1
|
Wurmser M, Muppavarapu M, Tait CM, Laumonnerie C, González-Castrillón LM, Wilson SI. Robo2 Receptor Gates the Anatomical Divergence of Neurons Derived From a Common Precursor Origin. Front Cell Dev Biol 2021; 9:668175. [PMID: 34249921 PMCID: PMC8263054 DOI: 10.3389/fcell.2021.668175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/03/2021] [Indexed: 12/25/2022] Open
Abstract
Sensory information relayed to the brain is dependent on complex, yet precise spatial organization of neurons. This anatomical complexity is generated during development from a surprisingly small number of neural stem cell domains. This raises the question of how neurons derived from a common precursor domain respond uniquely to their environment to elaborate correct spatial organization and connectivity. We addressed this question by exploiting genetically labeled mouse embryonic dorsal interneuron 1 (dI1) neurons that are derived from a common precursor domain and give rise to spinal projection neurons with distinct organization of cell bodies with axons projecting either commissurally (dI1c) or ipsilaterally (dI1i). In this study, we examined how the guidance receptor, Robo2, which is a canonical Robo receptor, influenced dI1 guidance during embryonic development. Robo2 was enriched in embryonic dI1i neurons, and loss of Robo2 resulted in misguidance of dI1i axons, whereas dI1c axons remained unperturbed within the mantle zone and ventral commissure. Further, Robo2 profoundly influenced dI1 cell body migration, a feature that was partly dependent on Slit2 signaling. These data suggest that dI1 neurons are dependent on Robo2 for their organization. This work integrated with the field support of a model whereby canonical Robo2 vs. non-canonical Robo3 receptor expression facilitates projection neurons derived from a common precursor domain to read out the tissue environment uniquely giving rise to correct anatomical organization.
Collapse
Affiliation(s)
- Maud Wurmser
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | | | | | | | | | - Sara Ivy Wilson
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
2
|
Alvarez S, Varadarajan SG, Butler SJ. Dorsal commissural axon guidance in the developing spinal cord. Curr Top Dev Biol 2020; 142:197-231. [PMID: 33706918 DOI: 10.1016/bs.ctdb.2020.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Commissural axons have been a key model system for identifying axon guidance signals in vertebrates. This review summarizes the current thinking about the molecular and cellular mechanisms that establish a specific commissural neural circuit: the dI1 neurons in the developing spinal cord. We assess the contribution of long- and short-range signaling while sequentially following the developmental timeline from the birth of dI1 neurons, to the extension of commissural axons first circumferentially and then contralaterally into the ventral funiculus.
Collapse
Affiliation(s)
- Sandy Alvarez
- Department of Neurobiology, University of California, Los Angeles, CA, United States; Molecular Biology Interdepartmental Doctoral Program, University of California, Los Angeles, CA, United States
| | | | - Samantha J Butler
- Department of Neurobiology, University of California, Los Angeles, CA, United States; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, United States.
| |
Collapse
|
3
|
Abstract
The spinal cord receives, relays and processes sensory information from the periphery and integrates this information with descending inputs from supraspinal centres to elicit precise and appropriate behavioural responses and orchestrate body movements. Understanding how the spinal cord circuits that achieve this integration are wired during development is the focus of much research interest. Several families of proteins have well-established roles in guiding developing spinal cord axons, and recent findings have identified new axon guidance molecules. Nevertheless, an integrated view of spinal cord network development is lacking, and many current models have neglected the cellular and functional diversity of spinal cord circuits. Recent advances challenge the existing spinal cord axon guidance dogmas and have provided a more complex, but more faithful, picture of the ontogenesis of vertebrate spinal cord circuits.
