1
|
Wang S, Qin Z, Liu J, Liu J, Xiong Q, Wei Z, Wang L, Cao Y. Absence of Rnf126 causes male infertility with multiple morphological abnormalities of the sperm flagella. Cell Death Discov 2025; 11:251. [PMID: 40410177 PMCID: PMC12102401 DOI: 10.1038/s41420-025-02432-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/27/2025] [Accepted: 03/21/2025] [Indexed: 05/25/2025] Open
Abstract
Male infertility is primarily caused by impaired flagella development, reduced sperm count, and decreased motility. Despite the involvement of many genes in spermatogenesis, the precise processes remain unclear. The critical E3 ubiquitin ligase Rnf126 regulates essential cellular processes through ubiquitination-induced protein degradation. It plays a significant role in DNA repair, immune response, and signaling cascades, underscoring its central importance in maintaining cellular homeostasis. However, the mechanisms by which Rnf126 controls spermatogenesis are not fully understood. This research identifies Rnf126 as a crucial component in sperm flagellar biogenesis and germ cell development. Through genetic lineage tracing, we show that RNF126 is highly expressed in sperm cells and weakly expressed in Sertoli cells. The germ epithelium of RNF126 deficiencies is characterized by a loss of germ cells due to an increase in germ cell apoptosis at various stages of development, which ultimately results in vesiculation of the spermatogenic tubule. Targeting Rnf126 results in different types of germ cells reduction, infertility, and microtubule-associated motor activity failure (MMAF), characterized by spermatozoa with truncated, twisted, and malformed flagella. Detailed ultrastructural studies reveal the extent of flagellar damage in the absence of Rnf126, highlighting its critical role in maintaining flagellar stability. An important finding is the interaction between RNF126 and BAG6, which regulates sperm synthesis and germ cell development. Clinically, reduced RNF126 levels in sperm from individuals with oligoasthenoteratospermia are significantly different from those in fertile individuals. Investigating Rnf126 function in spermatogenesis, together with empirical findings on MMAF presentation, may improve our understanding of the developmental processes involved in sperm flagellum formation and contribute to elucidating the causes of male infertility.
Collapse
Affiliation(s)
- Shengnan Wang
- Department of Obstetrics and Gynecology, Perinatal Medical Center, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, PR China
| | - Zihan Qin
- Department of Obstetrics and Gynecology, Perinatal Medical Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Juan Liu
- Department of Obstetrics and Gynecology, Perinatal Medical Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jie Liu
- Department of Obstetrics and Gynecology, Perinatal Medical Center, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, PR China
| | - Qiaohua Xiong
- Department of Obstetrics and Gynecology, Perinatal Medical Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zexiao Wei
- Department of Obstetrics and Gynecology, Perinatal Medical Center, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, PR China
| | - Li Wang
- Department of Obstetrics and Gynecology, Perinatal Medical Center, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, PR China
| | - Yuming Cao
- Department of Obstetrics and Gynecology, Perinatal Medical Center, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, PR China.
| |
Collapse
|
2
|
Wilhelm D, Perea-Gomez A, Newton A, Chaboissier MC. Gonadal sex determination in vertebrates: rethinking established mechanisms. Development 2025; 152:dev204592. [PMID: 40162719 DOI: 10.1242/dev.204592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Sex determination and differentiation are fundamental processes that are not only essential for fertility but also influence the development of many other organs, and hence, are important for species diversity and survival. In mammals, sex is determined by the inheritance of an X or a Y chromosome from the father. The Y chromosome harbours the testis-determining gene SRY, and it has long been thought that its absence is sufficient for ovarian development. Consequently, the ovarian pathway has been treated as a default pathway, in the sense that ovaries do not have or need a female-determining factor. Recently, a female-determining factor has been identified in mouse as the master regulator of ovarian development. Interestingly, this scenario was predicted as early as 1983. In this Review, we discuss the model predicted in 1983, how the mechanisms and genes currently known to be important for sex determination and differentiation in mammals have changed or supported this model, and finally, reflect on what these findings might mean for sex determination in other vertebrates.
Collapse
Affiliation(s)
- Dagmar Wilhelm
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Aitana Perea-Gomez
- Université Côte d'Azur, INSERM, CNRS, Institut de Biologie Valrose (iBV), 06108 Nice, France
| | - Axel Newton
- TIGRR Lab, The School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | | |
Collapse
|
3
|
Jorgez CJ, Chahdi A, Flores H, O'Neill M, Seth A. Role of Kctd13 in modulating AR and SOX9 expression in different penile cell populations. Andrology 2025. [PMID: 39888193 DOI: 10.1111/andr.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 01/10/2025] [Accepted: 01/20/2025] [Indexed: 02/01/2025]
Abstract
OBJECTIVE Micropenis is a condition with significant physical and psychological implications caused mainly by decreased androgen action in penile development. Kctd13-knockout (Kctd13-KO) mice have micropenis, cryptorchidism, and fertility defects because of reduced levels of androgen receptor (AR) and SOX9. We hypothesized that normalizing the levels of AR and SOX9 in the Kctd13-KO penis could help us to understand the mechanism of action of these signaling pathways on penile development. METHODS We generated transgenic mice lacking Kctd13 and conditionally expressing AR in the urethral mesenchyme after Cre activation with Twist2cre (Kctd13-KO; AR-CMV; Twist2cre; herein called AR+), and Sox9 in the urethral epithelium after Cre activation with Shhcre (Kctd13-KO; Sox9-CAG; Shhcre; herein called SOX9+). Mice penile morphology, fertility, and the effect of KCTD13 on AR and SOX9 ubiquitination were evaluated. RESULTS AND DISCUSSION Kctd13-KO micropenis phenotype was rescued after increasing levels of penile AR or SOX9 as transgenic AR+ and SOX9+ mice have longer penile lengths than Kctd13-KO mice and are comparable to WT mice. In addition, male-urogenital-mating-protuberance and the baculum were significantly shorter and narrower in Kctd13-KO mice compared with transgenic AR+ and SOX9+ mice. The position of the urethral meatus was similar and orthotopic in location in Kctd13-KO, AR+, SOX9+, and WT penises indicating that none of these mice had hypospadias. The subfertility of AR+ and SOX9+ mice was improved. The ectopic expression of KCTD13 in HEK293 cells strongly reduced AR ubiquitination which is abolished when the proteasome pathway is inhibited and this process is mediated by the ubiquitin ligase, STUB1. The effect of KCTD13 on SOX9 ubiquitination is minimal. CONCLUSION KCTD13 regulates AR ubiquitination by modulating STUB1 binding to AR. Penile restoration of AR and SOX9 improved penile development in Kctd13-KO mice allowing us to discern the contribution from individual signaling pathways and cell types in penile development.
Collapse
Affiliation(s)
- Carolina J Jorgez
- Scott Department of Urology, Baylor College of Medicine, Houston, Texas, USA
- Department of Surgery, Nemours Children's Hospital, Orlando, Florida, USA
- University of Central Florida, Orlando, Florida, USA
| | - Ahmed Chahdi
- Department of Surgery, Nemours Children's Hospital, Orlando, Florida, USA
- University of Central Florida, Orlando, Florida, USA
| | - Hunter Flores
- Scott Department of Urology, Baylor College of Medicine, Houston, Texas, USA
| | - Marisol O'Neill
- Scott Department of Urology, Baylor College of Medicine, Houston, Texas, USA
| | - Abhishek Seth
- Department of Surgery, Nemours Children's Hospital, Orlando, Florida, USA
- University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
4
|
Binder AK, Burns KA, Rodriguez KF, Hamilton K, Pardo-Manuel de Villena F, Korach KS. Postnatal Ovarian Transdifferentiation in the Absence of Estrogen Receptor Signaling Is Dependent on Genetic Background. Endocrinology 2024; 166:bqae157. [PMID: 39576259 PMCID: PMC11630523 DOI: 10.1210/endocr/bqae157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Indexed: 12/12/2024]
Abstract
Normal ovarian function requires the expression of estrogen receptors α (ESR1) and β (ESR2) in distinct cell types within the ovary. The double estrogen receptor knockout (αβERKO) ovary had the appearance of seminiferous tubule-like structures that expressed SOX9; this phenotype was lost when the animals were repeatedly backcrossed to the C57BL/6J genetic background. A new line of ERKO mice, Ex3αβERKO, was developed for targeted disruption on a mixed genetic background. Histological examination of the ovaries in the Ex3αβERKO showed the appearance of seminiferous tubule-like structures in mice aged 6 to 12 months. These dismorphogenic regions have cells that no longer express granulosa cell-specific FOXL2, while other cells express Sertoli cell-specific SOX9 as examined by immunohistochemistry. Whole ovarian gene expression analysis in Ex3αERKO, Ex3βRKO, and Ex3αβERKO found many genes differentially expressed compared to controls with one Esr1 and Esr2 allele. The genes specific to the Ex3αβERKO ovary were compared to other models of postnatal ovarian transdifferentiation, identifying 21 candidate genes. To examine the genetic background contributions, DNA was isolated from αβERKO mice that did not show ovarian transdifferentiation and compared to DNA from Ex3αβERKO using Mouse Diversity Array. A genomic region putatively associated with transdifferentiation was identified on Chr18 (5-15 M) and genes in this region were compared to the genes differentially expressed in models of ovarian transdifferentiation. This work demonstrates the importance of ESRs in maintaining granulosa cell differentiation within the ovary, identifies several potential gene candidates, and suggests that genetic background can be a confounding factor.
Collapse
Affiliation(s)
- April K Binder
- Department of Biological Sciences, Central Washington University, Ellensburg, WA 98926, USA
- Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
- Reproductive & Developmental Biology Laboratory, NIEHS, NIH, Research Triangle Park, NC 27709, USA
| | - Katherine A Burns
- Reproductive & Developmental Biology Laboratory, NIEHS, NIH, Research Triangle Park, NC 27709, USA
- Department of Environmental and Public Health Science, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Karina F Rodriguez
- Reproductive & Developmental Biology Laboratory, NIEHS, NIH, Research Triangle Park, NC 27709, USA
| | - Katherine Hamilton
- Reproductive & Developmental Biology Laboratory, NIEHS, NIH, Research Triangle Park, NC 27709, USA
| | | | - Kenneth S Korach
- Reproductive & Developmental Biology Laboratory, NIEHS, NIH, Research Triangle Park, NC 27709, USA
| |
Collapse
|
5
|
Blücher RO, Lim RS, Ritchie ME, Western PS. VEGF-dependent testicular vascularisation involves MEK1/2 signalling and the essential angiogenesis factors, SOX7 and SOX17. BMC Biol 2024; 22:222. [PMID: 39354506 PMCID: PMC11445939 DOI: 10.1186/s12915-024-02003-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 09/03/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Abnormalities of in utero testis development are strongly associated with reproductive health conditions, including male infertility and testis cancer. In mouse testes, SOX9 and FGF9 support Sertoli cell development, while VEGF signalling is essential for the establishment of vasculature. The mitogen-activated protein kinase (MAPK) pathway is a major signalling cascade, essential for cell proliferation, differentiation and activation of Sry during primary sex-determination, but little is known about its function during fetal testis morphogenesis. We explored potential functions of MAPK signalling immediately after the establishment of testis cords in embryonic day (E)12.5 Oct4-eGFP transgenic mouse testes cultured using a MEK1/2 inhibitor. RESULTS RNA sequencing in isolated gonadal somatic cells identified 116 and 114 differentially expressed genes after 24 and 72 h of MEK1/2 inhibition, respectively. Ingenuity Pathway Analysis revealed an association of MEK1/2 signalling with biological functions such as angiogenesis, vasculogenesis and cell migration. This included a failure to upregulate the master transcriptional regulators of vascular development, Sox7 and Sox17, VEGF receptor genes, the cell adhesion factor gene Cd31 and a range of other endothelial cell markers such as Cdh5 (encoding VE-cadherin) and gap junction genes Gja4 and Gja5. In contrast, only a small number of Sertoli cell enriched genes were affected. Immunofluorescent analyses of control testes revealed that the MEK1/2 downstream target, ERK1/2 was phosphorylated in endothelial cells and Sertoli cells. Inhibition of MEK1/2 eliminated pERK1/2 in fetal testes, and CD31, VE-cadherin, SOX7 and SOX17 and endothelial cells were lost. Consistent with a role for VEGF in driving endothelial cell development in the testis, inhibition of VEGFR also abrogated pERK1/2 and SOX7 and SOX17 expressing endothelial cells. Moreover, while Sertoli cell proliferation and localisation to the testis cord basement membrane was disrupted by inhibition of MEK1/2, it was unaffected by VEGFR inhibition. Instead, inhibition of FGF signalling compromised Sertoli cell proliferation and localisation to the testis cord basement membrane. CONCLUSIONS Together, our data highlight an essential role for VEGF-dependent MEK1/2 signalling in promoting vasculature and indicate that FGF signalling through MEK1/2 regulates Sertoli cell organisation in the developing mouse testis.
