1
|
Savy V, Stein P, Delker D, Estermann MA, Papas BN, Xu Z, Radonova L, Williams CJ. Calcium signals shape metabolic control of H3K27ac and H3K18la to regulate EGA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.643362. [PMID: 40161793 PMCID: PMC11952514 DOI: 10.1101/2025.03.14.643362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The use of assisted reproductive technologies (ART) has enabled the birth of over 9 million babies; but it is associated with increased risks of negative metabolic outcomes in offspring. Yet, the underlying mechanism remains unknown. Calcium (Ca2+) signals, which initiate embryo development at fertilization, are frequently disrupted in human ART. In mice, abnormal Ca2+ signals at fertilization impair embryo development and adult offspring metabolism. Changes in intracellular Ca2+ drive mitochondrial activity and production of metabolites used by the epigenetic machinery. For example, acetyl-CoA (derived mainly from pyruvate) and lactyl-CoA (derived from lactate) are used for writing H3K27ac and H3K18la marks that orchestrate initiation of development. Using both a genetic mouse model and treatment with ionomycin to raise intracellular Ca2+ of wild-type fertilized eggs, we found that excess Ca2+ at fertilization changes metabolic substrate availability, causing epigenetic changes that impact embryo development and offspring health. Specifically, increased Ca2+ exposure at fertilization led to increased H3K27ac levels and decreased H3K18la levels at the 1-cell (1C) stage, that persisted until the 2-cell (2C) stage. Ultralow input CUT&Tag revealed significant differences in H3K27ac and H3K18la genomic profiles between control and ionomycin groups. In addition, increased Ca2+ exposure resulted in a marked reduction in global transcription at the 1C stage that persisted through the 2C stage due to diminished activity of RNA polymerase I. Excess Ca2+ following fertilization increased pyruvate dehydrogenase activity (enzyme that converts pyruvate to acetyl-CoA) and decreased total lactate levels. Provision of exogenous lactyl-CoA before ionomycin treatment restored H3K18la levels at the 1C and 2C stages and rescued global transcription to control levels. Our findings demonstrate conclusively that Ca2+ dynamics drive metabolic regulation of epigenetic reprogramming at fertilization and alter EGA.
Collapse
Affiliation(s)
- Virginia Savy
- Reproductive Medicine Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Paula Stein
- Reproductive Medicine Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Don Delker
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Martín A. Estermann
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Brian N. Papas
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Zongli Xu
- Biostatistics & Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Lenka Radonova
- Reproductive Medicine Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Carmen J. Williams
- Reproductive Medicine Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
2
|
Thomalla JM, Wolfner MF. No transcription, no problem: Protein phosphorylation changes and the transition from oocyte to embryo. Curr Top Dev Biol 2025; 162:165-205. [PMID: 40180509 DOI: 10.1016/bs.ctdb.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Although mature oocytes are arrested in a differentiated state, they are provisioned with maternally-derived macromolecules that will start embryogenesis. The transition to embryogenesis, called 'egg activation', occurs without new transcription, even though it includes major cell changes like completing stalled meiosis, translating stored mRNAs, cytoskeletal remodeling, and changes to nuclear architecture. In most animals, egg activation is triggered by a rise in free calcium in the egg's cytoplasm, but we are only now beginning to understand how this induces the egg to transition to totipotency and proliferation. Here, we discuss the model that calcium-dependent protein kinases and phosphatases modify the phosphorylation landscape of the maternal proteome to activate the egg. We review recent phosphoproteomic mass spectrometry analyses that revealed broad phospho-regulation during egg activation, both in number of phospho-events and classes of regulated proteins. Our interspecies comparisons of these proteins pinpoints orthologs and protein families that are phospho-regulated in activating eggs, many of which function in hallmark events of egg activation, and others whose regulation and activity warrant further study. Finally, we discuss key phospho-regulating enzymes that may act apically or as intermediates in the phosphorylation cascades during egg activation. Knowing the regulators, targets, and effects of phospho-regulation that cause an egg to initiate embryogenesis is crucial at both fundamental and applied levels for understanding female fertility, embryo development, and cell-state transitions.
Collapse
Affiliation(s)
- Jonathon M Thomalla
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States; Department of Biomedical Sciences, Cornell University, College of Veterinary Medicine, Ithaca, NY, United States
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
3
|
Swann K. The characteristics of the calcium signals that activate mammalian eggs at fertilization. Curr Top Dev Biol 2024; 162:317-350. [PMID: 40180513 DOI: 10.1016/bs.ctdb.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Gamete membrane fusion in mammals brings the paternal genome into the cytoplasm of the egg. It also enables signals to pass from the sperm into the egg to trigger the completion of meiosis and the start of embryo development. The essential signal to activate development in all mammals studied, consists of a series of transient increases in the cytosolic Ca2+ concentration driven by cycles of InsP3 production. This review focusses on the characteristics of these sperm-induced Ca2+ signals. I consider how some specific features of sperm-derived phospholipase C-zeta (PLCζ), along with the known properties of the type 1 InsP3 receptor, provide a basis for understanding the mechanisms of the dynamic changes in Ca2+ observed in fertilizing eggs. I describe how the PLCζ targeting of cytoplasmic vesicles in the egg cytoplasm, that contain PI(4,5)P2, is necessary to explain the rapid waves associated with the rising phase of each Ca2+ transient. I also discuss the importance of the repetitive Ca2+ rises for egg activation and the way mitochondrial ATP production may modulate Ca2+ release in eggs. Finally, I consider the role that a sperm-induced ATP increase may play in the egg activation process.
Collapse
Affiliation(s)
- Karl Swann
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, Wales, United Kingdom.
| |
Collapse
|
4
|
Machaty Z. The signal that stimulates mammalian embryo development. Front Cell Dev Biol 2024; 12:1474009. [PMID: 39355121 PMCID: PMC11442298 DOI: 10.3389/fcell.2024.1474009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/05/2024] [Indexed: 10/03/2024] Open
Abstract
Embryo development is stimulated by calcium (Ca2+) signals that are generated in the egg cytoplasm by the fertilizing sperm. Eggs are formed via oogenesis. They go through a cell division known as meiosis, during which their diploid chromosome number is halved and new genetic combinations are created by crossing over. During formation the eggs also acquire cellular components that are necessary to produce the Ca2+ signal and also, to support development of the newly formed embryo. Ionized calcium is a universal second messenger used by cells in a plethora of biological processes and the eggs develop a "toolkit", a set of molecules needed for signaling. Meiosis stops twice and these arrests are controlled by a complex interaction of regulatory proteins. The first meiotic arrest lasts until after puberty, when a luteinizing hormone surge stimulates meiotic resumption. The cell cycle proceeds to stop again in the middle of the second meiotic division, right before ovulation. The union of the female and male gametes takes place in the oviduct. Following gamete fusion, the sperm triggers the release of Ca2+ from the egg's intracellular stores which in mammals is followed by repetitive Ca2+ spikes known as Ca2+ oscillations in the cytosol that last for several hours. Downstream sensor proteins help decoding the signal and stimulate other molecules whose actions are required for proper development including those that help to prevent the fusion of additional sperm cells to the egg and those that assist in the release from the second meiotic arrest, completion of meiosis and entering the first mitotic cell division. Here I review the major steps of egg formation, discuss the signaling toolkit that is essential to generate the Ca2+ signal and describe the steps of the signal transduction mechanism that activates the egg's developmental program and turns it into an embryo.
Collapse
Affiliation(s)
- Zoltan Machaty
- Department of Animal Sciences Purdue University West Lafayette, West Lafayette, IN, United States
| |
Collapse
|
5
|
Chen C, Huang Z, Dong S, Ding M, Li J, Wang M, Zeng X, Zhang X, Sun X. Calcium signaling in oocyte quality and functionality and its application. Front Endocrinol (Lausanne) 2024; 15:1411000. [PMID: 39220364 PMCID: PMC11361953 DOI: 10.3389/fendo.2024.1411000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Calcium (Ca2+) is a second messenger for many signal pathways, and changes in intracellular Ca2+ concentration ([Ca2+]i) are an important signaling mechanism in the oocyte maturation, activation, fertilization, function regulation of granulosa and cumulus cells and offspring development. Ca2+ oscillations occur during oocyte maturation and fertilization, which are maintained by Ca2+ stores and extracellular Ca2+ ([Ca2+]e). Abnormalities in Ca2+ signaling can affect the release of the first polar body, the first meiotic division, and chromosome and spindle morphology. Well-studied aspects of Ca2+ signaling in the oocyte are oocyte activation and fertilization. Oocyte activation, driven by sperm-specific phospholipase PLCζ, is initiated by concerted intracellular patterns of Ca2+ release, termed Ca2+ oscillations. Ca2+ oscillations persist for a long time during fertilization and are coordinately engaged by a variety of Ca2+ channels, pumps, regulatory proteins and their partners. Calcium signaling also regulates granulosa and cumulus cells' function, which further affects oocyte maturation and fertilization outcome. Clinically, there are several physical and chemical options for treating fertilization failure through oocyte activation. Additionally, various exogenous compounds or drugs can cause ovarian dysfunction and female infertility by inducing abnormal Ca2+ signaling or Ca2+ dyshomeostasis in oocytes and granulosa cells. Therefore, the reproductive health risks caused by adverse stresses should arouse our attention. This review will systematically summarize the latest research progress on the aforementioned aspects and propose further research directions on calcium signaling in female reproduction.