Collapse
|
4
|
Comer JD, Alvarez S, Butler SJ, Kaltschmidt JA. Commissural axon guidance in the developing spinal cord: from Cajal to the present day. Neural Dev 2019; 14:9. [PMID: 31514748 PMCID: PMC6739980 DOI: 10.1186/s13064-019-0133-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022] Open
Abstract
During neuronal development, the formation of neural circuits requires developing axons to traverse a diverse cellular and molecular environment to establish synaptic contacts with the appropriate postsynaptic partners. Essential to this process is the ability of developing axons to navigate guidance molecules presented by specialized populations of cells. These cells partition the distance traveled by growing axons into shorter intervals by serving as intermediate targets, orchestrating the arrival and departure of axons by providing attractive and repulsive guidance cues. The floor plate in the central nervous system (CNS) is a critical intermediate target during neuronal development, required for the extension of commissural axons across the ventral midline. In this review, we begin by giving a historical overview of the ventral commissure and the evolutionary purpose of decussation. We then review the axon guidance studies that have revealed a diverse assortment of midline guidance cues, as well as genetic and molecular regulatory mechanisms required for coordinating the commissural axon response to these cues. Finally, we examine the contribution of dysfunctional axon guidance to neurological diseases.
Collapse
Affiliation(s)
- J D Comer
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.,Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA.,Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - S Alvarez
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.,Molecular Biology Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - S J Butler
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - J A Kaltschmidt
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
5
|
Varadarajan SG, Kong JH, Phan KD, Kao TJ, Panaitof SC, Cardin J, Eltzschig H, Kania A, Novitch BG, Butler SJ. Netrin1 Produced by Neural Progenitors, Not Floor Plate Cells, Is Required for Axon Guidance in the Spinal Cord. Neuron 2017; 94:790-799.e3. [PMID: 28434801 DOI: 10.1016/j.neuron.2017.03.007] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 01/12/2017] [Accepted: 02/22/2017] [Indexed: 02/06/2023]
Abstract
Netrin1 has been proposed to act from the floor plate (FP) as a long-range diffusible chemoattractant for commissural axons in the embryonic spinal cord. However, netrin1 mRNA and protein are also present in neural progenitors within the ventricular zone (VZ), raising the question of which source of netrin1 promotes ventrally directed axon growth. Here, we use genetic approaches in mice to selectively remove netrin from different regions of the spinal cord. Our analyses show that the FP is not the source of netrin1 directing axons to the ventral midline, while local VZ-supplied netrin1 is required for this step. Furthermore, rather than being present in a gradient, netrin1 protein accumulates on the pial surface adjacent to the path of commissural axon extension. Thus, netrin1 does not act as a long-range secreted chemoattractant for commissural spinal axons but instead promotes ventrally directed axon outgrowth by haptotaxis, i.e., directed growth along an adhesive surface.
Collapse
Affiliation(s)
- Supraja G Varadarajan
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Neuroscience Interdisciplinary Graduate Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jennifer H Kong
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Neuroscience Interdisciplinary Graduate Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Keith D Phan
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tzu-Jen Kao
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada; Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology and Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan
| | - S Carmen Panaitof
- Department of Biology, University of Nebraska, Kearney, Kearney, NE 68849, USA
| | - Julie Cardin
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology and Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan
| | - Holger Eltzschig
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA
| | - Artur Kania
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada; Faculté de Médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada; Departments of Anatomy and Cell Biology and Biology, Division of Experimental Medicine, McGill University, Montréal, QC H3A 3R1, Canada
| | - Bennett G Novitch
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Neuroscience Interdisciplinary Graduate Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Samantha J Butler
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Neuroscience Interdisciplinary Graduate Program, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
6
|
Early Commissural Diencephalic Neurons Control Habenular Axon Extension and Targeting. Curr Biol 2017; 27:270-278. [PMID: 28065605 DOI: 10.1016/j.cub.2016.11.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/07/2016] [Accepted: 11/16/2016] [Indexed: 01/19/2023]
Abstract
Most neuronal populations form on both the left and right sides of the brain. Their efferent axons appear to grow synchronously along similar pathways on each side, although the neurons or their environment often differ between the two hemispheres [1-4]. How this coordination is controlled has received little attention. Frequently, neurons establish interhemispheric connections, which can function to integrate information between brain hemispheres (e.g., [5]). Such commissures form very early, suggesting their potential developmental role in coordinating ipsilateral axon navigation during embryonic development [4]. To address the temporal-spatial control of bilateral axon growth, we applied long-term time-lapse imaging to visualize the formation of the conserved left-right asymmetric habenular neural circuit in the developing zebrafish embryo [6]. Although habenular neurons are born at different times across brain hemispheres [7], we found that elongation of habenular axons occurs synchronously. The initiation of axon extension is not controlled within the habenular network itself but through an early developing proximal diencephalic network. The commissural neurons of this network influence habenular axons both ipsilaterally and contralaterally. Their unilateral absence impairs commissure formation and coordinated habenular axon elongation and causes their subsequent arrest on both sides of the brain. Thus, habenular neural circuit formation depends on a second intersecting commissural network, which facilitates the exchange of information between hemispheres required for ipsilaterally projecting habenular axons. This mechanism of network formation may well apply to other circuits, and has only remained undiscovered due to technical limitations.
