1
|
Li Q, Zhang BH, Chen Q, Fu Y, Zuo X, Lu P, Zhang W, Wang B. Pathogenic variants in SHROOM3 associated with hemifacial microsomia. J Hum Genet 2025; 70:189-194. [PMID: 39875538 DOI: 10.1038/s10038-025-01317-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/14/2024] [Accepted: 01/15/2025] [Indexed: 01/30/2025]
Abstract
Hemifacial microsomia (HFM) is a rare congenital disorder that affects facial symmetry, ear development, and other congenital anomalies. However, known causal genes account for only approximately 6% of patients, indicating the need to discover more pathogenic genes. Association tests demonstrated an association between common variants in SHROOM3 and HFM (P = 1.02E-4 for the lead SNP), while gene burden analysis revealed a significant enrichment of rare variants in HFM patients compared to healthy controls (P = 2.78E-5). We then evaluated the expression patterns of SHROOM3 and the consequences of its deleterious variants. Our study identified 7 deleterious variants in SHROOM3 among the 320 Chinese HFM patients and 2 deleterious variants in two HFM trios, respectively, suggesting a model of dominant inheritance with incomplete penetrance. These variants were predicted to significantly impact SHROOM3 function. Furthermore, the gene expression pattern of SHROOM3 in the pharyngeal arches and the presence of facial abnormalities in gene-edited mice suggest that SHROOM3 plays important roles in facial development. Our findings suggest that SHROOM3 is a likely pathogenic gene for HFM.
Collapse
Affiliation(s)
- Qin Li
- Department of Stomatology, Eye&ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Bing-Hua Zhang
- Shanghai Xuhui District Dental Center, Shanghai, 200032, China
| | - Qi Chen
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, China
| | - Yaoyao Fu
- Department of facial plastic and reconstructive surgery, Eye&ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Xiang Zuo
- Department of Stomatology, Eye&ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Peng Lu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, China
| | - Weiwei Zhang
- Department of Stomatology, Eye&ENT Hospital, Fudan University, Shanghai, 200031, China.
| | - Bingqing Wang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, China.
| |
Collapse
|
2
|
Hogan AVC, Cerio DG, Bever GS. Patterns of early embryogenesis and growth in the olfactory system of chick (Gallus gallus domesticus) based on iodine-enhanced micro-computed tomography. Dev Dyn 2025; 254:348-364. [PMID: 39344770 DOI: 10.1002/dvdy.746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND The vertebrate olfactory system entails a complex set of neural/support structures that bridge morphogenetic regions. The developmental mechanisms coordinating this bridge remain unclear, even for model organisms such as chick, Gallus gallus. Here, we combine previous growth data on the chick olfactory apparatus with new samples targeting its early embryogenesis. The purpose is to illuminate how early developmental dynamics integrate with scaling relationships to produce adult form and, potentially, evolutionary patterns. Olfactory structures, including epithelium, turbinate, nerve, and olfactory bulb, are considered in the context of neighboring nasal and brain structures. RESULTS Axonal outgrowth from the olfactory epithelium, which eventually connects receptor neurons with the brain, begins earlier than previously established. This dynamic marks the beginning of a complex pattern of early differential growth wherein the olfactory bulbs scale with positive allometry relative to both brain volume and turbinate area, which in turn scale isometrically with one another. CONCLUSIONS The mechanisms driving observed patterns of organogenesis and growth remain unclear awaiting experimental evidence. We discuss competing hypotheses, including the possibility that broad-based isometry of olfactory components reflects constraints imposed by high levels of functional/structural integration. Such integration would include the frontonasal prominence having a strong influence on telencephalic patterning.
Collapse
Affiliation(s)
- Aneila V C Hogan
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Donald G Cerio
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gabriel S Bever
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Drake PM, Franz‐Odendaal TA. Hydrocortisone treatment as a tool to study conjunctival placode induction. Dev Dyn 2025; 254:74-93. [PMID: 39096180 PMCID: PMC11737293 DOI: 10.1002/dvdy.729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/27/2024] [Accepted: 07/10/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND Conjunctival placodes are a series of placodes that develop into the conjunctival (scleral) papillae and ultimately induce a series of scleral ossicles in the eyes of many vertebrates. This study establishes a hydrocortisone injection procedure (incl. dosage) that consistently inhibits all conjunctival papillae in the embryonic chicken eye. The effects of this hydrocortisone treatment on apoptosis, vasculature, and placode-related gene expression were assessed. RESULTS Hydrocortisone treatment does not increase apoptotic cell death or have a major effect on the ciliary artery or vascular plexus in the eye. β-catenin and Eda expression levels were not significantly altered following hydrocortisone treatment, despite the absence of conjunctival papillae. Notably, Fgf20 expression was significantly reduced following hydrocortisone treatment, and the distribution of β-catenin was altered. CONCLUSIONS Our study showed that conjunctival papillae induction begins as early as HH27.5 (E5.5). Hydrocortisone treatment reduces Fgf20 expression independently of β-catenin and Eda and may instead affect other members of the Wnt/β-catenin or Eda/Edar pathways, or it may affect the ability of morphogens to diffuse through the extracellular matrix. This study contributes to a growing profile of gene expression data during placode development and enhances our understanding of how some vertebrate eyes develop these fascinating bones.
Collapse
Affiliation(s)
- Paige M. Drake
- Department of Medical NeuroscienceDalhousie UniversityHalifaxNova ScotiaCanada
| | | |
Collapse
|
4
|
Hidalgo-Sánchez M, Sánchez-Guardado L, Rodríguez-León J, Francisco-Morcillo J. The role of FGF15/FGF19 in the development of the central nervous system, eyes and inner ears in vertebrates. Tissue Cell 2024; 91:102619. [PMID: 39579736 DOI: 10.1016/j.tice.2024.102619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
Fibroblast growth factor 19 (FGF19), and its rodent ortholog FGF15, is a member of a FGF subfamily directly involved in metabolism, acting in an endocrine way. During embryonic development, FGF15/FGF19 also functions as a paracrine or autocrine factor, regulating key events in a large number of organs. In this sense, the Fgf15/Fgf19 genes control the correct development of the brain, eye, inner ear, heart, pharyngeal pouches, tail bud and limbs, among other organs, as well as muscle growth in adulthood. These growth factors show relevant differences according to molecular structures, signalling pathway and function. Moreover, their expression patterns are highly dynamic at different stages of development, in particular in the central nervous system. The difficulty in understanding the action of these genes increases when comparing their expression patterns and regulatory mechanisms between different groups of vertebrates. The present review will address the expression patterns and functions of the Fgf15/Fgf19 genes at different stages of vertebrate embryonic development, with special attention to the regulation of the early specification, cell differentiation, and morphogenesis of the central nervous system and some sensory organs such as eye and inner ear. The most relevant anatomical aspects related to the structures analysed have also been considered in detail to provide an understandable context for the molecular and cellular studies shown.
Collapse
Affiliation(s)
- Matías Hidalgo-Sánchez
- Área de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz 06071, Spain.
| | - Luis Sánchez-Guardado
- Área de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz 06071, Spain
| | - Joaquín Rodríguez-León
- Área de Anatomía Humana, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz 06071, Spain
| | - Javier Francisco-Morcillo
- Área de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz 06071, Spain
| |
Collapse
|
5
|
Le Ciclé C, Cohen-Tannoudji J, L'Hôte D. Recent Advances in the Understanding of Gonadotrope Lineage Differentiation in the Developing Pituitary. Neuroendocrinology 2024; 115:195-210. [PMID: 39527929 PMCID: PMC11924211 DOI: 10.1159/000542513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The pituitary gland is a vital endocrine organ regulating body homoeostasis through six hormone-secreting cell types. Among these, pituitary gonadotrope cells are essential for reproductive function. Throughout pituitary ontogenesis, gonadotrope cells differentiate in a stepwise process, involving both morphogenic cues and transcription factors, which drives specification of progenitor cells into specialised endocrine cells. It is crucial to understand the mechanisms underlying gonadotrope differentiation, as developmental defects and abnormalities in this process can lead to many reproductive pathologies. SUMMARY This review offers a detailed overview of the latest advances in gonadotrope cell differentiation. We addressed this question with a specific focus on three important aspects of gonadotrope differentiation: the identification of the progenitor population giving rise to gonadotrope cells, the early mechanisms that initiate Nr5a1 expression and thus gonadotrope fate commitment, and finally, the mechanisms driving the formation of physical and functional gonadotrope networks. KEY MESSAGES Overall, this review aimed to provide new insights into three aspects of the gonadotrope differentiation process by reconsidering pioneering studies in the light of data gained from latest technological developments. Firstly, we re-investigated the long debated developmental trajectory of pituitary gonadotrope cells. Secondly, we reported new regulatory mechanisms of Nr5a1 expression, focusing on the involvement of ERα. Finally, we highlighted the molecular and cellular mechanisms driving gonadotrope network formation during embryogenesis, a process that seems essential for regulation of gonadotrope activity. BACKGROUND The pituitary gland is a vital endocrine organ regulating body homoeostasis through six hormone-secreting cell types. Among these, pituitary gonadotrope cells are essential for reproductive function. Throughout pituitary ontogenesis, gonadotrope cells differentiate in a stepwise process, involving both morphogenic cues and transcription factors, which drives specification of progenitor cells into specialised endocrine cells. It is crucial to understand the mechanisms underlying gonadotrope differentiation, as developmental defects and abnormalities in this process can lead to many reproductive pathologies. SUMMARY This review offers a detailed overview of the latest advances in gonadotrope cell differentiation. We addressed this question with a specific focus on three important aspects of gonadotrope differentiation: the identification of the progenitor population giving rise to gonadotrope cells, the early mechanisms that initiate Nr5a1 expression and thus gonadotrope fate commitment, and finally, the mechanisms driving the formation of physical and functional gonadotrope networks. KEY MESSAGES Overall, this review aimed to provide new insights into three aspects of the gonadotrope differentiation process by reconsidering pioneering studies in the light of data gained from latest technological developments. Firstly, we re-investigated the long debated developmental trajectory of pituitary gonadotrope cells. Secondly, we reported new regulatory mechanisms of Nr5a1 expression, focusing on the involvement of ERα. Finally, we highlighted the molecular and cellular mechanisms driving gonadotrope network formation during embryogenesis, a process that seems essential for regulation of gonadotrope activity.
Collapse
Affiliation(s)
- Charles Le Ciclé
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Joëlle Cohen-Tannoudji
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - David L'Hôte
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| |
Collapse
|
6
|
Zong Y, Liu X, Zhang Y, Zhao J, Shi X, Zhao Z, Sun Y. Recent Progress in Generation of Inner Ear Organoid. Adv Biol (Weinh) 2024; 8:e2400223. [PMID: 39051423 DOI: 10.1002/adbi.202400223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/06/2024] [Indexed: 07/27/2024]
Abstract
Inner ear organoids play a crucial role in hearing research. In comparison to other animal models and 2D cell culture systems, inner ear organoids offer significant advantages for studying the mechanisms of inner ear development and exploring novel approaches to disease treatment. Inner ear organoids derived from human cells are more closely resemble normal human organs in development and function. The 3D culture system of the inner ear organoid enhances cell-cell interactions and mimics the internal environment. In this review, the progress and limitations of organoid culture methods derived from tissue-specific progenitors and pluripotent stem cells (PSCs) are summarized, which may offer new insights into generating organoids that closely resemble the inner ear in terms of morphology and function.