Collapse
Affiliation(s)
- Rheannon O Blücher
- Centre for Reproductive Health, Hudson Institute of Medical Research and Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3168, Australia
| | - Rachel S Lim
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Matthew E Ritchie
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Patrick S Western
- Centre for Reproductive Health, Hudson Institute of Medical Research and Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3168, Australia.
| |
Collapse
|
6
|
Pfaltzgraff NG, Liu B, de Rooij DG, Page DC, Mikedis MM. Destabilization of mRNAs enhances competence to initiate meiosis in mouse spermatogenic cells. Development 2024; 151:dev202740. [PMID: 38884383 PMCID: PMC11273298 DOI: 10.1242/dev.202740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
The specialized cell cycle of meiosis transforms diploid germ cells into haploid gametes. In mammals, diploid spermatogenic cells acquire the competence to initiate meiosis in response to retinoic acid. Previous mouse studies revealed that MEIOC interacts with RNA-binding proteins YTHDC2 and RBM46 to repress mitotic genes and to promote robust meiotic gene expression in spermatogenic cells that have initiated meiosis. Here, we have used the enhanced resolution of scRNA-seq and bulk RNA-seq of developmentally synchronized spermatogenesis to define how MEIOC molecularly supports early meiosis in spermatogenic cells. We demonstrate that MEIOC mediates transcriptomic changes before meiotic initiation, earlier than previously appreciated. MEIOC, acting with YTHDC2 and RBM46, destabilizes its mRNA targets, including the transcriptional repressors E2f6 and Mga, in mitotic spermatogonia. MEIOC thereby derepresses E2F6- and MGA-repressed genes, including Meiosin and other meiosis-associated genes. This confers on spermatogenic cells the molecular competence to, in response to retinoic acid, fully activate the transcriptional regulator STRA8-MEIOSIN, which is required for the meiotic G1/S phase transition and for meiotic gene expression. We conclude that, in mice, mRNA decay mediated by MEIOC-YTHDC2-RBM46 enhances the competence of spermatogenic cells to initiate meiosis.
Collapse
Affiliation(s)
- Natalie G. Pfaltzgraff
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Bingrun Liu
- Whitehead Institute, Cambridge, MA 02142, USA
| | | | - David C. Page
- Whitehead Institute, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Maria M. Mikedis
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Whitehead Institute, Cambridge, MA 02142, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
7
|
Ridnik M, Abberbock E, Alipov V, Lhermann SZ, Kaufman S, Lubman M, Poulat F, Gonen N. Two redundant transcription factor binding sites in a single enhancer are essential for mammalian sex determination. Nucleic Acids Res 2024; 52:5514-5528. [PMID: 38499491 PMCID: PMC11162780 DOI: 10.1093/nar/gkae178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/25/2024] [Accepted: 02/29/2024] [Indexed: 03/20/2024] Open
Abstract
Male development in mammals depends on the activity of the two SOX gene: Sry and Sox9, in the embryonic testis. As deletion of Enhancer 13 (Enh13) of the Sox9 gene results in XY male-to-female sex reversal, we explored the critical elements necessary for its function and hence, for testis and male development. Here, we demonstrate that while microdeletions of individual transcription factor binding sites (TFBS) in Enh13 lead to normal testicular development, combined microdeletions of just two SRY/SOX binding motifs can alone fully abolish Enh13 activity leading to XY male-to-female sex reversal. This suggests that for proper male development to occur, these few nucleotides of non-coding DNA must be intact. Interestingly, we show that depending on the nature of these TFBS mutations, dramatically different phenotypic outcomes can occur, providing a molecular explanation for the distinct clinical outcomes observed in patients harboring different variants in the same enhancer.
Collapse
Affiliation(s)
- Meshi Ridnik
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Elisheva Abberbock
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Veronica Alipov
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Shelly Ziv Lhermann
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Shoham Kaufman
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Maor Lubman
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Francis Poulat
- Group “Development and Pathology of the Gonad”. Department of Genetics, Cell Biology and Development, Institute of Human Genetics, CNRS-University of Montpellier UMR9002, Montpellier, France
| | - Nitzan Gonen
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
8
|
Cao J, El Mansouri F, Reynoso S, Liu Z, Zhu J, Taketo T. Inefficient Sox9 upregulation and absence of Rspo1 repression lead to sex reversal in the B6.XYTIR mouse gonad†. Biol Reprod 2024; 110:985-999. [PMID: 38376238 PMCID: PMC11094394 DOI: 10.1093/biolre/ioae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/19/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024] Open
Abstract
Sry on the Y-chromosome upregulates Sox9, which in turn upregulates a set of genes such as Fgf9 to initiate testicular differentiation in the XY gonad. In the absence of Sry expression, genes such as Rspo1, Foxl2, and Runx1 support ovarian differentiation in the XX gonad. These two pathways antagonize each other to ensure the development of only one gonadal sex in normal development. In the B6.YTIR mouse, carrying the YTIR-chromosome on the B6 genetic background, Sry is expressed in a comparable manner with that in the B6.XY mouse, yet, only ovaries or ovotestes develop. We asked how testicular and ovarian differentiation pathways interact to determine the gonadal sex in the B6.YTIR mouse. Our results showed that (1) transcript levels of Sox9 were much lower than in B6.XY gonads while those of Rspo1 and Runx1 were as high as B6.XX gonads at 11.5 and 12.5 days postcoitum. (2) FOXL2-positive cells appeared in mosaic with SOX9-positive cells at 12.5 days postcoitum. (3) SOX9-positive cells formed testis cords in the central area while those disappeared to leave only FOXL2-positive cells in the poles or the entire area at 13.5 days postcoitum. (4) No difference was found at transcript levels of all genes between the left and right gonads up to 12.5 days postcoitum, although ovotestes developed much more frequently on the left than the right at 13.5 days postcoitum. These results suggest that inefficient Sox9 upregulation and the absence of Rspo1 repression prevent testicular differentiation in the B6.YTIR gonad.
Collapse
Affiliation(s)
- Jiangqin Cao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Guangling College of Yangzhou University, Yangzhou, Jiangsu, China
- Department of Biology, McGill University, Montreal, Quebec, Canada
- Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
| | - Fatima El Mansouri
- Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
- Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Sofia Reynoso
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Guangling College of Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Teruko Taketo
- Department of Biology, McGill University, Montreal, Quebec, Canada
- Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
- Department of Surgery, McGill University, Montreal, Quebec, Canada
- Department of Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Gao Y, Wang Z, Long Y, Yang L, Jiang Y, Ding D, Teng B, Chen M, Yuan J, Gao F. Unveiling the roles of Sertoli cells lineage differentiation in reproductive development and disorders: a review. Front Endocrinol (Lausanne) 2024; 15:1357594. [PMID: 38699384 PMCID: PMC11063913 DOI: 10.3389/fendo.2024.1357594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/07/2024] [Indexed: 05/05/2024] Open
Abstract
In mammals, gonadal somatic cell lineage differentiation determines the development of the bipotential gonad into either the ovary or testis. Sertoli cells, the only somatic cells in the spermatogenic tubules, support spermatogenesis during gonadal development. During embryonic Sertoli cell lineage differentiation, relevant genes, including WT1, GATA4, SRY, SOX9, AMH, PTGDS, SF1, and DMRT1, are expressed at specific times and in specific locations to ensure the correct differentiation of the embryo toward the male phenotype. The dysregulated development of Sertoli cells leads to gonadal malformations and male fertility disorders. Nevertheless, the molecular pathways underlying the embryonic origin of Sertoli cells remain elusive. By reviewing recent advances in research on embryonic Sertoli cell genesis and its key regulators, this review provides novel insights into sex determination in male mammals as well as the molecular mechanisms underlying the genealogical differentiation of Sertoli cells in the male reproductive ridge.
Collapse
Affiliation(s)
- Yang Gao
- College of Basic Medicine, Jining Medical University, Jining, Shandong, China
| | - Zican Wang
- College of Basic Medicine, Jining Medical University, Jining, Shandong, China
| | - Yue Long
- College of Basic Medicine, Jining Medical University, Jining, Shandong, China
| | - Lici Yang
- College of Basic Medicine, Jining Medical University, Jining, Shandong, China
| | - Yongjian Jiang
- College of Basic Medicine, Jining Medical University, Jining, Shandong, China
| | - Dongyu Ding
- College of Basic Medicine, Jining Medical University, Jining, Shandong, China
| | - Baojian Teng
- College of Basic Medicine, Jining Medical University, Jining, Shandong, China
| | - Min Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jinxiang Yuan
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, China
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, Shandong, China
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, China
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
10
|
Migale R, Neumann M, Mitter R, Rafiee MR, Wood S, Olsen J, Lovell-Badge R. FOXL2 interaction with different binding partners regulates the dynamics of ovarian development. SCIENCE ADVANCES 2024; 10:eadl0788. [PMID: 38517962 PMCID: PMC10959415 DOI: 10.1126/sciadv.adl0788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/16/2024] [Indexed: 03/24/2024]
Abstract
The transcription factor FOXL2 is required in ovarian somatic cells for female fertility. Differential timing of Foxl2 deletion, in embryonic versus adult mouse ovary, leads to distinctive outcomes, suggesting different roles across development. Here, we comprehensively investigated FOXL2's role through a multi-omics approach to characterize gene expression dynamics and chromatin accessibility changes, coupled with genome-wide identification of FOXL2 targets and on-chromatin interacting partners in somatic cells across ovarian development. We found that FOXL2 regulates more targets postnatally, through interaction with factors regulating primordial follicle formation and steroidogenesis. Deletion of one interactor, ubiquitin-specific protease 7 (Usp7), results in impairment of somatic cell differentiation, germ cell nest breakdown, and ovarian development, leading to sterility. Our datasets constitute a comprehensive resource for exploration of the molecular mechanisms of ovarian development and causes of female infertility.