Collapse
|
7
|
Moreno-Bravo JA, Martinez-Lopez JE, Madrigal MP, Kim M, Mastick GS, Lopez-Bendito G, Martinez S, Puelles E. Developmental guidance of the retroflex tract at its bending point involves Robo1-Slit2-mediated floor plate repulsion. Brain Struct Funct 2016; 221:665-78. [PMID: 25366972 PMCID: PMC4485949 DOI: 10.1007/s00429-014-0932-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/24/2014] [Indexed: 10/24/2022]
Abstract
The retroflex tract contains medial habenula efferents that target the hindbrain interpeduncular complex and surrounding areas. This tract displays a singular course. Initially, habenular axons extend ventralwards in front of the pretectum until they reach the basal plate. Next, they avoid crossing the local floor plate, sharply changing course caudalwards (the retroflexion alluded by the tract name) and navigate strictly antero-posteriorly across basal pretectum, midbrain and isthmus. Once they reach rhombomere 1, the habenular axons criss-cross the floor plate several times within the interpeduncular nuclear complex as they innervate it. Here we described the timing and details of growth phenomena as these axons navigate to their target. The first dorsoventral course apparently obeys Ntn1 attraction. We checked the role of local floor plate signaling in the decision to avoid the thalamic floor plate and bend caudalwards. Analyzing the altered floor and basal plates of Gli2 knockout mice, we found a contralateral projection of most habenular axons, plus ulterior bizarre navigation rostralwards. This crossing phenotype was due to a reduced expression of Slit repulsive cues, suggesting involvement of the floor-derived Robo-Slit system in the normal guidance of this tract. Using Slit and Robo mutant mice, open neural tube and co-culture assays, we determined that Robo1-Slit2 interaction is specifically required for impeding that medial habenular axons cross the thalamic floor plate. This pathfinding mechanism is essential to establish the functionally important habenulo-interpeduncular connection.
Collapse
Affiliation(s)
- Juan A Moreno-Bravo
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Jesus E Martinez-Lopez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - M Pilar Madrigal
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Minkyung Kim
- Department of Biology, University of Nevada, Reno, NV, 89557, USA
| | - Grant S Mastick
- Department of Biology, University of Nevada, Reno, NV, 89557, USA
| | - Guillermina Lopez-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Salvador Martinez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, 03550, Alicante, Spain
- Instituto Murciano de Investigación Biomédica IMIB-Arrixaca, Murcia, Spain
| | - Eduardo Puelles
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, 03550, Alicante, Spain.
