1
|
Munoz AZ, Soni K, Li A, Lakkundi V, Iyer A, Adler A, Kirkendall K, Petrigliano F, Benayoun BA, Lozito TP, Almada AE. Ilastik: a machine learning image analysis platform to interrogate stem cell fate decisions across multiple vertebrate species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.21.629913. [PMID: 40236229 PMCID: PMC11996584 DOI: 10.1101/2024.12.21.629913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Stem cells are the key cellular source for regenerating tissues and organs in vertebrate species. Historically, the investigation of stem cell fate decisions in vivo has been assessed in tissue sections using immunohistochemistry (IHC), where a trained user quantifies fluorescent signal in multiple randomly selected images using manual counting-which is prone to inaccuracies, bias, and is very labor intensive. Here, we highlight the performance of a recently developed machine-learning (ML)-based image analysis program called Ilastik using skeletal muscle as a model system. Interestingly, we demonstrate that Ilastik accurately quantifies Paired Box Protein 7 (PAX7)-positive muscle stem cells (MuSCs) before and during the regenerative process in whole muscle sections from mice, humans, axolotl salamanders, and short-lived African turquoise killifish, to a precision that exceeds human capabilities and in a fraction of the time. Overall, Ilastik is a free user-friendly ML-based program that will expedite the analysis of stained tissue sections in vertebrate animals.
Collapse
|
2
|
Engquist EN, Greco A, Joosten LA, van Engelen BG, Banerji CR, Zammit PS. Transcriptomic gene signatures measure satellite cell activity in muscular dystrophies. iScience 2024; 27:109947. [PMID: 38840844 PMCID: PMC11150970 DOI: 10.1016/j.isci.2024.109947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/20/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
The routine need for myonuclear turnover in skeletal muscle, together with more sporadic demands for hypertrophy and repair, are performed by resident muscle stem cells called satellite cells. Muscular dystrophies are characterized by muscle wasting, stimulating chronic repair/regeneration by satellite cells. Here, we derived and validated transcriptomic signatures for satellite cells, myoblasts/myocytes, and myonuclei using publicly available murine single cell RNA-Sequencing data. Our signatures distinguished disease from control in transcriptomic data from several muscular dystrophies including facioscapulohumeral muscular dystrophy (FSHD), Duchenne muscular dystrophy, and myotonic dystrophy type I. For FSHD, the expression of our gene signatures correlated with direct counts of satellite cells on muscle sections, as well as with increasing clinical and pathological severity. Thus, our gene signatures enable the investigation of myogenesis in bulk transcriptomic data from muscle biopsies. They also facilitate study of muscle regeneration in transcriptomic data from human muscle across health and disease.
Collapse
Affiliation(s)
- Elise N. Engquist
- King’s College London, Randall Centre for Cell and Molecular Biophysics, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK
| | - Anna Greco
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Geert Grooteplein Zuid 10, Nijmegen 6525 GA, The Netherlands
| | - Leo A.B. Joosten
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Geert Grooteplein Zuid 10, Nijmegen 6525 GA, The Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University if Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Baziel G.M. van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands
| | - Christopher R.S. Banerji
- King’s College London, Randall Centre for Cell and Molecular Biophysics, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK
- The Alan Turing Institute, The British Library, 96 Euston Road, London NW1 2DB, UK
- University College London Hospitals, NHS Foundation Trust, London NW1 2BU, UK
| | - Peter S. Zammit
- King’s College London, Randall Centre for Cell and Molecular Biophysics, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK
| |
Collapse
|
3
|
Ferrena A, Zhang R, Wang J, Zheng XY, Göker B, Borjihan H, Chae SS, Lo Y, Zhao H, Schwartz E, Loeb D, Yang R, Geller D, Zheng D, Hoang B. Comprehensive single cell transcriptomics analysis of murine osteosarcoma uncovers Skp2 function in metastasis, genomic instability and immune activation and reveals additional target pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597347. [PMID: 38895216 PMCID: PMC11185585 DOI: 10.1101/2024.06.04.597347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Osteosarcoma (OS) is the most common primary pediatric bone malignancy. One promising new therapeutic target is SKP2, encoding a substrate recognition factor of the SCF E3 ubiquitin ligase responsible for ubiquitination and proteasome degradation of substrate p27, thus driving cellular proliferation. We have shown previously that knockout of Skp2 in an immunocompetent transgenic mouse model of OS improved survival, drove apoptosis, and induced tumor inflammation. Here, we applied single-cell RNA-sequencing (scRNA-seq) to study primary OS tumors derived from Osx-Cre driven conditional knockout of Rb1 and Trp53. We showed that murine OS models recapitulate the tumor heterogeneity and microenvironment complexity observed in patient tumors. We further compared this model with OS models with functional disruption of Skp2: one with Skp2 knockout and the other with the Skp2-p27 interaction disrupted (resulting in p27 overexpression). We found reduction of T cell exhaustion and upregulation of interferon activation, along with evidence of replicative and endoplasmic reticulum-related stress in the Skp2 disruption models, and showed that interferon induction was correlated with improved survival in OS patients. Additionally, our scRNA-seq analysis uncovered decreased activities of metastasis-related gene signatures in the Skp2-disrupted OS, which we validated by observation of a strong reduction in lung metastasis in the Skp2 knockout mice. Finally, we report several potential mechanisms of escape from targeting Skp2 in OS, including upregulation of Myc targets, DNA copy number amplification and overexpression of alternative E3 ligase genes, and potential alternative lineage activation. These mechanistic insights into OS tumor biology and Skp2 function suggest novel targets for new, synergistic therapies, while the data and our comprehensive analysis may serve as a public resource for further big data-driven OS research.
Collapse
Affiliation(s)
- Alexander Ferrena
- Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ranxin Zhang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Musculoskeletal Tumor Center, Beijing Key Laboratory for Musculoskeletal Tumors, Peking University People’s Hospital, Beijing, China
| | - Jichuan Wang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Musculoskeletal Tumor Center, Beijing Key Laboratory for Musculoskeletal Tumors, Peking University People’s Hospital, Beijing, China
| | - Xiang Yu Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Barlas Göker
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hasibagan Borjihan
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sung-Suk Chae
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yungtai Lo
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hongling Zhao
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Edward Schwartz
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David Loeb
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rui Yang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David Geller
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bang Hoang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
4
|
Timpanaro A, Piccand C, Uldry AC, Bode PK, Dzhumashev D, Sala R, Heller M, Rössler J, Bernasconi M. Surfaceome Profiling of Cell Lines and Patient-Derived Xenografts Confirm FGFR4, NCAM1, CD276, and Highlight AGRL2, JAM3, and L1CAM as Surface Targets for Rhabdomyosarcoma. Int J Mol Sci 2023; 24:2601. [PMID: 36768928 PMCID: PMC9917031 DOI: 10.3390/ijms24032601] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/17/2023] [Accepted: 01/27/2023] [Indexed: 02/03/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children. The prognosis for patients with high-grade and metastatic disease is still very poor, and survivors are burdened with long-lasting side effects. Therefore, more effective and less toxic therapies are needed. Surface proteins are ideal targets for antibody-based therapies, like bispecific antibodies, antibody-drug conjugates, or chimeric antigen receptor (CAR) T-cells. Specific surface targets for RMS are scarce. Here, we performed a surfaceome profiling based on differential centrifugation enrichment of surface/membrane proteins and detection by LC-MS on six fusion-positive (FP) RMS cell lines, five fusion-negative (FN) RMS cell lines, and three RMS patient-derived xenografts (PDXs). A total of 699 proteins were detected in the three RMS groups. Ranking based on expression levels and comparison to expression in normal MRC-5 fibroblasts and myoblasts, followed by statistical analysis, highlighted known RMS targets such as FGFR4, NCAM1, and CD276/B7-H3, and revealed AGRL2, JAM3, MEGF10, GPC4, CADM2, as potential targets for immunotherapies of RMS. L1CAM expression was investigated in RMS tissues, and strong L1CAM expression was observed in more than 80% of alveolar RMS tumors, making it a practicable target for antibody-based therapies of alveolar RMS.
Collapse
Affiliation(s)
- Andrea Timpanaro
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Translational Cancer Research, Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Caroline Piccand
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Translational Cancer Research, Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Anne-Christine Uldry
- Proteomics & Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Peter Karl Bode
- Department of Pathology and Molecular Pathology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Dzhangar Dzhumashev
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Translational Cancer Research, Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Rita Sala
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Translational Cancer Research, Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Manfred Heller
- Proteomics & Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Jochen Rössler
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Translational Cancer Research, Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Michele Bernasconi
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Translational Cancer Research, Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, 3032 Zurich, Switzerland
| |
Collapse
|
5
|
Shams AS, Kyba M. The Satellite Cell Colony Forming Cell Assay as a Tool to Measure Self-Renewal and Differentiation Potential. Methods Mol Biol 2023; 2640:45-55. [PMID: 36995586 DOI: 10.1007/978-1-0716-3036-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The muscle satellite cell population is responsible for homeostatic maintenance of muscle fibers in response to muscle injury and normal wear and tear. This population is heterogeneous, and its capacity for self-renewal and differentiation can be altered either by mutation of genes that regulate these processes or with natural processes such as aging. The satellite cell colony assay is a facile way to extract information about the proliferation and differentiation potential of individual cells. Here, we provide a detailed protocol for the isolation, single cell plating, culture, and evaluation of colonies derived from single satellite cells. The variables of cell survival (cloning efficiency), proliferative potential (nuclei per colony), and differentiation propensity (ratio of nuclei within myosin heavy chain-positive cytoplasm to total nuclei) can thus be obtained.
Collapse
Affiliation(s)
- Ahmed S Shams
- Department of Pediatrics, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA
| | - Michael Kyba
- Department of Pediatrics, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
6
|
Tcf12 is required to sustain myogenic genes synergism with MyoD by remodelling the chromatin landscape. Commun Biol 2022; 5:1201. [DOI: 10.1038/s42003-022-04176-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
AbstractMuscle stem cells (MuSCs) are essential for skeletal muscle development and regeneration, ensuring muscle integrity and normal function. The myogenic proliferation and differentiation of MuSCs are orchestrated by a cascade of transcription factors. In this study, we elucidate the specific role of transcription factor 12 (Tcf12) in muscle development and regeneration based on loss-of-function studies. Muscle-specific deletion of Tcf12 cause muscle weight loss owing to the reduction of myofiber size during development. Inducible deletion of Tcf12 specifically in adult MuSCs delayed muscle regeneration. The examination of MuSCs reveal that Tcf12 deletion resulted in cell-autonomous defects during myogenesis and Tcf12 is necessary for proper myogenic gene expression. Mechanistically, TCF12 and MYOD work together to stabilise chromatin conformation and sustain muscle cell fate commitment-related gene and chromatin architectural factor expressions. Altogether, our findings identify Tcf12 as a crucial regulator of MuSCs chromatin remodelling that regulates muscle cell determination and participates in skeletal muscle development and regeneration.
Collapse
|
7
|
Vargas‐Franco D, Kalra R, Draper I, Pacak CA, Asakura A, Kang PB. The Notch signaling pathway in skeletal muscle health and disease. Muscle Nerve 2022; 66:530-544. [PMID: 35968817 PMCID: PMC9804383 DOI: 10.1002/mus.27684] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 01/05/2023]
Abstract
The Notch signaling pathway is a key regulator of skeletal muscle development and regeneration. Over the past decade, the discoveries of three new muscle disease genes have added a new dimension to the relationship between the Notch signaling pathway and skeletal muscle: MEGF10, POGLUT1, and JAG2. We review the clinical syndromes associated with pathogenic variants in each of these genes, known molecular and cellular functions of their protein products with a particular focus on the Notch signaling pathway, and potential novel therapeutic targets that may emerge from further investigations of these diseases. The phenotypes associated with two of these genes, POGLUT1 and JAG2, clearly fall within the realm of muscular dystrophy, whereas the third, MEGF10, is associated with a congenital myopathy/muscular dystrophy overlap syndrome classically known as early-onset myopathy, areflexia, respiratory distress, and dysphagia. JAG2 is a canonical Notch ligand, POGLUT1 glycosylates the extracellular domain of Notch receptors, and MEGF10 interacts with the intracellular domain of NOTCH1. Additional genes and their encoded proteins relevant to muscle function and disease with links to the Notch signaling pathway include TRIM32, ATP2A1 (SERCA1), JAG1, PAX7, and NOTCH2NLC. There is enormous potential to identify convergent mechanisms of skeletal muscle disease and new therapeutic targets through further investigations of the Notch signaling pathway in the context of skeletal muscle development, maintenance, and disease.
