards prenatal exposure to pesticides, a poor processing speed performance was observed. These effects were also more prominent in boys than in girls. CONCLUSIONS Our results suggest that postnatal exposure to pesticides can negatively affect children's neuropsychological performance. Prenatal exposure was weakly associated to neurodevelopment impairment.
Collapse
Affiliation(s)
- Beatriz González-Alzaga
- Andalusian School of Public Health (EASP), Granada, Spain; Instituto de Investigación Biosanitaria, ibs.GRANADA, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain
| | - Antonio F Hernández
- Department of Legal Medicine and Toxicology, University of Granada School of Medicine, Granada, Spain
| | - Miguel Rodríguez-Barranco
- Andalusian School of Public Health (EASP), Granada, Spain; Instituto de Investigación Biosanitaria, ibs.GRANADA, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain
| | - Inmaculada Gómez
- Department of Neurosciences, Faculty of Health Sciences, University of Almería, Spain
| | | | - Inmaculada López-Flores
- Instituto de Investigación Biosanitaria, ibs.GRANADA, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain; Department of Genetics, Faculty of Sciences, University of Granada, Spain
| | - Tesifón Parrón
- University of Almería, Department of Neurosciences and Health Sciences, Almería, Spain; Andalusian Council of Health at Almería Province, Almería, Spain
| | - Marina Lacasaña
- Andalusian School of Public Health (EASP), Granada, Spain; Instituto de Investigación Biosanitaria, ibs.GRANADA, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain.
| |
Collapse
|
43
|
Legradi J, el Abdellaoui N, van Pomeren M, Legler J. Comparability of behavioural assays using zebrafish larvae to assess neurotoxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:16277-89. [PMID: 25399529 DOI: 10.1007/s11356-014-3805-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 11/02/2014] [Indexed: 05/25/2023]
Abstract
Testing of compounds for neurotoxicity has become increasingly important in recent years. It has been shown that neurological disorders like autism may be related to chemical exposures, which may play a crucial role in the progression of these diseases. Special attention has been be given to the substances causing developmental neurotoxicity as the developing nervous system is more vulnerable to impacts by chemicals than the adult nervous system. The zebrafish (Danio rerio) is a well-established model species in developmental biology and an emerging model in behavioural and neurological studies. Zebrafish larvae display numerous behavioural patterns highly similar to rodents and humans. Their physical characteristics make them well suited for automated high-throughput screening. In the last years, the number of behavioural studies conducted with zebrafish larvae has increased notably. The goal of this review is to provide an overview of behavioural assays commonly used to test substances for developmental neurotoxicity. Literature from 1995 to 2014 was reviewed and focussed on assays performed with zebrafish larvae younger than 7 days post fertilization (dpf). The behavioural tests were scrutinized, and parameters describing the different experimental setups were defined. In the next step, we investigated if differences in the experimental parameters alter the outcome of the test. In order to test the comparability of behavioural assays, we analysed several studies using ethanol, valproate and pentylenetetrazole as model substances. Based on our findings, we provide recommendations which could help improve future behavioural studies performed with zebrafish larvae.
Collapse
Affiliation(s)
- J Legradi
- Institute for Environmental Studies, VU University, Amsterdam, The Netherlands.
| | - N el Abdellaoui
- Institute for Environmental Studies, VU University, Amsterdam, The Netherlands
| | - M van Pomeren
- Institute for Environmental Studies, VU University, Amsterdam, The Netherlands
| | - J Legler
- Institute for Environmental Studies, VU University, Amsterdam, The Netherlands
| |
Collapse
|
44
|
Parker MO, Brock AJ, Sudwarts A, Teh MT, Combe FJ, Brennan CH. Developmental role of acetylcholinesterase in impulse control in zebrafish. Front Behav Neurosci 2015; 9:271. [PMID: 26528153 PMCID: PMC4607786 DOI: 10.3389/fnbeh.2015.00271] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/22/2015] [Indexed: 01/25/2023] Open
Abstract
Cellular and molecular processes that mediate individual variability in impulsivity, a key behavioral component of many neuropsychiatric disorders, are poorly understood. Zebrafish heterozygous for a nonsense mutation in ache (achesb55/+) showed lower levels of impulsivity in a 5-choice serial reaction time task (5-CSRTT) than wild type and ache+∕+. Assessment of expression of cholinergic (nAChR), serotonergic (5-HT), and dopamine (DR) receptor mRNA in both adult and larval (9 dpf) achesb55/+ revealed significant downregulation of chrna2, chrna5, and drd2 mRNA in achesb55/+ larvae, but no differences in adults. Acute exposure to cholinergic agonist/antagonists had no effect on impulsivity, supporting the hypothesis that behavioral effects observed in adults were due to lasting impact of developmental alterations in cholinergic and dopaminergic signaling. This shows the cross-species role of cholinergic signaling during brain development in impulsivity, and suggests zebrafish may be a useful model for the role of cholinergic pathways as a target for therapeutic advances in addiction medicine.