| |
Collapse
|
8
|
Alpár A, Tortoriello G, Calvigioni D, Niphakis MJ, Milenkovic I, Bakker J, Cameron GA, Hanics J, Morris CV, Fuzik J, Kovacs GG, Cravatt BF, Parnavelas JG, Andrews WD, Hurd YL, Keimpema E, Harkany T. Endocannabinoids modulate cortical development by configuring Slit2/Robo1 signalling. Nat Commun 2014; 5:4421. [PMID: 25030704 PMCID: PMC4110686 DOI: 10.1038/ncomms5421] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/16/2014] [Indexed: 11/21/2022] Open
Abstract
Local environmental cues are indispensable for axonal growth and guidance during brain circuit formation. Here, we combine genetic and pharmacological tools, as well as systems neuroanatomy in human fetuses and mouse models, to study the role of endocannabinoid and Slit/Robo signalling in axonal growth. We show that excess 2-arachidonoylglycerol, an endocannabinoid affecting directional axonal growth, triggers corpus callosum enlargement due to the errant CB1 cannabinoid receptor-containing corticofugal axon spreading. This phenotype mechanistically relies on the premature differentiation and end-feet proliferation of CB2R-expressing oligodendrocytes. We further show the dependence of both axonal Robo1 positioning and oligodendroglial Slit2 production on cell-type-specific cannabinoid receptor activation. Accordingly, Robo1 and/or Slit2 manipulation limits endocannabinoid modulation of axon guidance. We conclude that endocannabinoids can configure focal Slit2/Robo1 signalling to modulate directional axonal growth, which may provide a basis for understanding impaired brain wiring associated with metabolic deficits and prenatal drug exposure.
Collapse
Affiliation(s)
- Alán Alpár
- Division of Molecular Neurobiology, Department of Medical Biochemistry & Biophysics, Scheeles väg 1:A1, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Giuseppe Tortoriello
- Division of Molecular Neurobiology, Department of Medical Biochemistry & Biophysics, Scheeles väg 1:A1, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Daniela Calvigioni
- Division of Molecular Neurobiology, Department of Medical Biochemistry & Biophysics, Scheeles väg 1:A1, Karolinska Institutet, SE-17177 Stockholm, Sweden
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | - Micah J Niphakis
- Department of Chemical Physiology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd.,La Jolla, California CA 92037 USA
| | - Ivan Milenkovic
- Institute of Neurology, Medical University of Vienna, AKH 4J, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Joanne Bakker
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | - Gary A Cameron
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - János Hanics
- Department of Anatomy, Histology and Embryology, Semmelweis University, Tűzoltó u. 58, H-1094 Budapest, Hungary
| | - Claudia V Morris
- Icahn School of Medicine at Mount Sinai, New York, 1470 Madison Avenue, New York, NY 10029, USA
| | - János Fuzik
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | - Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, AKH 4J, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Benjamin F Cravatt
- Department of Chemical Physiology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd.,La Jolla, California CA 92037 USA
| | - John G Parnavelas
- Department of Cell and Developmental Biology, 21 University Street, University College London, London WC1E 6DE, United Kingdom
| | - William D Andrews
- Department of Cell and Developmental Biology, 21 University Street, University College London, London WC1E 6DE, United Kingdom
| | - Yasmin L Hurd
- Icahn School of Medicine at Mount Sinai, New York, 1470 Madison Avenue, New York, NY 10029, USA
| | - Erik Keimpema
- Division of Molecular Neurobiology, Department of Medical Biochemistry & Biophysics, Scheeles väg 1:A1, Karolinska Institutet, SE-17177 Stockholm, Sweden
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | - Tibor Harkany
- Division of Molecular Neurobiology, Department of Medical Biochemistry & Biophysics, Scheeles väg 1:A1, Karolinska Institutet, SE-17177 Stockholm, Sweden
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| |
Collapse
|
9
|
Jacobi A, Schmalz A, Bareyre FM. Abundant expression of guidance and synaptogenic molecules in the injured spinal cord. PLoS One 2014; 9:e88449. [PMID: 24523897 PMCID: PMC3921160 DOI: 10.1371/journal.pone.0088449] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 01/08/2014] [Indexed: 11/18/2022] Open
Abstract