Collapse
Affiliation(s)
| | - Raghav Kalra
- Division of Pediatric NeurologyUniversity of Florida College of MedicineGainesvilleFlorida
| | - Isabelle Draper
- Molecular Cardiology Research InstituteTufts Medical CenterBostonMassachusetts
| | - Christina A. Pacak
- Paul and Sheila Wellstone Muscular Dystrophy CenterUniversity of Minnesota Medical SchoolMinneapolisMinnesota
- Department of NeurologyUniversity of Minnesota Medical SchoolMinneapolisMinnesota
| | - Atsushi Asakura
- Paul and Sheila Wellstone Muscular Dystrophy CenterUniversity of Minnesota Medical SchoolMinneapolisMinnesota
- Department of NeurologyUniversity of Minnesota Medical SchoolMinneapolisMinnesota
| | - Peter B. Kang
- Paul and Sheila Wellstone Muscular Dystrophy CenterUniversity of Minnesota Medical SchoolMinneapolisMinnesota
- Department of NeurologyUniversity of Minnesota Medical SchoolMinneapolisMinnesota
- Institute for Translational NeuroscienceUniversity of Minnesota Medical SchoolMinneapolisMinnesota
| |
Collapse
|
8
|
Downregulation of Sparc-like protein 1 during cisplatin-induced inhibition of myogenic differentiation of C2C12 myoblasts. Biochem Pharmacol 2022; 204:115234. [PMID: 36041542 DOI: 10.1016/j.bcp.2022.115234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022]
Abstract
Patients with cancer often experience muscle atrophy, which worsens their prognosis. Decreased muscle regenerative capacity plays an important role in the complex processes involved in muscle atrophy. Administration of cisplatin, a cancer chemotherapeutic agent, has been implicated as a cause of muscle atrophy. In this study, we examined whether cisplatin affects the differentiation of myoblasts into myotubes. We treated C2C12 myoblasts with a differentiation medium containing cisplatin and its vehicle during for 8 days and observed the changes in the expression of myosin heavy chain (MyHC) and myogenin in the myoblasts. Cisplatin was injected in mice for 4 consecutive days; on Day 5, the mice quadriceps muscles were sampled and examined. The expression of MyHCs increased and that of myogenin decreased after cisplatin treatment. The secretion of acidic cysteine-rich proteins (e.g., Sparc proteins) reportedly promotes C2C12 myoblast differentiation. Therefore, we investigated the Sparc family gene expression during myogenesis in C2C12 myoblasts after cisplatin treatment. Of all the genes investigated, Sparc-like protein 1 (Sparcl1) expression was significantly suppressed by cisplatin on Days 4-8. Simultaneous treatment with recombinant mouse Sparcl1 almost inhibited the cisplatin-induced suppression of total MyHC and myogenin protein levels. Moreover, Sparcl1 expression decreased in the skeletal muscles of mice, leading to cisplatin-induced muscle atrophy. Our results suggest that cisplatin-induced myogenesis suppression causes muscle atrophy and inhibits the expression of Sparcl1, which promotes C2C12 cell differentiation during myogenesis.
Collapse
|
9
|
Elia I, Realini G, Di Mauro V, Borghi S, Bottoni L, Tornambè S, Vitiello L, Weiss SJ, Chiariello M, Tamburrini A, Oliviero S, Neri F, Orlandini M, Galvagni F. SNAI1 is upregulated during muscle regeneration and represses FGF21 and ATF3 expression by directly binding their promoters. FASEB J 2022; 36:e22401. [PMID: 35726676 DOI: 10.1096/fj.202200215r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 11/11/2022]
Abstract
During skeletal myogenesis, the zinc-finger transcription factors SNAI1 and SNAI2, are expressed in proliferating myoblasts and regulate the transition to terminally differentiated myotubes while repressing pro-differentiation genes. Here, we demonstrate that SNAI1 is upregulated in vivo during the early phase of muscle regeneration induced by bupivacaine injury. Using shRNA-mediated gene silencing in C2C12 myoblasts and whole-transcriptome microarray analysis, we identified a collection of genes belonging to the endoplasmic reticulum (ER) stress pathway whose expression, induced by myogenic differentiation, was upregulated in absence of SNAI1. Among these, key ER stress genes, such as Atf3, Ddit3/Chop, Hspa5/Bip, and Fgf21, a myokine involved in muscle differentiation, were strongly upregulated. Furthermore, by promoter mutant analysis and Chromatin immune precipitation assay, we demonstrated that SNAI1 represses Fgf21 and Atf3 in proliferating myoblasts by directly binding to multiple E boxes in their respective promoter regions. Together, these data describe a new regulatory mechanism of myogenic differentiation involving the direct repressive action of SNAI1 on ER stress and Fgf21 expression, ultimately contributing to maintaining the proliferative and undifferentiated state of myoblasts.
Collapse
Affiliation(s)
- Ines Elia
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Giulia Realini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Vittoria Di Mauro
- IRCCS-Humanitas Research Hospital, Rozzano, Italy.,Institute of Genetic and Biomedical Research (IRGB), Milan Unit, National Research Council, Via Fantoli 16/15, Milan, 20138, Italy
| | - Sara Borghi
- Department of Pathology, NYU Grossman School of Medicine, New York, New York, USA.,Immune Monitoring Laboratory, NYU Langone Health, 550 First Avenue, New York, NY, 10016, USA
| | - Laura Bottoni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Salvatore Tornambè
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | | | - Stephen J Weiss
- Division of Genetic Medicine, Department of Internal Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Mario Chiariello
- Istituto di Fisiologia Clinica (IFC), Consiglio Nazionale delle Ricerche (CNR) and Core Research Laboratory (CRL), Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Siena, Italy
| | - Annalaura Tamburrini
- Department of Life Science and Systems Biology, Università degli Studi di Torino, Turin, Italy.,IIGM - Italian Institute for Genomic Medicine, c/o IRCCS, Candiolo, Italy
| | - Salvatore Oliviero
- Department of Life Science and Systems Biology, Università degli Studi di Torino, Turin, Italy.,IIGM - Italian Institute for Genomic Medicine, c/o IRCCS, Candiolo, Italy
| | - Francesco Neri
- Department of Life Science and Systems Biology, Università degli Studi di Torino, Turin, Italy
| | - Maurizio Orlandini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Federico Galvagni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| |
Collapse
|
10
|
Dungan CM, Brightwell CR, Wen Y, Zdunek CJ, Latham CM, Thomas NT, Zagzoog AM, Brightwell BD, Nolt GL, Keeble AR, Watowich SJ, Murach KA, Fry CS. Muscle-Specific Cellular and Molecular Adaptations to Late-Life Voluntary Concurrent Exercise. FUNCTION 2022; 3:zqac027. [PMID: 35774589 PMCID: PMC9233305 DOI: 10.1093/function/zqac027] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 01/07/2023] Open
Abstract
Murine exercise models can provide information on factors that influence muscle adaptability with aging, but few translatable solutions exist. Progressive weighted wheel running (PoWeR) is a simple, voluntary, low-cost, high-volume endurance/resistance exercise approach for training young mice. In the current investigation, aged mice (22-mo-old) underwent a modified version of PoWeR for 8 wk. Muscle functional, cellular, biochemical, transcriptional, and myonuclear DNA methylation analyses provide an encompassing picture of how muscle from aged mice responds to high-volume combined training. Mice run 6-8 km/d, and relative to sedentary mice, PoWeR increases plantarflexor muscle strength. The oxidative soleus of aged mice responds to PoWeR similarly to young mice in every parameter measured in previous work; this includes muscle mass, glycolytic-to-oxidative fiber type transitioning, fiber size, satellite cell frequency, and myonuclear number. The oxidative/glycolytic plantaris adapts according to fiber type, but with modest overall changes in muscle mass. Capillarity increases markedly with PoWeR in both muscles, which may be permissive for adaptability in advanced age. Comparison to published PoWeR RNA-sequencing data in young mice identified conserved regulators of adaptability across age and muscles; this includes Aldh1l1 which associates with muscle vasculature. Agrn and Samd1 gene expression is upregulated after PoWeR simultaneous with a hypomethylated promoter CpG in myonuclear DNA, which could have implications for innervation and capillarization. A promoter CpG in Rbm10 is hypomethylated by late-life exercise in myonuclei, consistent with findings in muscle tissue. PoWeR and the data herein are a resource for uncovering cellular and molecular regulators of muscle adaptation with aging.
Collapse
Affiliation(s)
- Cory M Dungan
- Department of Physical Therapy, University of Kentucky, Lexington 40536, KY, USA
- Center for Muscle Biology, University of Kentucky, Lexington 40536, KY, USA
| | - Camille R Brightwell
- Center for Muscle Biology, University of Kentucky, Lexington 40536, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington 40536, KY, USA
| | - Yuan Wen
- Department of Physical Therapy, University of Kentucky, Lexington 40536, KY, USA
- Center for Muscle Biology, University of Kentucky, Lexington 40536, KY, USA
| | | | - Christine M Latham
- Center for Muscle Biology, University of Kentucky, Lexington 40536, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington 40536, KY, USA
| | - Nicholas T Thomas
- Center for Muscle Biology, University of Kentucky, Lexington 40536, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington 40536, KY, USA
| | - Alyaa M Zagzoog
- Center for Muscle Biology, University of Kentucky, Lexington 40536, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington 40536, KY, USA
| | - Benjamin D Brightwell
- Kinesiology and Health Promotion Graduate Program, University of Kentucky, Lexington 40536, KY, USA
| | - Georgia L Nolt
- Center for Muscle Biology, University of Kentucky, Lexington 40536, KY, USA
| | - Alexander R Keeble
- Center for Muscle Biology, University of Kentucky, Lexington 40536, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington 40536, KY, USA
| | - Stanley J Watowich
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston 77555, TX, USA
| | - Kevin A Murach
- Center for Muscle Biology, University of Kentucky, Lexington 40536, KY, USA
- Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville 72701, AR, USA
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville 72701, AR, USA
| | - Christopher S Fry
- Center for Muscle Biology, University of Kentucky, Lexington 40536, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington 40536, KY, USA
| |
Collapse
|
11
|
Ganassi M, Muntoni F, Zammit PS. Defining and identifying satellite cell-opathies within muscular dystrophies and myopathies. Exp Cell Res 2022; 411:112906. [PMID: 34740639 PMCID: PMC8784828 DOI: 10.1016/j.yexcr.2021.112906] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/12/2021] [Accepted: 10/29/2021] [Indexed: 12/19/2022]
Abstract
Muscular dystrophies and congenital myopathies arise from specific genetic mutations causing skeletal muscle weakness that reduces quality of life. Muscle health relies on resident muscle stem cells called satellite cells, which enable life-course muscle growth, maintenance, repair and regeneration. Such tuned plasticity gradually diminishes in muscle diseases, suggesting compromised satellite cell function. A central issue however, is whether the pathogenic mutation perturbs satellite cell function directly and/or indirectly via an increasingly hostile microenvironment as disease progresses. Here, we explore the effects on satellite cell function of pathogenic mutations in genes (myopathogenes) that associate with muscle disorders, to evaluate clinical and muscle pathological hallmarks that define dysfunctional satellite cells. We deploy transcriptomic analysis and comparison between muscular dystrophies and myopathies to determine the contribution of satellite cell dysfunction using literature, expression dynamics of myopathogenes and their response to the satellite cell regulator PAX7. Our multimodal approach extends current pathological classifications to define Satellite Cell-opathies: muscle disorders in which satellite cell dysfunction contributes to pathology. Primary Satellite Cell-opathies are conditions where mutations in a myopathogene directly affect satellite cell function, such as in Progressive Congenital Myopathy with Scoliosis (MYOSCO) and Carey-Fineman-Ziter Syndrome (CFZS). Primary satellite cell-opathies are generally characterised as being congenital with general hypotonia, and specific involvement of respiratory, trunk and facial muscles, although serum CK levels are usually within the normal range. Secondary Satellite Cell-opathies have mutations in myopathogenes that affect both satellite cells and muscle fibres. Such classification aids diagnosis and predicting probable disease course, as well as informing on treatment and therapeutic development.
Collapse
Affiliation(s)
- Massimo Ganassi
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK.
