1
|
Lacalli TC. Patterning, From Conifers to Consciousness: Turing's Theory and Order From Fluctuations. Front Cell Dev Biol 2022; 10:871950. [PMID: 35592249 PMCID: PMC9111979 DOI: 10.3389/fcell.2022.871950] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/11/2022] [Indexed: 11/19/2022] Open
Abstract
This is a brief account of Turing's ideas on biological pattern and the events that led to their wider acceptance by biologists as a valid way to investigate developmental pattern, and of the value of theory more generally in biology. Periodic patterns have played a key role in this process, especially 2D arrays of oriented stripes, which proved a disappointment in theoretical terms in the case of Drosophila segmentation, but a boost to theory as applied to skin patterns in fish and model chemical reactions. The concept of "order from fluctuations" is a key component of Turing's theory, wherein pattern arises by selective amplification of spatial components concealed in the random disorder of molecular and/or cellular processes. For biological examples, a crucial point from an analytical standpoint is knowing the nature of the fluctuations, where the amplifier resides, and the timescale over which selective amplification occurs. The answer clarifies the difference between "inelegant" examples such as Drosophila segmentation, which is perhaps better understood as a programmatic assembly process, and "elegant" ones expressible in equations like Turing's: that the fluctuations and selection process occur predominantly in evolutionary time for the former, but in real time for the latter, and likewise for error suppression, which for Drosophila is historical, in being lodged firmly in past evolutionary events. The prospects for a further extension of Turing's ideas to the complexities of brain development and consciousness is discussed, where a case can be made that it could well be in neuroscience that his ideas find their most important application.
Collapse
|
2
|
Jansen C, Paraiso KD, Zhou JJ, Blitz IL, Fish MB, Charney RM, Cho JS, Yasuoka Y, Sudou N, Bright AR, Wlizla M, Veenstra GJC, Taira M, Zorn AM, Mortazavi A, Cho KWY. Uncovering the mesendoderm gene regulatory network through multi-omic data integration. Cell Rep 2022; 38:110364. [PMID: 35172134 PMCID: PMC8917868 DOI: 10.1016/j.celrep.2022.110364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 10/30/2021] [Accepted: 01/19/2022] [Indexed: 01/01/2023] Open
Abstract
Mesendodermal specification is one of the earliest events in embryogenesis, where cells first acquire distinct identities. Cell differentiation is a highly regulated process that involves the function of numerous transcription factors (TFs) and signaling molecules, which can be described with gene regulatory networks (GRNs). Cell differentiation GRNs are difficult to build because existing mechanistic methods are low throughput, and high-throughput methods tend to be non-mechanistic. Additionally, integrating highly dimensional data composed of more than two data types is challenging. Here, we use linked self-organizing maps to combine chromatin immunoprecipitation sequencing (ChIP-seq)/ATAC-seq with temporal, spatial, and perturbation RNA sequencing (RNA-seq) data from Xenopus tropicalis mesendoderm development to build a high-resolution genome scale mechanistic GRN. We recover both known and previously unsuspected TF-DNA/TF-TF interactions validated through reporter assays. Our analysis provides insights into transcriptional regulation of early cell fate decisions and provides a general approach to building GRNs using highly dimensional multi-omic datasets.
Collapse
Affiliation(s)
- Camden Jansen
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA; Center for Complex Biological Systems, University of California, Irvine, CA, USA
| | - Kitt D Paraiso
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA; Center for Complex Biological Systems, University of California, Irvine, CA, USA
| | - Jeff J Zhou
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Ira L Blitz
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Margaret B Fish
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Rebekah M Charney
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Jin Sun Cho
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Yuuri Yasuoka
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Norihiro Sudou
- Department of Anatomy, School of Medicine, Toho University, Tokyo, Japan
| | - Ann Rose Bright
- Department of Molecular Developmental Biology, Radboud University, Nijmegen, the Netherlands
| | - Marcin Wlizla
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Gert Jan C Veenstra
- Department of Molecular Developmental Biology, Radboud University, Nijmegen, the Netherlands
| | - Masanori Taira
- Department of Biological Sciences, Chuo University, Tokyo, Japan
| | - Aaron M Zorn
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA; Center for Complex Biological Systems, University of California, Irvine, CA, USA.
| | - Ken W Y Cho
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA; Center for Complex Biological Systems, University of California, Irvine, CA, USA.
| |
Collapse
|
3
|
The Evolution of Biomineralization through the Co-Option of Organic Scaffold Forming Networks. Cells 2022; 11:cells11040595. [PMID: 35203246 PMCID: PMC8870065 DOI: 10.3390/cells11040595] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/05/2022] Open
Abstract
Biomineralization is the process in which organisms use minerals to generate hard structures like teeth, skeletons and shells. Biomineralization is proposed to have evolved independently in different phyla through the co-option of pre-existing developmental programs. Comparing the gene regulatory networks (GRNs) that drive biomineralization in different species could illuminate the molecular evolution of biomineralization. Skeletogenesis in the sea urchin embryo was extensively studied and the underlying GRN shows high conservation within echinoderms, larval and adult skeletogenesis. The organic scaffold in which the calcite skeletal elements form in echinoderms is a tubular compartment generated by the syncytial skeletogenic cells. This is strictly different than the organic cartilaginous scaffold that vertebrates mineralize with hydroxyapatite to make their bones. Here I compare the GRNs that drive biomineralization and tubulogenesis in echinoderms and in vertebrates. The GRN that drives skeletogenesis in the sea urchin embryo shows little similarity to the GRN that drives bone formation and high resemblance to the GRN that drives vertebrates’ vascular tubulogenesis. On the other hand, vertebrates’ bone-GRNs show high similarity to the GRNs that operate in the cells that generate the cartilage-like tissues of basal chordate and invertebrates that do not produce mineralized tissue. These comparisons suggest that biomineralization in deuterostomes evolved through the phylum specific co-option of GRNs that control distinct organic scaffolds to mineralization.
Collapse
|
4
|
McClay DR, Croce JC, Warner JF. Reprint of: Conditional specification of endomesoderm. Cells Dev 2021; 168:203731. [PMID: 34610899 DOI: 10.1016/j.cdev.2021.203731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 10/20/2022]
Abstract
Early in animal development many cells are conditionally specified based on observations that those cells can be directed toward alternate fates. The endomesoderm is so named because early specification produces cells that often have been observed to simultaneously express both early endoderm and mesoderm transcription factors. Experiments with these cells demonstrate that their progeny can directed entirely toward endoderm or mesoderm, whereas normally they establish both germ layers. This review examines the mechanisms that initiate the conditional endomesoderm state, its metastability, and the mechanisms that resolve that state into definitive endoderm and mesoderm.
Collapse
Affiliation(s)
- David R McClay
- Department of Biology, Duke University, Durham, NC, USA.
| | - Jenifer C Croce
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche, Villefranche-sur-Mer, France.
| | - Jacob F Warner
- Department of Biology, University of North Carolina, Wilmington, NC, USA.
| |
Collapse
|
5
|
McClay DR, Croce JC, Warner JF. Conditional specification of endomesoderm. Cells Dev 2021; 167:203716. [PMID: 34245941 DOI: 10.1016/j.cdev.2021.203716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 10/20/2022]
Abstract
Early in animal development many cells are conditionally specified based on observations that those cells can be directed toward alternate fates. The endomesoderm is so named because early specification produces cells that often have been observed to simultaneously express both early endoderm and mesoderm transcription factors. Experiments with these cells demonstrate that their progeny can directed entirely toward endoderm or mesoderm, whereas normally they establish both germ layers. This review examines the mechanisms that initiate the conditional endomesoderm state, its metastability, and the mechanisms that resolve that state into definitive endoderm and mesoderm.
Collapse
Affiliation(s)
- David R McClay
- Department of Biology, Duke University, Durham, NC, USA.
| | - Jenifer C Croce
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche, Villefranche-sur-Mer, France.
| | - Jacob F Warner
- Department of Biology, University of North Carolina, Wilmington, NC, USA.
| |
Collapse
|
6
|
Ossipova O, Itoh K, Radu A, Ezan J, Sokol SY. Pinhead signaling regulates mesoderm heterogeneity via the FGF receptor-dependent pathway. Development 2020; 147:dev188094. [PMID: 32859582 PMCID: PMC7502591 DOI: 10.1242/dev.188094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 08/04/2020] [Indexed: 12/29/2022]
Abstract
Among the three embryonic germ layers, the mesoderm plays a central role in the establishment of the vertebrate body plan. The mesoderm is specified by secreted signaling proteins from the FGF, Nodal, BMP and Wnt families. No new classes of extracellular mesoderm-inducing factors have been identified in more than two decades. Here, we show that the pinhead (pnhd) gene encodes a secreted protein that is essential for the activation of a subset of mesodermal markers in the Xenopus embryo. RNA sequencing revealed that many transcriptional targets of Pnhd are shared with those of the FGF pathway. Pnhd activity was accompanied by Erk phosphorylation and required FGF and Nodal but not Wnt signaling. We propose that during gastrulation Pnhd acts in the marginal zone to contribute to mesoderm heterogeneity via an FGF receptor-dependent positive feedback mechanism.