Collapse
Affiliation(s)
- Yanjun Zong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaozhou Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yaqi Zhang
- Santa Clara University, Santa Clara, 95053, USA
| | - Jiahui Zhao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xinyu Shi
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhengdong Zhao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
7
|
Flach H, Brendler C, Schöpf M, Xu L, Schneider J, Dewald K, Dietmann P, Kühl M, Kühl SJ. Comparing the effects of three neonicotinoids on embryogenesis of the South African clawed frog Xenopus laevis. Curr Res Toxicol 2024; 6:100169. [PMID: 38706785 PMCID: PMC11068530 DOI: 10.1016/j.crtox.2024.100169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024] Open
Abstract
Neonicotinoids (NEOs) are widely used insecticides that are ubiquitous in agricultural use. Since NEOs are found in natural waters as well as in tap water and human urine in regions where NEOs are widely used, NEOs pose a potential hazard to non-target organisms such as animals and humans. Some of the commonly detected NEOs are imidacloprid (IMD), thiamethoxam (TMX), and its metabolite clothianidin (CLO). Although previously published scientific information, including an assessment of the environmental risks, particularly for bees, had resulted in a ban on the outdoor use of these three NEOs in the EU - their use is now only permitted in closed greenhouses - these NEOs continue to be used in agriculture in many other parts of the world. Therefore, a detailed study and comparison of the effects of NEOs on the embryonic development of non-target organisms is needed to further define the risk profiles. Embryos of the South African clawed frog Xenopus laevis, a well-established aquatic model, were exposed to different concentrations of IMD, TMX, or CLO (0.1-100 mg/L) to study and compare the possible effects of a single contaminant in natural water bodies on early embryogenesis. The results included a reduced body length, a smaller orbital space, impaired cranial cartilage and nerves, and an altered heart structure and function. At the molecular level, NEO exposure partially resulted in an altered expression of tissue-specific factors, which are involved in eye, cranial placode, and heart development. Our results suggest that the NEOs studied negatively affect the embryonic development of the non-target organism X. laevis. Since pesticides, especially NEOs, pollute the environment worldwide, it is suggested that they are strictly controlled and monitored in the areas where they are used. In addition, the question arises as to whether pesticide metabolites also pose a risk to the environment and need to be investigated further so that they can be taken into account when registering ingredients.
Collapse
Affiliation(s)
| | | | - Martina Schöpf
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, German
| | - Lilly Xu
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, German
| | - Julia Schneider
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, German
| | - Kathrin Dewald
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, German
| | - Petra Dietmann
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, German
| | - Michael Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, German
| | - Susanne J. Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, German
| |
Collapse
|
8
|
Schor NF. The Tangential Dialogue Between Science and Medicine: A Case in Point. Pediatr Neurol 2024; 153:96-102. [PMID: 38359527 PMCID: PMC10940191 DOI: 10.1016/j.pediatrneurol.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/24/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024]
Abstract
The road between a hypothesis about a disease or condition and its cure or palliation is never simply linear. There are many tantalizing tangents to be chased and many seemingly obvious truths with countless exceptions; this is usually a feature, not a bug, as they say in computer programming. In the tangents and exceptions are clues and alternative roads to science and medicine that can provide cures and palliative measures, sometimes for diseases or conditions other than the one being studied. The narrative that follows uses the author's scientific experience in childhood nervous system cancer to illustrate the importance of a robust, bidirectional interaction between the laboratory bench and the clinic bedside in the quest for solutions to problems of health, longevity, and quality of life.
Collapse
Affiliation(s)
- Nina F Schor
- Office of the Director, Division of Intramural Research, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
9
|
Satake H, Sasakura Y. The neuroendocrine system of Ciona intestinalis Type A, a deuterostome invertebrate and the closest relative of vertebrates. Mol Cell Endocrinol 2024; 582:112122. [PMID: 38109989 DOI: 10.1016/j.mce.2023.112122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/20/2023]
Abstract
Deuterostome invertebrates, including echinoderms, hemichordates, cephalochordates, and urochordates, exhibit common and species-specific morphological, developmental, physiological, and behavioral characteristics that are regulated by neuroendocrine and nervous systems. Over the past 15 years, omics, genetic, and/or physiological studies on deuterostome invertebrates have identified low-molecular-weight transmitters, neuropeptides and their cognate receptors, and have clarified their various biological functions. In particular, there has been increasing interest on the neuroendocrine and nervous systems of Ciona intestinalis Type A, which belongs to the subphylum Urochordata and occupies the critical phylogenetic position as the closest relative of vertebrates. During the developmental stage, gamma-aminobutylic acid, D-serine, and gonadotropin-releasing hormones regulate metamorphosis of Ciona. In adults, the neuropeptidergic mechanisms underlying ovarian follicle growth, oocyte maturation, and ovulation have been elucidated. This review article provides the most recent and fundamental knowledge of the neuroendocrine and nervous systems of Ciona, and their evolutionary aspects.
Collapse
Affiliation(s)
- Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan.
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| |
Collapse
|
10
|
Zhang S, Zhao M, Li S, Yang R, Yin N, Faiola F. Developmental toxicity assessment of neonicotinoids and organophosphate esters with a human embryonic stem cell- and metabolism-based fast-screening model. J Environ Sci (China) 2024; 137:370-381. [PMID: 37980023 DOI: 10.1016/j.jes.2023.02.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 11/20/2023]
Abstract
In recent years, neonicotinoids (NEOs) and organophosphate esters (OPEs) have been widely used as substitutes for traditional pesticides and brominated flame-retardants, respectively. Previous studies have shown that those compounds can be frequently detected in environmental and human samples, are able to penetrate the placental barrier, and are toxic to animals. Thus, it is reasonable to speculate that NEOs and OPEs may have potential adverse effects in humans, especially during development. We employed a human embryonic stem cell differentiation- and liver S9 fraction metabolism-based fast screening model to assess the potential embryonic toxicity of those two types of chemicals. We show that four NEO and five OPE prototypes targeted mostly ectoderm specification, as neural ectoderm and neural crest genes were down-regulated, and surface ectoderm and placode markers up-regulated. Human liver S9 fraction's treatment could generally reduce the effects of the chemicals, except in a few specific instances, indicating the liver may detoxify NEOs and OPEs. Our findings suggest that NEOs and OPEs interfere with human early embryonic development.
Collapse
Affiliation(s)
- Shuxian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miaomiao Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shichang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Kato Y, Yoshida S, Kato T. Missing pieces of the pituitary puzzle: participation of extra-adenohypophyseal placode-lineage cells in the adult pituitary gland. Cell Tissue Res 2023; 394:487-496. [PMID: 37650920 DOI: 10.1007/s00441-023-03829-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023]
Abstract
The pituitary gland is a major endocrine tissue composing of two distinct entities, the adenohypophysis (anterior pituitary, cranial placode origin) and the neurohypophysis (posterior pituitary, neural ectoderm origin), and plays important roles in maintaining vital homeostasis. This tissue is maintained by a slow, consistent cell-renewal system of adult stem/progenitor cells. Recent accumulating evidence shows that neural crest-, head mesenchyme-, and endoderm lineage cells invade during pituitary development and contribute to the maintenance of the adult pituitary gland. Based on these novel observations, this article discusses whether these lineage cells are involved in pituitary organogenesis, maintenance, regeneration, dysplasia, or tumors.
Collapse
Affiliation(s)
- Yukio Kato
- Institute for Endocrinology, Meiji University, 1-1-1 Higashi-Mita, Tama-Ku, Kawasaki, Kanagawa, 214-8571, Japan.
| | - Saishu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-Ku, Tokyo, 105-8461, Japan
| | - Takako Kato
- Institute for Endocrinology, Meiji University, 1-1-1 Higashi-Mita, Tama-Ku, Kawasaki, Kanagawa, 214-8571, Japan
| |
Collapse
|
12
|
Kruse SM, Fine AL, Gregory SW. Abnormal Eye Movements and Hypernatremia in a 4-month-old Girl. Pediatr Rev 2023; 44:S44-S47. [PMID: 37777236 DOI: 10.1542/pir.2021-005012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/02/2023]
Affiliation(s)
- Sarah M Kruse
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN
| | | | - Seth W Gregory
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
13
|
Thawani A, Maunsell HR, Zhang H, Ankamreddy H, Groves AK. The Foxi3 transcription factor is necessary for the fate restriction of placodal lineages at the neural plate border. Development 2023; 150:dev202047. [PMID: 37756587 PMCID: PMC10617604 DOI: 10.1242/dev.202047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
The Foxi3 transcription factor, expressed in the neural plate border at the end of gastrulation, is necessary for the formation of posterior placodes and is thus important for ectodermal patterning. We have created two knock-in mouse lines expressing GFP or a tamoxifen-inducible Cre recombinase to show that Foxi3 is one of the earliest genes to label the border between the neural tube and epidermis, and that Foxi3-expressing neural plate border progenitors contribute primarily to cranial placodes and epidermis from the onset of expression, but not to the neural crest or neural tube lineages. By simultaneously knocking out Foxi3 in neural plate border cells and following their fates, we show that neural plate border cells lacking Foxi3 contribute to all four lineages of the ectoderm - placodes, epidermis, crest and neural tube. We contrast Foxi3 with another neural plate border transcription factor, Zic5, the progenitors of which initially contribute broadly to all germ layers until gastrulation and gradually become restricted to the neural crest lineage and dorsal neural tube cells. Our study demonstrates that Foxi3 uniquely acts early at the neural plate border to restrict progenitors to a placodal and epidermal fate.
Collapse
Affiliation(s)
- Ankita Thawani
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Helen R. Maunsell
- Program in Development, Disease Models and Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hongyuan Zhang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Andrew K. Groves
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Program in Development, Disease Models and Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
14
|
Steinhart MR, van der Valk WH, Osorio D, Serdy SA, Zhang J, Nist-Lund C, Kim J, Moncada-Reid C, Sun L, Lee J, Koehler KR. Mapping oto-pharyngeal development in a human inner ear organoid model. Development 2023; 150:dev201871. [PMID: 37796037 PMCID: PMC10698753 DOI: 10.1242/dev.201871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/08/2023] [Indexed: 10/06/2023]
Abstract
Inner ear development requires the coordination of cell types from distinct epithelial, mesenchymal and neuronal lineages. Although we have learned much from animal models, many details about human inner ear development remain elusive. We recently developed an in vitro model of human inner ear organogenesis using pluripotent stem cells in a 3D culture, fostering the growth of a sensorineural circuit, including hair cells and neurons. Despite previously characterizing some cell types, many remain undefined. This study aimed to chart the in vitro development timeline of the inner ear organoid to understand the mechanisms at play. Using single-cell RNA sequencing at ten stages during the first 36 days of differentiation, we tracked the evolution from pluripotency to various ear cell types after exposure to specific signaling modulators. Our findings showcase gene expression that influences differentiation, identifying a plethora of ectodermal and mesenchymal cell types. We also discern aspects of the organoid model consistent with in vivo development, while highlighting potential discrepancies. Our study establishes the Inner Ear Organoid Developmental Atlas (IODA), offering deeper insights into human biology and improving inner ear tissue differentiation.