Collapse
Affiliation(s)
- Chen Chen
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Zefan Huang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Shijue Dong
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Mengqian Ding
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Jinran Li
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Miaomiao Wang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Xuhui Zeng
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Xiaoning Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Xiaoli Sun
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| |
Collapse
|
6
|
McLeod JJ, Rothschild SC, Francescatto L, Kim H, Tombes RM. Specific CaMKIIs mediate convergent extension cell movements in early zebrafish development. Dev Dyn 2024; 253:390-403. [PMID: 37860955 DOI: 10.1002/dvdy.665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Noncanonical Wnts are morphogens that can elevate intracellular Ca2+, activate the Ca2+/calmodulin-dependent protein kinase, CaMKII, and promote cell movements during vertebrate gastrulation. RESULTS Zebrafish express seven CaMKII genes during embryogenesis; two of these, camk2b1 and camk2g1, are necessary for convergent extension (CE) cell movements. CaMKII morphant phenotypes were observed as early as epiboly. At the 1-3 somite stage, neuroectoderm and paraxial cells remained unconverged in both morphants. Later, somites lacked their stereotypical shape and were wider, more closely spaced, and body gap angles increased. At 24hpf, somite compression and notochord undulation coincided with a shorter and broader body axis. A camk2b1 crispant was generated which phenocopied the camk2b1 morphant. The levels of cell proliferation, apoptosis and paraxial and neuroectodermal markers were unchanged in morphants. Hyperactivation of CaMKII during gastrulation by transient pharmacological intervention (thapsigargin) also caused CE defects. Mosaically expressed dominant-negative CaMKII recapitulated these phenotypes and showed significant midline bifurcation. Finally, the introduction of CaMKII partially rescued Wnt11 morphant phenotypes. CONCLUSIONS Overall, these data support a model whereby cyclically activated CaMKII encoded from two genes enables cell migration during the process of CE.
Collapse
Affiliation(s)
- Jamie J McLeod
- Department of Biology and VCU Life Sciences, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Sarah C Rothschild
- Department of Biology and VCU Life Sciences, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | - Haerin Kim
- Department of Biology and VCU Life Sciences, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Robert M Tombes
- Department of Biology and VCU Life Sciences, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
7
|
Kim HM, Kang MK, Seong SY, Jo JH, Kim MJ, Shin EK, Lee CG, Han SJ. Meiotic Cell Cycle Progression in Mouse Oocytes: Role of Cyclins. Int J Mol Sci 2023; 24:13659. [PMID: 37686466 PMCID: PMC10487953 DOI: 10.3390/ijms241713659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
All eukaryotic cells, including oocytes, utilize an engine called cyclin-dependent kinase (Cdk) to drive the cell cycle. Cdks are activated by a co-factor called cyclin, which regulates their activity. The key Cdk-cyclin complex that regulates the oocyte cell cycle is known as Cdk1-cyclin B1. Recent studies have elucidated the roles of other cyclins, such as B2, B3, A2, and O, in oocyte cell cycle regulation. This review aims to discuss the recently discovered roles of various cyclins in mouse oocyte cell cycle regulation in accordance with the sequential progression of the cell cycle. In addition, this review addresses the translation and degradation of cyclins to modulate the activity of Cdks. Overall, the literature indicates that each cyclin performs unique and redundant functions at various stages of the cell cycle, while their expression and degradation are tightly regulated. Taken together, this review provides new insights into the regulatory role and function of cyclins in oocyte cell cycle progression.
Collapse
Affiliation(s)
- Hye Min Kim
- Department of Biological Science, Inje University, Gimhae 50834, Republic of Korea; (H.M.K.); (E.K.S.)
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea; (M.K.K.); (C.G.L.)
| | - Min Kook Kang
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea; (M.K.K.); (C.G.L.)
| | - Se Yoon Seong
- Institute for Digital Antiaging Healthcare, Inje University, Gimhae 50834, Republic of Korea; (S.Y.S.); (J.H.J.); (M.J.K.)
| | - Jun Hyeon Jo
- Institute for Digital Antiaging Healthcare, Inje University, Gimhae 50834, Republic of Korea; (S.Y.S.); (J.H.J.); (M.J.K.)
| | - Min Ju Kim
- Institute for Digital Antiaging Healthcare, Inje University, Gimhae 50834, Republic of Korea; (S.Y.S.); (J.H.J.); (M.J.K.)
| | - Eun Kyeong Shin
- Department of Biological Science, Inje University, Gimhae 50834, Republic of Korea; (H.M.K.); (E.K.S.)
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea; (M.K.K.); (C.G.L.)
| | - Chang Geun Lee
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea; (M.K.K.); (C.G.L.)
| | - Seung Jin Han
- Department of Biological Science, Inje University, Gimhae 50834, Republic of Korea; (H.M.K.); (E.K.S.)
- Institute for Digital Antiaging Healthcare, Inje University, Gimhae 50834, Republic of Korea; (S.Y.S.); (J.H.J.); (M.J.K.)
- Department of Medical Biotechnology, Inje University, Gimhae 50834, Republic of Korea
- Institute of Basic Science, Inje University, Gimhae 50834, Republic of Korea
| |
Collapse
|
8
|
Moccia F, Brunetti V, Soda T, Faris P, Scarpellino G, Berra-Romani R. Store-Operated Ca 2+ Entry as a Putative Target of Flecainide for the Treatment of Arrhythmogenic Cardiomyopathy. J Clin Med 2023; 12:5295. [PMID: 37629337 PMCID: PMC10455538 DOI: 10.3390/jcm12165295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/04/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a genetic disorder that may lead patients to sudden cell death through the occurrence of ventricular arrhythmias. ACM is characterised by the progressive substitution of cardiomyocytes with fibrofatty scar tissue that predisposes the heart to life-threatening arrhythmic events. Cardiac mesenchymal stromal cells (C-MSCs) contribute to the ACM by differentiating into fibroblasts and adipocytes, thereby supporting aberrant remodelling of the cardiac structure. Flecainide is an Ic antiarrhythmic drug that can be administered in combination with β-adrenergic blockers to treat ACM due to its ability to target both Nav1.5 and type 2 ryanodine receptors (RyR2). However, a recent study showed that flecainide may also prevent fibro-adipogenic differentiation by inhibiting store-operated Ca2+ entry (SOCE) and thereby suppressing spontaneous Ca2+ oscillations in C-MSCs isolated from human ACM patients (ACM C-hMSCs). Herein, we briefly survey ACM pathogenesis and therapies and then recapitulate the main molecular mechanisms targeted by flecainide to mitigate arrhythmic events, including Nav1.5 and RyR2. Subsequently, we describe the role of spontaneous Ca2+ oscillations in determining MSC fate. Next, we discuss recent work showing that spontaneous Ca2+ oscillations in ACM C-hMSCs are accelerated to stimulate their fibro-adipogenic differentiation. Finally, we describe the evidence that flecainide suppresses spontaneous Ca2+ oscillations and fibro-adipogenic differentiation in ACM C-hMSCs by inhibiting constitutive SOCE.
Collapse
Affiliation(s)
- Francesco Moccia
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| | - Valentina Brunetti
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| | - Teresa Soda
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy;
| | - Pawan Faris
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Giorgia Scarpellino
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico;
| |
Collapse
|
9
|
Savy V, Stein P, Shi M, Williams CJ. PMCA1 depletion in mouse eggs amplifies calcium signaling and impacts offspring growth†. Biol Reprod 2022; 107:1439-1451. [PMID: 36130203 PMCID: PMC10144700 DOI: 10.1093/biolre/ioac180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/19/2022] [Accepted: 09/19/2022] [Indexed: 11/12/2022] Open
Abstract
Egg activation in mammals is triggered by oscillations in egg intracellular calcium (Ca2+) level. Ca2+ oscillation patterns can be modified in vitro by changing the ionic composition of culture media or in vivo by conditions affecting mitochondrial function, such as obesity and inflammation. In mice, disruption of Ca2+ oscillations in vitro impacts embryo development and offspring growth. Here we tested the hypothesis that, even without in vitro manipulation, abnormal Ca2+ signaling following fertilization impacts offspring growth. Plasma membrane Ca2+ ATPases (PMCA) extrude cytosolic Ca2+ to restore Ca2+ homeostasis. To disrupt Ca2+ signaling in vivo, we conditionally deleted PMCA1 (cKO) in oocytes. As anticipated, in vitro fertilized cKO eggs had increased Ca2+ exposure relative to controls. To assess the impact on offspring growth, cKO females were mated to wild type males to generate pups that had high Ca2+ exposure at fertilization. Because these offspring would be heterozygous, we also tested the impact of global PMCA1 heterozygosity on offspring growth. Control heterozygous pups that had normal Ca2+ at fertilization were generated by mating wild type females to heterozygous males; these control offspring weighed significantly less than their wild type siblings. However, heterozygous offspring from cKO eggs (and high Ca2+ exposure) were larger than heterozygous controls at 12 week-of-age and males had altered body composition. Our results show that global PMCA1 haploinsufficiency impacts growth and support that abnormal Ca2+ signaling after fertilization in vivo has a long-term impact on offspring weight. These findings are relevant for environmental and medical conditions affecting Ca2+ handling and for design of culture conditions and procedures for domestic animal and human assisted reproduction.
Collapse
Affiliation(s)
- Virginia Savy
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Paula Stein
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Min Shi
- Biostatistics & Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Carmen J Williams
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| |
Collapse
|
10
|
Rojas J, Hinostroza F, Vergara S, Pinto-Borguero I, Aguilera F, Fuentes R, Carvacho I. Knockin' on Egg's Door: Maternal Control of Egg Activation That Influences Cortical Granule Exocytosis in Animal Species. Front Cell Dev Biol 2021; 9:704867. [PMID: 34540828 PMCID: PMC8446563 DOI: 10.3389/fcell.2021.704867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/16/2021] [Indexed: 12/23/2022] Open
Abstract
Fertilization by multiple sperm leads to lethal chromosomal number abnormalities, failed embryo development, and miscarriage. In some vertebrate and invertebrate eggs, the so-called cortical reaction contributes to their activation and prevents polyspermy during fertilization. This process involves biogenesis, redistribution, and subsequent accumulation of cortical granules (CGs) at the female gamete cortex during oogenesis. CGs are oocyte- and egg-specific secretory vesicles whose content is discharged during fertilization to block polyspermy. Here, we summarize the molecular mechanisms controlling critical aspects of CG biology prior to and after the gametes interaction. This allows to block polyspermy and provide protection to the developing embryo. We also examine how CGs form and are spatially redistributed during oogenesis. During egg activation, CG exocytosis (CGE) and content release are triggered by increases in intracellular calcium and relies on the function of maternally-loaded proteins. We also discuss how mutations in these factors impact CG dynamics, providing unprecedented models to investigate the genetic program executing fertilization. We further explore the phylogenetic distribution of maternal proteins and signaling pathways contributing to CGE and egg activation. We conclude that many important biological questions and genotype–phenotype relationships during fertilization remain unresolved, and therefore, novel molecular players of CG biology need to be discovered. Future functional and image-based studies are expected to elucidate the identity of genetic candidates and components of the molecular machinery involved in the egg activation. This, will open new therapeutic avenues for treating infertility in humans.