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, United Kingdom; NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, United Kingdom
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
12
|
Larouche JA, Mohiuddin M, Choi JJ, Ulintz PJ, Fraczek P, Sabin K, Pitchiaya S, Kurpiers SJ, Castor-Macias J, Liu W, Hastings RL, Brown LA, Markworth JF, De Silva K, Levi B, Merajver SD, Valdez G, Chakkalakal JV, Jang YC, Brooks SV, Aguilar CA. Murine muscle stem cell response to perturbations of the neuromuscular junction are attenuated with aging. eLife 2021; 10:e66749. [PMID: 34323217 PMCID: PMC8360658 DOI: 10.7554/elife.66749] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/28/2021] [Indexed: 01/29/2023] Open
Abstract
During aging and neuromuscular diseases, there is a progressive loss of skeletal muscle volume and function impacting mobility and quality of life. Muscle loss is often associated with denervation and a loss of resident muscle stem cells (satellite cells or MuSCs); however, the relationship between MuSCs and innervation has not been established. Herein, we administered severe neuromuscular trauma to a transgenic murine model that permits MuSC lineage tracing. We show that a subset of MuSCs specifically engraft in a position proximal to the neuromuscular junction (NMJ), the synapse between myofibers and motor neurons, in healthy young adult muscles. In aging and in a mouse model of neuromuscular degeneration (Cu/Zn superoxide dismutase knockout - Sod1-/-), this localized engraftment behavior was reduced. Genetic rescue of motor neurons in Sod1-/- mice reestablished integrity of the NMJ in a manner akin to young muscle and partially restored MuSC ability to engraft into positions proximal to the NMJ. Using single cell RNA-sequencing of MuSCs isolated from aged muscle, we demonstrate that a subset of MuSCs are molecularly distinguishable from MuSCs responding to myofiber injury and share similarity to synaptic myonuclei. Collectively, these data reveal unique features of MuSCs that respond to synaptic perturbations caused by aging and other stressors.
Collapse
Affiliation(s)
- Jacqueline A Larouche
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | - Mahir Mohiuddin
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of TechnologyAtlantaUnited States
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
- Wallace Coulter Departmentof Biomedical Engineering, Georgia Institute of TechnologyAtlantaUnited States
| | - Jeongmoon J Choi
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of TechnologyAtlantaUnited States
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
- Wallace Coulter Departmentof Biomedical Engineering, Georgia Institute of TechnologyAtlantaUnited States
| | - Peter J Ulintz
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
- Internal Medicine-Hematology/Oncology, University of MichiganAnn ArborUnited States
| | - Paula Fraczek
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | - Kaitlyn Sabin
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | | | - Sarah J Kurpiers
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | - Jesus Castor-Macias
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | - Wenxuan Liu
- Department of Pharmacology and Physiology, University of Rochester Medical CenterRochesterUnited States
- Department of Biomedical Engineering, University of Rochester Medical CenterRochesterUnited States
- Wilmot Cancer Institute, Stem Cell and Regenerative Medicine Institute, and The Rochester Aging Research Center, University of Rochester Medical CenterRochesterUnited States
| | - Robert Louis Hastings
- Departmentof Molecular Biology, Cell Biology and Biochemistry, Brown UniversityProvidenceUnited States
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown UniversityProvidenceUnited States
| | - Lemuel A Brown
- Department of Molecular & Integrative Physiology, University of MichiganAnn ArborUnited States
| | - James F Markworth
- Department of Molecular & Integrative Physiology, University of MichiganAnn ArborUnited States
| | - Kanishka De Silva
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | - Benjamin Levi
- Department of Surgery, University of Texas SouthwesternDallasUnited States
- Childrens Research Institute and Center for Mineral MetabolismDallasUnited States
- Program in Cellular and Molecular Biology, University of MichiganAnn ArborUnited States
| | - Sofia D Merajver
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Internal Medicine-Hematology/Oncology, University of MichiganAnn ArborUnited States
| | - Gregorio Valdez
- Departmentof Molecular Biology, Cell Biology and Biochemistry, Brown UniversityProvidenceUnited States
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown UniversityProvidenceUnited States
| | - Joe V Chakkalakal
- Department of Pharmacology and Physiology, University of Rochester Medical CenterRochesterUnited States
- Department of Biomedical Engineering, University of Rochester Medical CenterRochesterUnited States
- Wilmot Cancer Institute, Stem Cell and Regenerative Medicine Institute, and The Rochester Aging Research Center, University of Rochester Medical CenterRochesterUnited States
| | - Young C Jang
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of TechnologyAtlantaUnited States
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
- Wallace Coulter Departmentof Biomedical Engineering, Georgia Institute of TechnologyAtlantaUnited States
| | - Susan V Brooks
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Department of Molecular & Integrative Physiology, University of MichiganAnn ArborUnited States
| | - Carlos A Aguilar
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
- Childrens Research Institute and Center for Mineral MetabolismDallasUnited States
- Program in Cellular and Molecular Biology, University of MichiganAnn ArborUnited States
| |
Collapse
|
13
|
Kimmel JC, Yi N, Roy M, Hendrickson DG, Kelley DR. Differentiation reveals latent features of aging and an energy barrier in murine myogenesis. Cell Rep 2021; 35:109046. [PMID: 33910007 DOI: 10.1016/j.celrep.2021.109046] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/23/2020] [Accepted: 04/07/2021] [Indexed: 12/14/2022] Open
Abstract
Skeletal muscle experiences a decline in lean mass and regenerative potential with age, in part due to intrinsic changes in progenitor cells. However, it remains unclear how age-related changes in progenitors manifest across a differentiation trajectory. Here, we perform single-cell RNA sequencing (RNA-seq) on muscle mononuclear cells from young and aged mice and profile muscle stem cells (MuSCs) and fibro-adipose progenitors (FAPs) after differentiation. Differentiation increases the magnitude of age-related change in MuSCs and FAPs, but it also masks a subset of age-related changes present in progenitors. Using a dynamical systems approach and RNA velocity, we find that aged MuSCs follow the same differentiation trajectory as young cells but stall in differentiation near a commitment decision. Our results suggest that differentiation reveals latent features of aging and that fate commitment decisions are delayed in aged myogenic cells in vitro.
Collapse
Affiliation(s)
- Jacob C Kimmel
- Calico Life Sciences, 1170 Veterans Blvd., South San Francisco, CA 94080, USA.
| | - Nelda Yi
- Calico Life Sciences, 1170 Veterans Blvd., South San Francisco, CA 94080, USA
| | - Margaret Roy
- Calico Life Sciences, 1170 Veterans Blvd., South San Francisco, CA 94080, USA
| | - David G Hendrickson
- Calico Life Sciences, 1170 Veterans Blvd., South San Francisco, CA 94080, USA
| | - David R Kelley
- Calico Life Sciences, 1170 Veterans Blvd., South San Francisco, CA 94080, USA.
| |
Collapse
|
14
|
Abstract
The resident stem cell for skeletal muscle is the satellite cell. On the 50th anniversary of its discovery in 1961, we described the history of skeletal muscle research and the seminal findings made during the first 20 years in the life of the satellite cell (Scharner and Zammit 2011, doi: 10.1186/2044-5040-1-28). These studies established the satellite cell as the source of myoblasts for growth and regeneration of skeletal muscle. Now on the 60th anniversary, we highlight breakthroughs in the second phase of satellite cell research from 1980 to 2000. These include technical innovations such as isolation of primary satellite cells and viable muscle fibres complete with satellite cells in their niche, together with generation of many useful reagents including genetically modified organisms and antibodies still in use today. New methodologies were combined with description of endogenous satellite cells markers, notably Pax7. Discovery of the muscle regulatory factors Myf5, MyoD, myogenin, and MRF4 in the late 1980s revolutionized understanding of the control of both developmental and regerenative myogenesis. Emergence of genetic lineage markers facilitated identification of satellite cells in situ, and also empowered transplantation studies to examine satellite cell function. Finally, satellite cell heterogeneity and the supportive role of non-satellite cell types in muscle regeneration were described. These major advances in methodology and in understanding satellite cell biology provided further foundations for the dramatic escalation of work on muscle stem cells in the 21st century.
Collapse
Affiliation(s)
- Elise N Engquist
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London, SE1 1UL, UK
| |
Collapse
|
15
|
Turner DC, Gorski PP, Maasar MF, Seaborne RA, Baumert P, Brown AD, Kitchen MO, Erskine RM, Dos-Remedios I, Voisin S, Eynon N, Sultanov RI, Borisov OV, Larin AK, Semenova EA, Popov DV, Generozov EV, Stewart CE, Drust B, Owens DJ, Ahmetov II, Sharples AP. DNA methylation across the genome in aged human skeletal muscle tissue and muscle-derived cells: the role of HOX genes and physical activity. Sci Rep 2020; 10:15360. [PMID: 32958812 PMCID: PMC7506549 DOI: 10.1038/s41598-020-72730-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
Skeletal muscle tissue demonstrates global hypermethylation with age. However, methylome changes across the time-course of differentiation in aged human muscle derived cells, and larger coverage arrays in aged muscle tissue have not been undertaken. Using 850K DNA methylation arrays we compared the methylomes of young (27 ± 4.4 years) and aged (83 ± 4 years) human skeletal muscle and that of young/aged heterogenous muscle-derived human primary cells (HDMCs) over several time points of differentiation (0, 72 h, 7, 10 days). Aged muscle tissue was hypermethylated compared with young tissue, enriched for; pathways-in-cancer (including; focal adhesion, MAPK signaling, PI3K-Akt-mTOR signaling, p53 signaling, Jak-STAT signaling, TGF-beta and notch signaling), rap1-signaling, axon-guidance and hippo-signalling. Aged cells also demonstrated a hypermethylated profile in pathways; axon-guidance, adherens-junction and calcium-signaling, particularly at later timepoints of myotube formation, corresponding with reduced morphological differentiation and reductions in MyoD/Myogenin gene expression compared with young cells. While young cells showed little alterations in DNA methylation during differentiation, aged cells demonstrated extensive and significantly altered DNA methylation, particularly at 7 days of differentiation and most notably in focal adhesion and PI3K-AKT signalling pathways. While the methylomes were vastly different between muscle tissue and HDMCs, we identified a small number of CpG sites showing a hypermethylated state with age, in both muscle tissue and cells on genes KIF15, DYRK2, FHL2, MRPS33, ABCA17P. Most notably, differential methylation analysis of chromosomal regions identified three locations containing enrichment of 6–8 CpGs in the HOX family of genes altered with age. With HOXD10, HOXD9, HOXD8, HOXA3, HOXC9, HOXB1, HOXB3, HOXC-AS2 and HOXC10 all hypermethylated in aged tissue. In aged cells the same HOX genes (and additionally HOXC-AS3) displayed the most variable methylation at 7 days of differentiation versus young cells, with HOXD8, HOXC9, HOXB1 and HOXC-AS3 hypermethylated and HOXC10 and HOXC-AS2 hypomethylated. We also determined that there was an inverse relationship between DNA methylation and gene expression for HOXB1, HOXA3 and HOXC-AS3. Finally, increased physical activity in young adults was associated with oppositely regulating HOXB1 and HOXA3 methylation compared with age. Overall, we demonstrate that a considerable number of HOX genes are differentially epigenetically regulated in aged human skeletal muscle and HDMCs and increased physical activity may help prevent age-related epigenetic changes in these HOX genes.
Collapse
Affiliation(s)
- D C Turner
- Institute for Physical Performance, Norwegian School of Sport Sciences (NiH), Oslo, Norway.,Stem Cells, Ageing and Molecular Physiology Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.,Institute for Science and Technology in Medicine (ISTM), School of Pharmacy & Bioengineering, Keele University, Staffordshire, UK
| | - P P Gorski
- Institute for Physical Performance, Norwegian School of Sport Sciences (NiH), Oslo, Norway.,Institute for Science and Technology in Medicine (ISTM), School of Pharmacy & Bioengineering, Keele University, Staffordshire, UK
| | - M F Maasar
- Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - R A Seaborne
- Stem Cells, Ageing and Molecular Physiology Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.,Institute for Science and Technology in Medicine (ISTM), School of Pharmacy & Bioengineering, Keele University, Staffordshire, UK.,Centre for Genomics and Child Health, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - P Baumert
- Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.,Exercise Biology Group, Faculty of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - A D Brown
- Stem Cells, Ageing and Molecular Physiology Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - M O Kitchen
- Institute for Science and Technology in Medicine (ISTM), School of Pharmacy & Bioengineering, Keele University, Staffordshire, UK
| | - R M Erskine
- Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.,Institute of Sport, Exercise and Health, University College London, London, UK
| | - I Dos-Remedios
- Orthopedics Department, University Hospitals of the North Midlands, Keele University, Staffordshire, UK
| | - S Voisin
- Institute for Health and Sport (iHeS), Victoria University, Footscray, VIC, Australia
| | - N Eynon
- Institute for Health and Sport (iHeS), Victoria University, Footscray, VIC, Australia
| | - R I Sultanov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - O V Borisov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia.,Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Bonn, Germany
| | - A K Larin
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - E A Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - D V Popov
- Laboratory of Exercise Physiology, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - E V Generozov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - C E Stewart
- Stem Cells, Ageing and Molecular Physiology Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - B Drust
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - D J Owens
- Stem Cells, Ageing and Molecular Physiology Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.,Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - I I Ahmetov
- Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK. .,Laboratory of Molecular Genetics, Kazan State Medical University, Kazan, Russia. .,Department of Physical Education, Plekhanov Russian University of Economics, Moscow, Russia.