Collapse
Affiliation(s)
- Olga Ossipova
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Keiji Itoh
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aurelian Radu
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jerome Ezan
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sergei Y Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
7
|
Fernandez-Valverde SL, Aguilera F, Ramos-Díaz RA. Inference of Developmental Gene Regulatory Networks Beyond Classical Model Systems: New Approaches in the Post-genomic Era. Integr Comp Biol 2019; 58:640-653. [PMID: 29917089 DOI: 10.1093/icb/icy061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The advent of high-throughput sequencing (HTS) technologies has revolutionized the way we understand the transformation of genetic information into morphological traits. Elucidating the network of interactions between genes that govern cell differentiation through development is one of the core challenges in genome research. These networks are known as developmental gene regulatory networks (dGRNs) and consist largely of the functional linkage between developmental control genes, cis-regulatory modules, and differentiation genes, which generate spatially and temporally refined patterns of gene expression. Over the last 20 years, great advances have been made in determining these gene interactions mainly in classical model systems, including human, mouse, sea urchin, fruit fly, and worm. This has brought about a radical transformation in the fields of developmental biology and evolutionary biology, allowing the generation of high-resolution gene regulatory maps to analyze cell differentiation during animal development. Such maps have enabled the identification of gene regulatory circuits and have led to the development of network inference methods that can recapitulate the differentiation of specific cell-types or developmental stages. In contrast, dGRN research in non-classical model systems has been limited to the identification of developmental control genes via the candidate gene approach and the characterization of their spatiotemporal expression patterns, as well as to the discovery of cis-regulatory modules via patterns of sequence conservation and/or predicted transcription-factor binding sites. However, thanks to the continuous advances in HTS technologies, this scenario is rapidly changing. Here, we give a historical overview on the architecture and elucidation of the dGRNs. Subsequently, we summarize the approaches available to unravel these regulatory networks, highlighting the vast range of possibilities of integrating multiple technical advances and theoretical approaches to expand our understanding on the global gene regulation during animal development in non-classical model systems. Such new knowledge will not only lead to greater insights into the evolution of molecular mechanisms underlying cell identity and animal body plans, but also into the evolution of morphological key innovations in animals.
Collapse
Affiliation(s)
- Selene L Fernandez-Valverde
- CONACYT, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato, Mexico
| | - Felipe Aguilera
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - René Alexander Ramos-Díaz
- CONACYT, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato, Mexico
| |
Collapse
|
8
|
Peter IS. Methods for the experimental and computational analysis of gene regulatory networks in sea urchins. Methods Cell Biol 2018; 151:89-113. [PMID: 30948033 DOI: 10.1016/bs.mcb.2018.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The discovery of gene regulatory networks (GRNs) has opened a gate to access the genomic mechanisms controlling development. GRNs are systems of transcriptional regulatory circuits that control the differential specification of cell fates during development by regulating gene expression. The experimental analysis of GRNs involves a collection of methods, each revealing aspects of the overall control process. This review provides an overview of experimental and computational methods that have been successfully applied for solving developmental GRNs in the sea urchin embryo. The key in this approach is to obtain experimental evidence for functional interactions between transcription factors and regulatory DNA. In the second part of this review, a more generally applicable strategy is discussed that shows a path from experimental evidence to annotation of regulatory linkages to the generation of GRN models.
Collapse
Affiliation(s)
- Isabelle S Peter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States.
| |
Collapse
|
9
|
Abstract
TGF-β family ligands function in inducing and patterning many tissues of the early vertebrate embryonic body plan. Nodal signaling is essential for the specification of mesendodermal tissues and the concurrent cellular movements of gastrulation. Bone morphogenetic protein (BMP) signaling patterns tissues along the dorsal-ventral axis and simultaneously directs the cell movements of convergence and extension. After gastrulation, a second wave of Nodal signaling breaks the symmetry between the left and right sides of the embryo. During these processes, elaborate regulatory feedback between TGF-β ligands and their antagonists direct the proper specification and patterning of embryonic tissues. In this review, we summarize the current knowledge of the function and regulation of TGF-β family signaling in these processes. Although we cover principles that are involved in the development of all vertebrate embryos, we focus specifically on three popular model organisms: the mouse Mus musculus, the African clawed frog of the genus Xenopus, and the zebrafish Danio rerio, highlighting the similarities and differences between these species.
Collapse
Affiliation(s)
- Joseph Zinski
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Benjamin Tajer
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Mary C Mullins
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| |
Collapse
|
10
|
David CJ, Massagué J. Contextual determinants of TGFβ action in development, immunity and cancer. Nat Rev Mol Cell Biol 2018; 19:419-435. [PMID: 29643418 DOI: 10.1038/s41580-018-0007-0] [Citation(s) in RCA: 596] [Impact Index Per Article: 85.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Few cell signals match the impact of the transforming growth factor-β (TGFβ) family in metazoan biology. TGFβ cytokines regulate cell fate decisions during development, tissue homeostasis and regeneration, and are major players in tumorigenesis, fibrotic disorders, immune malfunctions and various congenital diseases. The effects of the TGFβ family are mediated by a combinatorial set of ligands and receptors and by a common set of receptor-activated mothers against decapentaplegic homologue (SMAD) transcription factors, yet the effects can differ dramatically depending on the cell type and the conditions. Recent progress has illuminated a model of TGFβ action in which SMADs bind genome-wide in partnership with lineage-determining transcription factors and additionally integrate inputs from other pathways and the chromatin to trigger specific cellular responses. These new insights clarify the operating logic of the TGFβ pathway in physiology and disease.
Collapse
Affiliation(s)
- Charles J David
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Tsinghua University School of Medicine, Department of Basic Sciences, Beijing, China
| | - Joan Massagué
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
11
|
Charney RM, Paraiso KD, Blitz IL, Cho KWY. A gene regulatory program controlling early Xenopus mesendoderm formation: Network conservation and motifs. Semin Cell Dev Biol 2017; 66:12-24. [PMID: 28341363 DOI: 10.1016/j.semcdb.2017.03.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/12/2017] [Accepted: 03/20/2017] [Indexed: 02/08/2023]
Abstract
Germ layer formation is among the earliest differentiation events in metazoan embryos. In triploblasts, three germ layers are formed, among which the endoderm gives rise to the epithelial lining of the gut tube and associated organs including the liver, pancreas and lungs. In frogs (Xenopus), where early germ layer formation has been studied extensively, the process of endoderm specification involves the interplay of dozens of transcription factors. Here, we review the interactions between these factors, summarized in a transcriptional gene regulatory network (GRN). We highlight regulatory connections conserved between frog, fish, mouse, and human endodermal lineages. Especially prominent is the conserved role and regulatory targets of the Nodal signaling pathway and the T-box transcription factors, Vegt and Eomes. Additionally, we highlight network topologies and motifs, and speculate on their possible roles in development.
Collapse
Affiliation(s)
- Rebekah M Charney
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Kitt D Paraiso
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Ira L Blitz
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Ken W Y Cho
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
12
|
Abstract
Cytokines of the transforming growth factor β (TGF-β) family, including TGF-βs, bone morphogenic proteins (BMPs), activins, and Nodal, play crucial roles in embryonic development and adult tissue homeostasis by regulating cell proliferation, survival, and differentiation, as well as stem-cell self-renewal and lineage-specific differentiation. Smad proteins are critical downstream mediators of these signaling activities. In addition to regulating the transcription of direct target genes of TGF-β, BMP, activin, or Nodal, Smad proteins also participate in extensive cross talk with other signaling pathways, often in a cell-type- or developmental stage-specific manner. These combinatorial signals often produce context-, time-, and location-dependent biological outcomes that are critical for development. This review discusses recent progress in our understanding of the cross talk between Smad proteins and signaling pathways of Wnt, Notch, Hippo, Hedgehog (Hh), mitogen-activated protein (MAP), kinase, phosphoinositide 3-kinase (PI3K)-Akt, nuclear factor κB (NF-κB), and Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathways.
Collapse
Affiliation(s)
- Kunxin Luo
- Department of Molecular and Cell Biology, University of California, Berkeley, and Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|
13
|
Luo K. Signaling Cross Talk between TGF-β/Smad and Other Signaling Pathways. Cold Spring Harb Perspect Biol 2017. [PMID: 27836834 DOI: 10.1101/cshperspect] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cytokines of the transforming growth factor β (TGF-β) family, including TGF-βs, bone morphogenic proteins (BMPs), activins, and Nodal, play crucial roles in embryonic development and adult tissue homeostasis by regulating cell proliferation, survival, and differentiation, as well as stem-cell self-renewal and lineage-specific differentiation. Smad proteins are critical downstream mediators of these signaling activities. In addition to regulating the transcription of direct target genes of TGF-β, BMP, activin, or Nodal, Smad proteins also participate in extensive cross talk with other signaling pathways, often in a cell-type- or developmental stage-specific manner. These combinatorial signals often produce context-, time-, and location-dependent biological outcomes that are critical for development. This review discusses recent progress in our understanding of the cross talk between Smad proteins and signaling pathways of Wnt, Notch, Hippo, Hedgehog (Hh), mitogen-activated protein (MAP), kinase, phosphoinositide 3-kinase (PI3K)-Akt, nuclear factor κB (NF-κB), and Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathways.