Collapse
Affiliation(s)
- Japhet Rojas
- Laboratorio Fisiología de la Reproducción, Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile.,Escuela de Ingeniería en Biotecnología, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca, Chile
| | - Fernando Hinostroza
- Laboratorio Fisiología de la Reproducción, Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile.,Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile.,Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Facultad de Ciencias de la Salud, Universidad Católica del Maule, Talca, Chile
| | - Sebastián Vergara
- Laboratorio Fisiología de la Reproducción, Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile.,Escuela de Ingeniería en Biotecnología, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca, Chile
| | - Ingrid Pinto-Borguero
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Felipe Aguilera
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ricardo Fuentes
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ingrid Carvacho
- Laboratorio Fisiología de la Reproducción, Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile
| |
Collapse
|
11
|
Rothschild SC, Ingram SR, Lu FI, Thisse B, Thisse C, Parkerson JA, Tombes RM. Genetic compensation of γ CaMKII, an evolutionarily conserved gene. Gene 2020; 742:144567. [DOI: 10.1016/j.gene.2020.144567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/05/2020] [Accepted: 03/08/2020] [Indexed: 12/26/2022]
|
12
|
Aperia A, Brismar H, Uhlén P. Mending Fences: Na,K-ATPase signaling via Ca 2+ in the maintenance of epithelium integrity. Cell Calcium 2020; 88:102210. [PMID: 32380435 DOI: 10.1016/j.ceca.2020.102210] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/18/2022]
Abstract
Na,K-ATPase is a ubiquitous multifunctional protein that acts both as an ion pump and as a signal transducer. The signaling function is activated by ouabain in non-toxic concentrations. In epithelial cells the ouabain-bound Na,K-ATPase connects with the inositol 1,4,5-trisphosphate receptor via a short linear motif to activate low frequency Ca2+ oscillations. Within a couple of minutes this ouabain mediated signal has resulted in phosphorylation or dephosphorylation of 2580 phospho-sites. Proteins that control cell proliferation and cell adhesion and calmodulin regulated proteins are enriched among the ouabain phosphor-regulated proteins. The inositol 1,4,5-trisphosphate receptor and the stromal interaction molecule, which are both essential for the initiation of Ca2+ oscillations, belong to the ouabain phosphor-regulated proteins. Downstream effects of the ouabain-evoked Ca2+ signal in epithelial cells include interference with the intrinsic mitochondrial apoptotic process and stimulation of embryonic growth processes. The dual function of Na,K-ATPase as an ion pump and a signal transducer is now well established and evaluation of the physiological and pathophysiological consequences of this universal signal emerges as an urgent topic for future studies.
Collapse
Affiliation(s)
- Anita Aperia
- Science for Life Laboratory, Dept of Women's and Children's Health, Karolinska Institutet, Sweden
| | - Hjalmar Brismar
- Science for Life Laboratory, Dept of Women's and Children's Health, Karolinska Institutet, Sweden; Science for Life Laboratory, Dept of Applied Physics, KTH Royal Institute of Technology, Sweden.
| | - Per Uhlén
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Sweden
| |
Collapse
|
13
|
Rothschild SC, Tombes RM. Widespread Roles of CaMK-II in Developmental Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:519-535. [DOI: 10.1007/978-3-030-12457-1_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
14
|
Ardestani G, West MC, Maresca TJ, Fissore RA, Stratton MM. FRET-based sensor for CaMKII activity (FRESCA): A useful tool for assessing CaMKII activity in response to Ca 2+ oscillations in live cells. J Biol Chem 2019; 294:11876-11891. [PMID: 31201271 DOI: 10.1074/jbc.ra119.009235] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/11/2019] [Indexed: 01/22/2023] Open
Abstract
Ca2+ oscillations and consequent Ca2+/calmodulin-dependent protein kinase II (CaMKII) activation are required for embryogenesis, as well as neuronal, immunological, and cardiac signaling. Fertilization directly results in Ca2+ oscillations, but the resultant pattern of CaMKII activity remains largely unclear. To address this gap, we first employed the one existing biosensor for CaMKII activation. This sensor, Camui, comprises CaMKIIα and therefore solely reports on the activation of this CaMKII variant. Additionally, to detect the activity of all endogenous CaMKII variants simultaneously, we constructed a substrate-based sensor for CaMKII activity, FRESCA (FRET-based sensor for CaMKII activity). To examine the differential responses of the Camui and FRESCA sensors, we used several approaches to stimulate Ca2+ release in mouse eggs, including addition of phospholipase Cζ cRNA, which mimics natural fertilization. We found that the Camui response is delayed or terminates earlier than the FRESCA response. FRESCA enables assessment of endogenous CaMKII activity in real-time by both fertilization and artificial reagents, such as Sr2+, which also leads to CaMKII activation. FRESCA's broad utility will be important for optimizing artificial CaMKII activation for clinical use to manage infertility. Moreover, FRESCA provides a new view on CaMKII activity, and its application in additional biological systems may reveal new signaling paradigms in eggs, as well as in neurons, cardiomyocytes, immune cells, and other CaMKII-expressing cells.
Collapse
Affiliation(s)
- Goli Ardestani
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003.,Veterinary and Animal Sciences Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003
| | - Megan C West
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Thomas J Maresca
- Department of Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Rafael A Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003
| | - Margaret M Stratton
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| |
Collapse
|
15
|
Uh K, Ryu J, Zhang L, Errington J, Machaty Z, Lee K. Development of novel oocyte activation approaches using Zn2+ chelators in pigs. Theriogenology 2019; 125:259-267. [DOI: 10.1016/j.theriogenology.2018.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/31/2018] [Accepted: 11/14/2018] [Indexed: 10/27/2022]
|
16
|
Anifandis G, Michopoulos A, Daponte A, Chatzimeletiou K, Simopoulou M, Messini CI, Polyzos NP, Vassiou K, Dafopoulos K, Goulis DG. Artificial oocyte activation: physiological, pathophysiological and ethical aspects. Syst Biol Reprod Med 2018; 65:3-11. [DOI: 10.1080/19396368.2018.1516000] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- George Anifandis
- Department of Obstetrics and Gynecology, ART Unit, University of Thessaly, School of Health Sciences, Faculty of Medicine, Larisa, Greece
| | - Alexandros Michopoulos
- Unit of Reproductive Endocrinology, 1st Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alexandros Daponte
- Department of Obstetrics and Gynecology, ART Unit, University of Thessaly, School of Health Sciences, Faculty of Medicine, Larisa, Greece
| | - Katerina Chatzimeletiou
- Unit of Human Reproduction, 1st Department of Obstetrics and Gynecology, Aristotle University Medical School, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Mara Simopoulou
- Department of Physiology, Kapodistrian University of Athens, School of Health Sciences, Faculty of Medicine, Athens, Greece
| | - Christina I. Messini
- Department of Obstetrics and Gynecology, ART Unit, University of Thessaly, School of Health Sciences, Faculty of Medicine, Larisa, Greece
| | - Nikolas P. Polyzos
- Vrije Universiteit Brussel, Brussels, Belgium
- Universitair Ziekenhuis Brussel, Brussels, Belgium
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Katerina Vassiou
- Department of Anatomy, University of Thessaly, School of Health Sciences, Faculty of Medicine, Larisa, Greece
| | - Konstantinos Dafopoulos
- Department of Obstetrics and Gynecology, ART Unit, University of Thessaly, School of Health Sciences, Faculty of Medicine, Larisa, Greece
| | - Dimitrios G. Goulis
- Unit of Reproductive Endocrinology, 1st Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
17
|
Proteomics of phosphorylation and protein dynamics during fertilization and meiotic exit in the Xenopus egg. Proc Natl Acad Sci U S A 2017; 114:E10838-E10847. [PMID: 29183978 DOI: 10.1073/pnas.1709207114] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Fertilization releases the meiotic arrest and initiates the events that prepare the egg for the ensuing developmental program. Protein degradation and phosphorylation are known to regulate protein activity during this process. However, the full extent of protein loss and phosphoregulation is still unknown. We examined absolute protein and phosphosite dynamics of the fertilization response by mass spectrometry-based proteomics in electroactivated eggs. To do this, we developed an approach for calculating the stoichiometry of phosphosites from multiplexed proteomics that is compatible with dynamic, stable, and multisite phosphorylation. Overall, the data suggest that degradation is limited to a few low-abundance proteins. However, this degradation promotes extensive dephosphorylation that occurs over a wide range of abundances during meiotic exit. We also show that eggs release a large amount of protein into the medium just after fertilization, most likely related to the blocks to polyspermy. Concomitantly, there is a substantial increase in phosphorylation likely tied to calcium-activated kinases. We identify putative degradation targets and components of the slow block to polyspermy. The analytical approaches demonstrated here are broadly applicable to studies of dynamic biological systems.