Collapse
Affiliation(s)
- Roberta Migale
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London NW1 1AT, UK
| | - Michelle Neumann
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London NW1 1AT, UK
| | - Richard Mitter
- Bioinformatics core, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Mahmoud-Reza Rafiee
- RNA Networks Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Sophie Wood
- Genetic Modification Service, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Jessica Olsen
- Genetic Modification Service, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Robin Lovell-Badge
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
11
|
Parivesh A, Délot E, Reyes A, Ryan J, Bhattacharya S, Harley V, Vilain E. Reprograming skin fibroblasts into Sertoli cells: a patient-specific tool to understand effects of genetic variants on gonadal development. Biol Sex Differ 2024; 15:24. [PMID: 38520033 PMCID: PMC10958866 DOI: 10.1186/s13293-024-00599-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 02/22/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Disorders/differences of sex development (DSD) are congenital conditions in which the development of chromosomal, gonadal, or anatomical sex is atypical. With overlapping phenotypes and multiple genes involved, poor diagnostic yields are achieved for many of these conditions. The current DSD diagnostic regimen can be augmented by investigating transcriptome/proteome in vivo, but it is hampered by the unavailability of affected gonadal tissue at the relevant developmental stage. We try to mitigate this limitation by reprogramming readily available skin tissue-derived dermal fibroblasts into Sertoli cells (SC), which could then be deployed for different diagnostic strategies. SCs form the target cell type of choice because they act like an organizing center of embryonic gonadal development and many DSD arise when these developmental processes go awry. METHODS We employed a computational predictive algorithm for cell conversions called Mogrify to predict the transcription factors (TFs) required for direct reprogramming of human dermal fibroblasts into SCs. We established trans-differentiation culture conditions where stable transgenic expression of these TFs was achieved in 46, XY adult dermal fibroblasts using lentiviral vectors. The resulting Sertoli like cells (SLCs) were validated for SC phenotype using several approaches. RESULTS SLCs exhibited Sertoli-like morphological and cellular properties as revealed by morphometry and xCelligence cell behavior assays. They also showed Sertoli-specific expression of molecular markers such as SOX9, PTGDS, BMP4, or DMRT1 as revealed by IF imaging, RNAseq and qPCR. The SLC transcriptome shared about two thirds of its differentially expressed genes with a human adult SC transcriptome and expressed markers typical of embryonic SCs. Notably, SLCs lacked expression of most markers of other gonadal cell types such as Leydig, germ, peritubular myoid or granulosa cells. CONCLUSIONS The trans-differentiation method was applied to a variety of commercially available 46, XY fibroblasts derived from patients with DSD and to a 46, XX cell line. The DSD SLCs displayed altered levels of trans-differentiation in comparison to normal 46, XY-derived SLCs, thus showcasing the robustness of this new trans-differentiation model. Future applications could include using the SLCs to improve definitive diagnosis of DSD in patients with variants of unknown significance.
Collapse
Affiliation(s)
- Abhinav Parivesh
- Center for Genetic Medicine Research, Children's National Hospital, Washington D.C., 20010, USA
| | - Emmanuèle Délot
- Center for Genetic Medicine Research, Children's National Hospital, Washington D.C., 20010, USA
| | - Alejandra Reyes
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, VIC, 3168, Australia
| | - Janelle Ryan
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, VIC, 3168, Australia
| | - Surajit Bhattacharya
- Center for Genetic Medicine Research, Children's National Hospital, Washington D.C., 20010, USA
| | - Vincent Harley
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, VIC, 3168, Australia
| | - Eric Vilain
- Institute for Clinical and Translational Science, University of California, Irvine, CA, USA.
| |
Collapse
|
12
|
Gregoire EP, De Cian MC, Migale R, Perea-Gomez A, Schaub S, Bellido-Carreras N, Stévant I, Mayère C, Neirijnck Y, Loubat A, Rivaud P, Sopena ML, Lachambre S, Linssen MM, Hohenstein P, Lovell-Badge R, Nef S, Chalmel F, Schedl A, Chaboissier MC. The -KTS splice variant of WT1 is essential for ovarian determination in mice. Science 2023; 382:600-606. [PMID: 37917714 PMCID: PMC7615308 DOI: 10.1126/science.add8831] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/29/2023] [Indexed: 11/04/2023]
Abstract
Sex determination in mammals depends on the differentiation of the supporting lineage of the gonads into Sertoli or pregranulosa cells that govern testis and ovary development, respectively. Although the Y-linked testis-determining gene Sry has been identified, the ovarian-determining factor remains unknown. In this study, we identified -KTS, a major, alternatively spliced isoform of the Wilms tumor suppressor WT1, as a key determinant of female sex determination. Loss of -KTS variants blocked gonadal differentiation in mice, whereas increased expression, as found in Frasier syndrome, induced precocious differentiation of ovaries independently of their genetic sex. In XY embryos, this antagonized Sry expression, resulting in male-to-female sex reversal. Our results identify -KTS as an ovarian-determining factor and demonstrate that its time of activation is critical in gonadal sex differentiation.
Collapse
Affiliation(s)
- Elodie P Gregoire
- Université Côte d’Azur, Inserm, CNRS, Institut de Biologie Valrose (iBV), 06108 Nice, France
| | - Marie-Cécile De Cian
- Université Côte d’Azur, Inserm, CNRS, Institut de Biologie Valrose (iBV), 06108 Nice, France
| | - Roberta Migale
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Aitana Perea-Gomez
- Université Côte d’Azur, Inserm, CNRS, Institut de Biologie Valrose (iBV), 06108 Nice, France
| | - Sébastien Schaub
- Sorbonne Université, CNRS, Development Biology Laboratory (LBDV), 06234 Villefranche sur Mer, France
| | | | - Isabelle Stévant
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland
- iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva Switzerland
| | - Chloé Mayère
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland
- iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva Switzerland
| | - Yasmine Neirijnck
- Université Côte d’Azur, Inserm, CNRS, Institut de Biologie Valrose (iBV), 06108 Nice, France
| | - Agnès Loubat
- Université Côte d’Azur, Inserm, CNRS, Institut de Biologie Valrose (iBV), 06108 Nice, France
| | - Paul Rivaud
- Univ Rennes, Inserm, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, 35000 Rennes, France
| | | | - Simon Lachambre
- Infinity, Inserm, CNRS, University Toulouse III, 31024 Toulouse, France
| | - Margot M. Linssen
- Central Animal and Transgenic Facility and Dept. Human Genetics, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Peter Hohenstein
- Central Animal and Transgenic Facility and Dept. Human Genetics, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | | | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland
- iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva Switzerland
| | - Frédéric Chalmel
- Univ Rennes, Inserm, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, 35000 Rennes, France
| | - Andreas Schedl
- Université Côte d’Azur, Inserm, CNRS, Institut de Biologie Valrose (iBV), 06108 Nice, France
| | | |
Collapse
|
13
|
Akalın SA, Öcal E, Deveci E. Role of SOX9 and Hif-1α expression in placentas of patients with HELLP. Acta Cir Bras 2023; 38:e388023. [PMID: 37878989 PMCID: PMC10592703 DOI: 10.1590/acb388023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/13/2023] [Indexed: 10/27/2023] Open
Abstract
PURPOSE In this study, we investigated the immunohistochemical staining of SRY-box transcription factor 9 (SOX9) and Hif-1α expression in placentas of pregnant woman with hemolysis, elevated liver enzymes and low platelets (HELLP) syndrome. METHODS Placentas of 20 normotensive and 20 women with HELLP syndrome were processed for routine histological tissue processing. The biochemical and clinical parameters of patients were recorded. Placentas were stained with hematoxylin-eosin and SOX9 and Hif-1α immunostaining. RESULTS Normotensive placentas showed normal histology of placenta, however placentas of HELLP syndrome showed intense thrombosis, thinning of the villi membrane and vascular dilatation. In placentas of normotensive patients, SOX9 reaction was immunohistochemically negative, however placentas of HELLP group showed SOX9 expression in decidual cells, and syncytial regions of floating villi and inflammatory cells. In placentas of normotensive patients, Hif-1α reaction was mainly negative in vessels and connective tissue cells. Placentas of HELLP group showed increased Hif-1α expression in decidual cell and especially inflammatory cells in the maternal region. CONCLUSIONS Hif-1α and SOX9 proteins can be used as a marker to show severity of preeclampsia and regulation of cell proliferation and angiogenesis during placental development.
Collapse
Affiliation(s)
- Senem Alkan Akalın
- Private Medical Practice – Department of Gynecology and Obstetrics – Bursa – Turkey
| | - Ece Öcal
- Private Medical Practice – Department of Perinatology – Diyarbakir – Turkey
| | - Engin Deveci
- Dicle University – Medical School – Department of Histology and Embryology – Diyarbakir – Turkey
| |
Collapse
|
14
|
Bunce C, Barske L, Zhang G, Capel B. Biased precursor ingression underlies the center-to-pole pattern of male sex determination in mouse. Development 2023; 150:297121. [PMID: 36912416 PMCID: PMC10112898 DOI: 10.1242/dev.201060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 02/15/2023] [Indexed: 03/14/2023]
Abstract
During mammalian development, gonadal sex determination results from the commitment of bipotential supporting cells to Sertoli or granulosa cell fates. Typically, this decision is coordinated across the gonad to ensure commitment to a single organ fate. When unified commitment fails in an XY mouse, an ovotestis forms in which supporting cells in the center of the gonad typically develop as Sertoli cells, while supporting cells in the poles develop as granulosa cells. This central bias for Sertoli cell fate was thought to result from the initial expression of the drivers of Sertoli cell fate, SRY and/or SOX9, in the central domain, followed by paracrine expansion to the poles. However, we show here that the earliest cells expressing SRY and SOX9 are widely distributed across the gonad. In addition, Sertoli cell fate does not spread among supporting cells through paracrine relay. Instead, we uncover a center-biased pattern of supporting cell precursor ingression that occurs in both sexes and results in increased supporting cell density in the central domain. Our findings prompt a new model of gonad patterning in which a density-dependent organizing principle dominates Sertoli cell fate stabilization.
Collapse
Affiliation(s)
- Corey Bunce
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lindsey Barske
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Gloria Zhang
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
15
|
Gonen N, Eozenou C, Mitter R, Elzaiat M, Stévant I, Aviram R, Bernardo AS, Chervova A, Wankanit S, Frachon E, Commère PH, Brailly-Tabard S, Valon L, Barrio Cano L, Levayer R, Mazen I, Gobaa S, Smith JC, McElreavey K, Lovell-Badge R, Bashamboo A. In vitro cellular reprogramming to model gonad development and its disorders. SCIENCE ADVANCES 2023; 9:eabn9793. [PMID: 36598988 PMCID: PMC9812383 DOI: 10.1126/sciadv.abn9793] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 12/02/2022] [Indexed: 05/28/2023]
Abstract
During embryonic development, mutually antagonistic signaling cascades determine gonadal fate toward a testicular or ovarian identity. Errors in this process result in disorders of sex development (DSDs), characterized by discordance between chromosomal, gonadal, and anatomical sex. The absence of an appropriate, accessible in vitro system is a major obstacle in understanding mechanisms of sex-determination/DSDs. Here, we describe protocols for differentiation of mouse and human pluripotent cells toward gonadal progenitors. Transcriptomic analysis reveals that the in vitro-derived murine gonadal cells are equivalent to embryonic day 11.5 in vivo progenitors. Using similar conditions, Sertoli-like cells derived from 46,XY human induced pluripotent stem cells (hiPSCs) exhibit sustained expression of testis-specific genes, secrete anti-Müllerian hormone, migrate, and form tubular structures. Cells derived from 46,XY DSD female hiPSCs, carrying an NR5A1 variant, show aberrant gene expression and absence of tubule formation. CRISPR-Cas9-mediated variant correction rescued the phenotype. This is a robust tool to understand mechanisms of sex determination and model DSDs.