| | - A P Sharples
- Institute for Physical Performance, Norwegian School of Sport Sciences (NiH), Oslo, Norway. .,Stem Cells, Ageing and Molecular Physiology Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK. .,Institute for Science and Technology in Medicine (ISTM), School of Pharmacy & Bioengineering, Keele University, Staffordshire, UK.
| |
Collapse
|
16
|
Ehrlich KC, Lacey M, Ehrlich M. Epigenetics of Skeletal Muscle-Associated Genes in the ASB, LRRC, TMEM, and OSBPL Gene Families. EPIGENOMES 2020; 4:1. [PMID: 34968235 PMCID: PMC8594701 DOI: 10.3390/epigenomes4010001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/21/2020] [Accepted: 01/28/2020] [Indexed: 02/07/2023] Open
Abstract
Much remains to be discovered about the intersection of tissue-specific transcription control and the epigenetics of skeletal muscle (SkM), a very complex and dynamic organ. From four gene families, Leucine-Rich Repeat Containing (LRRC), Oxysterol Binding Protein Like (OSBPL), Ankyrin Repeat and Socs Box (ASB), and Transmembrane Protein (TMEM), we chose 21 genes that are preferentially expressed in human SkM relative to 52 other tissue types and analyzed relationships between their tissue-specific epigenetics and expression. We also compared their genetics, proteomics, and descriptions in the literature. For this study, we identified genes with little or no previous descriptions of SkM functionality (ASB4, ASB8, ASB10, ASB12, ASB16, LRRC14B, LRRC20, LRRC30, TMEM52, TMEM233, OSBPL6/ORP6, and OSBPL11/ORP11) and included genes whose SkM functions had been previously addressed (ASB2, ASB5, ASB11, ASB15, LRRC2, LRRC38, LRRC39, TMEM38A/TRIC-A, and TMEM38B/TRIC-B). Some of these genes have associations with SkM or heart disease, cancer, bone disease, or other diseases. Among the transcription-related SkM epigenetic features that we identified were: super-enhancers, promoter DNA hypomethylation, lengthening of constitutive low-methylated promoter regions, and SkM-related enhancers for one gene embedded in a neighboring gene (e.g., ASB8-PFKM, LRRC39-DBT, and LRRC14B-PLEKHG4B gene-pairs). In addition, highly or lowly co-expressed long non-coding RNA (lncRNA) genes probably regulate several of these genes. Our findings give insights into tissue-specific epigenetic patterns and functionality of related genes in a gene family and can elucidate normal and disease-related regulation of gene expression in SkM.
Collapse
Affiliation(s)
- Kenneth C. Ehrlich
- Center for Bioinformatics and Genomics, Tulane University Health Sciences Center, New Orleans, LA 70112, USA;
| | - Michelle Lacey
- Department of Mathematics, Tulane University, New Orleans, LA 70118, USA;
- Tulane Cancer Center, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | - Melanie Ehrlich
- Center for Bioinformatics and Genomics, Tulane University Health Sciences Center, New Orleans, LA 70112, USA;
- Tulane Cancer Center, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
17
|
Chan SSK, Arpke RW, Filareto A, Xie N, Pappas MP, Penaloza JS, Perlingeiro RCR, Kyba M. Skeletal Muscle Stem Cells from PSC-Derived Teratomas Have Functional Regenerative Capacity. Cell Stem Cell 2019; 23:74-85.e6. [PMID: 29979993 DOI: 10.1016/j.stem.2018.06.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/14/2018] [Accepted: 06/14/2018] [Indexed: 01/09/2023]
Abstract
Derivation of functional skeletal muscle stem cells from pluripotent cells without genetic modification has proven elusive. Here we show that teratomas formed in adult skeletal muscle differentiate in vivo to produce large numbers of α7-Integrin+ VCAM-1+ myogenic progenitors. When FACS-purified and transplanted into diseased muscles, mouse teratoma-derived myogenic progenitors demonstrate very high engraftment potential. As few as 40,000 cells can reconstitute ∼80% of the tibialis anterior muscle volume. Newly generated fibers are innervated, express adult myosins, and ameliorate dystrophy-related force deficit and fatigability. Teratoma-derived myogenic progenitors also contribute quiescent PAX7+ muscle stem cells, enabling long-term maintenance of regenerated muscle and allowing muscle regeneration in response to subsequent injuries. Transcriptional profiling reveals that teratoma-derived myogenic progenitors undergo embryonic-to-adult maturation when they contribute to the stem cell compartment of regenerated muscle. Thus, teratomas are a rich and accessible source of potent transplantable skeletal muscle stem cells. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Sunny Sun-Kin Chan
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Robert W Arpke
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Antonio Filareto
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ning Xie
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Matthew P Pappas
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jacqueline S Penaloza
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rita C R Perlingeiro
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael Kyba
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
18
|
Gene expression profiling of skeletal myogenesis in human embryonic stem cells reveals a potential cascade of transcription factors regulating stages of myogenesis, including quiescent/activated satellite cell-like gene expression. PLoS One 2019; 14:e0222946. [PMID: 31560727 PMCID: PMC6764674 DOI: 10.1371/journal.pone.0222946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/10/2019] [Indexed: 01/05/2023] Open
Abstract
Human embryonic stem cell (hESC)-derived skeletal muscle progenitors (SMP)—defined as PAX7-expressing cells with myogenic potential—can provide an abundant source of donor material for muscle stem cell therapy. As in vitro myogenesis is decoupled from in vivo timing and 3D-embryo structure, it is important to characterize what stage or type of muscle is modeled in culture. Here, gene expression profiling is analyzed in hESCs over a 50 day skeletal myogenesis protocol and compared to datasets of other hESC-derived skeletal muscle and adult murine satellite cells. Furthermore, day 2 cultures differentiated with high or lower concentrations of CHIR99021, a GSK3A/GSK3B inhibitor, were contrasted. Expression profiling of the 50 day time course identified successively expressed gene subsets involved in mesoderm/paraxial mesoderm induction, somitogenesis, and skeletal muscle commitment/formation which could be regulated by a putative cascade of transcription factors. Initiating differentiation with higher CHIR99021 concentrations significantly increased expression of MSGN1 and TGFB-superfamily genes, notably NODAL, resulting in enhanced paraxial mesoderm and reduced ectoderm/neuronal gene expression. Comparison to adult satellite cells revealed that genes expressed in 50-day cultures correlated better with those expressed by quiescent or early activated satellite cells, which have the greatest therapeutic potential. Day 50 cultures were similar to other hESC-derived skeletal muscle and both expressed known and novel SMP surface proteins. Overall, a putative cascade of transcription factors has been identified which regulates four stages of myogenesis. Subsets of these factors were upregulated by high CHIR99021 or their binding sites were significantly over-represented during SMP activation, ranging from quiescent to late-activated stages. This analysis serves as a resource to further study the progression of in vitro skeletal myogenesis and could be mined to identify novel markers of pluripotent-derived SMPs or regulatory transcription/growth factors. Finally, 50-day hESC-derived SMPs appear similar to quiescent/early activated satellite cells, suggesting they possess therapeutic potential.
Collapse
|
19
|
Asymmetric Centromeres Differentially Coordinate with Mitotic Machinery to Ensure Biased Sister Chromatid Segregation in Germline Stem Cells. Cell Stem Cell 2019; 25:666-681.e5. [PMID: 31564548 DOI: 10.1016/j.stem.2019.08.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/25/2019] [Accepted: 08/19/2019] [Indexed: 12/29/2022]
Abstract
Many stem cells utilize asymmetric cell division (ACD) to produce a self-renewed stem cell and a differentiating daughter cell. How non-genic information could be inherited differentially to establish distinct cell fates is not well understood. Here, we report a series of spatiotemporally regulated asymmetric components, which ensure biased sister chromatid attachment and segregation during ACD of Drosophila male germline stem cells (GSCs). First, sister centromeres are differentially enriched with proteins involved in centromere specification and kinetochore function. Second, temporally asymmetric microtubule activities and polarized nuclear envelope breakdown allow for the preferential recognition and attachment of microtubules to asymmetric sister kinetochores and sister centromeres. Abolishment of either the asymmetric sister centromeres or the asymmetric microtubule activities results in randomized sister chromatid segregation. Together, these results provide the cellular basis for partitioning epigenetically distinct sister chromatids during stem cell ACDs, which opens new directions to study these mechanisms in other biological contexts.
Collapse
|
20
|
Lahmann I, Bröhl D, Zyrianova T, Isomura A, Czajkowski MT, Kapoor V, Griger J, Ruffault PL, Mademtzoglou D, Zammit PS, Wunderlich T, Spuler S, Kühn R, Preibisch S, Wolf J, Kageyama R, Birchmeier C. Oscillations of MyoD and Hes1 proteins regulate the maintenance of activated muscle stem cells. Genes Dev 2019; 33:524-535. [PMID: 30862660 PMCID: PMC6499323 DOI: 10.1101/gad.322818.118] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/19/2019] [Indexed: 11/25/2022]
Abstract
Lahmann et al. show that Hes1 controls the balance between proliferation and differentiation of activated muscle stem cells in both developing and regenerating muscle. Hes1 is expressed in an oscillatory manner in activated stem cells, where it drives the oscillatory expression of MyoD. The balance between proliferation and differentiation of muscle stem cells is tightly controlled, ensuring the maintenance of a cellular pool needed for muscle growth and repair. We demonstrate here that the transcriptional regulator Hes1 controls the balance between proliferation and differentiation of activated muscle stem cells in both developing and regenerating muscle. We observed that Hes1 is expressed in an oscillatory manner in activated stem cells where it drives the oscillatory expression of MyoD. MyoD expression oscillates in activated muscle stem cells from postnatal and adult muscle under various conditions: when the stem cells are dispersed in culture, when they remain associated with single muscle fibers, or when they reside in muscle biopsies. Unstable MyoD oscillations and long periods of sustained MyoD expression are observed in differentiating cells. Ablation of the Hes1 oscillator in stem cells interfered with stable MyoD oscillations and led to prolonged periods of sustained MyoD expression, resulting in increased differentiation propensity. This interfered with the maintenance of activated muscle stem cells, and impaired muscle growth and repair. We conclude that oscillatory MyoD expression allows the cells to remain in an undifferentiated and proliferative state and is required for amplification of the activated stem cell pool.
Collapse
Affiliation(s)
- Ines Lahmann
- Developmental Biology/Signal Transduction, Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Dominique Bröhl
- Developmental Biology/Signal Transduction, Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Tatiana Zyrianova
- Developmental Biology/Signal Transduction, Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Akihiro Isomura
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Maciej T Czajkowski
- Developmental Biology/Signal Transduction, Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Varun Kapoor
- Microscopy/Image Analysis, Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Joscha Griger
- Developmental Biology/Signal Transduction, Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Pierre-Louis Ruffault
- Developmental Biology/Signal Transduction, Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Despoina Mademtzoglou
- IMRB U955-E10, Institut National de la Santé et de la Recherche Médicale (INSERM), Faculté de Medicine, Université Paris Est, 94000 Creteil, France
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, United Kingdom
| | - Thomas Wunderlich
- Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
| | - Simone Spuler
- Muscle Research Unit, Experimental and Clinical Research Center, Max-Delbrück-Center, Charité Medical Faculty, 13125 Berlin, Germany
| | - Ralf Kühn
- Transgenic Core Facility, Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany.,Berlin Institute of Health, 10178 Berlin, Germany
| | - Stephan Preibisch
- Microscopy/Image Analysis, Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Jana Wolf
- Mathematical Modelling, Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Ryoichiro Kageyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Carmen Birchmeier
- Developmental Biology/Signal Transduction, Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| |
Collapse
|
21
|
Liu P, Verhaar AP, Peppelenbosch MP. Signaling Size: Ankyrin and SOCS Box-Containing ASB E3 Ligases in Action. Trends Biochem Sci 2018; 44:64-74. [PMID: 30446376 DOI: 10.1016/j.tibs.2018.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/09/2018] [Accepted: 10/15/2018] [Indexed: 12/14/2022]
Abstract
Ankyrin repeat and suppressor of cytokine signaling (SOCS) box (Asb) proteins are ubiquitin E3 ligases. The subfamily of six-ankyrin repeat domain-containing Asb proteins (Asb5, Asb9, Asb11, and Asb13) is of specific interest because they display unusual strong evolutionary conservation (e.g., urochordate and human ASB11 are >49% similar at the amino acid level) and mediate compartment size expansion, regulating, for instance, the size of the brain and muscle compartment. Thus, they may be involved in the explanation of the differences in brain size between humans and apes. Mechanistically, many questions remain, but it has become clear that regulation of canonical Notch signaling and also mitochondrial function are important effectors. Here, we review the action and function of six ankyrin repeat domain-containing Asb proteins in physiology and pathophysiology.