Collapse
Affiliation(s)
- Matthew R. Steinhart
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Wouter H. van der Valk
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
- OtoBiology Leiden, Department of Otorhinolaryngology and Head & Neck Surgery; Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW); Leiden University Medical Center, Leiden, 2333 ZA, the Netherlands
| | - Daniel Osorio
- Research Computing, Department of Information Technology; Boston Children's Hospital, Boston, MA 02115, USA
| | - Sara A. Serdy
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jingyuan Zhang
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Carl Nist-Lund
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Jin Kim
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA 02115, USA
| | - Cynthia Moncada-Reid
- Speech and Hearing Bioscience and Technology (SHBT) Graduate Program, Harvard Medical School, Boston, MA 02115, USA
| | - Liang Sun
- Research Computing, Department of Information Technology; Boston Children's Hospital, Boston, MA 02115, USA
| | - Jiyoon Lee
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA 02115, USA
| | - Karl R. Koehler
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA 02115, USA
| |
Collapse
|
15
|
Le Ciclé C, Pacini V, Rama N, Tauszig-Delamasure S, Airaud E, Petit F, de Beco S, Cohen-Tannoudji J, L'hôte D. The Neurod1/4-Ntrk3-Src pathway regulates gonadotrope cell adhesion and motility. Cell Death Discov 2023; 9:327. [PMID: 37658038 PMCID: PMC10474047 DOI: 10.1038/s41420-023-01615-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023] Open
Abstract
Pituitary gonadotrope cells are essential for the endocrine regulation of reproduction in vertebrates. These cells emerge early during embryogenesis, colonize the pituitary glands and organize in tridimensional networks, which are believed to be crucial to ensure proper regulation of fertility. However, the molecular mechanisms regulating the organization of gonadotrope cell population during embryogenesis remain poorly understood. In this work, we characterized the target genes of NEUROD1 and NEUROD4 transcription factors in the immature gonadotrope αT3-1 cell model by in silico functional genomic analyses. We demonstrated that NEUROD1/4 regulate genes belonging to the focal adhesion pathway. Using CRISPR/Cas9 knock-out approaches, we established a double NEUROD1/4 knock-out αT3-1 cell model and demonstrated that NEUROD1/4 regulate cell adhesion and cell motility. We then characterized, by immuno-fluorescence, focal adhesion number and signaling in the context of NEUROD1/4 insufficiency. We demonstrated that NEUROD1/4 knock-out leads to an increase in the number of focal adhesions associated with signaling abnormalities implicating the c-Src kinase. We further showed that the neurotrophin tyrosine kinase receptor 3 NTRK3, a target of NEUROD1/4, interacts physically with c-Src. Furthermore, using motility rescue experiments and time-lapse video microscopy, we demonstrated that NTRK3 is a major regulator of gonadotrope cell motility. Finally, using a Ntrk3 knock-out mouse model, we showed that NTRK3 regulates gonadotrope cells positioning in the developing pituitary, in vivo. Altogether our study demonstrates that the Neurod1/4-Ntrk3-cSrc pathway is a major actor of gonadotrope cell mobility, and thus provides new insights in the regulation of gonadotrope cell organization within the pituitary gland.
Collapse
Affiliation(s)
- Charles Le Ciclé
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - Vincent Pacini
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Nicolas Rama
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université Lyon1, 69008, Lyon, France
| | - Servane Tauszig-Delamasure
- Institut NeuroMyoGène - CNRS UMR 5310 - Inserm U1217 de Lyon - UCBL Lyon 1, Faculté de Médecine et de Pharmacie, Lyon, France
| | - Eloïse Airaud
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - Florence Petit
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
- Faculty of Pharmacy, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Simon de Beco
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Joëlle Cohen-Tannoudji
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - David L'hôte
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France.
| |
Collapse
|
16
|
Thiery AP, Buzzi AL, Hamrud E, Cheshire C, Luscombe NM, Briscoe J, Streit A. scRNA-sequencing in chick suggests a probabilistic model for cell fate allocation at the neural plate border. eLife 2023; 12:e82717. [PMID: 37530410 PMCID: PMC10425176 DOI: 10.7554/elife.82717] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 08/01/2023] [Indexed: 08/03/2023] Open
Abstract
The vertebrate 'neural plate border' is a transient territory located at the edge of the neural plate containing precursors for all ectodermal derivatives: the neural plate, neural crest, placodes and epidermis. Elegant functional experiments in a range of vertebrate models have provided an in-depth understanding of gene regulatory interactions within the ectoderm. However, these experiments conducted at tissue level raise seemingly contradictory models for fate allocation of individual cells. Here, we carry out single cell RNA sequencing of chick ectoderm from primitive streak to neurulation stage, to explore cell state diversity and heterogeneity. We characterise the dynamics of gene modules, allowing us to model the order of molecular events which take place as ectodermal fates segregate. Furthermore, we find that genes previously classified as neural plate border 'specifiers' typically exhibit dynamic expression patterns and are enriched in either neural, neural crest or placodal fates, revealing that the neural plate border should be seen as a heterogeneous ectodermal territory and not a discrete transitional transcriptional state. Analysis of neural, neural crest and placodal markers reveals that individual NPB cells co-express competing transcriptional programmes suggesting that their ultimate identify is not yet fixed. This population of 'border located undecided progenitors' (BLUPs) gradually diminishes as cell fate decisions take place. Considering our findings, we propose a probabilistic model for cell fate choice at the neural plate border. Our data suggest that the probability of a progenitor's daughters to contribute to a given ectodermal derivative is related to the balance of competing transcriptional programmes, which in turn are regulated by the spatiotemporal position of a progenitor.
Collapse
Affiliation(s)
- Alexandre P Thiery
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College LondonLondonUnited Kingdom
| | - Ailin Leticia Buzzi
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College LondonLondonUnited Kingdom
| | - Eva Hamrud
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College LondonLondonUnited Kingdom
| | - Chris Cheshire
- Bioinformatics and Computational Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Nicholas M Luscombe
- Bioinformatics and Computational Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - James Briscoe
- Bioinformatics and Computational Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Andrea Streit
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College LondonLondonUnited Kingdom
| |
Collapse
|
17
|
Koontz A, Urrutia HA, Bronner ME. Making a head: Neural crest and ectodermal placodes in cranial sensory development. Semin Cell Dev Biol 2023; 138:15-27. [PMID: 35760729 PMCID: PMC10224775 DOI: 10.1016/j.semcdb.2022.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 04/11/2022] [Accepted: 06/19/2022] [Indexed: 01/04/2023]
Abstract
During development of the vertebrate sensory system, many important components like the sense organs and cranial sensory ganglia arise within the head and neck. Two progenitor populations, the neural crest, and cranial ectodermal placodes, contribute to these developing vertebrate peripheral sensory structures. The interactions and contributions of these cell populations to the development of the lens, olfactory, otic, pituitary gland, and cranial ganglia are vital for appropriate peripheral nervous system development. Here, we review the origins of both neural crest and placode cells at the neural plate border of the early vertebrate embryo and investigate the molecular and environmental signals that influence specification of different sensory regions. Finally, we discuss the underlying molecular pathways contributing to the complex vertebrate sensory system from an evolutionary perspective, from basal vertebrates to amniotes.
Collapse
Affiliation(s)
- Alison Koontz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Hugo A Urrutia
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
18
|
Kuriyama S, Tanaka M. Characteristic tetraspanin expression patterns mark various tissues during early Xenopus development. Dev Growth Differ 2023; 65:109-119. [PMID: 36606534 DOI: 10.1111/dgd.12836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 01/07/2023]
Abstract
The tetraspanins (Tspans) constitute a family of cell surface proteins with four transmembrane domains. Tspans have been found on the plasma membrane and on exosomes of various organelles. Reports on the function of Tspans during the early development of Xenopus have mainly focused on the expression of uroplakins in gametes. Although the roles of extracellular vesicles (EVs) including exosomes have been actively analyzed in cancer research, the contribution of EVs to early development is not well understood. This is because the diffusivity of EVs is not compatible with a very strict developmental process. In this study, we analyzed members of the Tspan family in early development of Xenopus. Expression was prominent in specific organs such as the notochord, eye, cranial neural crest cells (CNCs), trunk neural crest cells, placodes, and somites. We overexpressed several combinations of Tspans in CNCs in vitro and in vivo. Changing the partner changed the distribution of fluorescent-labeled Tspans. Therefore, it is suggested that expression of multiple Tspans in a particular tissue might produce heterogeneity of intercellular communication, which has not yet been recognized.
Collapse
Affiliation(s)
- Sei Kuriyama
- Department of Molecular Medicine and Biochemistry, Akita University, Akita, Japan
| | - Masamitsu Tanaka
- Department of Molecular Medicine and Biochemistry, Akita University, Akita, Japan
| |
Collapse
|
19
|
Tang PC, Chen L, Singh S, Groves AK, Koehler KR, Liu XZ, Nelson RF. Early Wnt Signaling Activation Promotes Inner Ear Differentiation via Cell Caudalization in Mouse Stem Cell-Derived Organoids. Stem Cells 2023; 41:26-38. [PMID: 36153788 PMCID: PMC9887082 DOI: 10.1093/stmcls/sxac071] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/14/2022] [Indexed: 02/02/2023]
Abstract
The inner ear is derived from the otic placode, one of the numerous cranial sensory placodes that emerges from the pre-placodal ectoderm (PPE) along its anterior-posterior axis. However, the molecular dynamics underlying how the PPE is regionalized are poorly resolved. We used stem cell-derived organoids to investigate the effects of Wnt signaling on early PPE differentiation and found that modulating Wnt signaling significantly increased inner ear organoid induction efficiency and reproducibility. Alongside single-cell RNA sequencing, our data reveal that the canonical Wnt signaling pathway leads to PPE regionalization and, more specifically, medium Wnt levels during the early stage induce (1) expansion of the caudal neural plate border (NPB), which serves as a precursor for the posterior PPE, and (2) a caudal microenvironment that is required for otic specification. Our data further demonstrate Wnt-mediated induction of rostral and caudal cells in organoids and more broadly suggest that Wnt signaling is critical for anterior-posterior patterning in the PPE.