Background Spinal interneurons have emerged as crucial targets of supraspinal input during post-injury axonal remodelling. For example, lesioned corticospinal projections use propriospinal neurons as relay stations to form intraspinal detour circuits that circumvent the lesion site and contribute to functional recovery. While a number of the molecules that determine the formation of neuronal circuits in the developing nervous system have been identified, it is much less understood which of these cues are also expressed in the injured spinal cord and can thus guide growing collaterals and initiate synaptogenesis during circuit remodelling. Methodology/Principal Findings To address this question we characterized the expression profile of a number of guidance and synaptogenic molecules in the cervical spinal cord of healthy and spinal cord-injured mice by in situ hybridization. To assign the expression of these molecules to distinct populations of interneurons we labeled short and long propriospinal neurons by retrograde tracing and glycinergic neurons using a transgenically expressed fluorescent protein. Interestingly, we found that most of the molecules studied including members of slit-, semaphorin-, synCAM-, neuroligin- and ephrin- families as well as their receptors are also present in the adult CNS. While many of these molecules were abundantly expressed in all interneurons examined, some molecules including slits, semaphorin 7a, synCAM4 and neuroligin 1 showed preferential expression in propriospinal interneurons. Overall the expression pattern of guidance and synaptogenic molecules in the cervical spinal cord appeared to be stable over time and was not substantially altered following a midthoracic spinal cord injury. Conclusions Taken together, our study indicates that many of the guidance and synaptogenic cues that regulate neuronal circuit formation in development are also present in the adult CNS and therefore likely contribute to the remodelling of axonal connections in the injured spinal cord.
Collapse
Affiliation(s)
- Anne Jacobi
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians University Munich, Munich, Germany
| | - Anja Schmalz
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians University Munich, Munich, Germany
| | - Florence M. Bareyre
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians University Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- * E-mail:
| |
Collapse
|
10
|
Tran TS, Carlin E, Lin R, Martinez E, Johnson JE, Kaprielian Z. Neuropilin2 regulates the guidance of post-crossing spinal commissural axons in a subtype-specific manner. Neural Dev 2013; 8:15. [PMID: 23902858 PMCID: PMC3737016 DOI: 10.1186/1749-8104-8-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 07/19/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Spinal commissural axons represent a model system for deciphering the molecular logic that regulates the guidance of midline-crossing axons in the developing central nervous system (CNS). Whether the same or specific sets of guidance signals control the navigation of molecularly distinct subtypes of these axons remains an open and largely unexplored question. Although it is well established that post-crossing commissural axons alter their responsiveness to midline-associated guidance cues, our understanding of the repulsive mechanisms that drive the post-crossing segments of these axons away from the midline and whether the underlying guidance systems operate in a commissural axon subtype-specific manner, remains fragmentary at best. RESULTS Here, we utilize axonally targeted transgenic reporter mice to visualize genetically distinct dorsal interneuron (dI)1 and dI4 commissural axons and show that the repulsive class 3 semaphorin (Sema3) guidance receptor Neuropilin 2 (Npn2), is selectively expressed on the dI1 population and is required for the guidance of post-crossing dI1, but not dI4, axons. Consistent with these observations, the midline-associated Npn2 ligands, Sema3F and Sema3B, promote the collapse of dI1, but not dI4, axon-associated growth cones in vitro. We also identify, for the first time, a discrete GABAergic population of ventral commissural neurons/axons in the embryonic mouse spinal cord that expresses Npn2, and show that Npn2 is required for the proper guidance of their post-crossing axons. CONCLUSIONS Together, our findings indicate that Npn2 is selectively expressed in distinct populations of commissural neurons in both the dorsal and ventral spinal cord, and suggest that Sema3-Npn2 signaling regulates the guidance of post-crossing commissural axons in a population-specific manner.