Collapse
Affiliation(s)
- Nitzan Gonen
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Caroline Eozenou
- Institut Pasteur, Université de Paris, CNRS UMR3738, Human Developmental Genetics, F-75015 Paris, France
| | - Richard Mitter
- Bioinformatics Core, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Maëva Elzaiat
- Institut Pasteur, Université de Paris, CNRS UMR3738, Human Developmental Genetics, F-75015 Paris, France
| | - Isabelle Stévant
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Rona Aviram
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Andreia Sofia Bernardo
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Almira Chervova
- Department of Stem Cell and Developmental Biology, Institut Pasteur, Paris 75724, France
| | - Somboon Wankanit
- Institut Pasteur, Université de Paris, CNRS UMR3738, Human Developmental Genetics, F-75015 Paris, France
| | - Emmanuel Frachon
- Biomaterials and Microfluidics Core Facility, Institut Pasteur, F-75015 Paris, France
| | - Pierre-Henri Commère
- Cytometry and Biomarkers, Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, F-75015 Paris, France
| | - Sylvie Brailly-Tabard
- Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, Molecular Genetics, Pharmacogenetics, and Hormonology, Le Kremlin-Bicêtre, France
| | - Léo Valon
- Institut Pasteur, Université de Paris, CNRS UMR3738, Cell Death and Epithelial Homeostasis, F-75015 Paris, France
| | - Laura Barrio Cano
- Cytometry and Biomarkers, Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, F-75015 Paris, France
| | - Romain Levayer
- Institut Pasteur, Université de Paris, CNRS UMR3738, Cell Death and Epithelial Homeostasis, F-75015 Paris, France
| | - Inas Mazen
- Genetics Department, National Research Center, Cairo, Egypt
| | - Samy Gobaa
- Biomaterials and Microfluidics Core Facility, Institut Pasteur, F-75015 Paris, France
| | - James C. Smith
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Kenneth McElreavey
- Institut Pasteur, Université de Paris, CNRS UMR3738, Human Developmental Genetics, F-75015 Paris, France
| | | | - Anu Bashamboo
- Institut Pasteur, Université de Paris, CNRS UMR3738, Human Developmental Genetics, F-75015 Paris, France
| |
Collapse
|
16
|
Imaimatsu K, Uchida A, Hiramatsu R, Kanai Y. Gonadal Sex Differentiation and Ovarian Organogenesis along the Cortical-Medullary Axis in Mammals. Int J Mol Sci 2022; 23:13373. [PMID: 36362161 PMCID: PMC9655463 DOI: 10.3390/ijms232113373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 09/20/2023] Open
Abstract
In most mammals, the sex of the gonads is based on the fate of the supporting cell lineages, which arises from the proliferation of coelomic epithelium (CE) that surfaces on the bipotential genital ridge in both XY and XX embryos. Recent genetic studies and single-cell transcriptome analyses in mice have revealed the cellular and molecular events in the two-wave proliferation of the CE that produce the supporting cells. This proliferation contributes to the formation of the primary sex cords in the medullary region of both the testis and the ovary at the early phase of gonadal sex differentiation, as well as to that of the secondary sex cords in the cortical region of the ovary at the perinatal stage. To support gametogenesis, the testis forms seminiferous tubules in the medullary region, whereas the ovary forms follicles mainly in the cortical region. The medullary region in the ovary exhibits morphological and functional diversity among mammalian species that ranges from ovary-like to testis-like characteristics. This review focuses on the mechanism of gonadal sex differentiation along the cortical-medullary axis and compares the features of the cortical and medullary regions of the ovary in mammalian species.
Collapse
Affiliation(s)
- Kenya Imaimatsu
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Aya Uchida
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
- RIKEN BioResouce Research Center, Tsukuba 305-0074, Japan
| | - Ryuji Hiramatsu
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Yoshiakira Kanai
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
| |
Collapse
|
17
|
Ming Z, Vining B, Bagheri-Fam S, Harley V. SOX9 in organogenesis: shared and unique transcriptional functions. Cell Mol Life Sci 2022; 79:522. [PMID: 36114905 PMCID: PMC9482574 DOI: 10.1007/s00018-022-04543-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/13/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022]
Abstract
The transcription factor SOX9 is essential for the development of multiple organs including bone, testis, heart, lung, pancreas, intestine and nervous system. Mutations in the human SOX9 gene led to campomelic dysplasia, a haploinsufficiency disorder with several skeletal malformations frequently accompanied by 46, XY sex reversal. The mechanisms underlying the diverse SOX9 functions during organ development including its post-translational modifications, the availability of binding partners, and tissue-specific accessibility to target gene chromatin. Here we summarize the expression, activities, and downstream target genes of SOX9 in molecular genetic pathways essential for organ development, maintenance, and function. We also provide an insight into understanding the mechanisms that regulate the versatile roles of SOX9 in different organs.
Collapse
Affiliation(s)
- Zhenhua Ming
- Sex Development Laboratory, Hudson Institute of Medical Research, PO Box 5152, Melbourne, VIC, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3800, Australia
| | - Brittany Vining
- Sex Development Laboratory, Hudson Institute of Medical Research, PO Box 5152, Melbourne, VIC, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3800, Australia
| | - Stefan Bagheri-Fam
- Sex Development Laboratory, Hudson Institute of Medical Research, PO Box 5152, Melbourne, VIC, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3800, Australia
| | - Vincent Harley
- Sex Development Laboratory, Hudson Institute of Medical Research, PO Box 5152, Melbourne, VIC, 3168, Australia.
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
18
|
Xie Y, Wu C, Li Z, Wu Z, Hong L. Early Gonadal Development and Sex Determination in Mammal. Int J Mol Sci 2022; 23:ijms23147500. [PMID: 35886859 PMCID: PMC9323860 DOI: 10.3390/ijms23147500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Sex determination is crucial for the transmission of genetic information through generations. In mammal, this process is primarily regulated by an antagonistic network of sex-related genes beginning in embryonic development and continuing throughout life. Nonetheless, abnormal expression of these sex-related genes will lead to reproductive organ and germline abnormalities, resulting in disorders of sex development (DSD) and infertility. On the other hand, it is possible to predetermine the sex of animal offspring by artificially regulating sex-related gene expression, a recent research hotspot. In this paper, we reviewed recent research that has improved our understanding of the mechanisms underlying the development of the gonad and primordial germ cells (PGCs), progenitors of the germline, to provide new directions for the treatment of DSD and infertility, both of which involve manipulating the sex ratio of livestock offspring.
Collapse
Affiliation(s)
- Yanshe Xie
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510630, China; (Y.X.); (C.W.); (Z.L.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510630, China
| | - Changhua Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510630, China; (Y.X.); (C.W.); (Z.L.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510630, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510630, China; (Y.X.); (C.W.); (Z.L.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510630, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510630, China; (Y.X.); (C.W.); (Z.L.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510630, China
- Correspondence: (Z.W.); (L.H.)
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510630, China; (Y.X.); (C.W.); (Z.L.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510630, China
- Correspondence: (Z.W.); (L.H.)
| |
Collapse
|
19
|
Lundgaard Riis M, Jørgensen A. Deciphering Sex-Specific Differentiation of Human Fetal Gonads: Insight From Experimental Models. Front Cell Dev Biol 2022; 10:902082. [PMID: 35721511 PMCID: PMC9201387 DOI: 10.3389/fcell.2022.902082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Sex-specific gonadal differentiation is initiated by the expression of SRY in male foetuses. This promotes a signalling pathway directing testicular development, while in female foetuses the absence of SRY and expression of pro-ovarian factors promote ovarian development. Importantly, in addition to the initiation of a sex-specific signalling cascade the opposite pathway is simultaneously inhibited. The somatic cell populations within the gonads dictates this differentiation as well as the development of secondary sex characteristics via secretion of endocrine factors and steroid hormones. Opposing pathways SOX9/FGF9 (testis) and WNT4/RSPO1 (ovary) controls the development and differentiation of the bipotential mouse gonad and even though sex-specific gonadal differentiation is largely considered to be conserved between mice and humans, recent studies have identified several differences. Hence, the signalling pathways promoting early mouse gonad differentiation cannot be directly transferred to human development thus highlighting the importance of also examining this signalling in human fetal gonads. This review focus on the current understanding of regulatory mechanisms governing human gonadal sex differentiation by combining knowledge of these processes from studies in mice, information from patients with differences of sex development and insight from manipulation of selected signalling pathways in ex vivo culture models of human fetal gonads.
Collapse
Affiliation(s)
- Malene Lundgaard Riis
- Department of Growth and Reproduction, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
- International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| | - Anne Jørgensen
- Department of Growth and Reproduction, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
- International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
20
|
Xie M, Hu X, Li L, Xiong Z, Zhang H, Zhuang Y, Huang Z, Liu J, Lian J, Huang C, Xie Q, Kang X, Fan Y, Bai X, Chen Z. Loss of Raptor induces Sertoli cells into an undifferentiated state in mice. Biol Reprod 2022; 107:1125-1138. [PMID: 35594452 PMCID: PMC9562113 DOI: 10.1093/biolre/ioac104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/21/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
In mammals, testis development is triggered by the expression of the sex-determining Y-chromosome gene SRY to commit the Sertoli cell (SC) fate at gonadal sex determination in the fetus. Several genes have been identified to be required to promote the testis pathway following SRY activation (i.e., SRY box 9 (SOX9)) in an embryo; however, it largely remains unknown about the genes and the mechanisms involved in stabilizing the testis pathway after birth and throughout adulthood. Herein, we report postnatal males with SC-specific deletion of Raptor demonstrated the absence of SC unique identity and adversely acquired granulosa cell-like characteristics, along with loss of tubular architecture and scattered distribution of SCs and germ cells. Subsequent genome-wide analysis by RNA sequencing revealed a profound decrease in the transcripts of testis genes (i.e., Sox9, Sox8, and anti-Mullerian hormone (Amh)) and, conversely, an increase in ovary genes (i.e., LIM/Homeobox gene 9 (Lhx9), Forkhead box L2 (Foxl2) and Follistatin (Fst)); these changes were further confirmed by immunofluorescence and quantitative reverse-transcription polymerase chain reaction. Importantly, co-immunofluorescence demonstrated that Raptor deficiency induced SCs dedifferentiation into a progenitor state; the Raptor-mutant gonads showed some ovarian somatic cell features, accompanied by enhanced female steroidogenesis and elevated estrogen levels, yet the zona pellucida 3 (ZP3)-positive terminally feminized oocytes were not observed. In vitro experiments with primary SCs suggested that Raptor is likely involved in the fibroblast growth factor 9 (FGF9)-induced formation of cell junctions among SCs. Our results established that Raptor is required to maintain SC identity, stabilize the male pathway, and promote testis development.
Collapse
Affiliation(s)
| | | | | | - Zhi Xiong
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
| | - Hanbin Zhang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuge Zhuang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zicong Huang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jinsheng Liu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jingyao Lian
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chuyu Huang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiang Xie
- Center for Reproduction, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People’s Hospital), Dongguan, Guangdong, China
| | - Xiangjin Kang
- Correspondence: Xiangjin Kang, Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China. E-mail: ; Yong Fan, Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China. E-mail: ; Xiaochun Bai, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. E-mail: ; Zhenguo Chen, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. E-mail: (Lead Contact)
| | - Yong Fan
- Correspondence: Xiangjin Kang, Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China. E-mail: ; Yong Fan, Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China. E-mail: ; Xiaochun Bai, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. E-mail: ; Zhenguo Chen, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. E-mail: (Lead Contact)
| | - Xiaochun Bai
- Correspondence: Xiangjin Kang, Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China. E-mail: ; Yong Fan, Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China. E-mail: ; Xiaochun Bai, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. E-mail: ; Zhenguo Chen, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. E-mail: (Lead Contact)
| | - Zhenguo Chen
- Correspondence: Xiangjin Kang, Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China. E-mail: ; Yong Fan, Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China. E-mail: ; Xiaochun Bai, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. E-mail: ; Zhenguo Chen, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. E-mail: (Lead Contact)
| |
Collapse
|
21
|
Mönig I, Schneidewind J, Johannsen TH, Juul A, Werner R, Lünstedt R, Birnbaum W, Marshall L, Wünsch L, Hiort O. Pubertal development in 46,XY patients with NR5A1 mutations. Endocrine 2022; 75:601-613. [PMID: 34613524 PMCID: PMC8816419 DOI: 10.1007/s12020-021-02883-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/15/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE Mutations in the NR5A1 gene, encoding the transcription factor Steroidogenic Factor-1, are associated with a highly variable genital phenotype in patients with 46,XY differences of sex development (DSD). Our objective was to analyse the pubertal development in 46,XY patients with NR5A1 mutations by the evaluation of longitudinal clinical and hormonal data at pubertal age. METHODS We retrospectively studied a cohort of 10 46,XY patients with a verified NR5A1 mutation and describe clinical features including the external and internal genitalia, testicular volumes, Tanner stages and serum concentrations of LH, FSH, testosterone, AMH, and inhibin B during pubertal transition. RESULTS Patients who first presented in early infancy due to ambiguous genitalia showed spontaneous virilization at pubertal age accompanied by a significant testosterone production despite the decreased gonadal volume. Patients with apparently female external genitalia at birth presented later in life at pubertal age either with signs of virilization and/or absence of female puberty. Testosterone levels were highly variable in this group. In all patients, gonadotropins were constantly in the upper reference range or elevated. Neither the extent of virilization at birth nor the presence of Müllerian structures reliably correlated with the degree of virilization during puberty. CONCLUSION Patients with NR5A1 mutations regardless of phenotype at birth may demonstrate considerable virilization at puberty. Therefore, it is important to consider sex assignment carefully and avoid irreversible procedures during infancy.