Collapse
Affiliation(s)
- Pengyu Liu
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Auke P Verhaar
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
22
|
Nakatani M, Ito J, Koyama R, Iijima M, Yoshimoto N, Niimi T, Kuroda S, Maturana AD. Scaffold protein enigma homolog 1 overcomes the repression of myogenesis activation by inhibitor of DNA binding 2. Biochem Biophys Res Commun 2016; 474:413-420. [PMID: 27114303 DOI: 10.1016/j.bbrc.2016.04.119] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/22/2016] [Indexed: 01/30/2023]
Abstract
Enigma Homolog 1 (ENH1) is a scaffold protein for signaling proteins and transcription factors. Previously, we reported that ENH1 overexpression promotes the differentiation of C2C12 myoblasts. However, the molecular mechanism underlying the role of ENH1 in the C2C12 cells differentiation remains elusive. ENH1 was shown to inhibit the proliferation of neuroblastoma cells by sequestering Inhibitor of DNA binding protein 2 (Id2) in the cytosol. Id2 is a repressor of basic Helix-Loop-Helix transcription factors activity and prevents myogenesis. Here, we found that ENH1 overcome the Id2 repression of C2C12 cells myogenic differentiation and that ENH1 overexpression promotes mice satellite cells activation, the first step toward myogenic differentiation. In addition, we show that ENH1 interacted with Id2 in C2C12 cells and mice satellite cells. Collectively, our results suggest that ENH1 plays an important role in the activation of myogenesis through the repression of Id2 activity.
Collapse
Affiliation(s)
- Miyuki Nakatani
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya, 464-8106, Japan
| | - Jumpei Ito
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya, 464-8106, Japan; Japan Society for the Promotion of Science, Tokyo, 102-0083, Japan
| | - Riko Koyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya, 464-8106, Japan
| | - Masumi Iijima
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Nobuo Yoshimoto
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Tomoaki Niimi
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya, 464-8106, Japan
| | - Shun'ichi Kuroda
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya, 464-8106, Japan; The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Andrés D Maturana
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya, 464-8106, Japan.
| |
Collapse
|
23
|
Arpke RW, Kyba M. Flow Cytometry and Transplantation-Based Quantitative Assays for Satellite Cell Self-Renewal and Differentiation. Methods Mol Biol 2016; 1460:163-79. [PMID: 27492172 DOI: 10.1007/978-1-4939-3810-0_12] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In response to muscle damage, satellite cells proliferate and undertake both differentiation and self-renewal, generating new functional muscle tissue and repopulating this new muscle with stem cells for future injury responses. For many questions relating to the physiological regulation of satellite cells, quantitative readouts of self-renewal and differentiation can be very useful. There is a particular need for a quantitative assay for satellite cell self-renewal that does not rely solely upon sectioning, staining and counting cells in sections. In this chapter, we provide detailed methods for quantifying the self-renewal and differentiation potential of a given population of satellite cells using an assay involving transplantation into injured, regenerating muscle together with specific markers for donor cell identity and state of differentiation. In particular, using the Pax7-ZsGreen transgene as a marker of satellite cell state, self-renewal can be quantified by FACS on transplanted muscle to actually count the total number of resident satellite cells at time points following transplantation.
Collapse
Affiliation(s)
- Robert W Arpke
- Lillehei Heart Institute and Department of Pediatrics, University of Minnesota, Cancer and Cardiovascular Research Building 4-127, 2231 6th St. S.E., Minneapolis, MN, 55455, USA
| | - Michael Kyba
- Lillehei Heart Institute and Department of Pediatrics, University of Minnesota, Cancer and Cardiovascular Research Building 4-127, 2231 6th St. S.E., Minneapolis, MN, 55455, USA.
| |
Collapse
|
24
|
Yuan M, Li Y, Zhong C, Li Y, Niu J, Gong J. Overexpression of neuritin in gastric cancer. Oncol Lett 2015; 10:3832-3836. [PMID: 26788217 DOI: 10.3892/ol.2015.3793] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 08/17/2015] [Indexed: 01/12/2023] Open
Abstract
The aim of the present study was to investigate the expression of neuritin in gastric cancer tissues, in order to explore the association between the expression of neuritin and the occurrence and development of gastric cancer. Tissue specimens were collected from 58 patients with gastric cancer. Immunohistochemistry, western blot analysis and reverse transcription-polymerase chain reaction (RT-PCR) were used to determine the expression of neuritin in the gastric cancer and corresponding adjacent normal gastric tissues. The expression rate of neuritin in gastric cancer tissues was 96.55% (56/58), demonstrating no statistically significant difference from the expression rate in the adjacent normal tissues (94.83%) (P>0.05). However, the rate of strong neuritin expression in gastric cancer tissues (82.76%) was significantly increased compared with the rate in the adjacent normal tissues (15.52%) (P<0.05). Neuritin expression exhibited no correlation with the gender or age of patients, tumor-node-metastasis staging, tumor depth, presence of lymph node metastasis, histological or pathological type of the tumor or presence of distant metastasis (P>0.05). As determined by RT-PCR and western blot analysis, the mRNA expression of neuritin in gastric cancer tissues was markedly increased compared with the expression in the adjacent normal tissues. In conclusion, neuritin is highly expressed in gastric cancer tissues, suggesting that neuritin may act as a novel potential target for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Ming Yuan
- Department of General Surgery, Tongji Hospital at Huazhong Institute of Science and Technology, Wuhan, Hubei 430030, P.R. China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang 832006, P.R. China
| | - Yongjun Li
- Department of General Surgery, Tongji Hospital at Huazhong Institute of Science and Technology, Wuhan, Hubei 430030, P.R. China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang 832006, P.R. China
| | - Chen Zhong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang 832006, P.R. China
| | - Yongkang Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang 832006, P.R. China
| | - Jianhua Niu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang 832006, P.R. China
| | - Jianping Gong
- Department of General Surgery, Tongji Hospital at Huazhong Institute of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
25
|
Kong P, Racedo SE, Macchiarulo S, Hu Z, Carpenter C, Guo T, Wang T, Zheng D, Morrow BE. Tbx1 is required autonomously for cell survival and fate in the pharyngeal core mesoderm to form the muscles of mastication. Hum Mol Genet 2014; 23:4215-31. [PMID: 24705356 DOI: 10.1093/hmg/ddu140] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Velo-cardio-facial/DiGeorge syndrome, also known as 22q11.2 deletion syndrome, is a congenital anomaly disorder characterized by craniofacial anomalies including velo-pharyngeal insufficiency, facial muscle hypotonia and feeding difficulties, in part due to hypoplasia of the branchiomeric muscles. Inactivation of both alleles of mouse Tbx1, encoding a T-box transcription factor, deleted on chromosome 22q11.2, results in reduction or loss of branchiomeric muscles. To identify downstream pathways, we performed gene profiling of microdissected pharyngeal arch one (PA1) from Tbx1(+/+) and Tbx1(-/-) embryos at stages E9.5 (somites 20-25) and E10.5 (somites 30-35). Basic helix-loop-helix (bHLH) transcription factors were reduced, while secondary heart field genes were increased in expression early and were replaced by an increase in expression of cellular stress response genes later, suggesting a change in gene expression patterns or cell populations. Lineage tracing studies using Mesp1(Cre) and T-Cre drivers showed that core mesoderm cells within PA1 were present at E9.5 but were greatly reduced by E10.5 in Tbx1(-/-) embryos. Using Tbx1(Cre) knock-in mice, we found that cells are lost due to apoptosis, consistent with increase in expression of cellular stress response genes at E10.5. To determine whether Tbx1 is required autonomously in the core mesoderm, we used Mesp1(Cre) and T-Cre mesodermal drivers in combination with inactivate Tbx1 and found reduction or loss of branchiomeric muscles from PA1. These mechanistic studies inform us that Tbx1 is required upstream of key myogenic genes needed for core mesoderm cell survival and fate, between E9.5 and E10.5, resulting in formation of the branchiomeric muscles.
Collapse
Affiliation(s)
- Ping Kong
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
| | - Silvia E Racedo
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
| | - Stephania Macchiarulo
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
| | - Zunju Hu
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
| | - Courtney Carpenter
- Department of Surgery, Montefiore Medical Center, 111 East 210th Street, Bronx, NY 10467, USA
| | - Tingwei Guo
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
| | - Tao Wang
- Department of Epidemiology and Population Health, Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA and
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA, Departments of Neurology and Neuroscience, Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Bernice E Morrow
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA,
| |
Collapse
|
26
|
Pax7 is critical for the normal function of satellite cells in adult skeletal muscle. Proc Natl Acad Sci U S A 2013; 110:16474-9. [PMID: 24065826 DOI: 10.1073/pnas.1307680110] [Citation(s) in RCA: 424] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Extensive analyses of mice carrying null mutations in paired box 7 (Pax7) have confirmed the progressive loss of the satellite cell lineage in skeletal muscle, resulting in severe muscle atrophy and death. A recent study using floxed alleles and tamoxifen-induced inactivation concluded that after 3 wk of age, Pax7 was entirely dispensable for satellite cell function. Here, we demonstrate that Pax7 is an absolute requirement for satellite cell function in adult skeletal muscle. Following Pax7 deletion, satellite cells and myoblasts exhibit cell-cycle arrest and dysregulation of myogenic regulatory factors. Maintenance of Pax7 deletion through continuous tamoxifen administration prevented regrowth of Pax7-expressing satellite cells and a profound muscle regeneration deficit that resembles the phenotype of skeletal muscle following genetically engineered ablation of satellite cells. Therefore, we conclude that Pax7 is essential for regulating the expansion and differentiation of satellite cells during both neonatal and adult myogenesis.
Collapse
|
27
|
Tanabe Y, Fujita E, Hayashi YK, Zhu X, Lubbert H, Mezaki Y, Senoo H, Momoi T. Synaptic adhesion molecules in Cadm family at the neuromuscular junction. Cell Biol Int 2013; 37:731-6. [DOI: 10.1002/cbin.10092] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 02/19/2013] [Indexed: 12/15/2022]
Affiliation(s)
- Yuko Tanabe
- Center for Medical Science; International University of Health and Welfare; Kitakanamaru, Otawara, Tochigi; Japan
| | | | - Yukiko K. Hayashi
- Department of Neuromuscular Research; National Institute of Neuroscience, National Center of Neurology and Psychiatry; Ogawa-Higashi, Kodaira, Tokyo; Japan
| | - Xinran Zhu
- Department of Animal Physiology; Ruhr-University Bochum; Bochum; Germany
| | - Hermann Lubbert
- Department of Animal Physiology; Ruhr-University Bochum; Bochum; Germany
| | - Yoshihiro Mezaki
- Department of Cell Biology and Morphology; Akita University Graduate School of Medicine; Hondo, Akita; Japan
| | - Haruki Senoo
- Department of Cell Biology and Morphology; Akita University Graduate School of Medicine; Hondo, Akita; Japan
| | - Takashi Momoi
- Center for Medical Science; International University of Health and Welfare; Kitakanamaru, Otawara, Tochigi; Japan
| |
Collapse
|
28
|
Abstract
Adult skeletal muscle in mammals is a stable tissue under normal circumstances but has remarkable ability to repair after injury. Skeletal muscle regeneration is a highly orchestrated process involving the activation of various cellular and molecular responses. As skeletal muscle stem cells, satellite cells play an indispensible role in this process. The self-renewing proliferation of satellite cells not only maintains the stem cell population but also provides numerous myogenic cells, which proliferate, differentiate, fuse, and lead to new myofiber formation and reconstitution of a functional contractile apparatus. The complex behavior of satellite cells during skeletal muscle regeneration is tightly regulated through the dynamic interplay between intrinsic factors within satellite cells and extrinsic factors constituting the muscle stem cell niche/microenvironment. For the last half century, the advance of molecular biology, cell biology, and genetics has greatly improved our understanding of skeletal muscle biology. Here, we review some recent advances, with focuses on functions of satellite cells and their niche during the process of skeletal muscle regeneration.