Collapse
Affiliation(s)
- Kunxin Luo
- Department of Molecular and Cell Biology, University of California, Berkeley, and Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|
14
|
Blitz IL, Paraiso KD, Patrushev I, Chiu WTY, Cho KWY, Gilchrist MJ. A catalog of Xenopus tropicalis transcription factors and their regional expression in the early gastrula stage embryo. Dev Biol 2016; 426:409-417. [PMID: 27475627 PMCID: PMC5596316 DOI: 10.1016/j.ydbio.2016.07.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/01/2016] [Accepted: 07/01/2016] [Indexed: 12/30/2022]
Abstract
Gene regulatory networks (GRNs) involve highly combinatorial interactions between transcription factors and short sequence motifs in cis-regulatory modules of target genes to control cellular phenotypes. The GRNs specifying most cell types are largely unknown and are the subject of wide interest. A catalog of transcription factors is a valuable tool toward obtaining a deeper understanding of the role of these critical effectors in any biological setting. Here we present a comprehensive catalog of the transcription factors for the diploid frog Xenopus tropicalis. We identify 1235 genes encoding DNA-binding transcription factors, comparable to the numbers found in typical mammalian species. In detail, the repertoire of X. tropicalis transcription factor genes is nearly identical to human and mouse, with the exception of zinc finger family members, and a small number of species/lineage-specific gene duplications and losses relative to the mammalian repertoires. We applied this resource to the identification of transcription factors differentially expressed in the early gastrula stage embryo. We find transcription factor enrichment in Spemann's organizer, the ventral mesoderm, ectoderm and endoderm, and report 218 TFs that show regionalized expression patterns at this stage. Many of these have not been previously reported as expressed in the early embryo, suggesting thus far unappreciated roles for many transcription factors in the GRNs regulating early development. We expect our transcription factor catalog will facilitate myriad studies using Xenopus as a model system to understand basic biology and human disease.
Collapse
Affiliation(s)
- Ira L Blitz
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, United States.
| | - Kitt D Paraiso
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, United States
| | - Ilya Patrushev
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway Mill Hill, London NW7 1AA, UK
| | - William T Y Chiu
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, United States
| | - Ken W Y Cho
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, United States.
| | - Michael J Gilchrist
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
15
|
Perry KJ, Lyons DC, Truchado-Garcia M, Fischer AHL, Helfrich LW, Johansson KB, Diamond JC, Grande C, Henry JQ. Deployment of regulatory genes during gastrulation and germ layer specification in a model spiralian mollusc Crepidula. Dev Dyn 2016. [PMID: 26197970 DOI: 10.1002/dvdy.24308] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND During gastrulation, endoderm and mesoderm are specified from a bipotential precursor (endomesoderm) that is argued to be homologous across bilaterians. Spiralians also generate mesoderm from ectodermal precursors (ectomesoderm), which arises near the blastopore. While a conserved gene regulatory network controls specification of endomesoderm in deuterostomes and ecdysozoans, little is known about genes controlling specification or behavior of either source of spiralian mesoderm or the digestive tract. RESULTS Using the mollusc Crepidula, we examined conserved regulatory factors and compared their expression to fate maps to score expression in the germ layers, blastopore lip, and digestive tract. Many genes were expressed in both ecto- and endomesoderm, but only five were expressed in ectomesoderm exclusively. The latter may contribute to epithelial-to-mesenchymal transition seen in ectomesoderm. CONCLUSIONS We present the first comparison of genes expressed during spiralian gastrulation in the context of high-resolution fate maps. We found variation of genes expressed in the blastopore lip, mouth, and cells that will form the anus. Shared expression of many genes in both mesodermal sources suggests that components of the conserved endomesoderm program were either co-opted for ectomesoderm formation or that ecto- and endomesoderm are derived from a common mesodermal precursor that became subdivided into distinct domains during evolution.
Collapse
Affiliation(s)
- Kimberly J Perry
- University of Illinois, Department of Cell and Developmental Biology, Urbana, Illinois
| | | | - Marta Truchado-Garcia
- Departamento de Biología Molecular and Centro de Biología Molecular, "Severo Ochoa" (CSIC, Universidad Autónoma de Madrid), Madrid, Spain
| | - Antje H L Fischer
- Department of Metabolic Biochemistry, Ludwig-Maximilians-University, Munich, Germany.,Marine Biological Laboratory, Woods Hole, Massachusetts
| | | | - Kimberly B Johansson
- Marine Biological Laboratory, Woods Hole, Massachusetts.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts
| | | | - Cristina Grande
- Departamento de Biología Molecular and Centro de Biología Molecular, "Severo Ochoa" (CSIC, Universidad Autónoma de Madrid), Madrid, Spain
| | - Jonathan Q Henry
- University of Illinois, Department of Cell and Developmental Biology, Urbana, Illinois
| |
Collapse
|
16
|
Layden MJ, Rentzsch F, Röttinger E. The rise of the starlet sea anemone Nematostella vectensis as a model system to investigate development and regeneration. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:408-28. [PMID: 26894563 PMCID: PMC5067631 DOI: 10.1002/wdev.222] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/20/2015] [Accepted: 11/28/2015] [Indexed: 02/01/2023]
Abstract
Reverse genetics and next‐generation sequencing unlocked a new era in biology. It is now possible to identify an animal(s) with the unique biology most relevant to a particular question and rapidly generate tools to functionally dissect that biology. This review highlights the rise of one such novel model system, the starlet sea anemone Nematostella vectensis. Nematostella is a cnidarian (corals, jellyfish, hydras, sea anemones, etc.) animal that was originally targeted by EvoDevo researchers looking to identify a cnidarian animal to which the development of bilaterians (insects, worms, echinoderms, vertebrates, mollusks, etc.) could be compared. Studies in Nematostella have accomplished this goal and informed our understanding of the evolution of key bilaterian features. However, Nematostella is now going beyond its intended utility with potential as a model to better understand other areas such as regenerative biology, EcoDevo, or stress response. This review intends to highlight key EvoDevo insights from Nematostella that guide our understanding about the evolution of axial patterning mechanisms, mesoderm, and nervous systems in bilaterians, as well as to discuss briefly the potential of Nematostella as a model to better understand the relationship between development and regeneration. Lastly, the sum of research to date in Nematostella has generated a variety of tools that aided the rise of Nematostella to a viable model system. We provide a catalogue of current resources and techniques available to facilitate investigators interested in incorporating Nematostella into their research. WIREs Dev Biol 2016, 5:408–428. doi: 10.1002/wdev.222 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Michael J Layden
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Fabian Rentzsch
- Sars Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Eric Röttinger
- Institute for Research on Cancer and Aging (IRCAN), CNRS UMR 7284, INSERM U1081, Université de Nice-Sophia-Antipolis, Nice, France
| |
Collapse
|
17
|
Cavalieri V, Spinelli G. Ectopic hbox12 Expression Evoked by Histone Deacetylase Inhibition Disrupts Axial Specification of the Sea Urchin Embryo. PLoS One 2015; 10:e0143860. [PMID: 26618749 PMCID: PMC4664418 DOI: 10.1371/journal.pone.0143860] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/09/2015] [Indexed: 12/26/2022] Open
Abstract
Dorsal/ventral patterning of the sea urchin embryo depends upon the establishment of a Nodal-expressing ventral organizer. Recently, we showed that spatial positioning of this organizer relies on the dorsal-specific transcription of the Hbox12 repressor. Building on these findings, we determined the influence of the epigenetic milieu on the expression of hbox12 and nodal genes. We find that Trichostatin-A, a potent and selective histone-deacetylases inhibitor, induces histone hyperacetylation in hbox12 chromatin, evoking broad ectopic expression of the gene. Transcription of nodal concomitantly drops, prejudicing dorsal/ventral polarity of the resulting larvae. Remarkably, impairing hbox12 function, either in a spatially-restricted sector or in the whole embryo, specifically rescues nodal transcription in Trichostatin-A-treated larvae. Beyond strengthen the notion that nodal expression is not allowed in the presence of functional Hbox12 in the same cells, these results highlight a critical role of histone deacetylases in regulating the spatial expression of hbox12.
Collapse
Affiliation(s)
- Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Italy
- Mediterranean Center for Human Health Advanced Biotechnologies (CHAB), University of Palermo, Italy
- * E-mail: (VC); (GS)
| | - Giovanni Spinelli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Italy
- * E-mail: (VC); (GS)
| |
Collapse
|
18
|
Flickinger R. AT-rich repetitive DNA sequences, transcription frequency and germ layer determination. Mech Dev 2015; 138 Pt 3:227-32. [PMID: 26506258 DOI: 10.1016/j.mod.2015.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/19/2015] [Accepted: 10/21/2015] [Indexed: 01/30/2023]
Abstract
Non-coding sequences of frog embryo endoderm poly (A+) nuclear RNA are AU-enriched, as compared to those of ectoderm and mesoderm. Endoderm blastomeres contain much less H1 histone than is present in ectoderm and mesoderm. H1 histone preferentially binds AT-rich DNA sequences to repress their transcription. The AT-enrichment of non-coding DNA sequences transcribed into poly (A+) nuclear RNA, as well as the low amount of H1 histone, may contribute to the higher transcription frequency of mRNA of endoderm, as compared to that of ectoderm and mesoderm. A greater accumulation of H1 histone in presumptive mesoderm and ectoderm may prevent transcription of endoderm specifying genes in mesoderm and ectoderm. Experimental upregulation of various transcription factors (TFs) can redirect germ layer fate. Most of these TFs bind AT-rich consensus sequences in DNA, suggesting that H1 histone and TFs active during germ layer determination are binding similar sequences.