Collapse
Affiliation(s)
- Isabel Mönig
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatric and Adolescent Medicine, University of Lübeck, Lübeck, Germany.
| | - Julia Schneidewind
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatric and Adolescent Medicine, University of Lübeck, Lübeck, Germany
| | - Trine H Johannsen
- Department of Growth and Reproduction and International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anders Juul
- Department of Growth and Reproduction and International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ralf Werner
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatric and Adolescent Medicine, University of Lübeck, Lübeck, Germany
- Institute for Molecular Medicine, University of Lübeck, Lübeck, Germany
| | - Ralf Lünstedt
- Catholic Children's Hospital Wilhelmstift, Hamburg, Germany
| | - Wiebke Birnbaum
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatric and Adolescent Medicine, University of Lübeck, Lübeck, Germany
| | - Louise Marshall
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatric and Adolescent Medicine, University of Lübeck, Lübeck, Germany
| | - Lutz Wünsch
- Department of Paediatric Surgery, University of Lübeck, Lübeck, Germany
| | - Olaf Hiort
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatric and Adolescent Medicine, University of Lübeck, Lübeck, Germany
| |
Collapse
|
22
|
Migale R, Neumann M, Lovell-Badge R. Long-Range Regulation of Key Sex Determination Genes. Sex Dev 2021; 15:360-380. [PMID: 34753143 DOI: 10.1159/000519891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/26/2021] [Indexed: 11/19/2022] Open
Abstract
The development of sexually dimorphic gonads is a unique process that starts with the specification of the bipotential genital ridges and culminates with the development of fully differentiated ovaries and testes in females and males, respectively. Research on sex determination has been mostly focused on the identification of sex determination genes, the majority of which encode for proteins and specifically transcription factors such as SOX9 in the testes and FOXL2 in the ovaries. Our understanding of which factors may be critical for sex determination have benefited from the study of human disorders of sex development (DSD) and animal models, such as the mouse and the goat, as these often replicate the same phenotypes observed in humans when mutations or chromosomic rearrangements arise in protein-coding genes. Despite the advances made so far in explaining the role of key factors such as SRY, SOX9, and FOXL2 and the genes they control, what may regulate these factors upstream is not entirely understood, often resulting in the inability to correctly diagnose DSD patients. The role of non-coding DNA, which represents 98% of the human genome, in sex determination has only recently begun to be fully appreciated. In this review, we summarize the current knowledge on the long-range regulation of 2 important sex determination genes, SOX9 and FOXL2, and discuss the challenges that lie ahead and the many avenues of research yet to be explored in the sex determination field.
Collapse
|
23
|
Ridnik M, Schoenfelder S, Gonen N. Cis-Regulatory Control of Mammalian Sex Determination. Sex Dev 2021; 15:317-334. [PMID: 34710870 PMCID: PMC8743899 DOI: 10.1159/000519244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/10/2021] [Indexed: 11/19/2022] Open
Abstract
Sex determination is the process by which an initial bipotential gonad adopts either a testicular or ovarian cell fate. The inability to properly complete this process leads to a group of developmental disorders classified as disorders of sex development (DSD). To date, dozens of genes were shown to play roles in mammalian sex determination, and mutations in these genes can cause DSD in humans or gonadal sex reversal/dysfunction in mice. However, exome sequencing currently provides genetic diagnosis for only less than half of DSD patients. This points towards a major role for the non-coding genome during sex determination. In this review, we highlight recent advances in our understanding of non-coding, cis-acting gene regulatory elements and discuss how they may control transcriptional programmes that underpin sex determination in the context of the 3-dimensional folding of chromatin. As a paradigm, we focus on the Sox9 gene, a prominent pro-male factor and one of the most extensively studied genes in gonadal cell fate determination.
Collapse
Affiliation(s)
- Meshi Ridnik
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Stefan Schoenfelder
- Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Nitzan Gonen
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
24
|
Estermann MA, Major AT, Smith CA. Genetic Regulation of Avian Testis Development. Genes (Basel) 2021; 12:1459. [PMID: 34573441 PMCID: PMC8470383 DOI: 10.3390/genes12091459] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 11/30/2022] Open
Abstract
As in other vertebrates, avian testes are the site of spermatogenesis and androgen production. The paired testes of birds differentiate during embryogenesis, first marked by the development of pre-Sertoli cells in the gonadal primordium and their condensation into seminiferous cords. Germ cells become enclosed in these cords and enter mitotic arrest, while steroidogenic Leydig cells subsequently differentiate around the cords. This review describes our current understanding of avian testis development at the cell biology and genetic levels. Most of this knowledge has come from studies on the chicken embryo, though other species are increasingly being examined. In chicken, testis development is governed by the Z-chromosome-linked DMRT1 gene, which directly or indirectly activates the male factors, HEMGN, SOX9 and AMH. Recent single cell RNA-seq has defined cell lineage specification during chicken testis development, while comparative studies point to deep conservation of avian testis formation. Lastly, we identify areas of future research on the genetics of avian testis development.
Collapse
Affiliation(s)
| | | | - Craig Allen Smith
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (M.A.E.); (A.T.M.)
| |
Collapse
|
25
|
Oestrogen Activates the MAP3K1 Cascade and β-Catenin to Promote Granulosa-like Cell Fate in a Human Testis-Derived Cell Line. Int J Mol Sci 2021; 22:ijms221810046. [PMID: 34576208 PMCID: PMC8471392 DOI: 10.3390/ijms221810046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 11/17/2022] Open
Abstract
Sex determination triggers the differentiation of the bi-potential gonad into either an ovary or testis. In non-mammalian vertebrates, the presence or absence of oestrogen dictates gonad differentiation, while in mammals, this mechanism has been supplanted by the testis-determining gene SRY. Exogenous oestrogen can override this genetic trigger to shift somatic cell fate in the gonad towards ovarian developmental pathways by limiting the bioavailability of the key testis factor SOX9 within somatic cells. Our previous work has implicated the MAPK pathway in mediating the rapid cellular response to oestrogen. We performed proteomic and phosphoproteomic analyses to investigate the precise mechanism through which oestrogen impacts these pathways to activate β-catenin-a factor essential for ovarian development. We show that oestrogen can activate β-catenin within 30 min, concomitant with the cytoplasmic retention of SOX9. This occurs through changes to the MAP3K1 cascade, suggesting this pathway is a mechanism through which oestrogen influences gonad somatic cell fate. We demonstrate that oestrogen can promote the shift from SOX9 pro-testis activity to β-catenin pro-ovary activity through activation of MAP3K1. Our findings define a previously unknown mechanism through which oestrogen can promote a switch in gonad somatic cell fate and provided novel insights into the impacts of exogenous oestrogen exposure on the testis.
Collapse
|
26
|
Shimada R, Koike H, Hirano T, Kato Y, Saga Y. NANOS2 suppresses the cell cycle by repressing mTORC1 activators in embryonic male germ cells. iScience 2021; 24:102890. [PMID: 34401671 PMCID: PMC8350546 DOI: 10.1016/j.isci.2021.102890] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 06/15/2021] [Accepted: 07/16/2021] [Indexed: 12/25/2022] Open
Abstract
During murine germ cell development, male germ cells enter the mitotically arrested G0 stage, which is an initial step of sexually dimorphic differentiation. The male-specific RNA-binding protein NANOS2 has a key role in suppressing the cell cycle in germ cells. However, the detailed mechanism of how NANOS2 regulates the cell cycle remains unclear. Using single-cell RNA sequencing (scRNA-seq), we extracted the cell cycle state of each germ cell in wild-type and Nanos2-KO testes and revealed that Nanos2 expression starts in mitotic cells and induces mitotic arrest. We identified Rheb, a regulator of mTORC1, and Ptma as possible targets of NANOS2. We propose that repression of the cell cycle is a primary function of NANOS2 and that it is mediated via the suppression of mTORC1 activity through the repression of Rheb in a post-transcriptional manner.
Collapse
Affiliation(s)
- Ryuki Shimada
- Department of Genetics, SOKENDAI, Yata 1111, Mishima, Shizuoka 411-8540, Japan.,Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Hiroko Koike
- Department of Genetics, SOKENDAI, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Takamasa Hirano
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Yuzuru Kato
- Department of Genetics, SOKENDAI, Yata 1111, Mishima, Shizuoka 411-8540, Japan.,Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Yumiko Saga
- Department of Genetics, SOKENDAI, Yata 1111, Mishima, Shizuoka 411-8540, Japan.,Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan.,Division for the Development of Genetically Engineered Mouse Resources, Genetic Resource Center, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
27
|
Estermann MA, Hirst CE, Major AT, Smith CA. The homeobox gene TGIF1 is required for chicken ovarian cortical development and generation of the juxtacortical medulla. Development 2021; 148:dev199646. [PMID: 34387307 PMCID: PMC8406534 DOI: 10.1242/dev.199646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022]
Abstract
During early embryogenesis in amniotic vertebrates, the gonads differentiate into either ovaries or testes. The first cell lineage to differentiate gives rise to the supporting cells: Sertoli cells in males and pre-granulosa cells in females. These key cell types direct the differentiation of the other cell types in the gonad, including steroidogenic cells. The gonadal surface epithelium and the interstitial cell populations are less well studied, and little is known about their sexual differentiation programs. Here, we show the requirement of the homeobox transcription factor gene TGIF1 for ovarian development in the chicken embryo. TGIF1 is expressed in the two principal ovarian somatic cell populations: the cortex and the pre-granulosa cells of the medulla. TGIF1 expression is associated with an ovarian phenotype in estrogen-mediated sex reversal experiments. Targeted misexpression and gene knockdown indicate that TGIF1 is required, but not sufficient, for proper ovarian cortex formation. In addition, TGIF1 is identified as the first known regulator of juxtacortical medulla development. These findings provide new insights into chicken ovarian differentiation and development, specifically cortical and juxtacortical medulla formation.
Collapse
Affiliation(s)
| | | | | | - Craig Allen Smith
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton VIC 3800, Australia
| |
Collapse
|
28
|
Jiménez R, Burgos M, Barrionuevo FJ. Sex Maintenance in Mammals. Genes (Basel) 2021; 12:genes12070999. [PMID: 34209938 PMCID: PMC8303465 DOI: 10.3390/genes12070999] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/26/2021] [Accepted: 06/26/2021] [Indexed: 12/30/2022] Open
Abstract
The crucial event in mammalian sexual differentiation occurs at the embryonic stage of sex determination, when the bipotential gonads differentiate as either testes or ovaries, according to the sex chromosome constitution of the embryo, XY or XX, respectively. Once differentiated, testes produce sexual hormones that induce the subsequent differentiation of the male reproductive tract. On the other hand, the lack of masculinizing hormones in XX embryos permits the formation of the female reproductive tract. It was long assumed that once the gonad is differentiated, this developmental decision is irreversible. However, several findings in the last decade have shown that this is not the case and that a continuous sex maintenance is needed. Deletion of Foxl2 in the adult ovary lead to ovary-to-testis transdifferentiation and deletion of either Dmrt1 or Sox9/Sox8 in the adult testis induces the opposite process. In both cases, mutant gonads were genetically reprogrammed, showing that both the male program in ovaries and the female program in testes must be actively repressed throughout the individual's life. In addition to these transcription factors, other genes and molecular pathways have also been shown to be involved in this antagonism. The aim of this review is to provide an overview of the genetic basis of sex maintenance once the gonad is already differentiated.