Collapse
Affiliation(s)
- Matthew O Parker
- School of Biological and Chemical Sciences, Queen Mary University of London London, UK ; School of Health Sciences and Social Work, University of Portsmouth Portsmouth, UK
| | - Alistair J Brock
- School of Biological and Chemical Sciences, Queen Mary University of London London, UK
| | - Ari Sudwarts
- School of Biological and Chemical Sciences, Queen Mary University of London London, UK
| | - Muy-Teck Teh
- Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London London, UK
| | - Fraser J Combe
- School of Biological and Chemical Sciences, Queen Mary University of London London, UK
| | - Caroline H Brennan
- School of Biological and Chemical Sciences, Queen Mary University of London London, UK
| |
Collapse
|
45
|
Mehr-un-Nisa, Munawar MA, Chattha FA, Kousar S, Munir J, Ismail T, Ashraf M, Khan MA. Synthesis of novel triazoles and a tetrazole of escitalopram as cholinesterase inhibitors. Bioorg Med Chem 2015; 23:6014-24. [DOI: 10.1016/j.bmc.2015.06.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 11/16/2022]
|
46
|
Fischer A, Wolman M, Granato M, Parsons M, McCallion AS, Proescher J, English E. Carbamate nerve agent prophylatics exhibit distinct toxicological effects in the zebrafish embryo model. Neurotoxicol Teratol 2015; 50:1-10. [PMID: 25968237 DOI: 10.1016/j.ntt.2015.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 03/25/2015] [Accepted: 05/01/2015] [Indexed: 12/14/2022]
Abstract
Pyridostigmine bromide (PB) is an FDA-approved drug for the treatment of myasthenia gravis and a prophylactic pre-treatment for organophosphate nerve agent poisoning. Current methods for evaluating nerve agent treatments include enzymatic studies and mammalian models. Rapid whole animal screening tools for assessing the effects of nerve agent pre-treatment and post-exposure drugs represent an underdeveloped area of research. We used zebrafish as a model for acute and chronic developmental exposure to PB and two related carbamate acetylcholinesterase (AChE) inhibitors, neostigmine bromide (NB) and physostigmine (PS). Lethal doses and gross morphological phenotypes resulting from exposure to sub-lethal doses of these compounds were determined. Quantitative analyses of motility impairment and AChE enzyme inhibition were used to determine optimal dosing conditions for evaluation of the effects of carbamate exposures on neuronal development; ~50% impairment of response to startle stimuli and >50% inhibition of AChE activity were observed at 80 mMPB, 20 mM NB and 0.1 mM PS. PB induced stunted somite length, but no other phenotypic effects were observed. In contrast, NB and PS induced more severe phenotypic morphological defects than PB as well as neurite outgrowth mislocalization. Additionally, NB induced mislocalization of nicotinic acetylcholine receptors, resulting in impaired synapse formation. Taken together, these data suggest that altered patterns of neuronal connectivity contribute to the developmental neurotoxicity of carbamates and demonstrate the utility of the zebrafish model for distinguishing subtle structure-based differential effects of AChE inhibitors, which include nerve agents, pesticides and drugs.
Collapse
Affiliation(s)
- Audrey Fischer
- Asymmetric Operations Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, United States; McKusick Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Marc Wolman
- Department of Cell & Developmental Biology, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104, United States
| | - Michael Granato
- Department of Cell & Developmental Biology, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104, United States
| | - Michael Parsons
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Andrew S McCallion
- McKusick Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States; Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Jody Proescher
- Asymmetric Operations Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, United States
| | - Emily English
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, United States.
| |
Collapse
|
47
|
Distribution pattern of acetylcholinesterase in the optic tectum of two Indian air breathing teleosts. Ann Neurosci 2014; 20:7-9. [PMID: 25206001 PMCID: PMC4117095 DOI: 10.5214/ans.0972.7531.200104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/22/2012] [Accepted: 01/02/2013] [Indexed: 11/24/2022] Open
Abstract
Background A histoenzymological study has been carried out on the distribution of enzyme acetylcholinesterase in the optic tectum of two Indian air breathing teleosts by employing a histochemical technique to visualize acetylcholinesterase containing neurons described by Hedreen, JC (1985). Purpose Data available on enzyme localizaton in the brain of fishes, particularly Indian teleosts is inadequate and scattered. Methods AChE distribution in the optic tectum shows a prevalent pattern characterized by precise laminar distribution of enzyme which shows alternatively strong, weak or negative reaction in the different layers. Results Layers with maximum enzyme activity most likely correspond to areas where cholinergic mechanism is prevailing whereas layers with mild activity may be considered to be non-chalinergic/cholinoceptive having some cholinergic innervations from other layers. Conclusion The present investigation suggests some possible connections between enzyme localization and functional and anatomical organization of optic tectum.