Collapse
Affiliation(s)
- Reed Flickinger
- Emeritus Department, Biological Sciences State University of New York at Buffalo, Buffalo, N.Y. 14260, USA.
| |
Collapse
|
19
|
Abstract
Embryos of many animal models express germ line determinants that suppress transcription and mediate early germ line commitment, which occurs before the somatic cell lineages are established. However, not all animals segregate their germ line in this manner. The 'last cell standing' model describes primordial germ cell (PGC) development in axolotls, in which PGCs are maintained by an extracellular signalling niche, and germ line commitment occurs after gastrulation. Here, we propose that this 'stochastic' mode of PGC specification is conserved in vertebrates, including non-rodent mammals. We postulate that early germ line segregation liberates genetic regulatory networks for somatic development to evolve, and that it therefore emerged repeatedly in the animal kingdom in response to natural selection.
Collapse
Affiliation(s)
- Andrew D Johnson
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Ramiro Alberio
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| |
Collapse
|
20
|
Gu X. Understanding tissue expression evolution: from expression phylogeny to phylogenetic network. Brief Bioinform 2015; 17:249-54. [PMID: 26141828 DOI: 10.1093/bib/bbv041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Indexed: 01/07/2023] Open
Abstract
Our understanding of tissue expression evolution in multi-cellular model organisms has been considerably advanced with the help of high-throughput technologies from EST, microarray to RNA-seq. Yet, many controversies remained unsolved, ranging from the evolutionary patterns of tissue expressions to expression phylogenetic analysis. Moreover, despite numerous reports published, it is desirable to have a general framework for study of tissue expression evolution. In this article, we first provide an up-to-date and concise review for the study of tissue expression evolution in multi-cellular organisms. While the expression phylogeny of the same tissues sampled from closely or intermediately related species largely reflects the species phylogeny, we demonstrate that phylogenetic network approach may shed some lights for our understanding of the developmental similarity and evolutionary relatedness during the multi-tissue evolution.
Collapse
|
21
|
Sun G, Hu Z, Min Z, Yan X, Guan Z, Su H, Fu Y, Ma X, Chen YG, Zhang MQ, Tao Q, Wu W. Small C-terminal Domain Phosphatase 3 Dephosphorylates the Linker Sites of Receptor-regulated Smads (R-Smads) to Ensure Transforming Growth Factor β (TGFβ)-mediated Germ Layer Induction in Xenopus Embryos. J Biol Chem 2015; 290:17239-49. [PMID: 26013826 DOI: 10.1074/jbc.m115.655605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Indexed: 01/27/2023] Open
Abstract
Germ layer induction is one of the earliest events shortly after fertilization that initiates body formation of vertebrate embryos. In Xenopus, the maternally deposited transcriptional factor VegT promotes the expression of zygotic Nodal/Activin ligands that further form a morphogen gradient along the vegetal-animal axis and trigger the induction of the three germ layers. Here we found that SCP3 (small C-terminal domain phosphatase 3) is maternally expressed and vegetally enriched in Xenopus embryos and is essential for the timely induction of germ layers. SCP3 is required for the full activation of Nodal/Activin and bone morphogenetic protein signals and functions via dephosphorylation in the linker regions of receptor-regulated Smads. Consistently, the linker regions of receptor-regulated Smads are heavily phosphorylated in fertilized eggs, and this phosphorylation is gradually removed when embryos approach the midblastula transition. Knockdown of maternal SCP3 attenuates these dephosphorylation events and the activation of Nodal/Activin and bone morphogenetic protein signals after midblastula transition. This study thus suggested that the maternal SCP3 serves as a vegetally enriched, intrinsic factor to ensure a prepared status of Smads for their activation by the upcoming ligands during germ layer induction of Xenopus embryos.
Collapse
Affiliation(s)
- Guanni Sun
- From the MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhirui Hu
- the Bioinformatics Division, Center for Synthetic and Systems Biology, TNLIST, Tsinghua University, Beijing 100084, China
| | - Zheying Min
- the School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaohua Yan
- the State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China, and
| | - Zhenpo Guan
- From the MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hanxia Su
- From the MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yu Fu
- From the MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaopeng Ma
- the Bioinformatics Division, Center for Synthetic and Systems Biology, TNLIST, Tsinghua University, Beijing 100084, China
| | - Ye-Guang Chen
- the State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China, and
| | - Michael Q Zhang
- the Bioinformatics Division, Center for Synthetic and Systems Biology, TNLIST, Tsinghua University, Beijing 100084, China, the Department of Biological Sciences, Center for Systems Biology, University of Texas at Dallas, Richardson, Texas 75080
| | - Qinghua Tao
- the School of Life Sciences, Tsinghua University, Beijing 100084, China,
| | - Wei Wu
- From the MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China,
| |
Collapse
|
22
|
Röttinger E, DuBuc TQ, Amiel AR, Martindale MQ. Nodal signaling is required for mesodermal and ventral but not for dorsal fates in the indirect developing hemichordate, Ptychodera flava. Biol Open 2015; 4:830-42. [PMID: 25979707 PMCID: PMC4571091 DOI: 10.1242/bio.011809] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Nodal signaling plays crucial roles in vertebrate developmental processes such as endoderm and mesoderm formation, and axial patterning events along the anteroposterior, dorsoventral and left-right axes. In echinoderms, Nodal plays an essential role in the establishment of the dorsoventral axis and left-right asymmetry, but not in endoderm or mesoderm induction. In protostomes, Nodal signaling appears to be involved only in establishing left-right asymmetry. Hence, it is hypothesized that Nodal signaling has been co-opted to pattern the dorsoventral axis of deuterostomes and for endoderm, mesoderm formation as well as anteroposterior patterning in chordates. Hemichordata, together with echinoderms, represent the sister taxon to chordates. In this study, we analyze the role of Nodal signaling in the indirect developing hemichordate Ptychodera flava. In particular, we show that during gastrulation nodal transcripts are detected in a ring of cells at the vegetal pole that gives rise to endomesoderm and in the ventral ectoderm at later stages of development. Inhibition of Nodal function disrupts dorsoventral fates and also blocks formation of the larval mesoderm. Interestingly, molecular analysis reveals that only mesodermal, apical and ventral gene expression is affected while the dorsal side appears to be patterned correctly. Taken together, this study suggests that the co-option of Nodal signaling in mesoderm formation and potentially in anteroposterior patterning has occurred prior to the emergence of chordates and that Nodal signaling on the ventral side is uncoupled from BMP signaling on the dorsal side, representing a major difference from the molecular mechanisms of dorsoventral patterning events in echinoderms.
Collapse
Affiliation(s)
- Eric Röttinger
- Université Nice Sophia Antipolis, IRCAN, UMR 7284, 06107 Nice, France CNRS, IRCAN, UMR 7284, 06107 Nice, France INSERM, IRCAN, U1081, 06107 Nice, France
| | - Timothy Q DuBuc
- The Whitney Marine Laboratory for Marine Science, University of Florida, St. Augustine, FL 32080-8610, USA
| | - Aldine R Amiel
- Université Nice Sophia Antipolis, IRCAN, UMR 7284, 06107 Nice, France CNRS, IRCAN, UMR 7284, 06107 Nice, France INSERM, IRCAN, U1081, 06107 Nice, France
| | - Mark Q Martindale
- The Whitney Marine Laboratory for Marine Science, University of Florida, St. Augustine, FL 32080-8610, USA
| |
Collapse
|
23
|
McCauley BS, Akyar E, Saad HR, Hinman VF. Dose-dependent nuclear β-catenin response segregates endomesoderm along the sea star primary axis. Development 2015; 142:207-17. [PMID: 25516976 DOI: 10.1242/dev.113043] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In many invertebrates, the nuclearization of β-catenin at one pole of the embryo initiates endomesoderm specification. An intriguing possibility is that a gradient of nuclear β-catenin (nβ-catenin), similar to that operating in vertebrate neural tube patterning, functions to distinguish cell fates in invertebrates. To test this hypothesis, we determined the function of nβ-catenin during the early development of the sea star, which undergoes a basal deuterostomal mode of embryogenesis. We show that low levels of nβ-catenin activity initiate bra, which is expressed in the future posterior endoderm-fated territory; intermediate levels are required for expression of foxa and gata4/5/6, which are later restricted to the endoderm; and activation of ets1 and erg in the mesoderm-fated territory requires the highest nβ-catenin activity. Transcription factors acting downstream of high nβ-catenin segregate the endoderm/mesoderm boundary, which is further reinforced by Delta/Notch signaling. Significantly, therefore, in sea stars, endomesoderm segregation arises through transcriptional responses to levels of nβ-catenin activity. Here, we describe the first empirical evidence of a dose-dependent response to a dynamic spatiotemporal nβ-catenin activity that patterns cell fates along the primary axis in an invertebrate.
Collapse
Affiliation(s)
- Brenna S McCauley
- Department of Biological Sciences, Carnegie Mellon University, 4400 5th Ave, Pittsburgh, PA 15213, USA
| | - Eda Akyar
- Department of Biological Sciences, Carnegie Mellon University, 4400 5th Ave, Pittsburgh, PA 15213, USA
| | - H Rosa Saad
- Department of Biological Sciences, Carnegie Mellon University, 4400 5th Ave, Pittsburgh, PA 15213, USA
| | - Veronica F Hinman
- Department of Biological Sciences, Carnegie Mellon University, 4400 5th Ave, Pittsburgh, PA 15213, USA
| |
Collapse
|
24
|
Chiu WT, Charney Le R, Blitz IL, Fish MB, Li Y, Biesinger J, Xie X, Cho KWY. Genome-wide view of TGFβ/Foxh1 regulation of the early mesendoderm program. Development 2014; 141:4537-47. [PMID: 25359723 DOI: 10.1242/dev.107227] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nodal/TGFβ signaling regulates diverse biological responses. By combining RNA-seq on Foxh1 and Nodal signaling loss-of-function embryos with ChIP-seq of Foxh1 and Smad2/3, we report a comprehensive genome-wide interaction between Foxh1 and Smad2/3 in mediating Nodal signaling during vertebrate mesendoderm development. This study significantly increases the total number of Nodal target genes regulated by Foxh1 and Smad2/3, and reinforces the notion that Foxh1-Smad2/3-mediated Nodal signaling directly coordinates the expression of a cohort of genes involved in the control of gene transcription, signaling pathway modulation and tissue morphogenesis during gastrulation. We also show that Foxh1 may function independently of Nodal signaling, in addition to its role as a transcription factor mediating Nodal signaling via Smad2/3. Finally, we propose an evolutionarily conserved interaction between Foxh1 and PouV, a mechanism observed in Pou5f1-mediated regulation of pluripotency in human embryonic stem and epiblast cells.