Collapse
Affiliation(s)
- Hang Yin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
29
|
Bröhl D, Vasyutina E, Czajkowski M, Griger J, Rassek C, Rahn HP, Purfürst B, Wende H, Birchmeier C. Colonization of the Satellite Cell Niche by Skeletal Muscle Progenitor Cells Depends on Notch Signals. Dev Cell 2012; 23:469-81. [DOI: 10.1016/j.devcel.2012.07.014] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 06/19/2012] [Accepted: 07/17/2012] [Indexed: 10/28/2022]
|
30
|
Jensen JH, Conley LN, Hedegaard J, Nielsen M, Young JF, Oksbjerg N, Hornshøj H, Bendixen C, Thomsen B. Gene expression profiling of porcine skeletal muscle in the early recovery phase following acute physical activity. Exp Physiol 2012; 97:833-48. [DOI: 10.1113/expphysiol.2011.063727] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
31
|
Mokalled MH, Johnson AN, Creemers EE, Olson EN. MASTR directs MyoD-dependent satellite cell differentiation during skeletal muscle regeneration. Genes Dev 2012; 26:190-202. [PMID: 22279050 DOI: 10.1101/gad.179663.111] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In response to skeletal muscle injury, satellite cells, which function as a myogenic stem cell population, become activated, expand through proliferation, and ultimately fuse with each other and with damaged myofibers to promote muscle regeneration. Here, we show that members of the Myocardin family of transcriptional coactivators, MASTR and MRTF-A, are up-regulated in satellite cells in response to skeletal muscle injury and muscular dystrophy. Global and satellite cell-specific deletion of MASTR in mice impairs skeletal muscle regeneration. This impairment is substantially greater when MRTF-A is also deleted and is due to aberrant differentiation and excessive proliferation of satellite cells. These abnormalities mimic those associated with genetic deletion of MyoD, a master regulator of myogenesis, which is down-regulated in the absence of MASTR and MRTF-A. Consistent with an essential role of MASTR in transcriptional regulation of MyoD expression, MASTR activates a muscle-specific postnatal MyoD enhancer through associations with MEF2 and members of the Myocardin family. Our results provide new insights into the genetic circuitry of muscle regeneration and identify MASTR as a central regulator of this process.
Collapse
Affiliation(s)
- Mayssa H Mokalled
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, TX 75390, USA
| | | | | | | |
Collapse
|
32
|
Boyden SE, Mahoney LJ, Kawahara G, Myers JA, Mitsuhashi S, Estrella EA, Duncan AR, Dey F, DeChene ET, Blasko-Goehringer JM, Bönnemann CG, Darras BT, Mendell JR, Lidov HGW, Nishino I, Beggs AH, Kunkel LM, Kang PB. Mutations in the satellite cell gene MEGF10 cause a recessive congenital myopathy with minicores. Neurogenetics 2012; 13:115-24. [PMID: 22371254 PMCID: PMC3332380 DOI: 10.1007/s10048-012-0315-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 01/25/2012] [Indexed: 02/04/2023]
Abstract
We ascertained a nuclear family in which three of four siblings were affected with an unclassified autosomal recessive myopathy characterized by severe weakness, respiratory impairment, scoliosis, joint contractures, and an unusual combination of dystrophic and myopathic features on muscle biopsy. Whole genome sequence from one affected subject was filtered using linkage data and variant databases. A single gene, MEGF10, contained nonsynonymous mutations that co-segregated with the phenotype. Affected subjects were compound heterozygous for missense mutations c.976T > C (p.C326R) and c.2320T > C (p.C774R). Screening the MEGF10 open reading frame in 190 patients with genetically unexplained myopathies revealed a heterozygous mutation, c.211C > T (p.R71W), in one additional subject with a similar clinical and histological presentation as the discovery family. All three mutations were absent from at least 645 genotyped unaffected control subjects. MEGF10 contains 17 atypical epidermal growth factor-like domains, each of which contains eight cysteine residues that likely form disulfide bonds. Both the p.C326R and p.C774R mutations alter one of these residues, which are completely conserved in vertebrates. Previous work showed that murine Megf10 is required for preserving the undifferentiated, proliferative potential of satellite cells, myogenic precursors that regenerate skeletal muscle in response to injury or disease. Here, knockdown of megf10 in zebrafish by four different morpholinos resulted in abnormal phenotypes including unhatched eggs, curved tails, impaired motility, and disorganized muscle tissue, corroborating the pathogenicity of the human mutations. Our data establish the importance of MEGF10 in human skeletal muscle and suggest satellite cell dysfunction as a novel myopathic mechanism.
Collapse
Affiliation(s)
- Steven E. Boyden
- Division of Genetics, Program in Genomics, and The Manton Center for Orphan Disease Research, Children’s Hospital Boston, Boston, MA USA
- Department of Genetics, Harvard Medical School, Boston, MA USA
| | - Lane J. Mahoney
- Division of Genetics, Program in Genomics, and The Manton Center for Orphan Disease Research, Children’s Hospital Boston, Boston, MA USA
| | - Genri Kawahara
- Division of Genetics, Program in Genomics, and The Manton Center for Orphan Disease Research, Children’s Hospital Boston, Boston, MA USA
| | - Jennifer A. Myers
- Division of Genetics, Program in Genomics, and The Manton Center for Orphan Disease Research, Children’s Hospital Boston, Boston, MA USA
| | - Satomi Mitsuhashi
- Division of Genetics, Program in Genomics, and The Manton Center for Orphan Disease Research, Children’s Hospital Boston, Boston, MA USA
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Elicia A. Estrella
- Division of Genetics, Program in Genomics, and The Manton Center for Orphan Disease Research, Children’s Hospital Boston, Boston, MA USA
| | - Anna R. Duncan
- Division of Genetics, Program in Genomics, and The Manton Center for Orphan Disease Research, Children’s Hospital Boston, Boston, MA USA
| | - Friederike Dey
- Division of Genetics, Program in Genomics, and The Manton Center for Orphan Disease Research, Children’s Hospital Boston, Boston, MA USA
| | - Elizabeth T. DeChene
- Division of Genetics, Program in Genomics, and The Manton Center for Orphan Disease Research, Children’s Hospital Boston, Boston, MA USA
| | - Jessica M. Blasko-Goehringer
- Division of Genetics, Program in Genomics, and The Manton Center for Orphan Disease Research, Children’s Hospital Boston, Boston, MA USA
| | - Carsten G. Bönnemann
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD USA
| | - Basil T. Darras
- Department of Neurology, Children’s Hospital Boston and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 USA
| | - Jerry R. Mendell
- Center for Gene Therapy Research Institute, Nationwide Children’s Hospital, Columbus, OH USA
| | - Hart G. W. Lidov
- Division of Genetics, Program in Genomics, and The Manton Center for Orphan Disease Research, Children’s Hospital Boston, Boston, MA USA
- Department of Pathology, Children’s Hospital Boston and Harvard Medical School, Boston, MA USA
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Alan H. Beggs
- Division of Genetics, Program in Genomics, and The Manton Center for Orphan Disease Research, Children’s Hospital Boston, Boston, MA USA
- Department of Pediatrics, Harvard Medical School, Boston, MA USA
| | - Louis M. Kunkel
- Division of Genetics, Program in Genomics, and The Manton Center for Orphan Disease Research, Children’s Hospital Boston, Boston, MA USA
- Department of Genetics, Harvard Medical School, Boston, MA USA
- Department of Pediatrics, Harvard Medical School, Boston, MA USA
| | - Peter B. Kang
- Division of Genetics, Program in Genomics, and The Manton Center for Orphan Disease Research, Children’s Hospital Boston, Boston, MA USA
- Department of Neurology, Children’s Hospital Boston and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 USA
| |
Collapse
|
33
|
Liadaki K, Casar JC, Wessen M, Luth ES, Jun S, Gussoni E, Kunkel LM. β4 integrin marks interstitial myogenic progenitor cells in adult murine skeletal muscle. J Histochem Cytochem 2012; 60:31-44. [PMID: 22205679 DOI: 10.1369/0022155411428991] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Skeletal muscle growth and its regeneration following injury rely on myogenic progenitor cells, a heterogeneous population that includes the satellite cells and other interstitial progenitors. The present study demonstrates that surface expression of β4 integrin marks a population of vessel-associated interstitial muscle progenitor cells. Muscle β4 integrin-positive cells do not express myogenic markers upon isolation. However, they are capable of undergoing myogenic specification in vitro and in vivo: β4 integrin cells differentiate into multinucleated myotubes in culture dishes and contribute to muscle regeneration upon delivery into diseased mice. Subfractionation of β4 integrin-expressing cells based on CD31 expression does not further enrich for myogenic precursors. These findings support the expression of β4 integrin in interstitial, vessel-associated cells with myogenic activity within adult skeletal muscle.
Collapse
Affiliation(s)
- Kalliopi Liadaki
- Program in Genomics, Division of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Xiong WM, Huang JH, Xie L, Qiao Y, Lu XM, Peng JC, Hu JJ. Overexpression of MyoD Attenuates Denervated Rat Skeletal Muscle Atrophy and Dysfunction. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/nm.2012.34048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Alexander MS, Casar JC, Motohashi N, Myers JA, Eisenberg I, Gonzalez RT, Estrella EA, Kang PB, Kawahara G, Kunkel LM. Regulation of DMD pathology by an ankyrin-encoded miRNA. Skelet Muscle 2011; 1:27. [PMID: 21824387 PMCID: PMC3188430 DOI: 10.1186/2044-5040-1-27] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 08/08/2011] [Indexed: 11/17/2022] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is an X-linked myopathy resulting from the production of a nonfunctional dystrophin protein. MicroRNA (miRNA) are small 21- to 24-nucleotide RNA that can regulate both individual genes and entire cell signaling pathways. Previously, we identified several mRNA, both muscle-enriched and inflammation-induced, that are dysregulated in the skeletal muscles of DMD patients. One particularly muscle-enriched miRNA, miR-486, is significantly downregulated in dystrophin-deficient mouse and human skeletal muscles. miR-486 is embedded within the ANKYRIN1(ANK1) gene locus, which is transcribed as either a long (erythroid-enriched) or a short (heart muscle- and skeletal muscle-enriched) isoform, depending on the cell and tissue types. Results Inhibition of miR-486 in normal muscle myoblasts results in inhibited migration and failure to repair a wound in primary myoblast cell cultures. Conversely, overexpression of miR-486 in primary myoblast cell cultures results in increased proliferation with no changes in cellular apoptosis. Using bioinformatics and miRNA reporter assays, we have identified platelet-derived growth factor receptor β, along with several other downstream targets of the phosphatase and tensin homolog deleted on chromosome 10/AKT (PTEN/AKT) pathway, as being modulated by miR-486. The generation of muscle-specific transgenic mice that overexpress miR-486 revealed that miR-486 alters the cell cycle kinetics of regenerated myofibers in vivo, as these mice had impaired muscle regeneration. Conclusions These studies demonstrate a link for miR-486 as a regulator of the PTEN/AKT pathway in dystrophin-deficient muscle and an important factor in the regulation of DMD muscle pathology.
Collapse
Affiliation(s)
- Matthew S Alexander
- Program in Genomics and Division of Genetics, Children's Hospital Boston, 3 Blackfan Circle, CLS15024, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Micheli L, Leonardi L, Conti F, Maresca G, Colazingari S, Mattei E, Lira SA, Farioli-Vecchioli S, Caruso M, Tirone F. PC4/Tis7/IFRD1 stimulates skeletal muscle regeneration and is involved in myoblast differentiation as a regulator of MyoD and NF-kappaB. J Biol Chem 2011; 286:5691-707. [PMID: 21127072 PMCID: PMC3037682 DOI: 10.1074/jbc.m110.162842] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 11/04/2010] [Indexed: 12/16/2022] Open
Abstract
In skeletal muscle cells, the PC4 (Tis7/Ifrd1) protein is known to function as a coactivator of MyoD by promoting the transcriptional activity of myocyte enhancer factor 2C (MEF2C). In this study, we show that up-regulation of PC4 in vivo in adult muscle significantly potentiates injury-induced regeneration by enhancing myogenesis. Conversely, we observe that PC4 silencing in myoblasts causes delayed exit from the cell cycle, accompanied by delayed differentiation, and we show that such an effect is MyoD-dependent. We provide evidence revealing a novel mechanism underlying the promyogenic actions of PC4, by which PC4 functions as a negative regulator of NF-κB, known to inhibit MyoD expression post-transcriptionally. In fact, up-regulation of PC4 in primary myoblasts induces the deacetylation, and hence the inactivation and nuclear export of NF-κB p65, in concomitance with induction of MyoD expression. On the contrary, PC4 silencing in myoblasts induces the acetylation and nuclear import of p65, in parallel with a decrease of MyoD levels. We also observe that PC4 potentiates the inhibition of NF-κB transcriptional activity mediated by histone deacetylases and that PC4 is able to form trimolecular complexes with p65 and HDAC3. This suggests that PC4 stimulates deacetylation of p65 by favoring the recruitment of HDAC3 to p65. As a whole, these results indicate that PC4 plays a role in muscle differentiation by controlling the MyoD pathway through multiple mechanisms, and as such, it positively regulates regenerative myogenesis.