Collapse
|
18
|
Newman RH, Zhang J. Integrated Strategies to Gain a Systems-Level View of Dynamic Signaling Networks. Methods Enzymol 2017; 589:133-170. [PMID: 28336062 DOI: 10.1016/bs.mie.2017.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In order to survive and function properly in the face of an ever changing environment, cells must be able to sense changes in their surroundings and respond accordingly. Cells process information about their environment through complex signaling networks composed of many discrete signaling molecules. Individual pathways within these networks are often tightly integrated and highly dynamic, allowing cells to respond to a given stimulus (or, as is typically the case under physiological conditions, a combination of stimuli) in a specific and appropriate manner. However, due to the size and complexity of many cellular signaling networks, it is often difficult to predict how cellular signaling networks will respond under a particular set of conditions. Indeed, crosstalk between individual signaling pathways may lead to responses that are nonintuitive (or even counterintuitive) based on examination of the individual pathways in isolation. Therefore, to gain a more comprehensive view of cell signaling processes, it is important to understand how signaling networks behave at the systems level. This requires integrated strategies that combine quantitative experimental data with computational models. In this chapter, we first examine some of the progress that has recently been made toward understanding the systems-level regulation of cellular signaling networks, with a particular emphasis on phosphorylation-dependent signaling networks. We then discuss how genetically targetable fluorescent biosensors are being used together with computational models to gain unique insights into the spatiotemporal regulation of signaling networks within single, living cells.
Collapse
Affiliation(s)
- Robert H Newman
- North Carolina Agricultural and Technical State University, Greensboro, NC, United States.
| | - Jin Zhang
- University of California, San Diego, San Diego, CA, United States.
| |
Collapse
|
19
|
Yamaguchi T, Ito M, Kuroda K, Takeda S, Tanaka A. The establishment of appropriate methods for egg-activation by human PLCZ1 RNA injection into human oocyte. Cell Calcium 2017; 65:22-30. [PMID: 28320563 DOI: 10.1016/j.ceca.2017.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/03/2017] [Accepted: 03/03/2017] [Indexed: 01/29/2023]
Abstract
Phospholipase C-zeta (PLCZ1), a strong candidate of egg-activating sperm factor, can induce Ca2+ oscillations and cause egg activation. For the application of PLCZ1 to clinical use, we examined the pattern of Ca2+ responses and developmental rate by comparing PLCZ1 RNA injection methods with the other current methods, such as cytosolic aspiration, electrical stimulation and ionomycin treatment in human oocytes. We found that the pattern of Ca2+ oscillations after PLCZ1 RNA injection exhibited similar characteristics to that after ICSI treatment. We also determined the optimal concentration of human PLCZ1 RNA to activate the human oocytes. Our findings suggest that human PLCZ1 RNA is a better therapeutic agent to rescue human oocytes from failed activation, leading to normal and efficient development.
Collapse
Affiliation(s)
- Takashi Yamaguchi
- Saint Mother Obstetrics and Gynecology Clinic, Institute for ART, Fukuoka 807-0825, Japan; Department of Obstetrics and Gynecology, Juntendo University School of Medicine, Tokyo 113-0033, Japan
| | - Masahiko Ito
- Department of Virology and Parasitology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan.
| | - Keiji Kuroda
- Department of Obstetrics and Gynecology, Juntendo University School of Medicine, Tokyo 113-0033, Japan
| | - Satoru Takeda
- Department of Obstetrics and Gynecology, Juntendo University School of Medicine, Tokyo 113-0033, Japan
| | - Atsushi Tanaka
- Saint Mother Obstetrics and Gynecology Clinic, Institute for ART, Fukuoka 807-0825, Japan
| |
Collapse
|
20
|
Martin JH, Bromfield EG, Aitken RJ, Nixon B. Biochemical alterations in the oocyte in support of early embryonic development. Cell Mol Life Sci 2017; 74:469-485. [PMID: 27604868 PMCID: PMC11107538 DOI: 10.1007/s00018-016-2356-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/28/2016] [Accepted: 09/01/2016] [Indexed: 01/01/2023]
Abstract
Notwithstanding the enormous reproductive potential encapsulated within a mature mammalian oocyte, these cells present only a limited window for fertilization before defaulting to an apoptotic cascade known as post-ovulatory oocyte aging. The only cell with the capacity to rescue this potential is the fertilizing spermatozoon. Indeed, the union of these cells sets in train a remarkable series of events that endows the oocyte with the capacity to divide and differentiate into the trillions of cells that comprise a new individual. Traditional paradigms hold that, beyond the initial stimulation of fluctuating calcium (Ca2+) required for oocyte activation, the fertilizing spermatozoon plays limited additional roles in the early embryo. While this model has now been drawn into question in view of the recent discovery that spermatozoa deliver developmentally important classes of small noncoding RNAs and other epigenetic modulators to oocytes during fertilization, it is nevertheless apparent that the primary responsibility for oocyte activation rests with a modest store of maternally derived proteins and mRNA accumulated during oogenesis. It is, therefore, not surprising that widespread post-translational modifications, in particular phosphorylation, hold a central role in endowing these proteins with sufficient functional diversity to initiate embryonic development. Indeed, proteins targeted for such modifications have been linked to oocyte activation, recruitment of maternal mRNAs, DNA repair and resumption of the cell cycle. This review, therefore, seeks to explore the intimate relationship between Ca2+ release and the suite of molecular modifications that sweep through the oocyte to ensure the successful union of the parental germlines and ensure embryogenic fidelity.
Collapse
Affiliation(s)
- Jacinta H Martin
- Discipline of Biological Sciences and Priority Research Center for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia.
| | - Elizabeth G Bromfield
- Discipline of Biological Sciences and Priority Research Center for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - R John Aitken
- Discipline of Biological Sciences and Priority Research Center for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Brett Nixon
- Discipline of Biological Sciences and Priority Research Center for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| |
Collapse
|
21
|
|
22
|
Tiwari M, Prasad S, Shrivastav TG, Chaube SK. Calcium Signaling During Meiotic Cell Cycle Regulation and Apoptosis in Mammalian Oocytes. J Cell Physiol 2016; 232:976-981. [PMID: 27791263 DOI: 10.1002/jcp.25670] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 10/27/2016] [Indexed: 01/07/2023]
Abstract
Calcium (Ca++ ) is one of the major signal molecules that regulate various aspects of cell functions including cell cycle progression, arrest, and apoptosis in wide variety of cells. This review summarizes current knowledge on the differential roles of Ca++ in meiotic cell cycle resumption, arrest, and apoptosis in mammalian oocytes. Release of Ca++ from internal stores and/or Ca++ influx from extracellular medium causes moderate increase of intracellular Ca++ ([Ca++ ]i) level and reactive oxygen species (ROS). Increase of Ca++ as well as ROS levels under physiological range trigger maturation promoting factor (MPF) destabilization, thereby meiotic resumption from diplotene as well as metaphase-II (M-II) arrest in oocytes. A sustained increase of [Ca++ ]i level beyond physiological range induces generation of ROS sufficient enough to cause oxidative stress (OS) in aging oocytes. The increased [Ca++ ]i triggers Fas ligand-mediated oocyte apoptosis. Further, OS triggers mitochondria-mediated oocyte apoptosis in several mammalian species. Thus, Ca++ exerts differential roles on oocyte physiology depending upon its intracellular concentration. A moderate increase of [Ca++ ]i as well as ROS mediate spontaneous resumption of meiosis from diplotene as well as M-II arrest, while their high levels cause meiotic cell cycle arrest and apoptosis by operating both mitochondria- as well as Fas ligand-mediated apoptotic pathways. Indeed, Ca++ regulates cellular physiology by modulating meiotic cell cycle and apoptosis in mammalian oocytes. J. Cell. Physiol. 232: 976-981, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Meenakshi Tiwari
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Shilpa Prasad
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Tulsidas G Shrivastav
- Department of Reproductive Biomedicine, National Institute of Health and Family Welfare, Munirka, New Delhi, India
| | - Shail K Chaube
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
23
|
Finley J. Oocyte activation and latent HIV-1 reactivation: AMPK as a common mechanism of action linking the beginnings of life and the potential eradication of HIV-1. Med Hypotheses 2016; 93:34-47. [PMID: 27372854 DOI: 10.1016/j.mehy.2016.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 05/12/2016] [Indexed: 01/22/2023]
Abstract
In all mammalian species studied to date, the initiation of oocyte activation is orchestrated through alterations in intracellular calcium (Ca(2+)) signaling. Upon sperm binding to the oocyte plasma membrane, a sperm-associated phospholipase C (PLC) isoform, PLC zeta (PLCζ), is released into the oocyte cytoplasm. PLCζ hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) to produce diacylglycerol (DAG), which activates protein kinase C (PKC), and inositol 1,4,5-trisphosphate (IP3), which induces the release of Ca(2+) from endoplasmic reticulum (ER) Ca(2+) stores. Subsequent Ca(2+) oscillations are generated that drive oocyte activation to completion. Ca(2+) ionophores such as ionomycin have been successfully used to induce artificial human oocyte activation, facilitating fertilization during intra-cytoplasmic sperm injection (ICSI) procedures. Early studies have also demonstrated that the PKC activator phorbol 12-myristate 13-acetate (PMA) acts synergistically with Ca(2+) ionophores to induce parthenogenetic activation of mouse oocytes. Interestingly, the Ca(2+)-induced signaling cascade characterizing sperm or chemically-induced oocyte activation, i.e. the "shock and live" approach, bears a striking resemblance to the reactivation of latently infected HIV-1 viral reservoirs via the so called "shock and kill" approach, a method currently being pursued to eradicate HIV-1 from infected individuals. PMA and ionomycin combined, used as positive controls in HIV-1 latency reversal studies, have been shown to be extremely efficient in reactivating latent HIV-1 in CD4(+) memory T cells by inducing T cell activation. Similar to oocyte activation, T cell activation by PMA and ionomycin induces an increase in intracellular Ca(2+) concentrations and activation of DAG, PKC, and downstream Ca(2+)-dependent signaling pathways necessary for proviral transcription. Interestingly, AMPK, a master regulator of cell metabolism that is activated thorough the induction of cellular stress (e.g. increase in Ca(2+) concentration, reactive oxygen species generation, increase in AMP/ATP ratio) is essential for oocyte maturation, T cell activation, and mitochondrial function. In addition to the AMPK kinase LKB1, CaMKK2, a Ca(2+)/calmodulin-dependent kinase that also activates AMPK, is present in and activated on T cell activation and is also present in mouse oocytes and persists until the zygote and two-cell stages. It is our hypothesis that AMPK activation represents a central node linking T cell activation-induced latent HIV-1 reactivation and both physiological and artificial oocyte activation. We further propose the novel observation that various compounds that have been shown to reactivate latent HIV-1 (e.g. PMA, ionomycin, metformin, bryostatin, resveratrol, etc.) or activate oocytes (PMA, ionomycin, ethanol, puromycin, etc.) either alone or in combination likely do so via stress-induced activation of AMPK.