Collapse
Affiliation(s)
- Pei-Ciao Tang
- Department of Otolaryngology—Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Otolaryngology—Head and Neck Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Li Chen
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Sunita Singh
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Andrew K Groves
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Karl R Koehler
- Department of Otolaryngology, Boston Children’s Hospital, Boston, MA, USA
- Department of Otolaryngology– Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Xue Zhong Liu
- Department of Otolaryngology—Head and Neck Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rick F Nelson
- Department of Otolaryngology—Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
20
|
Cvekl A, Camerino MJ. Generation of Lens Progenitor Cells and Lentoid Bodies from Pluripotent Stem Cells: Novel Tools for Human Lens Development and Ocular Disease Etiology. Cells 2022; 11:3516. [PMID: 36359912 PMCID: PMC9658148 DOI: 10.3390/cells11213516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
In vitro differentiation of human pluripotent stem cells (hPSCs) into specialized tissues and organs represents a powerful approach to gain insight into those cellular and molecular mechanisms regulating human development. Although normal embryonic eye development is a complex process, generation of ocular organoids and specific ocular tissues from pluripotent stem cells has provided invaluable insights into the formation of lineage-committed progenitor cell populations, signal transduction pathways, and self-organization principles. This review provides a comprehensive summary of recent advances in generation of adenohypophyseal, olfactory, and lens placodes, lens progenitor cells and three-dimensional (3D) primitive lenses, "lentoid bodies", and "micro-lenses". These cells are produced alone or "community-grown" with other ocular tissues. Lentoid bodies/micro-lenses generated from human patients carrying mutations in crystallin genes demonstrate proof-of-principle that these cells are suitable for mechanistic studies of cataractogenesis. Taken together, current and emerging advanced in vitro differentiation methods pave the road to understand molecular mechanisms of cataract formation caused by the entire spectrum of mutations in DNA-binding regulatory genes, such as PAX6, SOX2, FOXE3, MAF, PITX3, and HSF4, individual crystallins, and other genes such as BFSP1, BFSP2, EPHA2, GJA3, GJA8, LIM2, MIP, and TDRD7 represented in human cataract patients.
Collapse
Affiliation(s)
- Aleš Cvekl
- Departments Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michael John Camerino
- Departments Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
21
|
Conti E, Harschnitz O. Human stem cell models to study placode development, function and pathology. Development 2022; 149:276462. [DOI: 10.1242/dev.200831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Placodes are embryonic structures originating from the rostral ectoderm that give rise to highly diverse organs and tissues, comprising the anterior pituitary gland, paired sense organs and cranial sensory ganglia. Their development, including the underlying gene regulatory networks and signalling pathways, have been for the most part characterised in animal models. In this Review, we describe how placode development can be recapitulated by the differentiation of human pluripotent stem cells towards placode progenitors and their derivatives, highlighting the value of this highly scalable platform as an optimal in vitro tool to study the development of human placodes, and identify human-specific mechanisms in their development, function and pathology.
Collapse
Affiliation(s)
- Eleonora Conti
- Neurogenomics Research Centre, Human Technopole , Viale Rita Levi-Montalcini, 1, 20157 Milan , Italy
| | - Oliver Harschnitz
- Neurogenomics Research Centre, Human Technopole , Viale Rita Levi-Montalcini, 1, 20157 Milan , Italy
| |
Collapse
|
22
|
Michiue T, Tsukano K. Feedback Regulation of Signaling Pathways for Precise Pre-Placodal Ectoderm Formation in Vertebrate Embryos. J Dev Biol 2022; 10:35. [PMID: 36135368 PMCID: PMC9504399 DOI: 10.3390/jdb10030035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Intracellular signaling pathways are essential to establish embryonic patterning, including embryonic axis formation. Ectodermal patterning is also governed by a series of morphogens. Four ectodermal regions are thought to be controlled by morphogen gradients, but some perturbations are expected to occur during dynamic morphogenetic movement. Therefore, a mechanism to define areas precisely and reproducibly in embryos, including feedback regulation of signaling pathways, is necessary. In this review, we outline ectoderm pattern formation and signaling pathways involved in the establishment of the pre-placodal ectoderm (PPE). We also provide an example of feedback regulation of signaling pathways for robust formation of the PPE, showing the importance of this regulation.
Collapse
Affiliation(s)
- Tatsuo Michiue
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | | |
Collapse
|
23
|
Zahn N, James-Zorn C, Ponferrada VG, Adams DS, Grzymkowski J, Buchholz DR, Nascone-Yoder NM, Horb M, Moody SA, Vize PD, Zorn AM. Normal Table of Xenopus development: a new graphical resource. Development 2022; 149:dev200356. [PMID: 35833709 PMCID: PMC9445888 DOI: 10.1242/dev.200356] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/17/2022] [Indexed: 12/26/2022]
Abstract
Normal tables of development are essential for studies of embryogenesis, serving as an important resource for model organisms, including the frog Xenopus laevis. Xenopus has long been used to study developmental and cell biology, and is an increasingly important model for human birth defects and disease, genomics, proteomics and toxicology. Scientists utilize Nieuwkoop and Faber's classic 'Normal Table of Xenopus laevis (Daudin)' and accompanying illustrations to enable experimental reproducibility and reuse the illustrations in new publications and teaching. However, it is no longer possible to obtain permission for these copyrighted illustrations. We present 133 new, high-quality illustrations of X. laevis development from fertilization to metamorphosis, with additional views that were not available in the original collection. All the images are available on Xenbase, the Xenopus knowledgebase (http://www.xenbase.org/entry/zahn.do), for download and reuse under an attributable, non-commercial creative commons license. Additionally, we have compiled a 'Landmarks Table' of key morphological features and marker gene expression that can be used to distinguish stages quickly and reliably (https://www.xenbase.org/entry/landmarks-table.do). This new open-access resource will facilitate Xenopus research and teaching in the decades to come.
Collapse
Affiliation(s)
| | - Christina James-Zorn
- Xenbase, Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Ave, Cincinnati, OH 45229, USA
| | - Virgilio G. Ponferrada
- Xenbase, Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Ave, Cincinnati, OH 45229, USA
| | - Dany S. Adams
- Lucell Diagnostics Inc, 16 Stearns Street, Cambridge, MA 02138, USA
| | - Julia Grzymkowski
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27695, USA
| | - Daniel R. Buchholz
- Department of Biology Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Nanette M. Nascone-Yoder
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27695, USA
| | - Marko Horb
- National Xenopus Resource, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Sally A. Moody
- Department of Anatomy and Cell Biology, George Washington University Medical Center, Washington, DC 20037, USA
| | - Peter D. Vize
- Xenbase, Department of Biological Science, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Aaron M. Zorn
- Xenbase, Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Ave, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
24
|
Saeki T, Yoshimatsu S, Ishikawa M, Hon CC, Koya I, Shibata S, Hosoya M, Saegusa C, Ogawa K, Shin JW, Fujioka M, Okano H. Critical roles of FGF, RA, and WNT signalling in the development of the human otic placode and subsequent lineages in a dish. Regen Ther 2022; 20:165-186. [PMID: 35620640 PMCID: PMC9114627 DOI: 10.1016/j.reth.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction Efficient induction of the otic placode, the developmental origin of the inner ear from human pluripotent stem cells (hPSCs), provides a robust platform for otic development and sensorineural hearing loss modelling. Nevertheless, there remains a limited capacity of otic lineage specification from hPSCs by stepwise differentiation methods, since the critical factors for successful otic cell differentiation have not been thoroughly investigated. In this study, we developed a novel differentiation system involving the use of a three-dimensional (3D) floating culture with signalling factors for generating otic cell lineages via stepwise differentiation of hPSCs. Methods We differentiated hPSCs into preplacodal cells under a two-dimensional (2D) monolayer culture. Then, we transferred the induced preplacodal cells into a 3D floating culture under the control of the fibroblast growth factor (FGF), bone morphogenetic protein (BMP), retinoic acid (RA) and WNT signalling pathways. We evaluated the characteristics of the induced cells using immunocytochemistry, quantitative PCR (qPCR), population averaging, and single-cell RNA-seq (RNA-seq) analysis. We further investigated the methods for differentiating otic progenitors towards hair cells by overexpression of defined transcription factors. Results We demonstrated that hPSC-derived preplacodal cells acquired the potential to differentiate into posterior placodal cells in 3D floating culture with FGF2 and RA. Subsequent activation of WNT signalling induced otic placodal cell formation. By single-cell RNA-seq (scRNA-seq) analysis, we identified multiple clusters of otic placode- and otocyst marker-positive cells in the induced spheres. Moreover, the induced otic cells showed the potential to generate hair cell-like cells by overexpression of the transcription factors ATOH1, POU4F3 and GFI1. Conclusions We demonstrated the critical role of FGF2, RA and WNT signalling in a 3D environment for the in vitro differentiation of otic lineage cells from hPSCs. The induced otic cells had the capacity to differentiate into inner ear hair cells with stereociliary bundles and tip link-like structures. The protocol will be useful for in vitro disease modelling of sensorineural hearing loss and human inner ear development and thus contribute to drug screening and stem cell-based regenerative medicine. A 3D floating culture condition is critical for inducing otic placodal cells from hPSCs-derived preplacodal cells. Activation of FGF, RA, WNT signalling pathways is indispensable for differentiating otic lineage under the 3D condition. Overexpression of defined transcription factors facilitated the generation of hair cells from hPSCs-derived otic cells.
Collapse
|
25
|
Tsukano K, Yamamoto T, Watanabe T, Michiue T. Xenopus Dusp6 modulates FGF signaling precisely to pattern pre-placodal ectoderm. Dev Biol 2022; 488:81-90. [DOI: 10.1016/j.ydbio.2022.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 05/07/2022] [Accepted: 05/16/2022] [Indexed: 12/23/2022]
|
26
|
Klein SL, Tavares ALP, Peterson M, Sullivan CH, Moody SA. Repressive Interactions Between Transcription Factors Separate Different Embryonic Ectodermal Domains. Front Cell Dev Biol 2022; 10:786052. [PMID: 35198557 PMCID: PMC8859430 DOI: 10.3389/fcell.2022.786052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
The embryonic ectoderm is composed of four domains: neural plate, neural crest, pre-placodal region (PPR) and epidermis. Their formation is initiated during early gastrulation by dorsal-ventral and anterior-posterior gradients of signaling factors that first divide the embryonic ectoderm into neural and non-neural domains. Next, the neural crest and PPR domains arise, either via differential competence of the neural and non-neural ectoderm (binary competence model) or via interactions between the neural and non-neural ectoderm tissues to produce an intermediate neural border zone (NB) (border state model) that subsequently separates into neural crest and PPR. Many previous gain- and loss-of-function experiments demonstrate that numerous TFs are expressed in initially overlapping zones that gradually resolve into patterns that by late neurula stages are characteristic of each of the four domains. Several of these studies suggested that this is accomplished by a combination of repressive TF interactions and competence to respond to local signals. In this study, we ectopically expressed TFs that at neural plate stages are characteristic of one domain in a different domain to test whether they act cell autonomously as repressors. We found that almost all tested TFs caused reduced expression of the other TFs. At gastrulation these effects were strictly within the lineage-labeled cells, indicating that the effects were cell autonomous, i.e., due to TF interactions within individual cells. Analysis of previously published single cell RNAseq datasets showed that at the end of gastrulation, and continuing to neural tube closure stages, many ectodermal cells express TFs characteristic of more than one neural plate stage domain, indicating that different TFs have the opportunity to interact within the same cell. At neurula stages repression was observed both in the lineage-labeled cells and in adjacent cells not bearing detectable lineage label, suggesting that cell-to-cell signaling has begun to contribute to the separation of the domains. Together, these observations directly demonstrate previous suggestions in the literature that the segregation of embryonic ectodermal domains initially involves cell autonomous, repressive TF interactions within an individual cell followed by the subsequent advent of non-cell autonomous signaling to neighbors.