Collapse
Affiliation(s)
- Laura Micheli
- From the Istituto di Neurobiologia e Medicina Molecolare, Consiglio Nazionale delle Ricerche, Fondazione S. Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy and
| | - Luca Leonardi
- From the Istituto di Neurobiologia e Medicina Molecolare, Consiglio Nazionale delle Ricerche, Fondazione S. Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy and
| | - Filippo Conti
- From the Istituto di Neurobiologia e Medicina Molecolare, Consiglio Nazionale delle Ricerche, Fondazione S. Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy and
| | - Giovanna Maresca
- From the Istituto di Neurobiologia e Medicina Molecolare, Consiglio Nazionale delle Ricerche, Fondazione S. Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy and
| | - Sandra Colazingari
- From the Istituto di Neurobiologia e Medicina Molecolare, Consiglio Nazionale delle Ricerche, Fondazione S. Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy and
| | - Elisabetta Mattei
- From the Istituto di Neurobiologia e Medicina Molecolare, Consiglio Nazionale delle Ricerche, Fondazione S. Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy and
| | - Sergio A. Lira
- the Immunology Institute, Mount Sinai School of Medicine, New York, New York 10029
| | - Stefano Farioli-Vecchioli
- From the Istituto di Neurobiologia e Medicina Molecolare, Consiglio Nazionale delle Ricerche, Fondazione S. Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy and
| | - Maurizia Caruso
- From the Istituto di Neurobiologia e Medicina Molecolare, Consiglio Nazionale delle Ricerche, Fondazione S. Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy and
| | - Felice Tirone
- From the Istituto di Neurobiologia e Medicina Molecolare, Consiglio Nazionale delle Ricerche, Fondazione S. Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy and
| |
Collapse
|
37
|
Lui JC, Chen W, Barnes KM, Baron J. Changes in gene expression associated with aging commonly originate during juvenile growth. Mech Ageing Dev 2010; 131:641-9. [PMID: 20816690 PMCID: PMC2956763 DOI: 10.1016/j.mad.2010.08.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 07/22/2010] [Accepted: 08/25/2010] [Indexed: 01/06/2023]
Abstract
In mammals, proliferation is rapid in many tissues during early postnatal life, causing rapid somatic growth. This robust proliferation is then suppressed as the animal approaches adult size, bringing many tissues to a quiescent state where proliferation occurs only as needed to replace dying cells. Recent evidence suggests that the mechanism responsible for this decline in proliferation involves a multi-organ genetic program. We hypothesized that this genetic program continues to progress into later adult life, eventually suppressing proliferation to levels below those needed for tissue renewal, thus contributing to aging. We therefore used expression microarray to compare the temporal changes in gene expression that occur in adult mouse organs during aging to those occurring as juvenile proliferation slows. We found that many of the changes in gene expression that occur during the aging process originate during the period of juvenile growth deceleration. Bioinformatic analyses of the genes that show persistent decline in expression throughout postnatal life indicated that cell-cycle-related genes are strongly over-represented. Thus, the findings support the hypothesis that the genetic program that slows juvenile growth to limit body size persists into adulthood and thus may eventually hamper tissue maintenance and repair, contributing to the aging process.
Collapse
Affiliation(s)
- Julian C Lui
- Developmental Endocrinology Branch, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1103, USA.
| | | | | | | |
Collapse
|
38
|
Biressi S, Rando TA. Heterogeneity in the muscle satellite cell population. Semin Cell Dev Biol 2010; 21:845-54. [PMID: 20849971 DOI: 10.1016/j.semcdb.2010.09.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 08/11/2010] [Accepted: 09/06/2010] [Indexed: 02/07/2023]
Abstract
Satellite cells, the adult stem cells responsible for skeletal muscle regeneration, are defined by their location between the basal lamina and the fiber sarcolemma. Increasing evidence suggests that satellite cells represent a heterogeneous population of cells with distinct embryological origin and multiple levels of biochemical and functional diversity. This review focuses on the rich diversity of the satellite cell population based on studies across species. Ultimately, a more complete characterization of the heterogeneity of satellite cells will be essential to understand the functional significance in terms of muscle growth, homeostasis, tissue repair, and aging.
Collapse
Affiliation(s)
- Stefano Biressi
- Department of Neurology and Neurological Sciences, Stanford University, School of Medicine, Stanford, CA 94305-5235, USA
| | | |
Collapse
|
39
|
Tee JM, Peppelenbosch MP. Anchoring skeletal muscle development and disease: the role of ankyrin repeat domain containing proteins in muscle physiology. Crit Rev Biochem Mol Biol 2010; 45:318-30. [PMID: 20515317 PMCID: PMC2942773 DOI: 10.3109/10409238.2010.488217] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The ankyrin repeat is a protein module with high affinity for other ankyrin repeats based on strong Van der Waals forces. The resulting dimerization is unusually resistant to both mechanical forces and alkanization, making this module exceedingly useful for meeting the extraordinary demands of muscle physiology. Many aspects of muscle function are controlled by the superfamily ankyrin repeat domain containing proteins, including structural fixation of the contractile apparatus to the muscle membrane by ankyrins, the archetypical member of the family. Additionally, other ankyrin repeat domain containing proteins critically control the various differentiation steps during muscle development, with Notch and developmental stage-specific expression of the members of the Ankyrin repeat and SOCS box (ASB) containing family of proteins controlling compartment size and guiding the various steps of muscle specification. Also, adaptive responses in fully formed muscle require ankyrin repeat containing proteins, with Myotrophin/V-1 ankyrin repeat containing proteins controlling the induction of hypertrophic responses following excessive mechanical load, and muscle ankyrin repeat proteins (MARPs) acting as protective mechanisms of last resort following extreme demands on muscle tissue. Knowledge on mechanisms governing the ordered expression of the various members of superfamily of ankyrin repeat domain containing proteins may prove exceedingly useful for developing novel rational therapy for cardiac disease and muscle dystrophies.
Collapse
Affiliation(s)
- Jin-Ming Tee
- Hubrecht Institute for Developmental Biology and Stem Cell Research-University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | | |
Collapse
|
40
|
Stuelsatz P, Pouzoulet F, Lamarre Y, Dargelos E, Poussard S, Leibovitch S, Cottin P, Veschambre P. Down-regulation of MyoD by calpain 3 promotes generation of reserve cells in C2C12 myoblasts. J Biol Chem 2010; 285:12670-83. [PMID: 20139084 PMCID: PMC2857084 DOI: 10.1074/jbc.m109.063966] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 01/25/2010] [Indexed: 01/24/2023] Open
Abstract
Calpain 3 is a calcium-dependent cysteine protease that is primarily expressed in skeletal muscle and is implicated in limb girdle muscular dystrophy type 2A. To date, its best characterized function is located within the sarcomere, but this protease is found in other cellular compartments, which suggests that it exerts multiple roles. Here, we present evidence that calpain 3 is involved in the myogenic differentiation process. In the course of in vitro culture of myoblasts to fully differentiated myotubes, a population of quiescent undifferentiated "reserve cells" are maintained. These reserve cells are closely related to satellite cells responsible for adult muscle regeneration. In the present work, we observe that reserve cells express higher levels of endogenous Capn3 mRNA than proliferating myoblasts. We show that calpain 3 participates in the establishment of the pool of reserve cells by decreasing the transcriptional activity of the key myogenic regulator MyoD via proteolysis independently of the ubiquitin-proteasome degradation pathway. Our results identify calpain 3 as a potential new player in the muscular regeneration process by promoting renewal of the satellite cell compartment.
Collapse
Affiliation(s)
- Pascal Stuelsatz
- From the
Université Bordeaux 1, Unité Protéolyse Croissance et Développement Musculaire, Institut National de la Recherche Agronomique (INRA), USC 2009, Avenue des Facultés, F-33405 Talence, France and
| | - Frédéric Pouzoulet
- From the
Université Bordeaux 1, Unité Protéolyse Croissance et Développement Musculaire, Institut National de la Recherche Agronomique (INRA), USC 2009, Avenue des Facultés, F-33405 Talence, France and
| | - Yann Lamarre
- From the
Université Bordeaux 1, Unité Protéolyse Croissance et Développement Musculaire, Institut National de la Recherche Agronomique (INRA), USC 2009, Avenue des Facultés, F-33405 Talence, France and
| | - Elise Dargelos
- From the
Université Bordeaux 1, Unité Protéolyse Croissance et Développement Musculaire, Institut National de la Recherche Agronomique (INRA), USC 2009, Avenue des Facultés, F-33405 Talence, France and
| | - Sylvie Poussard
- From the
Université Bordeaux 1, Unité Protéolyse Croissance et Développement Musculaire, Institut National de la Recherche Agronomique (INRA), USC 2009, Avenue des Facultés, F-33405 Talence, France and
| | - Serge Leibovitch
- the
Laboratoire de Génomique Fonctionnelle et Myogenèse, UMR866 Différenciation Cellulaire et Croissance, INRA UM II, Campus INRA/SupAgro, F-34060 Montpellier, France
| | - Patrick Cottin
- From the
Université Bordeaux 1, Unité Protéolyse Croissance et Développement Musculaire, Institut National de la Recherche Agronomique (INRA), USC 2009, Avenue des Facultés, F-33405 Talence, France and
| | - Philippe Veschambre
- From the
Université Bordeaux 1, Unité Protéolyse Croissance et Développement Musculaire, Institut National de la Recherche Agronomique (INRA), USC 2009, Avenue des Facultés, F-33405 Talence, France and
| |
Collapse
|
41
|
Kim SS, Kim JR, Moon JK, Choi BH, Kim TH, Kim KS, Kim JJ, Lee CK. Transcriptional alteration of p53 related processes as a key factor for skeletal muscle characteristics in Sus scrofa. Mol Cells 2009; 28:565-73. [PMID: 19937136 DOI: 10.1007/s10059-009-0159-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 09/22/2009] [Indexed: 12/14/2022] Open
Abstract
The pig could be a useful model to characterize molecular aspects determining several delicate phenotypes because they have been bred for those characteristics. The Korean native pig (KNP) is a regional breed in Korea that was characterized by relatively high intramuscular fat content and reddish meat color compared to other western breeds such as Yorkshire (YS). YS grew faster and contained more lean muscle than KNP. We compared the KNP to Yorksire to find molecular clues determining muscle characteristics. The comparison of skeletal gene expression profiles between these two breeds showed molecular differences in muscle. We found 82 differentially expressed genes (DEGs) defined by fold change (more than 1.5 fold difference) and statistical significance (within 5% of false discovery rate). Functional analyses of these DEGs indicated up-regulation of most genes involved in cell cycle arrest, down-regulation of most genes involved in cellular differentiation and its inhibition, down-regulation of most genes encoding component of muscular-structural system, and up-regulation of most genes involved in diverse metabolism in KNP. Especially, DEGs in above-mentioned categories included a large number of genes encoding proteins directly or indirectly involved in p53 pathway. Our results indicated a possible role of p53 to determine muscle characteristics between these two breeds.
Collapse
Affiliation(s)
- Seung-Soo Kim
- College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Pallafacchina G, François S, Regnault B, Czarny B, Dive V, Cumano A, Montarras D, Buckingham M. An adult tissue-specific stem cell in its niche: a gene profiling analysis of in vivo quiescent and activated muscle satellite cells. Stem Cell Res 2009; 4:77-91. [PMID: 19962952 DOI: 10.1016/j.scr.2009.10.003] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 10/21/2009] [Accepted: 10/21/2009] [Indexed: 01/15/2023] Open
Abstract
The satellite cell of skeletal muscle provides a paradigm for quiescent and activated tissue stem cell states. We have carried out transcriptome analyses on satellite cells purified by flow cytometry from Pax3(GFP/+) mice. We compared samples from adult skeletal muscles where satellite cells are mainly quiescent, with samples from growing muscles or regenerating (mdx) muscles, where they are activated. Analysis of regulation that is shared by both activated states avoids other effects due to immature or pathological conditions. This in vivo profile differs from that of previously analyzed satellite cells activated after cell culture. It reveals how the satellite cell protects itself from damage and maintains quiescence, while being primed for activation on receipt of the appropriate signal. This is illustrated by manipulation of the corepressor Dach1, and by the demonstration that quiescent satellite cells are better protected from oxidative stress than those from mdx or 1-week-old muscles. The quiescent versus in vivo activated comparison also gives new insights into how the satellite cell controls its niche on the muscle fiber through cell adhesion and matrix remodeling. The latter also potentiates growth factor activity through proteoglycan modification. Dismantling the extracellular matrix is important for satellite cell activation when the expression of proteinases is up-regulated, whereas transcripts for their inhibitors are high in quiescent cells. In keeping with this, we demonstrate that metalloproteinase function is required for efficient regeneration in vivo.