Collapse
|
29
|
Rore H, Owen N, Piña-Aguilar RE, Docherty K, Sekido R. Testicular somatic cell-like cells derived from embryonic stem cells induce differentiation of epiblasts into germ cells. Commun Biol 2021; 4:802. [PMID: 34183774 PMCID: PMC8239049 DOI: 10.1038/s42003-021-02322-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 06/09/2021] [Indexed: 02/06/2023] Open
Abstract
Regeneration of the testis from pluripotent stem cells is a real challenge, reflecting the complexity of the interaction of germ cells and somatic cells. Here we report the generation of testicular somatic cell-like cells (TesLCs) including Sertoli cell-like cells (SCLCs) from mouse embryonic stem cells (ESCs) in xeno-free culture. We find that Nr5a1/SF1 is critical for interaction between SCLCs and PGCLCs. Intriguingly, co-culture of TesLCs with epiblast-like cells (EpiLCs), rather than PGCLCs, results in self-organised aggregates, or testicular organoids. In the organoid, EpiLCs differentiate into PGCLCs or gonocyte-like cells that are enclosed within a seminiferous tubule-like structure composed of SCLCs. Furthermore, conditioned medium prepared from TesLCs has a robust inducible activity to differentiate EpiLCs into PGCLCs. Our results demonstrate conditions for in vitro reconstitution of a testicular environment from ESCs and provide further insights into the generation of sperm entirely in xeno-free culture.
Collapse
Affiliation(s)
- Holly Rore
- Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, UK
| | - Nicholas Owen
- Institute of Ophthalmology, University College London, London, UK
| | | | - Kevin Docherty
- Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, UK
| | - Ryohei Sekido
- Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, UK.
- Institute of Ophthalmology, University College London, London, UK.
| |
Collapse
|
30
|
Major AT, Estermann MA, Smith CA. Anatomy, Endocrine Regulation, and Embryonic Development of the Rete Testis. Endocrinology 2021; 162:6154516. [PMID: 33661305 DOI: 10.1210/endocr/bqab046] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Indexed: 12/23/2022]
Abstract
Reproduction in males requires the transfer of spermatozoa from testis tubules via the rete system to the efferent ductules, epididymis, and vas deferens. The rete therefore forms an essential bridging system between the testis and excurrent ducts. Yet the embryonic origin and molecular regulation of rete testis development is poorly understood. This review examines the anatomy, endocrine control, and development of the mammalian rete testis, focusing on recent findings on its molecular regulation, identifying gaps in our knowledge, and identifying areas for future research. The rete testis develops in close association with Sertoli cells of the seminiferous cords, although unique molecular markers are sparce. Most recently, modern molecular approaches such as global RNA-seq have revealed the transcriptional signature of rete cell precursors, pointing to at least a partial common origin with Sertoli cells. In the mouse, genes involved in Sertoli cell development or maintenance, such as Sox9, Wt1, Sf1, and Dmrt1, are also expressed in cells of the rete system. Rete progenitor cells also express unique markers, such as Pax8, E-cadherin, and keratin 8. These must directly or indirectly regulate the physical joining of testis tubules to the efferent duct system and confer other physiological functions of the rete. The application of technologies such as single-cell RNA-seq will clarify the origin and developmental trajectory of this essential component of the male reproductive tract.
Collapse
Affiliation(s)
- Andrew T Major
- Department of Anatomy and Developmental Biology, Monash Biomedical Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Martin A Estermann
- Department of Anatomy and Developmental Biology, Monash Biomedical Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Craig A Smith
- Department of Anatomy and Developmental Biology, Monash Biomedical Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
31
|
Li SY, Gu X, Heinrich A, Hurley EG, Capel B, DeFalco T. Loss of Mafb and Maf distorts myeloid cell ratios and disrupts fetal mouse testis vascularization and organogenesis†. Biol Reprod 2021; 105:958-975. [PMID: 34007995 DOI: 10.1093/biolre/ioab098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/20/2021] [Accepted: 05/11/2021] [Indexed: 12/19/2022] Open
Abstract
Testis differentiation is initiated when Sry in pre-Sertoli cells directs the gonad toward a male-specific fate. Sertoli cells are essential for testis development, but cell types within the interstitial compartment, such as immune and endothelial cells, are also critical for organ formation. Our previous work implicated macrophages in fetal testis morphogenesis, but little is known about genes underlying immune cell development during organogenesis. Here we examine the role of the immune-associated genes Mafb and Maf in mouse fetal gonad development, and we demonstrate that deletion of these genes leads to aberrant hematopoiesis manifested by supernumerary gonadal monocytes. Mafb; Maf double knockout embryos underwent initial gonadal sex determination normally, but exhibited testicular hypervascularization, testis cord formation defects, Leydig cell deficit, and a reduced number of germ cells. In general, Mafb and Maf alone were dispensable for gonad development; however, when both genes were deleted, we observed significant defects in testicular morphogenesis, indicating that Mafb and Maf work redundantly during testis differentiation. These results demonstrate previously unappreciated roles for Mafb and Maf in immune and vascular development and highlight the importance of interstitial cells in gonadal differentiation.
Collapse
Affiliation(s)
- Shu-Yun Li
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Xiaowei Gu
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Anna Heinrich
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Emily G Hurley
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267 USA.,Department of Obstetrics and Gynecology, University of Cincinnati College of Medicine, Cincinnati, OH 45267 USA
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710 USA
| | - Tony DeFalco
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267 USA
| |
Collapse
|
32
|
Abstract
INTRODUCTION Sertoli cells play central roles in the development of testis formation in fetuses and the initiation and maintenance of spermatogenesis in puberty and adulthood, and disorders of Sertoli cell proliferation and/or functional maturation can cause male reproductive disorders at various life stages. It's well documented that various genes are either overexpressed or absent in Sertoli cells during the conversion of an immature, proliferating Sertoli cell to a mature, non-proliferating Sertoli cell, which are considered as Sertoli cell stage-specific markers. Thus, it is paramount to choose an appropriate Sertoli cell marker that will be used not only to identify the developmental, proliferative, and maturation of Sertoli cell status in the testis during the fetal period, prepuberty, puberty, or in the adult, but also to diagnose the mechanisms underlying spermatogenic dysfunction. AREAS COVERED In this review, we principally enumerated 5 categories of testicular Sertoli cell markers - including immature Sertoli cell markers, mature Sertoli cell markers, immature/mature Sertoli cell markers, Sertoli cell functional markers, and others. EXPERT OPINION By delineating the characteristics and applications of more than 20 Sertoli cell markers, this review provided novel Sertoli cell markers for the more accurate diagnosis and mechanistic evaluation of male reproductive disorders.
Collapse
Affiliation(s)
- Xu You
- College of Medicine, China Three Gorges University, Yichang, China.,Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang China
| | - Qian Chen
- College of Medicine, China Three Gorges University, Yichang, China.,Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang China.,The Second People's Hospital of Yichang, China Three Gorges University, Yichang China
| | - Ding Yuan
- College of Medicine, China Three Gorges University, Yichang, China
| | - Changcheng Zhang
- College of Medicine, China Three Gorges University, Yichang, China.,Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang China
| | - Haixia Zhao
- College of Medicine, China Three Gorges University, Yichang, China.,Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang China
| |
Collapse
|
33
|
Yang S, Han H, Li J, Zhang Y, Zhao J, Wei H, Hasi T, Lv H, Zhao X, Quan K. Transcriptomic analysis of gene expression in normal goat ovary and intersex goat gonad. Reprod Domest Anim 2020; 56:12-25. [PMID: 33073450 DOI: 10.1111/rda.13844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/14/2020] [Indexed: 01/21/2023]
Abstract
Intersexuality is a congenital reproductive disorder that usually occurs in hornless goats, hindering breeding of goats with hornless traits and the development of the goat industry. In this study, we aimed to identify differentially expressed genes in intersex and normal goat gonads by comparing gene transcription profiles of intersex and normal goat gonads. As intersex goats are genetically based on females, we chose female goats as controls. The goats in the control group and the experimental group were both over one-year old. We evaluated the anatomical characteristics of the reproductive organs of five intersex goats using histopathological methods. The gonads were found to be ovarian and testicular types. RNA-Seq technology was used to identify differentially expressed genes in gonads and normal goat ovary tissues. Transcription analysis results were verified by qPCR. The results showed that 2,748 DEGs were upregulated and 3,327 DEGs were downregulated in intersex ovaries unlike in controls, whereas 2006 DEGs were upregulated and 2032 DEGs were downregulated in the interstitial testes. Many of these genes play important roles in mammalian sex determination and sex differentiation, such as SOX9, WT1, GATA4, DMRT1, DHH, AMH, CYP19A1 and FST. We found that many DEGs are involved in biological developmental regulation by GO and KEGG enrichment analyses, and that most genes associated with the steroid synthesis pathway were downregulated. The DEGs identified in this study may be involved in the regulation of intersex goat sex determination and differentiation, and may increase our understanding of the molecular mechanisms of mammalian sex differentiation.
Collapse
Affiliation(s)
- Shuai Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Haoyuan Han
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Jun Li
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - JinYan Zhao
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Hongfang Wei
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Tonglaga Hasi
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Huifang Lv
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Kai Quan
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| |
Collapse
|
34
|
Bagheri-Fam S, Combes AN, Ling CK, Wilhelm D. Heterozygous deletion of Sox9 in mouse mimics the gonadal sex reversal phenotype associated with campomelic dysplasia in humans. Hum Mol Genet 2020; 29:3781-3792. [PMID: 33305798 DOI: 10.1093/hmg/ddaa259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/11/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022] Open
Abstract
Heterozygous mutations in the human SOX9 gene cause the skeletal malformation syndrome campomelic dysplasia which in 75% of 46, XY individuals is associated with male-to-female sex reversal. Although studies in homozygous Sox9 knockout mouse models confirmed that SOX9 is critical for testis development, mice heterozygous for the Sox9-null allele were reported to develop normal testes. This led to the belief that the SOX9 dosage requirement for testis differentiation is different between humans, which often require both alleles, and mice, in which one allele is sufficient. However, in prior studies, gonadal phenotypes in heterozygous Sox9 XY mice were assessed only by either gross morphology, histological staining or analyzed on a mixed genetic background. In this study, we conditionally inactivated Sox9 in somatic cells of developing gonads using the Nr5a1-Cre mouse line on a pure C57BL/6 genetic background. Section and whole-mount immunofluorescence for testicular and ovarian markers showed that XY Sox9 heterozygous gonads developed as ovotestes. Quantitative droplet digital PCR confirmed a 50% reduction of Sox9 mRNA as well as partial sex reversal shown by an upregulation of ovarian genes. Our data show that haploinsufficiency of Sox9 can perturb testis development in mice, suggesting that mice may provide a more accurate model of human disorders/differences of sex development than previously thought.
Collapse
Affiliation(s)
- Stefan Bagheri-Fam
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Alexander N Combes
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC 3010, Australia.,Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Cheuk K Ling
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Dagmar Wilhelm
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
35
|
Nagahama Y, Chakraborty T, Paul-Prasanth B, Ohta K, Nakamura M. Sex determination, gonadal sex differentiation, and plasticity in vertebrate species. Physiol Rev 2020; 101:1237-1308. [PMID: 33180655 DOI: 10.1152/physrev.00044.2019] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A diverse array of sex determination (SD) mechanisms, encompassing environmental to genetic, have been found to exist among vertebrates, covering a spectrum from fixed SD mechanisms (mammals) to functional sex change in fishes (sequential hermaphroditic fishes). A major landmark in vertebrate SD was the discovery of the SRY gene in 1990. Since that time, many attempts to clone an SRY ortholog from nonmammalian vertebrates remained unsuccessful, until 2002, when DMY/dmrt1by was discovered as the SD gene of a small fish, medaka. Surprisingly, however, DMY/dmrt1by was found in only 2 species among more than 20 species of medaka, suggesting a large diversity of SD genes among vertebrates. Considerable progress has been made over the last 3 decades, such that it is now possible to formulate reasonable paradigms of how SD and gonadal sex differentiation may work in some model vertebrate species. This review outlines our current understanding of vertebrate SD and gonadal sex differentiation, with a focus on the molecular and cellular mechanisms involved. An impressive number of genes and factors have been discovered that play important roles in testicular and ovarian differentiation. An antagonism between the male and female pathway genes exists in gonads during both sex differentiation and, surprisingly, even as adults, suggesting that, in addition to sex-changing fishes, gonochoristic vertebrates including mice maintain some degree of gonadal sexual plasticity into adulthood. Importantly, a review of various SD mechanisms among vertebrates suggests that this is the ideal biological event that can make us understand the evolutionary conundrums underlying speciation and species diversity.