Collapse
Affiliation(s)
- Steven L Klein
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, D.C., DC, United States
| | - Andre L P Tavares
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, D.C., DC, United States
| | - Meredith Peterson
- Department of Biology, State College, Penn State University, University Park, PA, United States
| | | | - Sally A Moody
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, D.C., DC, United States
| |
Collapse
|
27
|
Castets S, Villanueva C, Vergier J, Brue T, Saveanu A, Reynaud R. Clinical, radiological, and molecular diagnosis of congenital pituitary diseases causing short stature. Arch Pediatr 2022; 28:8S33-8S38. [PMID: 37870532 DOI: 10.1016/s0929-693x(22)00041-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Short stature in children can be caused by congenital pituitary disorders involving at least one form of growth hormone deficiency. Clinical and radiological evaluations of the index case and family history assessments are essential to guide genetic diagnostic testing and interpret results. The first-line approach is panel testing of genes involved in pituitary development with variants known to be pathogenic in this context. It identifies a genetic cause in less than 10% of cases, however. Whole-exome and whole-genome sequencing techniques may provide original information but also raise new questions regarding the pathophysiological role of identified variants. These new tools can make genetic counselling more complex. The role of clinicians in these interpretations is therefore important. © 2022 French Society of Pediatrics. Published by Elsevier Masson SAS. All rights reserved.
Collapse
Affiliation(s)
- S Castets
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Hôpital Timone Enfants, Service de Pédiatrie Multidisciplinaire, Marseille, France; Centre de Référence des Maladies Rares de l'Hypophyse HYPO, Marseille, France.
| | - C Villanueva
- Hospices Civils de Lyon (HCL), Hôpital Femme Mère Enfant (HFME), Service d'Endocrinologie pédiatrique, Bron, France; Centre de Référence des Maladies Rares de l'Hypophyse HYPO, Marseille, France
| | - J Vergier
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Hôpital Timone Enfants, Service de Pédiatrie Multidisciplinaire, Marseille, France; Centre de Référence des Maladies Rares de l'Hypophyse HYPO, Marseille, France
| | - T Brue
- Hospices Civils de Lyon (HCL), Hôpital Femme Mère Enfant (HFME), Service d'Endocrinologie pédiatrique, Bron, France; Centre de Référence des Maladies Rares de l'Hypophyse HYPO, Marseille, France; Assistance Publique-Hôpitaux de Marseille (AP-HM), Service d'Endocrinologie, Hôpital de la Conception, Marseille, France; Institut Marseille Maladies Rares (MarMaRa), Marseille, France
| | - A Saveanu
- Centre de Référence des Maladies Rares de l'Hypophyse HYPO, Marseille, France; Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Marseille Medical Genetics (MMG), U 1251, Marseille, France; Institut Marseille Maladies Rares (MarMaRa), Marseille, France; Assistance Publique-Hôpitaux de Marseille (AP-HM), Laboratoire de Biologie Moléculaire, Hôpital de la Conception, Marseille, France
| | - R Reynaud
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Hôpital Timone Enfants, Service de Pédiatrie Multidisciplinaire, Marseille, France; Centre de Référence des Maladies Rares de l'Hypophyse HYPO, Marseille, France; Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Marseille Medical Genetics (MMG), U 1251, Marseille, France; Institut Marseille Maladies Rares (MarMaRa), Marseille, France
| |
Collapse
|
28
|
Bradshaw SN, Allison WT. Hagfish to Illuminate the Developmental and Evolutionary Origins of the Vertebrate Retina. Front Cell Dev Biol 2022; 10:822358. [PMID: 35155434 PMCID: PMC8826474 DOI: 10.3389/fcell.2022.822358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
The vertebrate eye is a vital sensory organ that has long fascinated scientists, but the details of how this organ evolved are still unclear. The vertebrate eye is distinct from the simple photoreceptive organs of other non-vertebrate chordates and there are no clear transitional forms of the eye in the fossil record. To investigate the evolution of the eye we can examine the eyes of the most ancient extant vertebrates, the hagfish and lamprey. These jawless vertebrates are in an ideal phylogenetic position to study the origin of the vertebrate eye but data on eye/retina development in these organisms is limited. New genomic and gene expression data from hagfish and lamprey suggest they have many of the same genes for eye development and retinal neurogenesis as jawed vertebrates, but functional work to determine if these genes operate in retinogenesis similarly to other vertebrates is missing. In addition, hagfish express a marker of proliferative retinal cells (Pax6) near the margin of the retina, and adult retinal growth is apparent in some species. This finding of eye growth late into hagfish ontogeny is unexpected given the degenerate eye phenotype. Further studies dissecting retinal neurogenesis in jawless vertebrates would allow for comparison of the mechanisms of retinal development between cyclostome and gnathostome eyes and provide insight into the evolutionary origins of the vertebrate eye.
Collapse
Affiliation(s)
| | - W. Ted Allison
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
29
|
Rafiq A, Aashaq S, Jan I, Beigh MA. SIX1 transcription factor: A review of cellular functions and regulatory dynamics. Int J Biol Macromol 2021; 193:1151-1164. [PMID: 34742853 DOI: 10.1016/j.ijbiomac.2021.10.133] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 10/19/2022]
Abstract
Sine Oculis Homeobox 1 (SIX1) is a member of homeobox transcription factor family having pivotal roles in organismal development and differentiation. This protein functionally acts to regulate the expression of different proteins that are involved in organ development during embryogenesis and in disorders like cancer. Aberrant expression of this homeoprotein has therefore been reported in multiple pathological complexities like hearing impairment and renal anomalies during development and tumorigenesis in adult life. Most of the cellular effects mediated by it are mostly due to its role as a transcription factor. This review presents a concise narrative of its structure, interaction partners and cellular functions vis a vis its role in cancer. We thoroughly discuss the reported molecular mechanisms that govern its function in cellular milieu. Its post-translational regulation by phosphorylation and ubiquitination are also discussed with an emphasis on yet to be explored mechanistic insights regulating its molecular dynamics to fully comprehend its role in development and disease.
Collapse
Affiliation(s)
- Asma Rafiq
- Department of Nanotechnology, University of Kashmir, Hazratbal Campus, Srinagar JK-190006, India
| | - Sabreena Aashaq
- Department of Immunology and Molecular Medicine, Sher-i-Kashmir Institute of Medical Sciences, Soura, Srinagar JK-190011, India
| | - Iqra Jan
- Department of Nanotechnology, University of Kashmir, Hazratbal Campus, Srinagar JK-190006, India
| | - Mushtaq A Beigh
- Department of Nanotechnology, University of Kashmir, Hazratbal Campus, Srinagar JK-190006, India.
| |
Collapse
|
30
|
Washausen S, Knabe W. Responses of Epibranchial Placodes to Disruptions of the FGF and BMP Signaling Pathways in Embryonic Mice. Front Cell Dev Biol 2021; 9:712522. [PMID: 34589483 PMCID: PMC8473811 DOI: 10.3389/fcell.2021.712522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/17/2021] [Indexed: 11/21/2022] Open
Abstract
Placodes are ectodermal thickenings of the embryonic vertebrate head. Their descendants contribute to sensory organ development, but also give rise to sensory neurons of the cranial nerves. In mammals, the signaling pathways which regulate the morphogenesis and neurogenesis of epibranchial placodes, localized dorsocaudally to the pharyngeal clefts, are poorly understood. Therefore, we performed mouse whole embryo culture experiments to assess the impact of pan-fibroblast growth factor receptor (FGFR) inhibitors, anti-FGFR3 neutralizing antibodies or the pan-bone morphogenetic protein receptor (BMPR) inhibitor LDN193189 on epibranchial development. We demonstrate that each of the three paired epibranchial placodes is regulated by a unique combination of FGF and/or bone morphogenetic protein (BMP) signaling. Thus, neurogenesis depends on fibroblast growth factor (FGF) signals, albeit to different degrees, in all epibranchial placodes (EP), whereas only EP1 and EP3 significantly rely on neurogenic BMP signals. Furthermore, individual epibranchial placodes vary in the extent to which FGF and/or BMP signals (1) have access to certain receptor subtypes, (2) affect the production of Neurogenin (Ngn)2+ and/or Ngn1+ neuroblasts, and (3) regulate either neurogenesis alone or together with structural maintenance. In EP2 and EP3, all FGF-dependent production of Ngn2+ neuroblasts is mediated via FGFR3 whereas, in EP1, it depends on FGFR1 and FGFR3. Differently, production of FGF-dependent Ngn1+ neuroblasts almost completely depends on FGFR3 in EP1 and EP2, but not in EP3. Finally, FGF signals turned out to be responsible for the maintenance of both placodal thickening and neurogenesis in all epibranchial placodes, whereas administration of the pan-BMPR inhibitor, apart from its negative neurogenic effects in EP1 and EP3, causes only decreases in the thickness of EP3. Experimentally applied inhibitors most probably not only blocked receptors in the epibranchial placodes, but also endodermal receptors in the pharyngeal pouches, which act as epibranchial signaling centers. While high doses of pan-FGFR inhibitors impaired the development of all pharyngeal pouches, high doses of the pan-BMPR inhibitor negatively affected only the pharyngeal pouches 3 and 4. In combination with partly concordant, partly divergent findings in other vertebrate classes our observations open up new approaches for research into the complex regulation of neurogenic placode development.
Collapse
Affiliation(s)
- Stefan Washausen
- Prosektur Anatomie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Wolfgang Knabe
- Prosektur Anatomie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
31
|
Bejjanki KM, Akhtar K, Gupta AP, Kaliki S. Effect of Oral Propranolol on Periocular Infantile Capillary Hemangioma: Outcomes Based on Extent of Involvement. Middle East Afr J Ophthalmol 2021; 28:6-10. [PMID: 34321816 PMCID: PMC8270022 DOI: 10.4103/meajo.meajo_228_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/29/2020] [Accepted: 02/03/2021] [Indexed: 11/04/2022] Open
Abstract
PURPOSE To evaluate the efficacy of oral propranolol in the treatment of periocular infantile capillary hemangioma (CHI) based on the involvement of embryological facial placodes and their extent of anatomical involvement. METHODS Retrospective study of 27 patients. RESULTS The mean age at the presentation of periocular CHI was 4 months (median, 3 months; range, <1-14 months). There were 11 (41%) males and 16 (59%) females. Based on embryological facial placodes, the involvement was focal in 16 (59%) cases and segmental in 11 (41%) cases. Based on the anatomical distribution, the lesions were preseptal in 4 (15%), postseptal in 13 (48%), and combined in 10 (37%) cases. The duration of use of oral propranolol was 10 months (median, 10 months; range, 4-16 months). Overall, the mean % resolution of periocular CHI was 78% (median, 90%; range, 20%-100%). The mean percentage resolution of focal lesions was 69% (median, 83%; range, 20%-100%), and segmental lesions were 92% (median, 95%; range, 70%-100%). The mean percentage resolution of preseptal component of lesions was 94% (median, 95%; range, 80%-100%) and postseptal component was 74% (median, 85%; range, 20%-100%) over a mean follow-up period of 16 months (median, 15 months; range, 4-37 months). Four (15%) patients exhibited flare-up of lesion after tapering oral propranolol. CONCLUSION Oral propranolol is effective in the treatment of periocular CHI. Segmental and preseptal lesions respond better to the treatment compared to focal and postseptal lesions.