Collapse
Affiliation(s)
- William T Chiu
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
| | - Rebekah Charney Le
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
| | - Ira L Blitz
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
| | - Margaret B Fish
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
| | - Yi Li
- Department of Computer Science, University of California, Irvine, CA 92697-2300, USA
| | - Jacob Biesinger
- Department of Computer Science, University of California, Irvine, CA 92697-2300, USA
| | - Xiaohui Xie
- Department of Computer Science, University of California, Irvine, CA 92697-2300, USA
| | - Ken W Y Cho
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
| |
Collapse
|
25
|
Molecular conservation of metazoan gut formation: evidence from expression of endomesoderm genes in Capitella teleta (Annelida). EvoDevo 2014; 5:39. [PMID: 25908956 PMCID: PMC4407770 DOI: 10.1186/2041-9139-5-39] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 09/17/2014] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Metazoan digestive systems develop from derivatives of ectoderm, endoderm and mesoderm, and vary in the relative contribution of each germ layer across taxa and between gut regions. In a small number of well-studied model systems, gene regulatory networks specify endoderm and mesoderm of the gut within a bipotential germ layer precursor, the endomesoderm. Few studies have examined expression of endomesoderm genes outside of those models, and thus, it is unknown whether molecular specification of gut formation is broadly conserved. In this study, we utilize a sequenced genome and comprehensive fate map to correlate the expression patterns of six transcription factors with embryonic germ layers and gut subregions during early development in Capitella teleta. RESULTS The genome of C. teleta contains the five core genes of the sea urchin endomesoderm specification network. Here, we extend a previous study and characterize expression patterns of three network orthologs and three additional genes by in situ hybridization during cleavage and gastrulation stages and during formation of distinct gut subregions. In cleavage stage embryos, Ct-otx, Ct-blimp1, Ct-bra and Ct-nkx2.1a are expressed in all four macromeres, the endoderm precursors. Ct-otx, Ct-blimp1, and Ct-nkx2.1a are also expressed in presumptive endoderm of gastrulae and later during midgut development. Additional gut-specific expression patterns include Ct-otx, Ct-bra, Ct-foxAB and Ct-gsc in oral ectoderm; Ct-otx, Ct-blimp1, Ct-bra and Ct-nkx2.1a in the foregut; and both Ct-bra and Ct-nkx2.1a in the hindgut. CONCLUSIONS Identification of core sea urchin endomesoderm genes in C. teleta indicates they are present in all three bilaterian superclades. Expression of Ct-otx, Ct-blimp1 and Ct-bra, combined with previously published Ct-foxA and Ct-gataB1 patterns, provide the most comprehensive comparison of these five orthologs from a single species within Spiralia. Each ortholog is likely involved in endoderm specification and midgut development, and several may be essential for establishment of the oral ectoderm, foregut and hindgut, including specification of ectodermal and mesodermal contributions. When the five core genes are compared across the Metazoa, their conserved expression patterns suggest that 'gut gene' networks evolved to specify distinct digestive system subregions, regardless of species-specific differences in gut architecture or germ layer contributions within each subregion.
Collapse
|
26
|
Collart C, Owens NDL, Bhaw-Rosun L, Cooper B, De Domenico E, Patrushev I, Sesay AK, Smith JN, Smith JC, Gilchrist MJ. High-resolution analysis of gene activity during the Xenopus mid-blastula transition. Development 2014; 141:1927-39. [PMID: 24757007 PMCID: PMC3994770 DOI: 10.1242/dev.102012] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss of synchronous cell divisions. Little is known about what triggers the activation of transcription or how newly expressed genes interact with each other. Here, we use high-resolution expression profiling to identify three waves of gene activity: a post-fertilisation wave involving polyadenylation of maternal transcripts; a broad wave of zygotic transcription detectable as early as the seventh cleavage and extending beyond the MBT at the twelfth cleavage; and a shorter post-MBT wave of transcription that becomes apparent as development proceeds. Our studies have also allowed us to define a set of maternal mRNAs that are deadenylated shortly after fertilisation, and are likely to be degraded thereafter. Experimental analysis indicates that the polyadenylation of maternal transcripts is necessary for the establishment of proper levels of zygotic transcription at the MBT, and that genes activated in the second wave of expression, including Brachyury and Mixer, contribute to the regulation of genes expressed in the third. Together, our high-resolution time series and experimental studies have yielded a deeper understanding of the temporal organisation of gene regulatory networks in the early Xenopus embryo.
Collapse
Affiliation(s)
- Clara Collart
- Division of Systems Biology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Evans T, Wade CM, Chapman FA, Johnson AD, Loose M. Acquisition of germ plasm accelerates vertebrate evolution. Science 2014; 344:200-3. [PMID: 24723612 DOI: 10.1126/science.1249325] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Primordial germ cell (PGC) specification occurs either by induction from pluripotent cells (epigenesis) or by a cell-autonomous mechanism mediated by germ plasm (preformation). Among vertebrates, epigenesis is basal, whereas germ plasm has evolved convergently across lineages and is associated with greater speciation. We compared protein-coding sequences of vertebrate species that employ preformation with their sister taxa that use epigenesis and demonstrate that genes evolve more rapidly in species containing germ plasm. Furthermore, differences in rates of evolution appear to cause phylogenetic incongruence in protein-coding sequence comparisons between vertebrate taxa. Our results support the hypothesis that germ plasm liberates constraints on somatic development and that enhanced evolvability drives the evolution of germ plasm.
Collapse
Affiliation(s)
- Teri Evans
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | | | | | | | | |
Collapse
|
28
|
Brown LE, King JR, Loose M. Two different network topologies yield bistability in models of mesoderm and anterior mesendoderm specification in amphibians. J Theor Biol 2014; 353:67-77. [PMID: 24650939 PMCID: PMC4029075 DOI: 10.1016/j.jtbi.2014.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 03/06/2014] [Accepted: 03/09/2014] [Indexed: 01/03/2023]
Abstract
Understanding the Gene Regulatory Networks (GRNs) that underlie development is a major question for systems biology. The establishment of the germ layers is amongst the earliest events of development and has been characterised in numerous model systems. The establishment of the mesoderm is best characterised in the frog Xenopus laevis and has been well studied both experimentally and mathematically. However, the Xenopus network has significant differences from that in mouse and humans, including the presence of multiple copies of two key genes in the network, Mix and Nodal. The axolotl, a urodele amphibian, provides a model with all the benefits of amphibian embryology but crucially only a single Mix and Nodal gene required for the specification of the mesoderm. Remarkably, the number of genes within the network is not the only difference. The interaction between Mix and Brachyury, two transcription factors involved in the establishment of the endoderm and mesoderm respectively, is not conserved. While Mix represses Brachyury in Xenopus, it activates Brachyury in axolotl. Thus, whilst the topology of the networks in the two species differs, both are able to form mesoderm and endoderm in vivo. Based on current knowledge of the structure of the mesendoderm GRN we develop deterministic models that describe the time evolution of transcription factors in a single axolotl cell and compare numerical simulations with previous results from Xenopus. The models are shown to have stable steady states corresponding to mesoderm and anterior mesendoderm, with the in vitro model showing how the concentration of Activin can determine cell fate, while the in vivo model shows that β-catenin concentration can determine cell fate. Moreover, our analysis suggests that additional components must be important in the axolotl network in the specification of the full range of tissues. We present models of mesendoderm specification in the urodele amphibian, the axolotl. in vitro and in vivo models are simulated and compared with experimental data. The model topology differs from that of the anuran amphibian, Xenopus laevis. Steady states representing mesoderm and anterior mesendoderm are found in both models. Both the axolotl and Xenopus topologies can account for similar qualitative data.
Collapse
Affiliation(s)
- L E Brown
- MyCIB, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK.
| | - J R King
- School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - M Loose
- Centre for Genetics and Genomics, University of Nottingham, Queen׳s Medical Centre, Nottingham NG7 2UH, UK.
| |
Collapse
|
29
|
Aronson BE, Stapleton KA, Krasinski SD. Role of GATA factors in development, differentiation, and homeostasis of the small intestinal epithelium. Am J Physiol Gastrointest Liver Physiol 2014; 306:G474-90. [PMID: 24436352 PMCID: PMC3949026 DOI: 10.1152/ajpgi.00119.2013] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 01/07/2014] [Indexed: 01/31/2023]
Abstract
The small intestinal epithelium develops from embryonic endoderm into a highly specialized layer of cells perfectly suited for the digestion and absorption of nutrients. The development, differentiation, and regeneration of the small intestinal epithelium require complex gene regulatory networks involving multiple context-specific transcription factors. The evolutionarily conserved GATA family of transcription factors, well known for its role in hematopoiesis, is essential for the development of endoderm during embryogenesis and the renewal of the differentiated epithelium in the mature gut. We review the role of GATA factors in the evolution and development of endoderm and summarize our current understanding of the function of GATA factors in the mature small intestine. We offer perspective on the application of epigenetics approaches to define the mechanisms underlying context-specific GATA gene regulation during intestinal development.