Collapse
|
24
|
Sanders JR, Swann K. Molecular triggers of egg activation at fertilization in mammals. Reproduction 2016; 152:R41-50. [PMID: 27165049 DOI: 10.1530/rep-16-0123] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/09/2016] [Indexed: 01/15/2023]
Abstract
In mammals, the sperm activates the development of the egg by triggering a series of oscillations in the cytosolic-free Ca(2+) concentration (Ca(2+) i). The sperm triggers these cytosolic Ca(2+i) oscillations after sperm-egg membrane fusion, as well as after intracytoplasmic sperm injection (ICSI). These Ca(2+) i oscillations are triggered by a protein located inside the sperm. The identity of the sperm protein has been debated over many years, but all the repeatable data now suggest that it is phospholipase Czeta (PLCζ). The main downstream target of Ca(2+) i oscillations is calmodulin-dependent protein kinase II (CAMKII (CAMK2A)), which phosphorylates EMI2 and WEE1B to inactivate the M-phase promoting factor protein kinase activity (MPF) and this ultimately triggers meiotic resumption. A later decline in the activity of mitogen-activated protein kinase (MAPK) then leads to the completion of activation which is marked by the formation of pronuclei and entry into interphase of the first cell cycle. The early cytosolic Ca(2+) increases also trigger exocytosis via a mechanism that does not involve CAMKII. We discuss some recent developments in our understanding of these triggers for egg activation within the framework of cytosolic Ca(2+) signaling.
Collapse
Affiliation(s)
| | - Karl Swann
- School of BiosciencesCardiff University, Cardiff, UK
| |
Collapse
|
25
|
Scheitlin CG, Julian JA, Shanmughapriya S, Madesh M, Tsoukias NM, Alevriadou BR. Endothelial mitochondria regulate the intracellular Ca2+ response to fluid shear stress. Am J Physiol Cell Physiol 2016; 310:C479-90. [PMID: 26739489 DOI: 10.1152/ajpcell.00171.2015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 01/04/2016] [Indexed: 02/04/2023]
Abstract
Shear stress is known to stimulate an intracellular free calcium concentration ([Ca(2+)]i) response in vascular endothelial cells (ECs). [Ca(2+)]i is a key second messenger for signaling that leads to vasodilation and EC survival. Although it is accepted that the shear-induced [Ca(2+)]i response is, in part, due to Ca(2+) release from the endoplasmic reticulum (ER), the role of mitochondria (second largest Ca(2+) store) is unknown. We hypothesized that the mitochondria play a role in regulating [Ca(2+)]i in sheared ECs. Cultured ECs, loaded with a Ca(2+)-sensitive fluorophore, were exposed to physiological levels of shear stress. Shear stress elicited [Ca(2+)]i transients in a percentage of cells with a fraction of them displaying oscillations. Peak magnitudes, percentage of oscillating ECs, and oscillation frequencies depended on the shear level. [Ca(2+)]i transients/oscillations were present when experiments were conducted in Ca(2+)-free solution (plus lanthanum) but absent when ECs were treated with a phospholipase C inhibitor, suggesting that the ER inositol 1,4,5-trisphosphate receptor is responsible for the [Ca(2+)]i response. Either a mitochondrial uncoupler or an electron transport chain inhibitor, but not a mitochondrial ATP synthase inhibitor, prevented the occurrence of transients and especially inhibited the oscillations. Knockdown of the mitochondrial Ca(2+) uniporter also inhibited the shear-induced [Ca(2+)]i transients/oscillations compared with controls. Hence, EC mitochondria, through Ca(2+) uptake/release, regulate the temporal profile of shear-induced ER Ca(2+) release. [Ca(2+)]i oscillation frequencies detected were within the range for activation of mechanoresponsive kinases and transcription factors, suggesting that dysfunctional EC mitochondria may contribute to cardiovascular disease by deregulating the shear-induced [Ca(2+)]i response.
Collapse
Affiliation(s)
- Christopher G Scheitlin
- Departments of Biomedical Engineering and Internal Medicine, Division of Cardiovascular Medicine, and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Justin A Julian
- Departments of Biomedical Engineering and Internal Medicine, Division of Cardiovascular Medicine, and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Santhanam Shanmughapriya
- Department of Medical Genetics and Molecular Biochemistry and Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania; and
| | - Muniswamy Madesh
- Department of Medical Genetics and Molecular Biochemistry and Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania; and
| | - Nikolaos M Tsoukias
- Department of Biomedical Engineering, Florida International University, Miami, Florida
| | - B Rita Alevriadou
- Departments of Biomedical Engineering and Internal Medicine, Division of Cardiovascular Medicine, and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio;
| |
Collapse
|
26
|
Lee K, Davis A, Zhang L, Ryu J, Spate LD, Park KW, Samuel MS, Walters EM, Murphy CN, Machaty Z, Prather RS. Pig oocyte activation using a Zn²⁺ chelator, TPEN. Theriogenology 2015; 84:1024-32. [PMID: 26143360 DOI: 10.1016/j.theriogenology.2015.05.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 05/21/2015] [Accepted: 05/27/2015] [Indexed: 02/03/2023]
Abstract
Artificial oocyte activation is a critical step during SCNT. Most current activation protocols focus on inducing an increase in the intracellular free Ca(2+) concentration of the oocyte. Here, we have used a zinc chelator, TPEN, to enhance the efficiency of oocyte activation during SCNT. TPEN treatment of matured pig oocytes resulted in the reduction of available Zn(2+) in pig oocytes; however, the cytosolic Ca(2+) concentration in the oocytes was not affected by the TPEN treatment. When various concentrations (100-250 μM) and incubation durations (45 minutes-2.5 hours) of TPEN were used to activate oocytes, the efficiency of oocyte activation was not different from conventional activation methods. When oocytes that were activated by conventional activation methods were incubated with a lower concentration of TPEN (5-10 μM), a significant increase in embryos developing to the blastocyst stage was observed. In addition, when oocytes receiving a small Ca(2+) stimulus were further activated by higher concentration of TPEN (100-200 μM), a significant increase in the frequency of blastocyst formation was observed, compared to a conventional activation method. This result indicated that TPEN can be a main reagent in oocyte activation. No increase in the cytosolic Ca(2+) level was detected when oocytes were exposed to various concentrations of TPEN, indicating the ability of TPEN to induce oocyte activation is independent of an intracellular Ca(2+) increase. We were able to produce clones through SCNT by using the TPEN-assisted activation procedure, and the piglets produced through the process did not show any signs of abnormality. In this study, we have developed an efficient way to use TPEN to increase the developmental potential of cloned embryos.
Collapse
Affiliation(s)
- Kiho Lee
- Division of Animal Science, University of Missouri, Columbia, Missouri, USA; Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, USA.
| | - Alyssa Davis
- Division of Animal Science, University of Missouri, Columbia, Missouri, USA
| | - Lu Zhang
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Junghyun Ryu
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, USA
| | - Lee D Spate
- Division of Animal Science, University of Missouri, Columbia, Missouri, USA
| | - Kwang-Wook Park
- Division of Animal Science, University of Missouri, Columbia, Missouri, USA; Department of Animal Science and Technology, Sunchon National University, Suncheon, Jeonnam, Republic of Korea
| | - Melissa S Samuel
- Division of Animal Science, University of Missouri, Columbia, Missouri, USA; National Swine Resource and Research Center, University of Missouri, Columbia, Missouri, USA
| | - Eric M Walters
- National Swine Resource and Research Center, University of Missouri, Columbia, Missouri, USA
| | - Clifton N Murphy
- National Swine Resource and Research Center, University of Missouri, Columbia, Missouri, USA
| | - Zoltan Machaty
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Randall S Prather
- Division of Animal Science, University of Missouri, Columbia, Missouri, USA; National Swine Resource and Research Center, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
27
|
McGinnis LA, Lee HJ, Robinson DN, Evans JP. MAPK3/1 (ERK1/2) and Myosin Light Chain Kinase in Mammalian Eggs Affect Myosin-II Function and Regulate the Metaphase II State in a Calcium- and Zinc-Dependent Manner. Biol Reprod 2015; 92:146. [PMID: 25904014 DOI: 10.1095/biolreprod.114.127027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 04/16/2015] [Indexed: 12/25/2022] Open
Abstract
Vertebrate eggs are arrested at metaphase of meiosis II, a state classically known as cytostatic factor arrest. Maintenance of this arrest until the time of fertilization and then fertilization-induced exit from metaphase II are crucial for reproductive success. Another key aspect of this meiotic arrest and exit is regulation of the metaphase II spindle, which must be appropriately localized adjacent to the egg cortex during metaphase II and then progress into successful asymmetric cytokinesis to produce the second polar body. This study examined the mitogen-activated protein kinases MAPK3 and MAPK1 (also known as ERK1/2) as regulators of these two related aspects of mammalian egg biology, specifically testing whether this MAPK pathway affected myosin-II function and whether myosin-II perturbation would produce some of the same effects as MAPK pathway perturbation. Inhibition of the MEK1/2-MAPK pathway with U0126 leads to reduced levels of phosphorylated myosin-regulatory light chain (pMRLC) and causes a reduction in cortical tension, effects that are mimicked by treatment with the myosin light chain kinase (MLCK) inhibitor ML-7. These data indicate that one mechanism by which the MAPK pathway acts in eggs is by affecting myosin-II function. We further show that MAPK or MLCK inhibition induces loss of normal cortical spindle localization or parthenogenetic egg activation. This parthenogenesis is dependent on cytosolic and extracellular calcium and can be rescued by hyperloading eggs with zinc, suggesting that these effects of inhibition of MLCK or the MAPK pathway are linked with dysregulation of ion homeostasis.