Collapse
Affiliation(s)
- Yoshitaka Nagahama
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan.,South Ehime Fisheries Research Center, Ehime University, Ainan, Japan.,Faculty of Biological Science and Technology, Kanazawa University, Ishikawa, Japan
| | - Tapas Chakraborty
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan.,South Ehime Fisheries Research Center, Ehime University, Ainan, Japan.,Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukouka, Japan.,Karatsu Satellite of Aqua-Bioresource Innovation Center, Kyushu University, Karatsu, Japan
| | - Bindhu Paul-Prasanth
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan.,Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidapeetham, Kochi, Kerala, India
| | - Kohei Ohta
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukouka, Japan
| | - Masaru Nakamura
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan.,Research Center, Okinawa Churashima Foundation, Okinawa, Japan
| |
Collapse
|
36
|
Melo LH, Melo RMC, Luz RK, Bazzoli N, Rizzo E. Expression of Vasa, Nanos2 and Sox9 during initial testicular development in Nile tilapia (Oreochromis niloticus) submitted to sex reversal. Reprod Fertil Dev 2020; 31:1637-1646. [PMID: 31097079 DOI: 10.1071/rd18488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 04/28/2019] [Indexed: 11/23/2022] Open
Abstract
Sexual differentiation and early gonadal development are critical events in vertebrate reproduction. In this study, the initial testis development and expression of the Vasa, Nanos2 and Sox9 proteins were examined in Nile tilapia Oreochromis niloticus submitted to induced sex reversal. To that end, 150O. niloticus larvae at 5 days post-hatching (dph) were kept in nurseries with no hormonal addition (control group) and 150 larvae were kept with feed containing 17α-methyltestosterone to induce male sex reversal (treated group). Morphological sexual differentiation of Nile tilapia occurred between 21 and 25 dph and sex reversal resulted in 94% males, whereas the control group presented 53% males. During sexual differentiation, gonocytes (Gon) were the predominant germ cells, which decreased and disappeared after that stage in both groups. Undifferentiated spermatogonia (Aund) were identified at 21 dph in the control group and at 23 dph in the treated group. Differentiated spermatogonia (Adiff) were found at 23 dph in both groups. Vasa and Nanos2 occurred in Gon, Aund and Adiff and there were no significant differences between groups. Vasa-labelled Adiff increased at 50 dph in both groups and Nanos2 presented a high proportion of labelled germ cells during sampling. Sertoli cells expressed Sox9 throughout the experiment and its expression was significantly greater during sexual differentiation in the control group. The results indicate that hormonal treatment did not alter initial testis development and expression of Vasa and Nanos2 in Nile tilapia, although lower expression of Sox9 and a delay in sexual differentiation was detected in the treated group.
Collapse
Affiliation(s)
- Luis H Melo
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Rafael M C Melo
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Ronald K Luz
- Laboratório de Aquacultura, Escola de Veterinária, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Nilo Bazzoli
- Programa de Pós-Graduação em Biologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, PUC Minas, Av. Dom José Gaspar 500, 30535-610 Belo Horizonte, Minas Gerais, Brazil
| | - Elizete Rizzo
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil; and Corresponding author.
| |
Collapse
|
37
|
Gonadal development and sex determination in mouse. Reprod Biol 2020; 20:115-126. [DOI: 10.1016/j.repbio.2020.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 01/21/2020] [Accepted: 01/25/2020] [Indexed: 12/18/2022]
|
38
|
Stévant I, Kühne F, Greenfield A, Chaboissier MC, Dermitzakis ET, Nef S. Dissecting Cell Lineage Specification and Sex Fate Determination in Gonadal Somatic Cells Using Single-Cell Transcriptomics. Cell Rep 2020; 26:3272-3283.e3. [PMID: 30893600 DOI: 10.1016/j.celrep.2019.02.069] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/07/2019] [Accepted: 02/19/2019] [Indexed: 01/02/2023] Open
Abstract
Sex determination is a unique process that allows the study of multipotent progenitors and their acquisition of sex-specific fates during differentiation of the gonad into a testis or an ovary. Using time series single-cell RNA sequencing (scRNA-seq) on ovarian Nr5a1-GFP+ somatic cells during sex determination, we identified a single population of early progenitors giving rise to both pre-granulosa cells and potential steroidogenic precursor cells. By comparing time series single-cell RNA sequencing of XX and XY somatic cells, we provide evidence that gonadal supporting cells are specified from these early progenitors by a non-sex-specific transcriptomic program before pre-granulosa and Sertoli cells acquire their sex-specific identity. In XX and XY steroidogenic precursors, similar transcriptomic profiles underlie the acquisition of cell fate but with XX cells exhibiting a relative delay. Our data provide an important resource, at single-cell resolution, for further interrogation of the molecular and cellular basis of mammalian sex determination.
Collapse
Affiliation(s)
- Isabelle Stévant
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland; iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva, Switzerland; SIB, Swiss Institute of Bioinformatics, University of Geneva, 1211 Geneva, Switzerland
| | - Françoise Kühne
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland
| | - Andy Greenfield
- Mammalian Genetics Unit, Medical Research Council, Harwell Institute, Oxfordshire OX11 0RD, UK
| | | | - Emmanouil T Dermitzakis
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland; iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva, Switzerland; SIB, Swiss Institute of Bioinformatics, University of Geneva, 1211 Geneva, Switzerland
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland; iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
39
|
The transcriptome of the newt Cynops orientalis provides new insights into evolution and function of sexual gene networks in sarcopterygians. Sci Rep 2020; 10:5445. [PMID: 32214214 PMCID: PMC7096497 DOI: 10.1038/s41598-020-62408-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/04/2020] [Indexed: 01/08/2023] Open
Abstract
Amphibians evolved in the Devonian period about 400 Mya and represent a transition step in tetrapod evolution. Among amphibians, high-throughput sequencing data are very limited for Caudata, due to their largest genome sizes among terrestrial vertebrates. In this paper we present the transcriptome from the fire bellied newt Cynops orientalis. Data here presented display a high level of completeness, comparable to the fully sequenced genomes available from other amphibians. Moreover, this work focused on genes involved in gametogenesis and sexual development. Surprisingly, the gsdf gene was identified for the first time in a tetrapod species, so far known only from bony fish and basal sarcopterygians. Our analysis failed to isolate fgf24 and foxl3, supporting the possible loss of both genes in the common ancestor of Rhipidistians. In Cynops, the expression analysis of genes described to be sex-related in vertebrates singled out an expected functional role for some genes, while others displayed an unforeseen behavior, confirming the high variability of the sex-related pathway in vertebrates.
Collapse
|
40
|
Mendoza‐Cruz E, Moreno‐Mendoza N, Zambrano‐González L, Porras‐Gómez TJ, Villagrán‐SantaCruz M. Dimorphic protein expression for
Sox9
and
Foxl2
genes in the testicles and ovaries of the urodele amphibian:
Ambystoma mexicanum. ACTA ZOOL-STOCKHOLM 2020. [DOI: 10.1111/azo.12327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Eva Mendoza‐Cruz
- Laboratorio de Biología Tisular y Reproductora Departamento de Biología Comparada Facultad de Ciencias Universidad Nacional Autónoma de México Ciudad de México México
| | - Norma Moreno‐Mendoza
- Departamento de Biología Celular y Fisiología Instituto de Investigaciones Biomédicas Universidad Nacional Autónoma de México Ciudad de México México
| | - Luis Zambrano‐González
- Laboratorio de Restauración Ecológica Instituto de Biología Universidad Nacional Autónoma de México Ciudad de México México
| | - Tania Janeth Porras‐Gómez
- Laboratorio de Biología Tisular y Reproductora Departamento de Biología Comparada Facultad de Ciencias Universidad Nacional Autónoma de México Ciudad de México México
| | - Maricela Villagrán‐SantaCruz
- Laboratorio de Biología Tisular y Reproductora Departamento de Biología Comparada Facultad de Ciencias Universidad Nacional Autónoma de México Ciudad de México México
| |
Collapse
|
41
|
Mandi M, Khatun S, Rajak P, Mazumdar A, Roy S. Potential risk of organophosphate exposure in male reproductive system of a non-target insect model Drosophila melanogaster. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 74:103308. [PMID: 31816565 DOI: 10.1016/j.etap.2019.103308] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 05/21/2023]
Abstract
Based on several adverse reports of pesticides on reproductive efficiency of various organisms, studies on "reproductive toxicity" have gained importance. Fecundity, reflecting reproductive success of any organism, is governed by several factors from female and male reproductive systems. This present study explored morphological and biochemical alterations in the male reproductive system of a non-target model organism, Drosophila melanogaster following chronic sub-lethal exposure (1st instar larvae differentially exposed to 1-6 μg/mL until adulthood) to the organophosphate (OP) pesticide, acephate (chronic LC50 8.71 μg/mL). This study demonstrates altered testis structure, decreased germ cell viability and gross body weight, increased activities of oxidative stress marker lipid peroxidase (LPO), and the endogenous antioxidant enzyme catalase (CAT)in addition with altered expression of reproductive marker proteins like vitellogenin and mitoferrin in acephate-exposed flies when compared to control counterparts. Altered reproductive behavior, indicated by a significant decline in the number of mating pairs, validates the adverse effect of chronic acephate exposure on male reproduction in the non-target insect model D. melanogaster.
Collapse
Affiliation(s)
- Moutushi Mandi
- Toxicology Research Unit, Department of Zoology, The University of Burdwan, West Bengal, India
| | - Salma Khatun
- Toxicology Research Unit, Department of Zoology, The University of Burdwan, West Bengal, India
| | - Prem Rajak
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Abhijit Mazumdar
- Entomology Research Lab, Department of Zoology, The University of Burdwan, West Bengal, India
| | - Sumedha Roy
- Toxicology Research Unit, Department of Zoology, The University of Burdwan, West Bengal, India.
| |
Collapse
|
42
|
Mariniello K, Ruiz-Babot G, McGaugh EC, Nicholson JG, Gualtieri A, Gaston-Massuet C, Nostro MC, Guasti L. Stem Cells, Self-Renewal, and Lineage Commitment in the Endocrine System. Front Endocrinol (Lausanne) 2019; 10:772. [PMID: 31781041 PMCID: PMC6856655 DOI: 10.3389/fendo.2019.00772] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/23/2019] [Indexed: 12/15/2022] Open
Abstract
The endocrine system coordinates a wide array of body functions mainly through secretion of hormones and their actions on target tissues. Over the last decades, a collective effort between developmental biologists, geneticists, and stem cell biologists has generated a wealth of knowledge related to the contribution of stem/progenitor cells to both organogenesis and self-renewal of endocrine organs. This review provides an up-to-date and comprehensive overview of the role of tissue stem cells in the development and self-renewal of endocrine organs. Pathways governing crucial steps in both development and stemness maintenance, and that are known to be frequently altered in a wide array of endocrine disorders, including cancer, are also described. Crucially, this plethora of information is being channeled into the development of potential new cell-based treatment modalities for endocrine-related illnesses, some of which have made it through clinical trials.
Collapse
Affiliation(s)
- Katia Mariniello
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Gerard Ruiz-Babot
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, United States
- Harvard Stem Cell Institute, Cambridge, MA, United States
| | - Emily C. McGaugh
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - James G. Nicholson
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Angelica Gualtieri
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Carles Gaston-Massuet
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Maria Cristina Nostro
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
43
|
Wang J, Tian GG, Zheng Z, Li B, Xing Q, Wu J. Comprehensive Transcriptomic Analysis of Mouse Gonadal Development Involving Sexual Differentiation, Meiosis and Gametogenesis. Biol Proced Online 2019; 21:20. [PMID: 31636514 PMCID: PMC6794783 DOI: 10.1186/s12575-019-0108-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/04/2019] [Indexed: 12/17/2022] Open
Abstract
Background Mammalian gonadal development is crucial for fertility. Sexual differentiation, meiosis and gametogenesis are critical events in the process of gonadal development. Abnormalities in any of these events may cause infertility. However, owing to the complexity of these developmental events, the underlying molecular mechanisms are not fully understood and require further research. Results In this study, we employed RNA sequencing to examine transcriptome profiles of murine female and male gonads at crucial stages of these developmental events. By bioinformatics analysis, we identified a group of candidate genes that may participate in sexual differentiation, including Erbb3, Erbb4, and Prkg2. One hundred and two and 134 candidate genes that may be important for female and male gonadal development, respectively, were screened by analyzing the global gene expression patterns of developing female and male gonads. Weighted gene co-expression network analysis was performed on developing female gonads, and we identified a gene co-expression module related to meiosis. By alternative splicing analysis, we found that cassette-type exon and alternative start sites were the main forms of alternative splicing in developing gonads. A considerable portion of differentially expressed and alternatively spliced genes were involved in meiosis. Conclusion Taken together, our findings have enriched the gonadal transcriptome database and provided novel candidate genes and avenues to research the molecular mechanisms of sexual differentiation, meiosis, and gametogenesis. Supplementary information Supplementary information accompanies this paper at 10.1186/s12575-019-0108-y.