Collapse
Affiliation(s)
- Boaz E Aronson
- Division of Gastroenterology and Nutrition, Department of Medicine, Children's Hospital Boston, and Harvard Medical School, Boston, Massachusetts
| | | | | |
Collapse
|
30
|
Zheng Z, Christley S, Chiu WT, Blitz IL, Xie X, Cho KWY, Nie Q. Inference of the Xenopus tropicalis embryonic regulatory network and spatial gene expression patterns. BMC SYSTEMS BIOLOGY 2014; 8:3. [PMID: 24397936 PMCID: PMC3896677 DOI: 10.1186/1752-0509-8-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 12/19/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND During embryogenesis, signaling molecules produced by one cell population direct gene regulatory changes in neighboring cells and influence their developmental fates and spatial organization. One of the earliest events in the development of the vertebrate embryo is the establishment of three germ layers, consisting of the ectoderm, mesoderm and endoderm. Attempts to measure gene expression in vivo in different germ layers and cell types are typically complicated by the heterogeneity of cell types within biological samples (i.e., embryos), as the responses of individual cell types are intermingled into an aggregate observation of heterogeneous cell types. Here, we propose a novel method to elucidate gene regulatory circuits from these aggregate measurements in embryos of the frog Xenopus tropicalis using gene network inference algorithms and then test the ability of the inferred networks to predict spatial gene expression patterns. RESULTS We use two inference models with different underlying assumptions that incorporate existing network information, an ODE model for steady-state data and a Markov model for time series data, and contrast the performance of the two models. We apply our method to both control and knockdown embryos at multiple time points to reconstruct the core mesoderm and endoderm regulatory circuits. Those inferred networks are then used in combination with known dorsal-ventral spatial expression patterns of a subset of genes to predict spatial expression patterns for other genes. Both models are able to predict spatial expression patterns for some of the core mesoderm and endoderm genes, but interestingly of different gene subsets, suggesting that neither model is sufficient to recapitulate all of the spatial patterns, yet they are complementary for the patterns that they do capture. CONCLUSION The presented methodology of gene network inference combined with spatial pattern prediction provides an additional layer of validation to elucidate the regulatory circuits controlling the spatial-temporal dynamics in embryonic development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qing Nie
- Department of Mathematics, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
31
|
Bertocchini F, Stern CD. Gata2 provides an early anterior bias and uncovers a global positioning system for polarity in the amniote embryo. Development 2013; 139:4232-8. [PMID: 23093427 DOI: 10.1242/dev.081901] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The first axis to be specified during vertebrate development is that between the site where gastrulation will begin and the opposite pole of the embryo (dorsoventral axis in amphibians and fish, anteroposterior in amniotes). This relies on Nodal activity, but different vertebrates differ in how this activity is positioned. In chick, the earliest known asymmetry is posterior expression of the TGFβ-related factor Vg1, close to the future Nodal expression domain. Here we show that the transcription factor Gata2 is expressed anteriorly before this stage. Gata2 influences the site of primitive streak formation and its role is independent from, and upstream of, Vg1 and Wnt. However, although Vg1 is required for streak formation, Gata2 does not act as an absolute anterior specifier, but provides an anterior bias. These findings point to previously unsuspected global determinants of polarity of the early amniote embryo.
Collapse
Affiliation(s)
- Federica Bertocchini
- Department of Cell and Developmental Biology, University College London, Gower Street, London, UK.
| | | |
Collapse
|
32
|
Functions of BMP signaling in embryonic stem cell fate determination. Exp Cell Res 2013; 319:113-9. [DOI: 10.1016/j.yexcr.2012.09.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 09/30/2012] [Indexed: 01/08/2023]
|
33
|
Röttinger E, Dahlin P, Martindale MQ. A framework for the establishment of a cnidarian gene regulatory network for "endomesoderm" specification: the inputs of ß-catenin/TCF signaling. PLoS Genet 2012; 8:e1003164. [PMID: 23300467 PMCID: PMC3531958 DOI: 10.1371/journal.pgen.1003164] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 10/27/2012] [Indexed: 12/03/2022] Open
Abstract
Understanding the functional relationship between intracellular factors and
extracellular signals is required for reconstructing gene regulatory networks
(GRN) involved in complex biological processes. One of the best-studied
bilaterian GRNs describes endomesoderm specification and predicts that both
mesoderm and endoderm arose from a common GRN early in animal evolution.
Compelling molecular, genomic, developmental, and evolutionary evidence supports
the hypothesis that the bifunctional gastrodermis of the cnidarian-bilaterian
ancestor is derived from the same evolutionary precursor of both endodermal and
mesodermal germ layers in all other triploblastic bilaterian animals. We have
begun to establish the framework of a provisional cnidarian
“endomesodermal” gene regulatory network in the sea anemone,
Nematostella vectensis, by using a genome-wide microarray
analysis on embryos in which the canonical Wnt/ß-catenin pathway was
ectopically targeted for activation by two distinct pharmaceutical agents
(lithium chloride and 1-azakenpaullone) to identify potential targets of
endomesoderm specification. We characterized 51 endomesodermally expressed
transcription factors and signaling molecule genes (including 18 newly
identified) with fine-scale temporal (qPCR) and spatial (in
situ) analysis to define distinct co-expression domains within the
animal plate of the embryo and clustered genes based on their earliest zygotic
expression. Finally, we determined the input of the canonical
Wnt/ß-catenin pathway into the cnidarian endomesodermal GRN using
morpholino and mRNA overexpression experiments to show that NvTcf/canonical Wnt
signaling is required to pattern both the future endomesodermal and ectodermal
domains prior to gastrulation, and that both BMP and FGF (but not Notch)
pathways play important roles in germ layer specification in this animal. We
show both evolutionary conserved as well as profound differences in
endomesodermal GRN structure compared to bilaterians that may provide
fundamental insight into how GRN subcircuits have been adopted, rewired, or
co-opted in various animal lineages that give rise to specialized endomesodermal
cell types. Cnidarians (anemones, corals, and “jellyfish”) are an animal group
whose adults possess derivatives of only two germ layers: ectoderm and a
bifunctional (absorptive and contractile) gastrodermal (gut) layer. Cnidarians
are the closest living relatives to bilaterally symmetrical animals that possess
all three germ layers (ecto, meso, and endoderm); and compelling molecular,
genomic, developmental, and evolutionary evidence exists to demonstrate that the
cnidarian gastrodermis is evolutionarily related to both endodermal and
mesodermal germ layers in all other triploblastic bilaterian animals. Little is
known about endomesoderm specification in cnidarians. In this study, we
constructed the framework of a cnidarian endomesodermal gene regulatory network
in the sea anemone, Nematostella vectensis, using a combination
of experimental approaches. We identified and characterized by both qPCR and
in situ hybridization 51 genes expressed in defined domains
within the presumptive endomesoderm. In addition, we functionally demonstrate
that Wnt/Tcf signaling is crucial for regionalized expression of a defined
subset of these genes prior to gut formation and endomesoderm maintenance. Our
results support the idea of an ancient gene regulatory network underlying
endomesoderm specification that involves inputs from multiple signaling pathways
(Wnt, FGF, BMP, but not Notch) early in development, that are temporarily
uncoupled in bilaterian animals.
Collapse
Affiliation(s)
- Eric Röttinger
- Kewalo Marine Laboratory, Pacific Biosciences Research Center,
University of Hawai'i, Honolulu, Hawai'i, United States of
America
| | - Paul Dahlin
- Kewalo Marine Laboratory, Pacific Biosciences Research Center,
University of Hawai'i, Honolulu, Hawai'i, United States of
America
| | - Mark Q. Martindale
- Kewalo Marine Laboratory, Pacific Biosciences Research Center,
University of Hawai'i, Honolulu, Hawai'i, United States of
America
- * E-mail:
| |
Collapse
|
34
|
Streit A, Tambalo M, Chen J, Grocott T, Anwar M, Sosinsky A, Stern CD. Experimental approaches for gene regulatory network construction: the chick as a model system. Genesis 2012; 51:296-310. [PMID: 23174848 DOI: 10.1002/dvg.22359] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/09/2012] [Accepted: 11/11/2012] [Indexed: 01/23/2023]
Abstract
Setting up the body plan during embryonic development requires the coordinated action of many signals and transcriptional regulators in a precise temporal sequence and spatial pattern. The last decades have seen an explosion of information describing the molecular control of many developmental processes. The next challenge is to integrate this information into logic "wiring diagrams" that visualize gene actions and outputs, have predictive power and point to key control nodes. Here, we provide an experimental workflow on how to construct gene regulatory networks using the chick as model system.