Collapse
Affiliation(s)
- Lauren A McGinnis
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Hyo J Lee
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Douglas N Robinson
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Janice P Evans
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
28
|
RyR channel-mediated increase of cytosolic free calcium level signals cyclin B1 degradation during abortive spontaneous egg activation in rat. In Vitro Cell Dev Biol Anim 2014; 50:640-7. [PMID: 24696373 DOI: 10.1007/s11626-014-9749-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/13/2014] [Indexed: 10/25/2022]
Abstract
In few mammalian species including rat, post-ovulatory aging induces abortive spontaneous egg activation (SEA), which is morphologically characterized by exit from metaphase-II (M-II) arrest. A possibility exists that the RyR channel-mediated insufficient increase of cytosolic free Ca(2+) level could be one of the causes for post-ovulatory aging-induced abortive SEA. To test this possibility, eggs collected after 17 h post-hCG surge were cultured with or without various concentrations of nifedipine (NF), ruthenium red (RR), and KN-93 for 3 h in vitro. Morphological changes characteristic of abortive SEA, cytosolic free Ca(2+) level, cyclin B1 level, and meiotic status were analyzed. Data of the present study indicate that NF and RR inhibited post-ovulatory aging-induced abortive SEA in a concentration-dependent manner. Further, RR protected against RyR channel as well as caffeine-mediated increase of cytosolic free Ca(2+) level. In addition, KN-93 inhibited post-ovulatory aging-induced abortive SEA in a concentration-dependent manner. An increase of cytosolic free Ca(2+) level was associated with a reduction of cyclin B1 level during post-ovulatory aging-induced abortive SEA. These data indirectly suggest the involvement of RyR channels in the increase of cytosolic free Ca(2+) level. The increased cytosolic free Ca(2+) level triggers cyclin B1 degradation possibly through CaMK-II activity during post-ovulatory aging-induced abortive SEA in rat eggs cultured in vitro.
Collapse
|
29
|
Frequency decoding of calcium oscillations. Biochim Biophys Acta Gen Subj 2014; 1840:964-9. [DOI: 10.1016/j.bbagen.2013.11.015] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/27/2013] [Accepted: 11/15/2013] [Indexed: 01/14/2023]
|
30
|
Kashir J, Deguchi R, Jones C, Coward K, Stricker SA. Comparative biology of sperm factors and fertilization-induced calcium signals across the animal kingdom. Mol Reprod Dev 2013; 80:787-815. [PMID: 23900730 DOI: 10.1002/mrd.22222] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/23/2013] [Indexed: 11/08/2022]
Abstract
Fertilization causes mature oocytes or eggs to increase their concentrations of intracellular calcium ions (Ca²⁺) in all animals that have been examined, and such Ca²⁺ elevations, in turn, provide key activating signals that are required for non-parthenogenetic development. Several lines of evidence indicate that the Ca²⁺ transients produced during fertilization in mammals and other taxa are triggered by soluble factors that sperm deliver into oocytes after gamete fusion. Thus, for a broad-based analysis of Ca²⁺ dynamics during fertilization in animals, this article begins by summarizing data on soluble sperm factors in non-mammalian species, and subsequently reviews various topics related to a sperm-specific phospholipase C, called PLCζ, which is believed to be the predominant activator of mammalian oocytes. After characterizing initiation processes that involve sperm factors or alternative triggering mechanisms, the spatiotemporal patterns of Ca²⁺ signals in fertilized oocytes or eggs are compared in a taxon-by-taxon manner, and broadly classified as either a single major transient or a series of repetitive oscillations. Both solitary and oscillatory types of fertilization-induced Ca²⁺ signals are typically propagated as global waves that depend on Ca²⁺ release from the endoplasmic reticulum in response to increased concentrations of inositol 1,4,5-trisphosphate (IP₃). Thus, for taxa where relevant data are available, upstream pathways that elevate intraoocytic IP3 levels during fertilization are described, while other less-common modes of producing Ca²⁺ transients are also examined. In addition, the importance of fertilization-induced Ca²⁺ signals for activating development is underscored by noting some major downstream effects of these signals in various animals.
Collapse
Affiliation(s)
- Junaid Kashir
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, UK
| | | | | | | | | |
Collapse
|
31
|
Abstract
Egg activation is the series of events that transition a mature oocyte to an egg capable of supporting embryogenesis. Increasing evidence points toward phosphorylation as a critical regulator of these events. We used Drosophila melanogaster to investigate the relationship between known egg activation genes and phosphorylation changes that occur upon egg activation. Using the phosphorylation states of four proteins-Giant Nuclei, Young Arrest, Spindly, and Vap-33-1-as molecular markers, we showed that the egg activation genes sarah, CanB2, and cortex are required for the phospho-regulation of multiple proteins. We show that an additional egg activation gene, prage, regulates the phosphorylation state of a subset of these proteins. Finally, we show that Sarah and calcineurin are required for the Anaphase Promoting Complex/Cyclosome (APC/C)-dependent degradation of Cortex following egg activation. From these data, we present a model in which Sarah, through the activation of calcineurin, positively regulates the APC/C at the time of egg activation, which leads to a change in phosphorylation state of numerous downstream proteins.
Collapse
|
32
|
Abstract
Egg activation is the final transition that an oocyte goes through to become a developmentally competent egg. This transition is usually triggered by a calcium-based signal that is often, but not always, initiated by fertilization. Activation encompasses a number of changes within the egg. These include changes to the egg's membranes and outer coverings to prevent polyspermy and to support the developing embryo, as well as resumption and completion of the meiotic cell cycle, mRNA polyadenylation, translation of new proteins, and the degradation of specific maternal mRNAs and proteins. The transition from an arrested, highly differentiated cell, the oocyte, to a developmentally active, totipotent cell, the activated egg or embryo, represents a complete change in cellular state. This is accomplished by altering ion concentrations and by widespread changes in both the proteome and the suite of mRNAs present in the cell. Here, we review the role of calcium and zinc in the events of egg activation, and the importance of macromolecular changes during this transition. The latter include the degradation and translation of proteins, protein posttranslational regulation through phosphorylation, and the degradation, of maternal mRNAs.
Collapse
Affiliation(s)
- Amber R Krauchunas
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | | |
Collapse
|
33
|
Gonzalez-Garcia JR, Machaty Z, Lai FA, Swann K. The dynamics of PKC-induced phosphorylation triggered by Ca2+ oscillations in mouse eggs. J Cell Physiol 2013; 228:110-9. [PMID: 22566126 PMCID: PMC3746124 DOI: 10.1002/jcp.24110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 04/25/2012] [Indexed: 12/31/2022]
Abstract
Fertilization of mammalian eggs is characterized by a series of Ca(2+) oscillations triggered by a phospholipase C activity. These Ca(2+) increases and the parallel generation of diacylglycerol (DAG) stimulate protein kinase C (PKC). However, the dynamics of PKC activity have not been directly measured in living eggs. Here, we have monitored the dynamics of PKC-induced phosphorylation in mouse eggs, alongside Ca(2+) oscillations, using fluorescent C-kinase activity reporter (CKAR) probes. Ca(2+) oscillations triggered either by sperm, phospholipase C zeta (PLCζ) or Sr(2+) all caused repetitive increases in PKC-induced phosphorylation, as detected by CKAR in the cytoplasm or plasma membrane. The CKAR responses lasted for several minutes in both the cytoplasm and plasma membrane then returned to baseline values before subsequent Ca(2+) transients. High frequency oscillations caused by PLCζ led to an integration of PKC-induced phosphorylation. The conventional PKC inhibitor, Gö6976, could inhibit CKAR increases in response to thapsigargin or ionomycin, but not the repetitive responses seen at fertilization. Repetitive increases in PKCδ activity were also detected during Ca(2+) oscillations using an isoform-specific δCKAR. However, PKCδ may already be mostly active in unfertilized eggs, since phorbol esters were effective at stimulating δCKAR only after fertilization, and the PKCδ-specific inhibitor, rottlerin, decreased the CKAR signals in unfertilized eggs. These data show that PKC-induced phosphorylation outlasts each Ca(2+) increase in mouse eggs but that signal integration only occurs at a non-physiological, high Ca(2+) oscillation frequency. The results also suggest that Ca(2+) -induced DAG formation on intracellular membranes may stimulate PKC activity oscillations at fertilization.
Collapse
Affiliation(s)
| | - Zoltan Machaty
- Department of Animal Sciences, Purdue UniversityWest Lafayette, Indiana
| | - F Anthony Lai
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff UniversityCardiff, UK
| | - Karl Swann
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff UniversityCardiff, UK
| |
Collapse
|
34
|
Miao YL, Williams CJ. Calcium signaling in mammalian egg activation and embryo development: the influence of subcellular localization. Mol Reprod Dev 2012; 79:742-56. [PMID: 22888043 DOI: 10.1002/mrd.22078] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Accepted: 07/27/2012] [Indexed: 11/07/2022]
Abstract
Calcium (Ca(2+) ) signals drive the fundamental events surrounding fertilization and the activation of development in all species examined to date. Initial studies of Ca(2+) signaling at fertilization in marine animals were tightly linked to new discoveries of bioluminescent proteins and their use as fluorescent Ca(2+) sensors. Since that time, there has been rapid progress in our understanding of the key functions for Ca(2+) in many cell types and of the impact of cellular localization on Ca(2+) signaling pathways. In this review, which focuses on mammalian egg activation, we consider how Ca(2+) is regulated and stored at different stages of oocyte development and examine the functions of molecules that serve as both regulators of Ca(2+) release and effectors of Ca(2+) signals. We then summarize studies exploring how Ca(2+) directs downstream effectors mediating both egg activation and later signaling events required for successful preimplantation embryo development. Throughout this review, we focus attention on how localization of Ca(2+) signals influences downstream signaling events, and attempt to highlight gaps in our knowledge that are ripe for future research.