Collapse
Affiliation(s)
- Kavya M Bejjanki
- Ocular Oncology Serices, The Operation Eyesight Universal Institute for Eye Cancer, L V Prasad Eye Institute, Hyderabad, India
| | - Kahkashan Akhtar
- Ocular Oncology Serices, The Operation Eyesight Universal Institute for Eye Cancer, L V Prasad Eye Institute, Hyderabad, India
| | - Arushi P Gupta
- Ocular Oncology Serices, The Operation Eyesight Universal Institute for Eye Cancer, L V Prasad Eye Institute, Hyderabad, India
| | - Swathi Kaliki
- Ocular Oncology Serices, The Operation Eyesight Universal Institute for Eye Cancer, L V Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
32
|
Hwang J, Jo SW, Kwon EB, Lee SA, Chang SK. Prevalence of brain MRI findings in children with nonacquired growth hormone deficiency: a systematic review and meta-analysis. Neuroradiology 2021; 63:1121-1133. [PMID: 33611620 DOI: 10.1007/s00234-021-02665-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 02/01/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE To verify and integrate the prevalence and phenotype of abnormalities in the sellar region in patients with growth hormone deficiency (GHD) using MRI data. METHODS We searched PubMed and EMBASE up to December 14, 2020. The inclusion criteria were as follows: (1) pediatric patients diagnosed with nonacquired GHD and (2) detailed data sufficient to assess the proportion of sellar and parasellar abnormalities on brain MRI scans. Finally, thirty-two studies with 39,060 children (mean or median age, 3.4-14.1 years) were included. The number and type of MRI findings from all included studies were pooled by two authors. The heterogeneity across studies was evaluated with the Q test or the inconsistency index (I2) statistic. Subgroup analyses were performed according to the type of GHD (isolated GHD [IGHD] vs. multiple pituitary hormone deficiency [MPHD]), MRI magnet, geographical region, and cutoff serum growth hormone (GH) level. RESULTS The pooled proportion of sellar and parasellar abnormalities was 58.0% (95% CI, 47.1-68.6%; I2, 98.2%). The MPHD group showed a higher proportion of sellar and parasellar abnormalities and pituitary stalk interruption syndrome than the IGHD group (91.4% vs. 40.1%, P<0.001; 65.3% vs. 20.1%, P<0.001). The patients in studies with low peak GH levels on stimulation tests were more associated with severe MR abnormalities (cutoff GH ≤ 5 μg/l vs. cutoff GH = 10 μg/l; 72.8 % vs. 38.0%; P<0.001). CONCLUSION The types and incidence of MRI abnormalities of the sellar region differ significantly between the IGHD and MPHD groups.
Collapse
Affiliation(s)
- Jisun Hwang
- Department of Radiology, Dongtan Sacred Heart Hospital, Hallym University Medical Center, 7, Keunjaebong-gil, Hwaseong-si, Gyeonggi-do, 18450, Republic of Korea
| | - Sang Won Jo
- Department of Radiology, Dongtan Sacred Heart Hospital, Hallym University Medical Center, 7, Keunjaebong-gil, Hwaseong-si, Gyeonggi-do, 18450, Republic of Korea.
| | - Eun Byul Kwon
- Department of Pediatrics, Dongtan Sacred Heart Hospital, Hallym University Medical Center, 7, Keunjaebong-gil, Hwaseong-si, Gyeonggi-do, 18450, Republic of Korea
| | - Seun Ah Lee
- Department of Radiology, Dongtan Sacred Heart Hospital, Hallym University Medical Center, 7, Keunjaebong-gil, Hwaseong-si, Gyeonggi-do, 18450, Republic of Korea
| | - Suk-Ki Chang
- Department of Radiology, Dongtan Sacred Heart Hospital, Hallym University Medical Center, 7, Keunjaebong-gil, Hwaseong-si, Gyeonggi-do, 18450, Republic of Korea
| |
Collapse
|
33
|
Dubey A, Yu J, Liu T, Kane MA, Saint-Jeannet JP. Retinoic acid production, regulation and containment through Zic1, Pitx2c and Cyp26c1 control cranial placode specification. Development 2021; 148:dev193227. [PMID: 33531433 PMCID: PMC7903997 DOI: 10.1242/dev.193227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 01/12/2021] [Indexed: 12/28/2022]
Abstract
All paired sensory organs arise from a common precursor domain called the pre-placodal region (PPR). In Xenopus, Zic1 non-cell autonomously regulates PPR formation by activating retinoic acid (RA) production. Here, we have identified two Zic1 targets, the RA catabolizing enzyme Cyp26c1 and the transcription factor Pitx2c, expressed in the vicinity of the PPR as being crucially required for maintaining low RA levels in a spatially restricted, PPR-adjacent domain. Morpholino- or CRISPR/Cas9-mediated Cyp26c1 knockdown abrogated PPR gene expression, yielding defective cranial placodes. Direct measurement of RA levels revealed that this is mediated by a mechanism involving excess RA accumulation. Furthermore, we show that pitx2c is activated by RA and required for Cyp26c1 expression in a domain-specific manner through induction of FGF8. We propose that Zic1 anteriorly establishes a program of RA containment and regulation through activation of Cyp26c1 and Pitx2c that cooperates to promote PPR specification in a spatially restricted domain.
Collapse
Affiliation(s)
- Aditi Dubey
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Jianshi Yu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Tian Liu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Jean-Pierre Saint-Jeannet
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| |
Collapse
|
34
|
Stundl J, Bertucci PY, Lauri A, Arendt D, Bronner ME. Evolution of new cell types at the lateral neural border. Curr Top Dev Biol 2021; 141:173-205. [PMID: 33602488 DOI: 10.1016/bs.ctdb.2020.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During the course of evolution, animals have become increasingly complex by the addition of novel cell types and regulatory mechanisms. A prime example is represented by the lateral neural border, known as the neural plate border in vertebrates, a region of the developing ectoderm where presumptive neural and non-neural tissue meet. This region has been intensively studied as the source of two important embryonic cell types unique to vertebrates-the neural crest and the ectodermal placodes-which contribute to diverse differentiated cell types including the peripheral nervous system, pigment cells, bone, and cartilage. How did these multipotent progenitors originate in animal evolution? What triggered the elaboration of the border during the course of chordate evolution? How is the lateral neural border patterned in various bilaterians and what is its fate? Here, we review and compare the development and fate of the lateral neural border in vertebrates and invertebrates and we speculate about its evolutionary origin. Taken together, the data suggest that the lateral neural border existed in bilaterian ancestors prior to the origin of vertebrates and became a developmental source of exquisite evolutionary change that frequently enabled the acquisition of new cell types.
Collapse
Affiliation(s)
- Jan Stundl
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | | | | | - Detlev Arendt
- European Molecular Biology Laboratory, Heidelberg, Germany.
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States.
| |
Collapse
|
35
|
Abstract
Vertebrates develop an olfactory system that detects odorants and pheromones through their interaction with specialized cell surface receptors on olfactory sensory neurons. During development, the olfactory system forms from the olfactory placodes, specialized areas of the anterior ectoderm that share cellular and molecular properties with placodes involved in the development of other cranial senses. The early-diverging chordate lineages amphioxus, tunicates, lampreys and hagfishes give insight into how this system evolved. Here, we review olfactory system development and cell types in these lineages alongside chemosensory receptor gene evolution, integrating these data into a description of how the vertebrate olfactory system evolved. Some olfactory system cell types predate the vertebrates, as do some of the mechanisms specifying placodes, and it is likely these two were already connected in the common ancestor of vertebrates and tunicates. In stem vertebrates, this evolved into an organ system integrating additional tissues and morphogenetic processes defining distinct olfactory and adenohypophyseal components, followed by splitting of the ancestral placode to produce the characteristic paired olfactory organs of most modern vertebrates.
Collapse
Affiliation(s)
- Guillaume Poncelet
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Sebastian M Shimeld
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| |
Collapse
|
36
|
Dash S, Bhatt S, Sandell LL, Seidel CW, Ahn Y, Krumlauf RE, Trainor PA. The Mediator Subunit, Med23 Is Required for Embryonic Survival and Regulation of Canonical WNT Signaling During Cranial Ganglia Development. Front Physiol 2020; 11:531933. [PMID: 33192541 PMCID: PMC7642510 DOI: 10.3389/fphys.2020.531933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 09/16/2020] [Indexed: 11/13/2022] Open
Abstract
Development of the vertebrate head is a complex and dynamic process, which requires integration of all three germ layers and their derivatives. Of special importance are ectoderm-derived cells that form the cranial placodes, which then differentiate into the cranial ganglia and sensory organs. Critical to a fully functioning head, defects in cranial placode and sensory organ development can result in congenital craniofacial anomalies. In a forward genetic screen aimed at identifying novel regulators of craniofacial development, we discovered an embryonically lethal mouse mutant, snouty, which exhibits malformation of the facial prominences, cranial nerves and vasculature. The snouty mutation was mapped to a single nucleotide change in a ubiquitously expressed gene, Med23, which encodes a subunit of the global transcription co-factor complex, Mediator. Phenotypic analyses revealed that the craniofacial anomalies, particularly of the cranial ganglia, were caused by a failure in the proper specification of cranial placode neuronal precursors. Molecular analyses determined that defects in cranial placode neuronal differentiation in Med23 sn/sn mutants were associated with elevated WNT/β-catenin signaling, which can be partially rescued through combined Lrp6 and Wise loss-of-function. Our work therefore reveals a surprisingly tissue specific role for the ubiquitously expressed mediator complex protein Med23 in placode differentiation during cranial ganglia development. This highlights the importance of coupling general transcription to the regulation of WNT signaling during embryogenesis.
Collapse
Affiliation(s)
- Soma Dash
- Stowers Institute for Medical Research, Kansas City, MO, United States
| | - Shachi Bhatt
- Stowers Institute for Medical Research, Kansas City, MO, United States.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Lisa L Sandell
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States
| | | | - Youngwook Ahn
- Stowers Institute for Medical Research, Kansas City, MO, United States
| | - Robb E Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO, United States.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, United States.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
37
|
Taroc EZM, Katreddi RR, Forni PE. Identifying Isl1 Genetic Lineage in the Developing Olfactory System and in GnRH-1 Neurons. Front Physiol 2020; 11:601923. [PMID: 33192618 PMCID: PMC7609815 DOI: 10.3389/fphys.2020.601923] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/30/2020] [Indexed: 01/04/2023] Open
Abstract
During embryonic development, symmetric ectodermal thickenings [olfactory placodes (OP)] give rise to several cell types that comprise the olfactory system, such as those that form the terminal nerve ganglion (TN), gonadotropin releasing hormone-1 neurons (GnRH-1ns), and other migratory neurons in rodents. Even though the genetic heterogeneity among these cell types is documented, unidentified cell populations arising from the OP remain. One candidate to identify placodal derived neurons in the developing nasal area is the transcription factor Isl1, which was recently identified in GnRH-3 neurons of the terminal nerve in fish, as well as expression in neurons of the nasal migratory mass (MM). Here, we analyzed the Isl1 genetic lineage in chemosensory neuronal populations in the nasal area and migratory GnRH-1ns in mice using in situ hybridization, immunolabeling a Tamoxifen inducible Isl1CreERT and a constitutive Isl1Cre knock-in mouse lines. In addition, we also performed conditional Isl1 ablation in developing GnRH neurons. We found Isl1 lineage across non-sensory cells of the respiratory epithelium and sustentacular cells of OE and VNO. We identified a population of transient embryonic Isl1 + neurons in the olfactory epithelium and sparse Isl1 + neurons in postnatal VNO. Isl1 is expressed in almost all GnRH neurons and in approximately half of the other neuron populations in the MM. However, Isl1 conditional ablation alone does not significantly compromise GnRH-1 neuronal migration or GnRH-1 expression, suggesting compensatory mechanisms. Further studies will elucidate the functional and mechanistic role of Isl1 in development of migratory endocrine neurons.