Collapse
Affiliation(s)
- Giorgia Pallafacchina
- Molecular Genetics of Development Unit, Department of Developmental Biology, URA CNRS 2578, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Moresi V, Pristerà A, Scicchitano BM, Molinaro M, Teodori L, Sassoon D, Adamo S, Coletti D. Tumor necrosis factor-alpha inhibition of skeletal muscle regeneration is mediated by a caspase-dependent stem cell response. Stem Cells 2008; 26:997-1008. [PMID: 18258721 DOI: 10.1634/stemcells.2007-0493] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Skeletal muscle is susceptible to injury following trauma, neurological dysfunction, and genetic diseases. Skeletal muscle homeostasis is maintained by a pronounced regenerative capacity, which includes the recruitment of stem cells. Chronic exposure to tumor necrosis factor-alpha (TNF) triggers a muscle wasting reminiscent of cachexia. To better understand the effects of TNF upon muscle homeostasis and stem cells, we exposed injured muscle to TNF at specific time points during regeneration. TNF exposure delayed the appearance of regenerating fibers, without exacerbating fiber death following the initial trauma. We observed modest cellular caspase activation during regeneration, which was markedly increased in response to TNF exposure concomitant with an inhibition in regeneration. Caspase activation did not lead to apoptosis and did not involve caspase-3. Inhibition of caspase activity improved muscle regeneration in either the absence or the presence of TNF, revealing a nonapoptotic role for this pathway in the myogenic program. Caspase activity was localized to the interstitial cells, which also express Sca-1, CD34, and PW1. Perturbation of PW1 activity blocked caspase activation and improved regeneration. The restricted localization of Sca-1+, CD34+, PW1+ cells to a subset of interstitial cells with caspase activity reveals a critical regulatory role for this population during myogenesis, which may directly contribute to resident muscle stem cells or indirectly regulate stem cells through cell-cell interactions.
Collapse
Affiliation(s)
- Viviana Moresi
- Department of Histology and Medical Embryology, Sapienza University, Via A. Scarpa 14, 00161 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
44
|
The emerging biology of satellite cells and their therapeutic potential. Trends Mol Med 2008; 14:82-91. [PMID: 18218339 DOI: 10.1016/j.molmed.2007.12.004] [Citation(s) in RCA: 250] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 12/03/2007] [Accepted: 12/03/2007] [Indexed: 12/12/2022]
Abstract
Adult skeletal muscle contains an abundant and highly accessible population of muscle stem and progenitor cells called satellite cells. The primary function of satellite cells is to mediate postnatal muscle growth and repair. Owing to their availability and remarkable capacity to regenerate damaged muscle, satellite cells and their descendent myoblasts have been considered as powerful candidates for cell-based therapies to treat muscular dystrophies and other neuromuscular diseases. However, regenerative medicine in muscle repair requires a thorough understanding of, and the ability to manipulate, the molecular mechanisms that control the proliferation, self-renewal and myogenic differentiation of satellite cells. Here, we review the latest advances in our current understanding of the quiescence, activation, proliferation and self-renewal of satellite cells and the challenges in the development of satellite cell-based regenerative medicine.
Collapse
|
45
|
Holterman CE, Le Grand F, Kuang S, Seale P, Rudnicki MA. Megf10 regulates the progression of the satellite cell myogenic program. ACTA ACUST UNITED AC 2007; 179:911-22. [PMID: 18056409 PMCID: PMC2099186 DOI: 10.1083/jcb.200709083] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We identify here the multiple epidermal growth factor repeat transmembrane protein Megf10 as a quiescent satellite cell marker that is also expressed in skeletal myoblasts but not in differentiated myofibers. Retroviral expression of Megf10 in myoblasts results in enhanced proliferation and inhibited differentiation. Infected myoblasts that fail to differentiate undergo cell cycle arrest and can reenter the cell cycle upon serum restimulation. Moreover, experimental modulations of Megf10 alter the expression levels of Pax7 and the myogenic regulatory factors. In contrast, Megf10 silencing in activated satellite cells on individual fibers or in cultured myoblasts results in a dramatic reduction in the cell number, caused by myogenin activation and precocious differentiation as well as a depletion of the self-renewing Pax7+/MyoD− population. Additionally, Megf10 silencing in MyoD−/− myoblasts results in down-regulation of Notch signaling components. We conclude that Megf10 represents a novel transmembrane protein that impinges on Notch signaling to regulate the satellite cell population balance between proliferation and differentiation.
Collapse
Affiliation(s)
- Chet E Holterman
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada K1N 6N5
| | | | | | | | | |
Collapse
|
46
|
Increased survival of muscle stem cells lacking the MyoD gene after transplantation into regenerating skeletal muscle. Proc Natl Acad Sci U S A 2007; 104:16552-7. [PMID: 17940048 DOI: 10.1073/pnas.0708145104] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
MyoD is a myogenic master transcription factor that plays an essential role in muscle satellite cell (muscle stem cell) differentiation. To further investigate the function of MyoD in satellite cells, we examined the transplantation of satellite cell-derived myoblasts lacking the MyoD gene into regenerating skeletal muscle. After injection into injured muscle, MyoD(-/-) myoblasts engrafted with significantly higher efficiency compared with wild-type myoblasts. In addition, MyoD(-/-) myoblast-derived satellite cells were detected underneath the basal lamina of muscle fibers, indicating the self-renewal property of MyoD(-/-) myoblasts. To gain insights into MyoD gene deficiency in muscle stem cells, we investigated the pathways regulated by MyoD by GeneChip microarray analysis of gene expression in wild-type and MyoD(-/-) myoblasts. MyoD deficiency led to down-regulation of many muscle-specific genes and up-regulation of some stem cell markers. Importantly, in MyoD(-/-) myoblasts, many antiapoptotic genes were up-regulated, whereas genes known to execute apoptosis were down-regulated. Consistent with these gene expression profiles, MyoD(-/-) myoblasts were revealed to possess remarkable resistance to apoptosis and increased survival compared with wild-type myoblasts. Forced expression of MyoD or the proapoptotic protein Puma increased cell death in MyoD(-/-) myoblasts. Therefore, MyoD(-/-) myoblasts may preserve stem cell characteristics, including their resistance to apoptosis, expression of stem cell markers, and efficient engraftment and contribution to satellite cells after transplantation. Furthermore, our data offer evidence for improved therapeutic stem cell transplantation for muscular dystrophy, in which suppression of MyoD in myogenic progenitors would be beneficial to therapy by providing a selective advantage for the expansion of stem cells.
Collapse
|
47
|
Invernici G, Emanueli C, Madeddu P, Cristini S, Gadau S, Benetti A, Ciusani E, Stassi G, Siragusa M, Nicosia R, Peschle C, Fascio U, Colombo A, Rizzuti T, Parati E, Alessandri G. Human fetal aorta contains vascular progenitor cells capable of inducing vasculogenesis, angiogenesis, and myogenesis in vitro and in a murine model of peripheral ischemia. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:1879-92. [PMID: 17525256 PMCID: PMC1899439 DOI: 10.2353/ajpath.2007.060646] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/15/2007] [Indexed: 12/19/2022]
Abstract
Vasculogenesis, the formation of blood vessels in embryonic or fetal tissue mediated by immature vascular cells (ie, angioblasts), is poorly understood. We report the identification of a population of vascular progenitor cells (hVPCs) in the human fetal aorta composed of undifferentiated mesenchymal cells that coexpress endothelial and myogenic markers. Under culture conditions that promoted cell differentiation, hVPCs gave rise to a mixed population of mature endothelial and mural cells when progenitor cells were stimulated with vascular endothelial growth factor-A or platelet-derived growth factor-betabeta. hVPCs grew as nonadherent cells and, when embedded in a three-dimensional collagen gel, reorganized into cohesive cellular cords that resembled mature vascular structures. hVPC-conditioned medium contained angiogenic substances (vascular endothelial growth factor-A and angiopoietin-2) and strongly stimulated the proliferation of endothelial cells. We also demonstrate the therapeutic efficacy of a small number of hVPCs transplanted into ischemic limb muscle of immunodeficient mice. hVPCs markedly improved neovascularization and inhibited the loss of endogenous endothelial cells and myocytes, thus ameliorating the clinical outcome from ischemia. We conclude that fetal aorta represents an important source for the investigation of the phenotypic and functional features of human vascular progenitor cells.
Collapse
Affiliation(s)
- Gloria Invernici
- Neurobiology and Neuroregenerative Therapies Unit, Carlo Besta Neurological Institute, Milan 20133, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Péault B, Rudnicki M, Torrente Y, Cossu G, Tremblay JP, Partridge T, Gussoni E, Kunkel LM, Huard J. Stem and progenitor cells in skeletal muscle development, maintenance, and therapy. Mol Ther 2007; 15:867-77. [PMID: 17387336 DOI: 10.1038/mt.sj.6300145] [Citation(s) in RCA: 413] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Satellite cells are dormant progenitors located at the periphery of skeletal myofibers that can be triggered to proliferate for both self-renewal and differentiation into myogenic cells. In addition to anatomic location, satellite cells are typified by markers such as M-cadherin, Pax7, Myf5, and neural cell adhesion molecule-1. The Pax3 and Pax7 transcription factors play essential roles in the early specification, migration, and myogenic differentiation of satellite cells. In addition to muscle-committed satellite cells, multi-lineage stem cells encountered in embryonic, as well as adult, tissues exhibit myogenic potential in experimental conditions. These multi-lineage stem cells include side-population cells, muscle-derived stem cells (MDSCs), and mesoangioblasts. Although the ontogenic derivation, identity, and localization of these non-conventional myogenic cells remain elusive, recent results suggest their ultimate origin in blood vessel walls. Indeed, purified pericytes and endothelium-related cells demonstrate high myogenic potential in culture and in vivo. Allogeneic myoblasts transplanted into Duchenne muscular dystrophy (DMD) patients have been, in early trials, largely inefficient owing to immune rejection, rapid death, and limited intramuscular migration--all obstacles that are now being alleviated, at least in part, by more efficient immunosuppression and escalated cell doses. As an alternative to myoblast transplantation, stem cells such as mesoangioblasts and CD133+ progenitors administered through blood circulation have recently shown great potential to regenerate dystrophic muscle.
Collapse
Affiliation(s)
- Bruno Péault
- Stem Cell Research Center, Children's Hospital of Pittsburgh, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Schwarzkopf M, Coletti D, Sassoon D, Marazzi G. Muscle cachexia is regulated by a p53-PW1/Peg3-dependent pathway. Genes Dev 2007; 20:3440-52. [PMID: 17182869 PMCID: PMC1698450 DOI: 10.1101/gad.412606] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Muscle wasting (cachexia) is an incurable complication associated with chronic infection and cancers that leads to an overall poor prognosis for recovery. Tumor necrosis factor-alpha (TNFalpha) is a key inflammatory cytokine associated with cachexia. TNFalpha inhibits myogenic differentiation and skeletal muscle regeneration through downstream effectors of the p53 cell death pathway including PW1/Peg3, bax, and caspases. We report that p53 is required for the TNFalpha-mediated inhibition of myogenesis in vitro and contributes to muscle wasting in response to tumor load in vivo. We further demonstrate that PW1 and p53 participate in a positive feedback regulatory loop in vitro. Consistent with this observation, we find that the number of PW1-expressing stem cells in skeletal muscle declines significantly in p53 nullizygous mice. Furthermore, gene transfer of a dominant-negative form of PW1 into muscle tissue in vivo blocks myofiber atrophy in response to tumor load. Taken together, these results show a novel role for p53 in mediating muscle stem cell behavior and muscle atrophy, and point to new targets for the therapeutic treatment of muscle wasting.
Collapse
Affiliation(s)
- Martina Schwarzkopf
- Brookdale Department of Molecular, Cell, and Developmental Biology, Mount Sinai Medical School, New York, New York 10029, USA
| | - Dario Coletti
- Department of Histology and Medical Embryology and Interuniversity Institute of Myology, University of Rome La Sapienza, Rome 00161, Italy
| | - David Sassoon
- Brookdale Department of Molecular, Cell, and Developmental Biology, Mount Sinai Medical School, New York, New York 10029, USA
- Myology Group, Institut national de la santé et de la recherche médicale (INSERM) U787, Paris 75634, France
- Université Pierre et Marie Curie-Paris6, UMR S 787, 75634 Paris, France
- Corresponding author.E-MAIL ; FAX 33-01-53-60-08-02
| | - Giovanna Marazzi
- Brookdale Department of Molecular, Cell, and Developmental Biology, Mount Sinai Medical School, New York, New York 10029, USA
- Myology Group, Institut national de la santé et de la recherche médicale (INSERM) U787, Paris 75634, France
- Université Pierre et Marie Curie-Paris6, UMR S 787, 75634 Paris, France
| |
Collapse
|
50
|
|