Collapse
Affiliation(s)
- Jian Wang
- 1Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032 China
| | - Geng G Tian
- 1Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032 China
| | - Zhuxia Zheng
- 1Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032 China
| | - Bo Li
- 2Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004 China
| | - Qinghe Xing
- 4Children's Hospital & Institutes of Biomedical Sciences, Fudan University, 131 Dong-Chuan Road, Shanghai, 200032 China
| | - Ji Wu
- 1Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032 China.,2Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004 China.,3State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032 China
| |
Collapse
|
44
|
Differential Regulation of TLE3 in Sertoli Cells of the Testes during Postnatal Development. Cells 2019; 8:cells8101156. [PMID: 31569653 PMCID: PMC6848928 DOI: 10.3390/cells8101156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 12/31/2022] Open
Abstract
Spermatogenesis is a process by which haploid cells differentiate from germ cells in the seminiferous tubules of the testes. TLE3, a transcriptional co-regulator that interacts with DNA-binding factors, plays a role in the development of somatic cells. However, no studies have shown its role during germ cell development in the testes. Here, we examined TLE3 expression in the testes during spermatogenesis. TLE3 was highly expressed in mouse testes and was dynamically regulated in different cell types of the seminiferous tubules, spermatogonia, spermatids, and Sertoli cells, but not in the spermatocytes. Interestingly, TLE3 was not detected in Sertoli cells on postnatal day 7 (P7) but was expressed from P10 onward. The microarray analysis showed that the expression of numerous genes changed upon TLE3 knockdown in a Sertoli cell line TM4. These include 1597 up-regulated genes and 1452 down-regulated genes in TLE3-knockdown TM4 cells. Ingenuity Pathway Analysis (IPA) showed that three factors were up-regulated and two genes were down-regulated upon TLE3 knockdown in TM4 cells. The abnormal expression of the three factors is associated with cellular malfunctions such as abnormal differentiation and Sertoli cell formation. Thus, TLE3 is differentially expressed in Sertoli cells and plays a crucial role in regulating cell-specific genes involved in the differentiation and formation of Sertoli cells during testicular development.
Collapse
|
45
|
Okashita N, Kuroki S, Maeda R, Tachibana M. TET2 catalyzes active DNA demethylation of the Sry promoter and enhances its expression. Sci Rep 2019; 9:13462. [PMID: 31530896 PMCID: PMC6748950 DOI: 10.1038/s41598-019-50058-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/05/2019] [Indexed: 12/30/2022] Open
Abstract
SRY is the master regulator of male sex determination in eutherian mammals. In mice, Sry expression is transcriptionally and epigenetically controlled in a developmental stage-specific manner. The Sry promoter undergoes demethylation in embryonic gonadal somatic cells at the sex-determining period. However, its molecular mechanism and in vivo significance remain unclear. Here, we report that the Sry promoter is actively demethylated during gonadal development, and TET2 plays a fundamental role in Sry demethylation. Tet2-deficient mice showed absence of 5-hydroxymethylcytosine in the Sry promoter. Furthermore, Tet2 deficiency diminished Sry expression, indicating that TET2-mediated DNA demethylation regulates Sry expression positively. We previously showed that the deficiency of the H3K9 demethylase Jmjd1a compromises Sry expression and induces male-to-female sex reversal. Tet2 deficiency enhanced the sex reversal phenotype of Jmjd1a-deficient mice. Thus, TET2-mediated active DNA demethylation and JMJD1A-mediated H3K9 demethylation contribute synergistically to sex determination.
Collapse
Affiliation(s)
- Naoki Okashita
- Division of Epigenome Dynamics, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan.,Laboratory of Epigenome Dynamics, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shunsuke Kuroki
- Division of Epigenome Dynamics, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan.,Laboratory of Epigenome Dynamics, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ryo Maeda
- Division of Epigenome Dynamics, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan.,Laboratory of Epigenome Dynamics, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Makoto Tachibana
- Division of Epigenome Dynamics, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan. .,Laboratory of Epigenome Dynamics, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
46
|
Duplication of The SOX3 Gene in an Sry-negative 46,XX Male with Associated Congenital Anomalies of Kidneys and the Urinary Tract: Case Report and Review of the Literature. Balkan J Med Genet 2019; 22:81-88. [PMID: 31523625 PMCID: PMC6714342 DOI: 10.2478/bjmg-2019-0006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Disorders of sex development (DSD) are a group of rare conditions characterized by discrepancy between chromosomal sex, gonads and external genitalia. Congenital abnormalities of the kidney and urinary tract are often associated with DSD, mostly in multiple malformation syndromes. We describe the case of an 11-year-old Caucasian boy, with right kidney hypoplasia and hypospadias. Genome-wide copy number variation (CNV) analysis revealed a unique duplication of about 550 kb on chromosome Xq27, and a 46,XX karyotype, consistent with a sex reversal phenotype. This region includes multiple genes, and, among these, SOX3 emerged as the main phenotypic driver. This is the fifth case reporting a genomic imbalance involving the SOX3 gene in a 46,XX SRY-negative male, and the first with associated renal malformations. Our data provide plausible links between SOX3 gene dosage and kidney malformations. It is noteworthy that the current and reported SOX3 gene duplications are below the detection threshold of standard karyotypes and were found only by analyzing CNVs using DNA microarrays. Therefore, all 46,XX SRY-negative males should be screened for SOX3 gene duplications with DNA microarrays.
Collapse
|
47
|
Mäkelä JA, Koskenniemi JJ, Virtanen HE, Toppari J. Testis Development. Endocr Rev 2019; 40:857-905. [PMID: 30590466 DOI: 10.1210/er.2018-00140] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/17/2018] [Indexed: 12/28/2022]
Abstract
Production of sperm and androgens is the main function of the testis. This depends on normal development of both testicular somatic cells and germ cells. A genetic program initiated from the Y chromosome gene sex-determining region Y (SRY) directs somatic cell specification to Sertoli cells that orchestrate further development. They first guide fetal germ cell differentiation toward spermatogenic destiny and then take care of the full service to spermatogenic cells during spermatogenesis. The number of Sertoli cells sets the limits of sperm production. Leydig cells secrete androgens that determine masculine development. Testis development does not depend on germ cells; that is, testicular somatic cells also develop in the absence of germ cells, and the testis can produce testosterone normally to induce full masculinization in these men. In contrast, spermatogenic cell development is totally dependent on somatic cells. We herein review germ cell differentiation from primordial germ cells to spermatogonia and development of the supporting somatic cells. Testicular descent to scrota is necessary for normal spermatogenesis, and cryptorchidism is the most common male birth defect. This is a mild form of a disorder of sex differentiation. Multiple genetic reasons for more severe forms of disorders of sex differentiation have been revealed during the last decades, and these are described along with the description of molecular regulation of testis development.
Collapse
Affiliation(s)
- Juho-Antti Mäkelä
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jaakko J Koskenniemi
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Helena E Virtanen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jorma Toppari
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Pediatrics, Turku University Hospital, Turku, Finland
| |
Collapse
|
48
|
Yadu N, Kumar PG. Retinoic acid signaling in regulation of meiosis during embryonic development in mice. Genesis 2019; 57:e23327. [PMID: 31313882 DOI: 10.1002/dvg.23327] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/23/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022]
Abstract
In the embryonic gonads of mice, the genetic and epigenetic regulatory programs for germ cell sex specification and meiosis induction or suppression are intertwined. The quest for garnering comprehensive understanding of these programs has led to the emergence of retinoic acid (RA) as an important extrinsic factor, which regulates initiation of meiosis in female fetal germ cells that have attained a permissive epigenetic ground state. In contrast, germ cells in fetal testis are protected from the exposure to RA due to the activity of CYP26B1, an RA metabolizing enzyme, which is highly expressed in fetal testis. In this review, we provide an overview of the molecular mechanisms operating in fetal gonads of mice, which enable regulation of meiosis via RA signaling.
Collapse
Affiliation(s)
- Nomesh Yadu
- Division of Molecular Reproduction, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Pradeep G Kumar
- Division of Molecular Reproduction, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
49
|
Chen M, Wang J, Liu N, Cui W, Dong W, Xing B, Pan C. Pig SOX9: Expression profiles of Sertoli cell (SCs) and a functional 18 bp indel affecting testis weight. Theriogenology 2019; 138:94-101. [PMID: 31319268 DOI: 10.1016/j.theriogenology.2019.07.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 12/27/2022]
Abstract
Sex determining region Y-box 9 (SOX9), an important member of the SRY- type HMGbox (SOX) gene family, plays an important role in the regulation of mammalian reproduction, including sex differentiation during the embryonic development stage and spermatogenesis after birth. To explore the roles of polymorphism and expression of the SOX9 gene in the development of testes, we analyzed the indel of SOX9 in pigs and the corresponding expression level of the SOX9 gene in 7-day and 5-month-old porcine Sertoli cells. Results revealed that the DD haplotype of SOX9 gene as well as the ID genotype were significantly associated with larger testicular weight, while the II haplotype was closely related to the smaller testicular weight. More importantly, the SOX9 gene expression of ID genotyped group was significantly higher than that in II genotyped group. Our results first revealed that the indel polymorphism and expression of SOX9 were significantly associated with pig reproduction traits indicating the critical roles of SOX9 gene in testes development. The study provides a new clue for understanding the regulation of animal reproductive activities.
Collapse
Affiliation(s)
- Mingyue Chen
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| | - Jing Wang
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No.116 Huayuan road, Zhengzhou, 450002, People's Republic of China.
| | - Nuan Liu
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| | - Wenbo Cui
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| | - Baosong Xing
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No.116 Huayuan road, Zhengzhou, 450002, People's Republic of China.
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
50
|
Epithelial-Mesenchymal Transition Promotes the Differentiation Potential of Xenopus tropicalis Immature Sertoli Cells. Stem Cells Int 2019; 2019:8387478. [PMID: 31191685 PMCID: PMC6525813 DOI: 10.1155/2019/8387478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 03/27/2019] [Indexed: 01/18/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a fundamental process in embryonic development by which sessile epithelial cells are converted into migratory mesenchymal cells. Our laboratory has been successful in the establishment of Xenopus tropicalis immature Sertoli cells (XtiSCs) with the restricted differentiation potential. The aim of this study is the determination of factors responsible for EMT activation in XtiSCs and stemness window acquisition where cells possess the broadest differentiation potential. For this purpose, we tested three potent EMT inducers—GSK-3 inhibitor (CHIR99021), FGF2, and/or TGF-β1 ligand. XtiSCs underwent full EMT after 3-day treatment with CHIR99021 and partial EMT with FGF2 but not with TGF-β1. The morphological change of CHIR-treated XtiSCs to the typical spindle-like cell shape was associated with the upregulation of mesenchymal markers and the downregulation of epithelial markers. Moreover, only CHIR-treated XtiSCs were able to differentiate into chondrocytes in vitro and cardiomyocytes in vivo. Interestingly, EMT-shifted cells could migrate towards cancer cells (HeLa) in vitro and to the injury site in vivo. The results provide a better understanding of signaling pathways underlying the generation of testis-derived stem cells.
Collapse
|