Collapse
Affiliation(s)
- Andrea Streit
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
35
|
Middleton AM, King JR, Loose M. Wave pinning and spatial patterning in a mathematical model of Antivin/Lefty-Nodal signalling. J Math Biol 2012; 67:1393-424. [PMID: 23070212 DOI: 10.1007/s00285-012-0592-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 01/07/2012] [Indexed: 01/24/2023]
Abstract
Nodal signals are key regulators of mesoderm and endoderm development in vertebrate embryos. It has been observed experimentally that in Xenopus embryos the spatial range of Nodal signals is restricted by the signal Antivin (also known as Lefty). Nodal signals can activate both Nodal and Antivin, whereas Antivin is thought to antagonise Nodal by binding either directly to it or to its receptor. In this paper we develop a mathematical model of this signalling network in a line of cells. We consider the heterodimer and receptor-mediated inhibition mechanisms separately and find that, in both cases, the restriction by Antivin to the range of Nodal signals corresponds to wave pinning in the model. Our analysis indicates that, provided Antivin diffuses faster than Nodal, either mechanism can robustly account for the experimental data. We argue that, in the case of Xenopus development, it is wave pinning, rather than Turing-type patterning, that is underlying Nodal-Antivin dynamics. This leads to several experimentally testable predictions, which are discussed. Furthermore, for heterodimer-mediated inhibition to prevent waves of Nodal expression from propagating, the Nodal-Antivin complex must be turned over, and diffusivity of the complex must be negligible. In the absence of molecular mechanisms regulating these, we suggest that Antivin restricts Nodal signals via receptor-mediated, and not heterodimer-mediated, inhibition.
Collapse
Affiliation(s)
- A M Middleton
- Albert-Ludwigs-Universität, Habsburgerstrasse 49, Freiburg, 79104, Germany,
| | | | | |
Collapse
|
36
|
Kaneda T, Motoki JYD. Gastrulation and pre-gastrulation morphogenesis, inductions, and gene expression: Similarities and dissimilarities between urodelean and anuran embryos. Dev Biol 2012; 369:1-18. [DOI: 10.1016/j.ydbio.2012.05.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 05/14/2012] [Accepted: 05/18/2012] [Indexed: 10/28/2022]
|
37
|
Pereira LA, Wong MS, Mei Lim S, Stanley EG, Elefanty AG. The Mix family of homeobox genes—Key regulators of mesendoderm formation during vertebrate development. Dev Biol 2012; 367:163-77. [DOI: 10.1016/j.ydbio.2012.04.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 04/24/2012] [Accepted: 04/30/2012] [Indexed: 10/28/2022]
|
38
|
Task K, Jaramillo M, Banerjee I. Population based model of human embryonic stem cell (hESC) differentiation during endoderm induction. PLoS One 2012; 7:e32975. [PMID: 22427920 PMCID: PMC3299713 DOI: 10.1371/journal.pone.0032975] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 02/04/2012] [Indexed: 11/19/2022] Open
Abstract
The mechanisms by which human embryonic stem cells (hESC) differentiate to endodermal lineage have not been extensively studied. Mathematical models can aid in the identification of mechanistic information. In this work we use a population-based modeling approach to understand the mechanism of endoderm induction in hESC, performed experimentally with exposure to Activin A and Activin A supplemented with growth factors (basic fibroblast growth factor (FGF2) and bone morphogenetic protein 4 (BMP4)). The differentiating cell population is analyzed daily for cellular growth, cell death, and expression of the endoderm proteins Sox17 and CXCR4. The stochastic model starts with a population of undifferentiated cells, wherefrom it evolves in time by assigning each cell a propensity to proliferate, die and differentiate using certain user defined rules. Twelve alternate mechanisms which might describe the observed dynamics were simulated, and an ensemble parameter estimation was performed on each mechanism. A comparison of the quality of agreement of experimental data with simulations for several competing mechanisms led to the identification of one which adequately describes the observed dynamics under both induction conditions. The results indicate that hESC commitment to endoderm occurs through an intermediate mesendoderm germ layer which further differentiates into mesoderm and endoderm, and that during induction proliferation of the endoderm germ layer is promoted. Furthermore, our model suggests that CXCR4 is expressed in mesendoderm and endoderm, but is not expressed in mesoderm. Comparison between the two induction conditions indicates that supplementing FGF2 and BMP4 to Activin A enhances the kinetics of differentiation than Activin A alone. This mechanistic information can aid in the derivation of functional, mature cells from their progenitors. While applied to initial endoderm commitment of hESC, the model is general enough to be applicable either to a system of adult stem cells or later stages of ESC differentiation.
Collapse
Affiliation(s)
- Keith Task
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Maria Jaramillo
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ipsita Banerjee
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
39
|
Affiliation(s)
- Nori Satoh
- Marine Genomics Unit; Okinawa Institute of Science and Technology; Onna Okinawa 904-0495 Japan
| | - Kuni Tagawa
- Marine Biological Laboratory; Graduate School of Science; Hiroshima University; Mukaishima Hiroshima 722-0073 Japan
| | - Hiroki Takahashi
- Division of Developmental Biology; National Institute of Basic Biology; Okagaki Aichi 445-8585 Japan
| |
Collapse
|
40
|
Shi J, Severson C, Yang J, Wedlich D, Klymkowsky MW. Snail2 controls mesodermal BMP/Wnt induction of neural crest. Development 2011; 138:3135-45. [PMID: 21715424 DOI: 10.1242/dev.064394] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The neural crest is an induced tissue that is unique to vertebrates. In the clawed frog Xenopus laevis, neural crest induction depends on signals secreted from the prospective dorsolateral mesodermal zone during gastrulation. The transcription factors Snail2 (Slug), Snail1 and Twist1 are expressed in this region. It is known that Snail2 and Twist1 are required for both mesoderm formation and neural crest induction. Using targeted blastomere injection, morpholino-based loss of function and explant studies, we show that: (1) Snail1 is also required for mesoderm and neural crest formation; (2) loss of snail1, snail2 or twist1 function in the C2/C3 lineage of 32-cell embryos blocks mesoderm formation, but neural crest is lost only in the case of snail2 loss of function; (3) snail2 mutant loss of neural crest involves mesoderm-derived secreted factors and can be rescued synergistically by bmp4 and wnt8 RNAs; and (4) loss of snail2 activity leads to changes in the RNA levels of a number of BMP and Wnt agonists and antagonists. Taken together, these results identify Snail2 as a key regulator of the signals involved in mesodermal induction of neural crest.
Collapse
Affiliation(s)
- Jianli Shi
- Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA
| | | | | | | | | |
Collapse
|
41
|
Liu W, Foley AC. Signaling pathways in early cardiac development. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 3:191-205. [PMID: 20830688 DOI: 10.1002/wsbm.112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cardiomyocyte differentiation is a complex multistep process requiring the proper temporal and spatial integration of multiple signaling pathways. Previous embryological and genetic studies have identified a number of signaling pathways that are critical to mediate the initial formation of the mesoderm and its allocation to the cardiomyocyte lineage. It has become clear that some of these signaling networks work autonomously, in differentiating myocardial cells whereas others work non-autonomously, in neighboring tissues, to regulate cardiac differentiation indirectly. Here, we provide an overview of three signaling networks that mediate cardiomyocyte specification and review recent insights into their specific roles in heart development. In addition, we demonstrate how systems level, 'omic approaches' and other high-throughput techniques such as small molecules screens are beginning to impact our understanding of cardiomyocyte specification and, to identify novel signaling pathways involved in this process. In particular, it now seems clear that at least one chemokine receptor CXCR4 is an important marker for cardiomyocyte progenitors and may play a functional role in their differentiation. Finally, we discuss some gaps in our current understanding of early lineage selection that could be addressed by various types of omic analysis.
Collapse
Affiliation(s)
- Wenrui Liu
- Greenberg Division of Cardiology, Department of Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | | |
Collapse
|
42
|
Johnson AD, Richardson E, Bachvarova RF, Crother BI. Evolution of the germ line-soma relationship in vertebrate embryos. Reproduction 2011; 141:291-300. [PMID: 21228047 DOI: 10.1530/rep-10-0474] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The germ line and soma together maintain genetic lineages from generation to generation: the germ line passes genetic information between generations; the soma is the vehicle for germ line transmission, and is shaped by natural selection. The germ line and somatic lineages arise simultaneously in early embryos, but how their development is related depends on how primordial germ cells (PGC) are specified. PGCs are specified by one of two means. Epigenesis describes the induction of PGCs from pluripotent cells by signals from surrounding somatic tissues. In contrast, PGCs in many species are specified cell-autonomously by maternally derived molecules, known as germ plasm, and this is called preformation. Germ plasm inhibits signaling to PGCs; thus, they are specified cell-autonomously. Germ plasm evolved independently in many animal lineages, suggesting convergent evolution, and therefore it would be expected to convey a selective advantage. But, what this is remains unknown. We propose that the selective advantage that drives the emergence of germ plasm in vertebrates is the disengagement of germ line specification from somatic influences. This liberates the evolution of gene regulatory networks (GRNs) that govern somatic development, and thereby enhances species evolvability, a well-recognized selective advantage. We cite recent evidence showing that frog embryos, which contain germ plasm, have modified GRNs that are not conserved in axolotls, which represent more basal amphibians and employ epigenesis. We also present the correlation of preformation with enhanced species radiations, and we discuss the mutually exclusive trajectories influenced by germ plasm or pluripotency, which shaped chordate evolution.