Collapse
Affiliation(s)
- Ed Zandro M Taroc
- Department of Biological Sciences, The RNA Institute, and the Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY, United States
| | - Raghu Ram Katreddi
- Department of Biological Sciences, The RNA Institute, and the Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY, United States
| | - Paolo E Forni
- Department of Biological Sciences, The RNA Institute, and the Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY, United States
| |
Collapse
|
38
|
Moustakas-Verho JE, Kurko J, House AH, Erkinaro J, Debes P, Primmer CR. Developmental expression patterns of six6: A gene linked with spawning ecotypes in Atlantic salmon. Gene Expr Patterns 2020; 38:119149. [PMID: 33007443 DOI: 10.1016/j.gep.2020.119149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/11/2020] [Accepted: 09/22/2020] [Indexed: 11/30/2022]
Abstract
The Atlantic salmon has been studied extensively, particularly as a model for understanding the genetic and environmental contributions to the evolution and development of life history traits. Expression pattern analysis in situ, however, is mostly lacking in salmon. We examine the embryonic developmental expression of six6, a candidate gene previously identified to be associated with spawning ecotypes and age at sexual maturity, in Atlantic salmon. Six6 is a member of the sine oculis homeobox family of transcription factors and is known to regulate eye and brain development in other vertebrates. We assay the expression of this gene in embryonic Atlantic salmon Salmo salar by whole-mount in situ hybridization. In line with earlier studies in other vertebrate species, we find conserved expression in the developing brain and sensory organs, including optic and olfactory primordia. However, we also find previously unreported domains of expression that suggest additional roles in axial and appendicular development, cardiovascular, intestinal, and sensory organogenesis. Each of these systems are important in the sensory ecology of Atlantic salmon, suggesting it is plausible that six6 may have pleiotropic roles in this complex phenotype.
Collapse
Affiliation(s)
- Jacqueline Emmanuel Moustakas-Verho
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Viikinkaari 9, 00014, Helsinki, Finland; Institute of Biotechnology, University of Helsinki, Finland.
| | - Johanna Kurko
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Viikinkaari 9, 00014, Helsinki, Finland; Institute of Biotechnology, University of Helsinki, Finland
| | - Andrew H House
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Viikinkaari 9, 00014, Helsinki, Finland; Institute of Biotechnology, University of Helsinki, Finland
| | | | - Paul Debes
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Viikinkaari 9, 00014, Helsinki, Finland; Institute of Biotechnology, University of Helsinki, Finland
| | - Craig Robert Primmer
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Viikinkaari 9, 00014, Helsinki, Finland; Institute of Biotechnology, University of Helsinki, Finland.
| |
Collapse
|
39
|
York JR, Yuan T, McCauley DW. Evolutionary and Developmental Associations of Neural Crest and Placodes in the Vertebrate Head: Insights From Jawless Vertebrates. Front Physiol 2020; 11:986. [PMID: 32903576 PMCID: PMC7438564 DOI: 10.3389/fphys.2020.00986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
Neural crest and placodes are key innovations of the vertebrate clade. These cells arise within the dorsal ectoderm of all vertebrate embryos and have the developmental potential to form many of the morphological novelties within the vertebrate head. Each cell population has its own distinct developmental features and generates unique cell types. However, it is essential that neural crest and placodes associate together throughout embryonic development to coordinate the emergence of several features in the head, including almost all of the cranial peripheral sensory nervous system and organs of special sense. Despite the significance of this developmental feat, its evolutionary origins have remained unclear, owing largely to the fact that there has been little comparative (evolutionary) work done on this topic between the jawed vertebrates and cyclostomes—the jawless lampreys and hagfishes. In this review, we briefly summarize the developmental mechanisms and genetics of neural crest and placodes in both jawed and jawless vertebrates. We then discuss recent studies on the role of neural crest and placodes—and their developmental association—in the head of lamprey embryos, and how comparisons with jawed vertebrates can provide insights into the causes and consequences of this event in early vertebrate evolution.
Collapse
Affiliation(s)
- Joshua R York
- Department of Biology, University of Oklahoma, Norman, OK, United States
| | - Tian Yuan
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - David W McCauley
- Department of Biology, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
40
|
Hogan AVC, Watanabe A, Balanoff AM, Bever GS. Comparative growth in the olfactory system of the developing chick with considerations for evolutionary studies. J Anat 2020; 237:225-240. [PMID: 32314400 PMCID: PMC7369194 DOI: 10.1111/joa.13197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/17/2020] [Accepted: 03/10/2020] [Indexed: 12/26/2022] Open
Abstract
Despite the long-held assumption that olfaction plays a relatively minor role in the behavioral ecology of birds, crown-group avians exhibit marked phylogenetic variation in the size and form of the olfactory apparatus. As part of a larger effort to better understand the role of olfaction and olfactory tissues in the evolution and development of the avian skull, we present the first quantitative analysis of ontogenetic scaling between olfactory features [olfactory bulbs (OBs) and olfactory turbinates] and neighboring structures (cerebrum, total brain, respiratory turbinates) based on the model organism Gallus gallus. The OB develops under the predictions of a concerted evolutionary model with rapid early growth that is quickly overcome by the longer, sustained growth of the larger cerebrum. A similar pattern is found in the nasal cavity where the morphologically simple (non-scrolled) olfactory turbinates appear and mature early, with extended growth characterizing the larger and scrolled respiratory turbinates. Pairwise regressions largely recover allometric relationships among the examined structures, with a notable exception being the isometric trajectory of the OB and olfactory turbinate. Their parallel growth suggests a unique regulatory pathway that is likely driven by the morphogenesis of the olfactory nerve, which serves as a structural bridge between the two features. Still, isometry was not necessarily expected given that the olfactory epithelium covers more than just the turbinate. These data illuminate a number of evolutionary hypotheses that, moving forward, should inform tradeoffs and constraints between the olfactory and neighboring systems in the avian head.
Collapse
Affiliation(s)
- Aneila V. C. Hogan
- Center for Functional Anatomy and EvolutionJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Akinobu Watanabe
- Department of AnatomyNew York Institute of Technology College of Osteopathic MedicineNew YorkNYUSA
- Division of PaleontologyAmerican Museum of Natural HistoryNew YorkNYUSA
- Life Sciences DepartmentVertebrates DivisionNatural History MuseumLondonUK
| | - Amy M. Balanoff
- Division of PaleontologyAmerican Museum of Natural HistoryNew YorkNYUSA
- Department of Psychological and Brain SciencesJohns Hopkins UniversityBaltimoreMDUSA
| | - Gabriel S. Bever
- Center for Functional Anatomy and EvolutionJohns Hopkins University School of MedicineBaltimoreMDUSA
- Division of PaleontologyAmerican Museum of Natural HistoryNew YorkNYUSA
| |
Collapse
|
41
|
Yadav A, Seth B, Chaturvedi RK. Brain Organoids: Tiny Mirrors of Human Neurodevelopment and Neurological Disorders. Neuroscientist 2020; 27:388-426. [PMID: 32723210 DOI: 10.1177/1073858420943192] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Unravelling the complexity of the human brain is a challenging task. Nowadays, modern neurobiologists have developed 3D model systems called "brain organoids" to overcome the technical challenges in understanding human brain development and the limitations of animal models to study neurological diseases. Certainly like most model systems in neuroscience, brain organoids too have limitations, as these minuscule brains lack the complex neuronal circuitry required to begin the operational tasks of human brain. However, researchers are hopeful that future endeavors with these 3D brain tissues could provide mechanistic insights into the generation of circuit complexity as well as reproducible creation of different regions of the human brain. Herein, we have presented the contemporary state of brain organoids with special emphasis on their mode of generation and their utility in modelling neurological disorders, drug discovery, and clinical trials.
Collapse
Affiliation(s)
- Anuradha Yadav
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Brashket Seth
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rajnish Kumar Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
42
|
Cell fate decisions during the development of the peripheral nervous system in the vertebrate head. Curr Top Dev Biol 2020; 139:127-167. [PMID: 32450959 DOI: 10.1016/bs.ctdb.2020.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Sensory placodes and neural crest cells are among the key cell populations that facilitated the emergence and diversification of vertebrates throughout evolution. Together, they generate the sensory nervous system in the head: both form the cranial sensory ganglia, while placodal cells make major contributions to the sense organs-the eye, ear and olfactory epithelium. Both are instrumental for integrating craniofacial organs and have been key to drive the concentration of sensory structures in the vertebrate head allowing the emergence of active and predatory life forms. Whereas the gene regulatory networks that control neural crest cell development have been studied extensively, the signals and downstream transcriptional events that regulate placode formation and diversity are only beginning to be uncovered. Both cell populations are derived from the embryonic ectoderm, which also generates the central nervous system and the epidermis, and recent evidence suggests that their initial specification involves a common molecular mechanism before definitive neural, neural crest and placodal lineages are established. In this review, we will first discuss the transcriptional networks that pattern the embryonic ectoderm and establish these three cell fates with emphasis on sensory placodes. Second, we will focus on how sensory placode precursors diversify using the specification of otic-epibranchial progenitors and their segregation as an example.
Collapse
|
43
|
Shah AM, Krohn P, Baxi AB, Tavares ALP, Sullivan CH, Chillakuru YR, Majumdar HD, Neilson KM, Moody SA. Six1 proteins with human branchio-oto-renal mutations differentially affect cranial gene expression and otic development. Dis Model Mech 2020; 13:dmm043489. [PMID: 31980437 PMCID: PMC7063838 DOI: 10.1242/dmm.043489] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/14/2020] [Indexed: 12/15/2022] Open
Abstract
Single-nucleotide mutations in human SIX1 result in amino acid substitutions in either the protein-protein interaction domain or the homeodomain, and cause ∼4% of branchio-otic (BOS) and branchio-oto-renal (BOR) cases. The phenotypic variation between patients with the same mutation, even within affected members of the same family, make it difficult to functionally distinguish between the different SIX1 mutations. We made four of the BOS/BOR substitutions in the Xenopus Six1 protein (V17E, R110W, W122R, Y129C), which is 100% identical to human in both the protein-protein interaction domain and the homeodomain, and expressed them in embryos to determine whether they cause differential changes in early craniofacial gene expression, otic gene expression or otic morphology. We confirmed that, similar to the human mutants, all four mutant Xenopus Six1 proteins access the nucleus but are transcriptionally deficient. Analysis of craniofacial gene expression showed that each mutant causes specific, often different and highly variable disruptions in the size of the domains of neural border zone, neural crest and pre-placodal ectoderm genes. Each mutant also had differential effects on genes that pattern the otic vesicle. Assessment of the tadpole inner ear demonstrated that while the auditory and vestibular structures formed, the volume of the otic cartilaginous capsule, otoliths, lumen and a subset of the hair cell-containing sensory patches were reduced. This detailed description of the effects of BOS/BOR-associated SIX1 mutations in the embryo indicates that each causes subtle changes in gene expression in the embryonic ectoderm and otocyst, leading to inner ear morphological anomalies.