Collapse
Affiliation(s)
- Tracy S Tran
- Department of Biological Sciences, Rutgers University, Boyden 206, 195 University Ave,, Newark, NJ 07102, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Grondona JM, Hoyo-Becerra C, Visser R, Fernández-Llebrez P, López-Ávalos MD. The subcommissural organ and the development of the posterior commissure. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 296:63-137. [PMID: 22559938 DOI: 10.1016/b978-0-12-394307-1.00002-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Growing axons navigate through the developing brain by means of axon guidance molecules. Intermediate targets producing such signal molecules are used as guideposts to find distal targets. Glial, and sometimes neuronal, midline structures represent intermediate targets when axons cross the midline to reach the contralateral hemisphere. The subcommissural organ (SCO), a specialized neuroepithelium located at the dorsal midline underneath the posterior commissure, releases SCO-spondin, a large glycoprotein belonging to the thrombospondin superfamily that shares molecular domains with axonal pathfinding molecules. Several evidences suggest that the SCO could be involved in the development of the PC. First, both structures display a close spatiotemporal relationship. Second, certain mutants lacking an SCO present an abnormal PC. Third, some axonal guidance molecules are expressed by SCO cells. Finally, SCO cells, the Reissner's fiber (the aggregated form of SCO-spondin), or synthetic peptides from SCO-spondin affect the neurite outgrowth or neuronal aggregation in vitro.
Collapse
Affiliation(s)
- Jesús M Grondona
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Spain.
| | | | | | | | | |
Collapse
|
12
|
Bravo-Ambrosio A, Mastick G, Kaprielian Z. Motor axon exit from the mammalian spinal cord is controlled by the homeodomain protein Nkx2.9 via Robo-Slit signaling. Development 2012; 139:1435-46. [PMID: 22399681 PMCID: PMC3308178 DOI: 10.1242/dev.072256] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2012] [Indexed: 01/11/2023]
Abstract
Mammalian motor circuits control voluntary movements by transmitting signals from the central nervous system (CNS) to muscle targets. To form these circuits, motor neurons (MNs) must extend their axons out of the CNS. Although exit from the CNS is an indispensable phase of motor axon pathfinding, the underlying molecular mechanisms remain obscure. Here, we present the first identification of a genetic pathway that regulates motor axon exit from the vertebrate spinal cord, utilizing spinal accessory motor neurons (SACMNs) as a model system. SACMNs are a homogeneous population of spinal MNs with axons that leave the CNS through a discrete lateral exit point (LEP) and can be visualized by the expression of the cell surface protein BEN. We show that the homeodomain transcription factor Nkx2.9 is selectively required for SACMN axon exit and identify the Robo2 guidance receptor as a likely downstream effector of Nkx2.9; loss of Nkx2.9 leads to a reduction in Robo2 mRNA and protein within SACMNs and SACMN axons fail to exit the spinal cord in Robo2-deficient mice. Consistent with short-range interactions between Robo2 and Slit ligands regulating SACMN axon exit, Robo2-expressing SACMN axons normally navigate through LEP-associated Slits as they emerge from the spinal cord, and fail to exit in Slit-deficient mice. Our studies support the view that Nkx2.9 controls SACMN axon exit from the mammalian spinal cord by regulating Robo-Slit signaling.
Collapse
Affiliation(s)
- Arlene Bravo-Ambrosio
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Grant Mastick
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Zaven Kaprielian
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
13
|
Sánchez-Camacho C, Bovolenta P. Emerging mechanisms in morphogen-mediated axon guidance. Bioessays 2009; 31:1013-25. [PMID: 19705365 DOI: 10.1002/bies.200900063] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Early in animal development, gradients of secreted morphogenic molecules, such as Sonic hedgehog (Shh), Wnt and TGFbeta/Bmp family members, regulate cell proliferation and determine the fate and phenotype of the target cells by activating well-characterized signalling pathways, which ultimately control gene transcription. Shh, Wnt and TGFbeta/Bmp signalling also play an important and evolutionary conserved role in neural circuit assembly. They regulate neuronal polarization, axon and dendrite development and synaptogenesis, processes that require rapid and local changes in cytoskeletal organization and plasma membrane components. A key question then is whether morphogen signalling at the growth cone uses similar mechanisms and intracellular pathway components to those described for morphogen-mediated cell specification. This review discusses recent advances towards the understanding of this problem, showing how Shh, Wnt and TGFbeta/Bmp have adapted their 'classical' signalling pathways or adopted alternative and novel molecular mechanisms to influence different aspects of neuronal circuit formation.