Collapse
Affiliation(s)
- Yi-Liang Miao
- Reproductive Medicine Group, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | |
Collapse
|
35
|
Protein phosphorylation changes reveal new candidates in the regulation of egg activation and early embryogenesis in D. melanogaster. Dev Biol 2012; 370:125-34. [PMID: 22884528 DOI: 10.1016/j.ydbio.2012.07.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 07/20/2012] [Accepted: 07/21/2012] [Indexed: 11/24/2022]
Abstract
Egg activation is the series of events that must occur for a mature oocyte to become capable of supporting embryogenesis. These events include changes to the egg's outer coverings, the resumption and completion of meiosis, the translation of new proteins, and the degradation of specific maternal mRNAs. While we know some of the molecules that direct the initial events of egg activation, it remains unclear how multiple pathways are coordinated to change the cellular state from mature oocyte to activated egg. Using a proteomic approach we have identified new candidates for the regulation and progression of egg activation. Reasoning that phosphorylation can simultaneously and rapidly modulate the activity of many proteins, we identified proteins that are post-translationally modified during the transition from oocyte to activated egg in Drosophila melanogaster. We find that at least 311 proteins change in phosphorylation state between mature oocytes and activated eggs. These proteins fall into various functional classes related to the events of egg activation including calcium binding, proteolysis, and protein translation. Our set of candidates includes genes already associated with egg activation, as well as many genes not previously studied during this developmental period. RNAi knockdown of a subset of these genes revealed a new gene, mrityu, necessary for embryonic development past the first mitosis. Thus, by identifying phospho-modulated proteins we have produced a focused candidate set for future genetic studies to test their roles in egg activation and the initiation of embryogenesis.
Collapse
|
36
|
Lee K, Wang C, Machaty Z. STIM1 is required for Ca2+ signaling during mammalian fertilization. Dev Biol 2012; 367:154-62. [PMID: 22565091 DOI: 10.1016/j.ydbio.2012.04.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 04/25/2012] [Indexed: 11/30/2022]
Abstract
During fertilization in mammals, a series of oscillations in the oocyte's intracellular free Ca(2+) concentration is responsible for oocyte activation and stimulation of embryonic development. The oscillations are associated with influx of Ca(2+) across the plasma membrane that is probably triggered by the depletion of the intracellular stores, a mechanism known as store-operated Ca(2+) entry. Recently, STIM1 has been identified in oocytes as a key component of the machinery that generates the Ca(2+) influx after store depletion. In this study, the involvement of STIM1 in the sperm-induced Ca(2+) oscillations and its significance in supporting subsequent embryo development were investigated. Downregulation of STIM1 levels in pig oocytes by siRNA completely inhibited the repetitive Ca(2+) signal triggered by the fertilizing sperm. In addition, a significantly lower percentage of oocytes cleaved or formed blastocysts when STIM1 was downregulated prior to fertilization compared to the control groups. Restoring STIM1 levels after fertilization in such oocytes by means of mRNA injection could not rescue embryonic development that in most cases was arrested at the 2-cell stage. On the other hand, STIM1 overexpression prior to fertilization did not alter the pattern of sperm-induced Ca(2+) oscillations and development of these fertilized oocytes up to the blastocyst stage was also similar to that registered in the control group. Finally, downregulation of STIM1 had no effect on oocyte activation when activation was stimulated artificially by inducing a single large elevation in the oocyte's intracellular free Ca(2+) concentration. These findings suggest that STIM1 is essential for normal fertilization as it is involved in the maintenance of the long-lasting repetitive Ca(2+) signal.
Collapse
Affiliation(s)
- Kiho Lee
- Division of Animal Sciences, University of Missouri-Columbia, Columbia, MO 65201, USA
| | | | | |
Collapse
|
37
|
Cui W, Zhang J, Lian HY, Wang HL, Miao DQ, Zhang CX, Luo MJ, Tan JH. Roles of MAPK and spindle assembly checkpoint in spontaneous activation and MIII arrest of rat oocytes. PLoS One 2012; 7:e32044. [PMID: 22384134 PMCID: PMC3288063 DOI: 10.1371/journal.pone.0032044] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 01/18/2012] [Indexed: 11/18/2022] Open
Abstract
Rat oocytes are well known to undergo spontaneous activation (SA) after leaving the oviduct, but the SA is abortive with oocytes being arrested in metaphase III (MIII) instead of forming pronuclei. This study was designed to investigate the mechanism causing SA and MIII arrest. Whereas few oocytes collected from SD rats at 13 h after hCG injection that showed 100% of mitogen-activated protein kinase (MAPK) activities activated spontaneously, all oocytes recovered 19 h post hCG with MAPK decreased to below 75% underwent SA during in vitro culture. During SA, MAPK first declined to below 45% and then increased again to 80%; the maturation-promoting factor (MPF) activity fluctuated similarly but always began to change ahead of the MAPK activity. In SA oocytes with 75% of MAPK activities, microtubules were disturbed with irregularly pulled chromosomes dispersed over the spindle and the spindle assembly checkpoint (SAC) was activated. When MAPK decreased to 45%, the spindle disintegrated and chromosomes surrounded by microtubules were scattered in the ooplasm. SA oocytes entered MIII and formed several spindle-like structures by 6 h of culture when the MAPK activity re-increased to above 80%. While SA oocytes showed one Ca2+ rise, Sr2+-activated oocytes showed several. Together, the results suggested that SA stimuli triggered SA in rat oocytes by inducing a premature MAPK inactivation, which led to disturbance of spindle microtubules. The microtubule disturbance impaired pulling of chromosomes to the spindle poles, caused spindle disintegration and activated SAC. The increased SAC activity reactivated MPF and thus MAPK, leading to MIII arrest.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jing-He Tan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, People's Republic of China
- * E-mail:
| |
Collapse
|
38
|
Calcium Oscillations, Oocyte Activation, and Phospholipase C zeta. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:1095-121. [DOI: 10.1007/978-94-007-2888-2_50] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Von Stetina JR, Orr-Weaver TL. Developmental control of oocyte maturation and egg activation in metazoan models. Cold Spring Harb Perspect Biol 2011; 3:a005553. [PMID: 21709181 DOI: 10.1101/cshperspect.a005553] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Production of functional eggs requires meiosis to be coordinated with developmental signals. Oocytes arrest in prophase I to permit oocyte differentiation, and in most animals, a second meiotic arrest links completion of meiosis to fertilization. Comparison of oocyte maturation and egg activation between mammals, Caenorhabditis elegans, and Drosophila reveal conserved signaling pathways and regulatory mechanisms as well as unique adaptations for reproductive strategies. Recent studies in mammals and C. elegans show the role of signaling between surrounding somatic cells and the oocyte in maintaining the prophase I arrest and controlling maturation. Proteins that regulate levels of active Cdk1/cyclin B during prophase I arrest have been identified in Drosophila. Protein kinases play crucial roles in the transition from meiosis in the oocyte to mitotic embryonic divisions in C. elegans and Drosophila. Here we will contrast the regulation of key meiotic events in oocytes.
Collapse
Affiliation(s)
- Jessica R Von Stetina
- Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | | |
Collapse
|
40
|
Abstract
Entry into, and passage through, the two meiotic divisions of the oocyte has to be highly coordinated to ensure proper segregation of chromosomes. This coordination ensures that the hallmark stops and starts of the meiotic process occur at the right time to prevent aneuploidy. The Anaphase-Promoting Complex is an activity mostly studied in the mitotic cell cycle division, where it has essential functions during mitosis. As detailed here the Anaphase-Promoting Complex also plays vital roles in controlling at least three meiotic events: maintenance of prophase I arrest, timely and faithful segregation of homologous chromosomes in meiosis I, and the meiotic arrest following ovulation.
Collapse
Affiliation(s)
- Keith T Jones
- University of Newcastle, 2308 Newcastle, NSW, Australia.
| |
Collapse
|
41
|
Rhythmic actomyosin-driven contractions induced by sperm entry predict mammalian embryo viability. Nat Commun 2011; 2:417. [PMID: 21829179 PMCID: PMC3265380 DOI: 10.1038/ncomms1424] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 06/07/2011] [Indexed: 11/22/2022] Open
Abstract
Fertilization-induced cytoplasmic flows are a conserved feature of eggs in many species. However, until now the importance of cytoplasmic flows for the development of mammalian embryos has been unknown. Here, by combining a rapid imaging of the freshly fertilized mouse egg with advanced image analysis based on particle image velocimetry, we show that fertilization induces rhythmical cytoplasmic movements that coincide with pulsations of the protrusion forming above the sperm head. We find that these movements are caused by contractions of the actomyosin cytoskeleton triggered by Ca2+ oscillations induced by fertilization. Most importantly, the relationship between the movements and the events of egg activation makes it possible to use the movements alone to predict developmental potential of the zygote. In conclusion, this method offers, thus far, the earliest and fastest, non-invasive way to predict the viability of eggs fertilized in vitro and therefore can potentially improve greatly the prospects for IVF treatment. Cytoplasmic flows—the movement of cytoplasmic material—can be detected following the fertilization of an egg by a sperm in many species. In this study, rhythmic cytoplasmic flows are shown to be induced in mice by calcium-induced cytoskeleton contractions which could be used to predict the successful outcome of fertilization.