Collapse
|
48
|
Kim HH, Kim JG, Jeong J, Han SY, Kim KW. Akap12 is essential for the morphogenesis of muscles involved in zebrafish locomotion. Differentiation 2014; 88:106-16. [PMID: 25534553 DOI: 10.1016/j.diff.2014.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/20/2014] [Accepted: 11/28/2014] [Indexed: 12/22/2022]
Abstract
Swimming behavior in fish is driven by coordinated contractions of muscle fibers. In zebrafish, slow muscle cell migration is crucial for the formation of the muscle network; slow myoblasts, which arise from medial adaxial cells, migrate radially to the lateral surface of the trunk and tail during embryogenesis. This study found that the zebrafish A-kinase anchoring protein (akap)12 isoforms akap12α and akap12β are required for muscle morphogenesis and locomotor activity. Embryos deficient in akap12 exhibited reduced spontaneous coiling, touch response, and free swimming. Akap12-depleted slow but not fast muscle cells were misaligned, suggesting that the behavioral abnormalities resulted from specific defects in slow muscle patterning; indeed, slow muscle cells and muscle pioneers in these embryos showed abnormal migration in a cell-autonomous manner. Taken together, these results suggest that akap12 plays a critical role in the development of zebrafish locomotion by regulating the normal morphogenesis of muscles.
Collapse
Affiliation(s)
- Hyun-Ho Kim
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | - Jeong-gyun Kim
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742, Korea
| | - Jinkyung Jeong
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | - Song-Yi Han
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742, Korea
| | - Kyu-Won Kim
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea; Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742, Korea.
| |
Collapse
|
49
|
Lu ZG, Li MH, Wang JS, Wei DD, Liu QW, Kong LY. Developmental toxicity and neurotoxicity of two matrine-type alkaloids, matrine and sophocarpine, in zebrafish (Danio rerio) embryos/larvae. Reprod Toxicol 2014; 47:33-41. [PMID: 24911943 DOI: 10.1016/j.reprotox.2014.05.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 04/11/2014] [Accepted: 05/24/2014] [Indexed: 02/07/2023]
Abstract
Matrine and sophocarpine are two major matrine-type alkaloids included in the traditional Chinese medicine (TCM) Kushen (the root of Sophora flavescens Ait.). They have been widely used clinically in China, however with few reports concerning their potential toxicities. This study investigated the developmental toxicity and neurotoxicity of matrine and sophocarpine on zebrafish embryos/larvae from 0 to 96/120h post fertilization (hpf). Both drugs displayed teratogenic and lethal effects with the EC50 and LC50 values at 145 and 240mg/L for matrine and 87.1 and 166mg/L for sophocarpine, respectively. Exposure of matrine and sophocarpine significantly altered spontaneous movement and inhibited swimming performance at concentrations below those causing lethality and malformations, indicating a neurotoxic potential of both drugs. The results are in agreement with most mammalian studies and clinical observations.
Collapse
Affiliation(s)
- Zhao-Guang Lu
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Ming-Hui Li
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Jun-Song Wang
- Center for Molecular Metabolism, School of Environmental & Biological Engineering, Nanjing University of Science & Technology, 200 Xiao Ling Wei Street, Nanjing 210094, PR China.
| | - Dan-Dan Wei
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Qing-Wang Liu
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Ling-Yi Kong
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China.
| |
Collapse
|
50
|
Wang X, Dong Q, Chen Y, Jiang H, Xiao Q, Wang Y, Li W, Bai C, Huang C, Yang D. Bisphenol A affects axonal growth, musculature and motor behavior in developing zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 142-143:104-13. [PMID: 23994041 DOI: 10.1016/j.aquatox.2013.07.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/16/2013] [Accepted: 07/18/2013] [Indexed: 05/07/2023]
Abstract
Bisphenol A (BPA) is a ubiquitous contaminant in environment and human body. The reproductive and developmental effects of BPA exposure in aquatic and laboratory animals have been extensively studied. However, BPA exposure on the nervous system and motor behavior development are not well understood. In this study, we utilized zebrafish embryo as a model system to investigate the effect of developmental BPA exposure on larval teratology, motor behaviors, axonal growth of spinal motoneurons and muscle structure at various developmental stages. Our findings revealed that BPA exposure altered spontaneous movement, significantly decreased touch response and swimming speed in response to light stimulation in developing zebrafish. These effects were observed at the concentrations that did not yield any significant teratogenic effects. Correlated with those changes in swimming activity, BPA-induced axial muscle damage occurred at the same concentration range (1-15 μM), but disruption of axonal growth of primary and secondary motoneuron occurred only at higher concentration (15 μM). BPA-induced apoptotic cell death subsequent to initial ROS formation and oxidative DNA damage may be the underlying mechanism for axial muscle damage, suggesting the functional relevance of muscle structural changes and the observed deficits in swimming activity.
Collapse
Affiliation(s)
- Xuechun Wang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms; Institute of Watershed Science and Environmental Ecology, Wenzhou Medical College, Wenzhou 325035, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|