Collapse
Affiliation(s)
- Ankita M Shah
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Patrick Krohn
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
- Institute of Zoology, University of Hohenheim, Stuttgart 70599, Germany
| | - Aparna B Baxi
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Andre L P Tavares
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Charles H Sullivan
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
- Department of Biology, Grinnell College, Grinnell, IA 50112, USA
| | - Yeshwant R Chillakuru
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Himani D Majumdar
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Karen M Neilson
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Sally A Moody
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| |
Collapse
|
44
|
Wang L, Xie J, Zhang H, Tsang LH, Tsang SL, Braune EB, Lendahl U, Sham MH. Notch signalling regulates epibranchial placode patterning and segregation. Development 2020; 147:dev.183665. [PMID: 31988190 PMCID: PMC7044445 DOI: 10.1242/dev.183665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/14/2020] [Indexed: 11/20/2022]
Abstract
Epibranchial placodes are the geniculate, petrosal and nodose placodes that generate parts of cranial nerves VII, IX and X, respectively. How the three spatially separated placodes are derived from the common posterior placodal area is poorly understood. Here, we reveal that the broad posterior placode area is first patterned into a Vgll2+/Irx5+ rostral domain and a Sox2+/Fgf3+/Etv5+ caudal domain relative to the first pharyngeal cleft. This initial rostral and caudal patterning is then sequentially repeated along each pharyngeal cleft for each epibranchial placode. The caudal domains give rise to the neuronal and non-neuronal cells in the placode, whereas the rostral domains are previously unrecognized structures, serving as spacers between the final placodes. Notch signalling regulates the balance between the rostral and caudal domains: high levels of Notch signalling expand the caudal domain at the expense of the rostral domain, whereas loss of Notch signalling produces the converse phenotype. Collectively, these data unravel a new patterning principle for the early phases of epibranchial placode development and a role for Notch signalling in orchestrating epibranchial placode segregation and differentiation.
Collapse
Affiliation(s)
- Li Wang
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Junjie Xie
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Haoran Zhang
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Long Hin Tsang
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Sze Lan Tsang
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Eike-Benjamin Braune
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Mai Har Sham
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
45
|
Yuan T, York JR, McCauley DW. Neural crest and placode roles in formation and patterning of cranial sensory ganglia in lamprey. Genesis 2020; 58:e23356. [PMID: 32049434 DOI: 10.1002/dvg.23356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 11/07/2022]
Abstract
Vertebrates possess paired cranial sensory ganglia derived from two embryonic cell populations, neural crest and placodes. Cranial sensory ganglia arose prior to the divergence of jawed and jawless vertebrates, but the developmental mechanisms that facilitated their evolution are unknown. Using gene expression and cell lineage tracing experiments in embryos of the sea lamprey, Petromyzon marinus, we find that in the cranial ganglia we targeted, development consists of placode-derived neuron clusters in the core of ganglia, with neural crest cells mostly surrounding these neuronal clusters. To dissect functional roles of neural crest and placode cell associations in these developing cranial ganglia, we used CRISPR/Cas9 gene editing experiments to target genes critical for the development of each population. Genetic ablation of SoxE2 and FoxD-A in neural crest cells resulted in differentiated cranial sensory neurons with abnormal morphologies, whereas deletion of DlxB in cranial placodes resulted in near-total loss of cranial sensory neurons. Taken together, our cell-lineage, gene expression, and gene editing results suggest that cranial neural crest cells may not be required for cranial ganglia specification but are essential for shaping the morphology of these sensory structures. We propose that the association of neural crest and placodes in the head of early vertebrates was a key step in the organization of neurons and glia into paired sensory ganglia.
Collapse
Affiliation(s)
- Tian Yuan
- Department of Biology, University of Oklahoma, Norman, Oklahoma
| | - Joshua R York
- Department of Biology, University of Oklahoma, Norman, Oklahoma
| | | |
Collapse
|
46
|
|
47
|
Drake PM, Jourdeuil K, Franz-Odendaal TA. An overlooked placode: Recharacterizing the papillae in the embryonic eye of reptilia. Dev Dyn 2019; 249:164-172. [PMID: 31665553 DOI: 10.1002/dvdy.128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/10/2019] [Accepted: 10/24/2019] [Indexed: 12/17/2022] Open
Abstract
The papillae in the chicken embryonic eye, described as scleral papillae in the well-known Hamburger and Hamilton (1951) staging table, are one of the key anatomical features used to stage reptilian (including bird) embryos from HH30-36. These papillae are epithelial thickenings of the conjunctiva and are situated above the mesenchymal sclera. Here, we present evidence that the conjunctival papillae, which are required for the induction and patterning of the underlying scleral ossicles, require epithelial pre-patterning and have a placodal stage similar to other placode systems. We also suggest modifications to the Hamburger Hamilton staging criteria that incorporate this change in terminology (from "scleral" to "conjunctival" papillae) and provide a more detailed description of this anatomical feature that includes its placode stage. This enables a more complete and accurate description of chick embryo staging. The acknowledgment of a placode phase, which shares molecular and morphological features with other cutaneous placodes, will direct future research into the early inductive events leading to scleral ossicle formation.
Collapse
Affiliation(s)
- Paige M Drake
- Department of Medical Neuroscience, Dalhousie University Faculty of Medicine, Halifax, Nova Scotia, Canada
| | - Karyn Jourdeuil
- Department of Animal and Avian Sciences, University of Maryland at College Park, College Park, Maryland
| | | |
Collapse
|
48
|
Rocha M, Singh N, Ahsan K, Beiriger A, Prince VE. Neural crest development: insights from the zebrafish. Dev Dyn 2019; 249:88-111. [PMID: 31591788 DOI: 10.1002/dvdy.122] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/21/2019] [Accepted: 09/22/2019] [Indexed: 12/12/2022] Open
Abstract
Our understanding of the neural crest, a key vertebrate innovation, is built upon studies of multiple model organisms. Early research on neural crest cells (NCCs) was dominated by analyses of accessible amphibian and avian embryos, with mouse genetics providing complementary insights in more recent years. The zebrafish model is a relative newcomer to the field, yet it offers unparalleled advantages for the study of NCCs. Specifically, zebrafish provide powerful genetic and transgenic tools, coupled with rapidly developing transparent embryos that are ideal for high-resolution real-time imaging of the dynamic process of neural crest development. While the broad principles of neural crest development are largely conserved across vertebrate species, there are critical differences in anatomy, morphogenesis, and genetics that must be considered before information from one model is extrapolated to another. Here, our goal is to provide the reader with a helpful primer specific to neural crest development in the zebrafish model. We focus largely on the earliest events-specification, delamination, and migration-discussing what is known about zebrafish NCC development and how it differs from NCC development in non-teleost species, as well as highlighting current gaps in knowledge.
Collapse
Affiliation(s)
- Manuel Rocha
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois
| | - Noor Singh
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois
| | - Kamil Ahsan
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois
| | - Anastasia Beiriger
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois
| | - Victoria E Prince
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois.,Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois
| |
Collapse
|
49
|
Britton G, Heemskerk I, Hodge R, Qutub AA, Warmflash A. A novel self-organizing embryonic stem cell system reveals signaling logic underlying the patterning of human ectoderm. Development 2019; 146:dev.179093. [PMID: 31519692 DOI: 10.1242/dev.179093] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/06/2019] [Indexed: 12/20/2022]
Abstract
During development, the ectoderm is patterned by a combination of BMP and WNT signaling. Research in model organisms has provided substantial insight into this process; however, there are currently no systems in which to study ectodermal patterning in humans. Further, the complexity of neural plate border specification has made it difficult to transition from discovering the genes involved to deeper mechanistic understanding. Here, we develop an in vitro model of human ectodermal patterning, in which human embryonic stem cells self-organize to form robust and quantitatively reproducible patterns corresponding to the complete medial-lateral axis of the embryonic ectoderm. Using this platform, we show that the duration of endogenous WNT signaling is a crucial control parameter, and that cells sense relative levels of BMP and WNT signaling in making fate decisions. These insights allowed us to develop an improved protocol for placodal differentiation. Thus, our platform is a powerful tool for studying human ectoderm patterning and for improving directed differentiation protocols.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- George Britton
- Systems Synthetic and Physical Biology Program, Rice University Houston, Houston, TX 77005, USA
| | - Idse Heemskerk
- Department of Biosciences, Rice University Houston, Houston, TX 77005, USA
| | - Rachel Hodge
- Department of Biosciences, Rice University Houston, Houston, TX 77005, USA
| | - Amina A Qutub
- Department of Bioengineering, Rice University Houston, Houston, TX 77005, USA
| | - Aryeh Warmflash
- Department of Biosciences, Rice University Houston, Houston, TX 77005, USA .,Department of Bioengineering, Rice University Houston, Houston, TX 77005, USA
| |
Collapse
|
50
|
Marzban H, Rahimi-Balaei M, Hawkes R. Early trigeminal ganglion afferents enter the cerebellum before the Purkinje cells are born and target the nuclear transitory zone. Brain Struct Funct 2019; 224:2421-2436. [PMID: 31256239 DOI: 10.1007/s00429-019-01916-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 06/25/2019] [Indexed: 12/20/2022]
Abstract
In the standard model for the development of climbing and mossy fiber afferent pathways to the cerebellum, the ingrowing axons target the embryonic Purkinje cell somata (around embryonic ages (E13-E16 in mice). In this report, we describe a novel earlier stage in afferent development. Immunostaining for a neurofilament-associated antigen (NAA) reveals the early axon distributions with remarkable clarity. Using a combination of DiI axon tract tracing, analysis of neurogenin1 null mice, which do not develop trigeminal ganglia, and mouse embryos maintained in vitro, we show that the first axons to innervate the cerebellar primordium as early as E9 arise from the trigeminal ganglion. Therefore, early trigeminal axons are in situ before the Purkinje cells are born. Double immunostaining for NAA and markers of the different domains in the cerebellar primordium reveal that afferents first target the nuclear transitory zone (E9-E10), and only later (E10-E11) are the axons, either collaterals from the trigeminal ganglion or a new afferent source (e.g., vestibular ganglia), seen in the Purkinje cell plate. The finding that the earliest axons to the cerebellum derive from the trigeminal ganglion and enter the cerebellar primordium before the Purkinje cells are born, where they seem to target the cerebellar nuclei, reveals a novel stage in the development of the cerebellar afferents.
Collapse
Affiliation(s)
- Hassan Marzban
- Department of Human Anatomy and Cell Science, The Children's Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada. .,Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Rm 129 BMSB, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada.
| | - Maryam Rahimi-Balaei
- Department of Human Anatomy and Cell Science, The Children's Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Richard Hawkes
- Department of Cell Biology and Anatomy and Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| |
Collapse
|