Collapse
|
42
|
Newman SA. Animal egg as evolutionary innovation: a solution to the “embryonic hourglass” puzzle. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 316:467-83. [DOI: 10.1002/jez.b.21417] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 04/01/2011] [Accepted: 04/07/2011] [Indexed: 12/26/2022]
|
43
|
Ni Q, Ganesan A, Aye-Han NN, Gao X, Allen MD, Levchenko A, Zhang J. Signaling diversity of PKA achieved via a Ca2+-cAMP-PKA oscillatory circuit. Nat Chem Biol 2010; 7:34-40. [PMID: 21102470 PMCID: PMC3073414 DOI: 10.1038/nchembio.478] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 09/30/2010] [Indexed: 12/21/2022]
Abstract
Many protein kinases are key nodal signaling molecules that regulate a wide range of cellular functions. These functions may require complex spatiotemporal regulation of kinase activities. Here, we show that protein kinase A (PKA), Ca(2+) and cyclic AMP (cAMP) oscillate in sync in insulin-secreting MIN6 beta cells, forming a highly integrated oscillatory circuit. We found that PKA activity was essential for this oscillatory circuit and was capable of not only initiating the signaling oscillations but also modulating their frequency, thereby diversifying the spatiotemporal control of downstream signaling. Our findings suggest that exquisite temporal control of kinase activity, mediated via signaling circuits resulting from cross-regulation of signaling pathways, can encode diverse inputs into temporal parameters such as oscillation frequency, which in turn contribute to proper regulation of complex cellular functions in a context-dependent manner.
Collapse
Affiliation(s)
- Qiang Ni
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Suzuki T, Yoshida N, Suzuki E, Okuda E, Perry ACF. Full-term mouse development by abolishing Zn2+-dependent metaphase II arrest without Ca2+ release. Development 2010; 137:2659-69. [DOI: 10.1242/dev.049791] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In vertebrates, a rise in intracellular free Ca2+ (Ca2+i) levels during fertilization initiates second metaphase (mII) exit and the developmental programme. The Ca2+ rise has long been considered to be crucial for development, but verifying this contribution would benefit from defining its role during fertilization. Here, we delineate the role of Ca2+ release during mII exit in wild-type mouse eggs and show that it is dispensable for full-term development. Exit from mII can be induced by Zn2+-specific sequestration without Ca2+ release, eliciting Cyclin B degradation in a manner dependent upon the proteasome pathway and intact microtubules, but not accompanied by degradation of the meiotic regulator Emi2. Parthenogenotes generated by Zn2+ sequestration developed in vitro with normal expression of Ca2+-sensitive genes. Meiotic exit induced by either Ca2+ oscillations or a single Ca2+ rise in oocytes containing a signaling-deficient sperm resulted in comparable developmental rates. In the absence of Ca2+ release, full-term development occurred ∼50% less efficiently, but at readily detectable rates, with the birth of 27 offspring. These results show in intact mouse oocytes that Zn2+ is essential for mII arrest and suggest that triggering meiotic exit is the sole indispensable developmental role of Ca2+ signaling in mammalian fertilization.
Collapse
Affiliation(s)
- Toru Suzuki
- Laboratory of Mammalian Molecular Embryology, RIKEN Center for Developmental Biology, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe 650-0047 Japan
| | - Naoko Yoshida
- Laboratory of Mammalian Molecular Embryology, RIKEN Center for Developmental Biology, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe 650-0047 Japan
| | - Emi Suzuki
- Laboratory of Mammalian Molecular Embryology, RIKEN Center for Developmental Biology, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe 650-0047 Japan
| | - Erina Okuda
- Laboratory of Mammalian Molecular Embryology, RIKEN Center for Developmental Biology, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe 650-0047 Japan
| | - Anthony C. F. Perry
- Laboratory of Mammalian Molecular Embryology, RIKEN Center for Developmental Biology, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe 650-0047 Japan
| |
Collapse
|
45
|
The gamma isoform of CaM kinase II controls mouse egg activation by regulating cell cycle resumption. Proc Natl Acad Sci U S A 2009; 107:81-6. [PMID: 19966304 DOI: 10.1073/pnas.0912658106] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fertilization triggers a rise in intracellular Ca(2+) concentration ([Ca(2+)](i)) in the egg that initiates a series of events known as egg activation. These events include cortical granule exocytosis that establishes a block to polyspermy, resumption of meiosis, and recruitment of maternal mRNAs into polysomes for translation. Several calcium-dependent proteins, including calcium/calmodulin-dependent protein kinase II (CaMKII), have been implicated in egg activation. However, the precise role of CaMKII in mediating specific events of egg activation and the identity of the isoform(s) present in mouse eggs have not been unequivocally established. Through targeted deletion of the gamma isoform of CaMKII, we find that CaMKIIgamma is the predominant CaMKII isoform in mouse eggs and that it is essential for egg activation. Although CaMKIIgamma(-/-) eggs exhibit a normal pattern of Ca(2+) oscillations after insemination and undergo cortical granule exocytosis, they fail to resume meiosis or to recruit maternal mRNAs. Surprisingly, we find that the recruitment of maternal mRNAs does not directly depend on CaMKII, but requires elevated [Ca(2+)](i) and metaphase II exit. We conclude that CaMKIIgamma specifically controls mouse egg activation by regulating cell cycle resumption.
Collapse
|
46
|
Chang HY, Minahan K, Merriman JA, Jones KT. Calmodulin-dependent protein kinase gamma 3 (CamKIIgamma3) mediates the cell cycle resumption of metaphase II eggs in mouse. Development 2009; 136:4077-81. [PMID: 19906843 DOI: 10.1242/dev.042143] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Mature mammalian eggs are ovulated arrested at meiotic metaphase II. Sperm break this arrest by an oscillatory Ca(2+) signal that is necessary and sufficient for the two immediate events of egg activation: cell cycle resumption and cortical granule release. Previous work has suggested that cell cycle resumption, but not cortical granule release, is mediated by calmodulin-dependent protein kinase II (CamKII). Here we find that mouse eggs contain detectable levels of only one CamKII isoform, gamma 3. Antisense morpholino knockdown of CamKIIgamma3 during oocyte maturation produces metaphase II eggs that are insensitive to parthenogenetic activation by Ca(2+) stimulation and insemination. The effect is specific to this morpholino, as a 5-base-mismatch morpholino is without effect, and is rescued by CamKIIgamma3 or constitutively active CamKII cRNAs. Although CamKII-morpholino-treated eggs fail to exit metaphase II arrest, cortical granule exocytosis is not blocked. Therefore, CamKIIgamma3 plays a necessary and sufficient role in transducing the oscillatory Ca(2+) signal into cell cycle resumption, but not into cortical granule release.
Collapse
Affiliation(s)
- Heng-Yu Chang
- School of Biomedical Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | | | | | | |
Collapse
|
47
|
Newman SA. E.E. Just's “independent irritability” revisited: The activated egg as excitable soft matter. Mol Reprod Dev 2009; 76:966-74. [DOI: 10.1002/mrd.21094] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
48
|
Acetylcholine rescues two-cell block through activation of IP3 receptors and Ca2+/calmodulin-dependent kinase II in an ICR mouse strain. Pflugers Arch 2009; 458:1125-36. [PMID: 19484474 DOI: 10.1007/s00424-009-0686-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 05/10/2009] [Accepted: 05/19/2009] [Indexed: 10/20/2022]
Abstract
Acetylcholine (ACh) causes early activation events in mouse oocytes, but little is known about its precise role in the early embryonic development of mice. We aimed to determine whether and how ACh is capable of rescuing two-cell block in an in vitro culture system. ACh evoked different transient Ca(2+) patterns showing a higher Ca(2+) peak in the two-cell stage embryos (two-cells) than observed in mature oocytes. In early two-cells subjected to an in vitro two-cell block, xestospongin C (Xes-C), an IP3 receptor antagonist, significantly decreased the level of the ACh-induced Ca(2+) increase. The reduction in the ACh-induced Ca(2+) increase by Xes-C in late two-cells was lower than that in early two-cells. Furthermore, KN62 and KN93, both CaMKII inhibitors, were found to reduce the magnitude of the ACh-induced Ca(2+) increase in early two-cells. The addition of ACh to the culture medium showed an ability to rescue in vitro two-cell block. However, the addition of ACh together with both Xes-C and CaMKII inhibitors or with either inhibitor separately had no effect on the rescue of two-cell block. Long-term exposure of late two-cells to ACh decreased morula and early blastocyst development and ACh had a differential effect on early and late two-cells. These results indicate that ACh likely rescues the in vitro two-cell block through activation of IP3R- and/or CaMKII-dependent signal transduction pathways.
Collapse
|
49
|
Harwood BN, Cross SK, Radford EE, Haac BE, De Vries WN. Members of the WNT signaling pathways are widely expressed in mouse ovaries, oocytes, and cleavage stage embryos. Dev Dyn 2008; 237:1099-111. [PMID: 18351675 DOI: 10.1002/dvdy.21491] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The mammalian oocyte-to-embryo transition, characterized by a period of transcriptional silence, is dependent on maternal RNAs and proteins produced during the growth phase of the oocyte. Signaling pathways control timely transcription and translation of RNA, as well as post-translational modification of proteins. The WNT/beta-catenin pathway is clearly not active during preimplantation embryo development. However, alternative Wnt signaling pathways may play a role during early embryo development. This study describes the extensive expression, at the transcript and protein level, of receptors, ligands, and intracellular molecules known to play a role in WNT signaling, as well as those known to negatively regulate the canonical WNT/beta-catenin pathway in developing oocytes and preimplantation embryos. This expression of a wide array of molecules involved in WNT signaling suggests that the alternative WNT pathways may be active during oogenesis and the oocyte-to-embryo transition.
Collapse
|
50
|
Ai JS, Wang Q, Yin S, Shi LH, Xiong B, OuYang YC, Hou Y, Chen DY, Schatten H, Sun QY. Regulation of peripheral spindle movement and spindle rotation during mouse oocyte meiosis: new perspectives. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2008; 14:349-356. [PMID: 18598570 DOI: 10.1017/s1431927608080343] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Spindle movement, including spindle migration during first meiosis and spindle rotation during second meiosis, is essential for asymmetric divisions in mouse oocytes. Previous studies by others and us have shown that microfilaments are required for both spindle migration and rotation. In the present study, we aimed to further investigate the mechanism controlling spindle movement during mouse oocyte meiosis. By employing drug treatment and immunofluorescence microscopy, we showed that dynamic microtubule assembly was involved in both spindle migration and rotation. Furthermore, we found that the calcium/CaM/CaMKII pathway was important for regulating spindle rotation.
Collapse
Affiliation(s)
- Jun-Shu Ai
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|