Collapse
Affiliation(s)
- Andrew D Johnson
- School of Biology, Institute of Genetics, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK.
| | | | | | | |
Collapse
|
43
|
Lim JW, Hummert P, Mills JC, Kroll KL. Geminin cooperates with Polycomb to restrain multi-lineage commitment in the early embryo. Development 2010; 138:33-44. [PMID: 21098561 DOI: 10.1242/dev.059824] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Transient maintenance of a pluripotent embryonic cell population followed by the onset of multi-lineage commitment is a fundamental aspect of development. However, molecular regulation of this transition is not well characterized in vivo. Here, we demonstrate that the nuclear protein Geminin is required to restrain commitment and spatially restrict mesoderm, endoderm and non-neural ectoderm to their proper locations in the Xenopus embryo. We used microarray analyses to demonstrate that Geminin overexpression represses many genes associated with cell commitment and differentiation, while elevating expression levels of genes that maintain pluripotent early and immature neurectodermal cell states. We characterized the relationship of Geminin to cell signaling and found that Geminin broadly represses Activin-, FGF- and BMP-mediated cell commitment. Conversely, Geminin knockdown enhances commitment responses to growth factor signaling and causes ectopic mesodermal, endodermal and epidermal fate commitment in the embryo. We also characterized the functional relationship of Geminin with transcription factors that had similar activities and found that Geminin represses commitment independent of Oct 4 ortholog (Oct25/60) activities, but depends upon intact Polycomb repressor function. Consistent with this, chromatin immunoprecipitation assays directed at mesodermal genes demonstrate that Geminin promotes Polycomb binding and Polycomb-mediated repressive histone modifications, while inhibiting modifications associated with gene activation. This work defines Geminin as an essential regulator of the embryonic transition from pluripotency through early multi-lineage commitment, and demonstrates that functional cooperativity between Geminin and Polycomb contributes to this process.
Collapse
Affiliation(s)
- Jong-Won Lim
- Departments of Developmental Biology, Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, MO 63110, USA
| | | | | | | |
Collapse
|
44
|
Smith JC. Forming and interpreting gradients in the early Xenopus embryo. Cold Spring Harb Perspect Biol 2010; 1:a002477. [PMID: 20066079 DOI: 10.1101/cshperspect.a002477] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The amphibian embryo provides a powerful model system to study morphogen gradients because of the ease with which it is possible to manipulate the early embryo. In particular, it is possible to introduce exogenous sources of morphogen, to follow the progression of the signal, to monitor the cellular response to induction, and to up- or down-regulate molecules that are involved in all aspects of long-range signaling. In this article, I discuss the evidence that gradients exist in the early amphibian embryo, the way in which morphogens might traverse a field of cells, and the way in which different concentrations of morphogens might be interpreted to activate the expression of different genes.
Collapse
Affiliation(s)
- James C Smith
- National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA.
| |
Collapse
|
45
|
Okamitsu Y, Yamamoto T, Fujii T, Ochiai H, Sakamoto N. Dicer is required for the normal development of sea urchin, Hemicentrotus pulcherrimus. Zoolog Sci 2010; 27:477-86. [PMID: 20528154 DOI: 10.2108/zsj.27.477] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
MicroRNAs are single-stranded RNA molecules with a length of 19-25 nucleotides, which play roles in various biological phenomena, including development, differentiation, apoptosis, by regulating target gene expression. Although the presence of microRNA molecules in sea urchin and the expression of genes involved in microRNA biogenesis during sea urchin development have been reported recently, the function of microRNA in sea urchin development remains to be elucidated. In this study, to understand the function of microRNA in the early development of sea urchin, we focused on Dicer, an essential enzyme for biosynthesis of mature microRNA. We determined the nucleotide sequence of cDNA for a Dicer homolog in the sea urchin, Hemicentrotus pulcherrimus, HpDcr, and found that functional domains of Dicer proteins are conserved in HpDcr. Analyses of its pattern of expression showed that HpDcr mRNA is expressed in embryos at all developmental stages analyzed, and seems to distribute asymmetrically at the morula and later stages. Knockdown of HpDcr resulted in anomalous morphogenesis, such as impairment of gastrulation and skeletogenesis at the mesenchyme blastula stage and later stages, and alteration of mRNA levels of cell type-specific genes. Thus, HpDcr plays important roles in morphogenesis in sea urchin embryos, suggesting that miRNA could be involved in the early development of sea urchin by regulating target gene expression.
Collapse
Affiliation(s)
- Yuka Okamitsu
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | | | | | | | | |
Collapse
|
46
|
Amore G, Casares F. Size matters: the contribution of cell proliferation to the progression of the specification Drosophila eye gene regulatory network. Dev Biol 2010; 344:569-77. [PMID: 20599903 DOI: 10.1016/j.ydbio.2010.06.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 06/03/2010] [Accepted: 06/08/2010] [Indexed: 01/02/2023]
Abstract
Organ development is a complex process in which the activity of scores of interacting transcription factors and signaling pathways need to be integrated with proliferative growth. Developmental gene regulatory networks (GRNs) allow capturing essential regulatory pathways at a systems-level and provide an effective way of approaching such complexity. However typical GRNs studies focus on very early embryonic stages (usually pre-gastrulation) or late stages, when there is little or no cell proliferation, and therefore do not consider how organ growth is integrated in the developmental process. This can be conveniently investigated in the Drosophila melanogaster eye primordium. Here we present a working model meant to illustrate how during a critical period, the second larval stage, changes in cells' proliferative pattern are coordinated with the initiation of the Retinal Determination (RD) gene program. Such changes are regulated in response to two different sources of signal (Wnt1/wg and BMP2/4/dpp) produced by the anterior and posterior ends of the primordium, respectively. The dpp signaling is necessary to trigger the RD program. However in order for it to be effective, cells receiving Dpp have to be out of the wg signaling range. This is obtained thanks to the proliferative growth that precedes the onset of RD expression. With this network model many of the gene regulatory steps previously known to participate in growth and patterning are linked. Analysis of the model highlights a few essential regulatory principles, as well as poses new questions. In addition, these principles might operate during the growth and patterning of other organs.
Collapse
Affiliation(s)
- Gabriele Amore
- Animal Physiology and Evolutionary Laboratory-Stazione Zoologica Anton Dohrn, Napoli, Italy.
| | | |
Collapse
|
47
|
Henry JQ, Perry KJ, Martindale MQ. -catenin and Early Development in the Gastropod, Crepidula fornicata. Integr Comp Biol 2010; 50:707-19. [DOI: 10.1093/icb/icq076] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
48
|
Kubo A, Suzuki N, Yuan X, Nakai K, Satoh N, Imai KS, Satou Y. Genomic cis-regulatory networks in the early Ciona intestinalis embryo. Development 2010; 137:1613-23. [PMID: 20392745 DOI: 10.1242/dev.046789] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Precise spatiotemporal gene expression during animal development is achieved through gene regulatory networks, in which sequence-specific transcription factors (TFs) bind to cis-regulatory elements of target genes. Although numerous cis-regulatory elements have been identified in a variety of systems, their global architecture in the gene networks that regulate animal development is not well understood. Here, we determined the structure of the core networks at the cis-regulatory level in early embryos of the chordate Ciona intestinalis by chromatin immunoprecipitation (ChIP) of 11 TFs. The regulatory systems of the 11 TF genes examined were tightly interconnected with one another. By combining analysis of the ChIP data with the results of previous comprehensive analyses of expression profiles and knockdown of regulatory genes, we found that most of the previously determined interactions are direct. We focused on cis-regulatory networks responsible for the Ciona mesodermal tissues by examining how the networks specify these tissues at the level of their cis-regulatory architecture. We also found many interactions that had not been predicted by simple gene knockdown experiments, and we showed that a significant fraction of TF-DNA interactions make major contributions to the regulatory control of target gene expression.
Collapse
Affiliation(s)
- Atsushi Kubo
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Swiers G, Chen YH, Johnson AD, Loose M. A conserved mechanism for vertebrate mesoderm specification in urodele amphibians and mammals. Dev Biol 2010; 343:138-52. [PMID: 20394741 DOI: 10.1016/j.ydbio.2010.04.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 04/02/2010] [Accepted: 04/06/2010] [Indexed: 11/26/2022]
Abstract
Understanding how mesoderm is specified during development is a fundamental issue in biology, and it has been studied intensively in embryos from Xenopus. The gene regulatory network (GRN) for Xenopus is surprisingly complex and is not conserved in vertebrates, including mammals, which have single copies of the key genes Nodal and Mix. Why the Xenopus GRN should express multiple copies of Nodal and Mix genes is not known. To understand how these expanded gene families evolved, we investigated mesoderm specification in embryos from axolotls, representing urodele amphibians, since urodele embryology is basal to amphibians and was conserved during the evolution of amniotes, including mammals. We show that single copies of Nodal and Mix are required for mesoderm specification in axolotl embryos, suggesting the ancestral vertebrate state. Furthermore, we uncovered a novel genetic interaction in which Mix induces Brachyury expression, standing in contrast to the relationship of these molecules in Xenopus. However, we demonstrate that this functional relationship is conserved in mammals by showing that it is involved in the production of mesoderm from mouse embryonic stem cells. From our results, we produced an ancestral mesoderm (m)GRN, which we suggest is conserved in vertebrates. The results are discussed within the context of a theory in which the evolution of mechanisms governing early somatic development is constrained by the ancestral germ line-soma relationship, in which germ cells are produced by epigenesis.
Collapse
Affiliation(s)
- Gemma Swiers
- Institute of Genetics, Queens Medical Centre, University of Nottingham, NG7 2UH, UK
| | | | | | | |
Collapse
|
50
|
Challenges for modeling global gene regulatory networks during development: Insights from Drosophila. Dev Biol 2010; 340:161-9. [DOI: 10.1016/j.ydbio.2009.10.032] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 10/14/2009] [Accepted: 10/21/2009] [Indexed: 12/26/2022]
|