Collapse
Affiliation(s)
- Cristina Sánchez-Camacho
- Departamento de Neurobiología Molecular, Celular y del Desarrollo, Instituto Cajal, CSIC and CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | | |
Collapse
|
14
|
Sevc J, Daxnerová Z, Miklosová M. Role of radial glia in transformation of the primitive lumen to the central canal in the developing rat spinal cord. Cell Mol Neurobiol 2009; 29:927-36. [PMID: 19291394 PMCID: PMC11506090 DOI: 10.1007/s10571-009-9377-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 02/23/2009] [Indexed: 12/01/2022]
Abstract
In the last quarter of the embryonic development of rat and shortly after a termination of neurogenesis, the transformation of the spinal cord primitive lumen (pL) to the central canal (CC) occurs. In this work, we show that this phenomenon is not an insignificant event but it is directly associated with the processes of gliogenesis. Using a light microscopy and immunohistochemistry, we monitored the development of the rat embryonic spinal cord from the end of the neurogenesis on the embryonic day 17 until the maturation of the spinal cord during the first postnatal weeks. Our observations demonstrate the importance of the transformation of the pL to the CC and its connection with gliogenesis, and the mechanism of this transformation is proposed. It is found that a segregation of the glutamate transporter (GLAST) immunopositive cells from the alar plates and transformation of the radial glial cells to the fibrous and protoplasmic astrocytes play presumably a key role in the diminution of the ventricular zone. Results indicate that the very transformation and migration of the radial glial cells during gliogenesis could result in a transformation of the pL to the CC.
Collapse
Affiliation(s)
- Juraj Sevc
- Institute of Biology and Ecology, Faculty of Sciences, PJ Safárik University, 04167 Kosice, Slovak Republic.
| | | | | |
Collapse
|
15
|
Reeber SL, Kaprielian Z. Leaving the midline: how Robo receptors regulate the guidance of post-crossing spinal commissural axons. Cell Adh Migr 2009; 3:300-4. [PMID: 19556886 DOI: 10.4161/cam.3.3.9156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In the developing nervous system, pathfinding axons navigate through a series of intermediate targets in order to form synaptic connections. Vertebrate spinal commissural axons extend toward and across the floor plate (FP), a key intermediate target located at the ventral midline (VM). Subsequently, post-crossing commissural axons grow either alongside or significant distances away from the floor plate (FP), but never re-cross the VM. Consistent with this behavior, post-crossing commissural axons lose responsiveness to the FP-associated chemoattractants, Netrin-1 and SHH, and gain responsiveness to Slits, which are potent midline repellents, in vitro. In addition, the results of several in vivo studies suggest that the upregulation of Slit-binding repulsive Robo receptors, Robo1/2, alters the responsiveness of decussated commissural axons to midline guidance cues. Nevertheless, in vertebrates, it is unclear whether Robo1/2 are the sole or major repellent receptors responsible for driving these commissural axons away from the VM and preventing their re-entry into the FP. We recently re-visited these issues in the chick spinal cord by assessing the consequences of manipulating Robo expression on commissural axons in ovo. Our findings suggest that, at least in chick embryos, the upregulation of repulsive Robos on post-crossing axons alters the responsiveness of these axons to midline repellents and facilitates their expulsion from, but is not likely to have a significant role in preventing their re-entry into the VM.
Collapse
Affiliation(s)
- Stacey L Reeber
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | | |
Collapse
|
16
|
Abstract
The wiring of the nervous system requires a complex orchestration of developmental events. Emerging evidence suggests that transient cell-cell interactions often serve as positional cues for axon guidance and synaptogenesis during the assembly of neural circuits. In contrast to the relatively stable cellular interactions between synaptic partners in mature circuits, these transient interactions involve cells that are not destined to be pre- or postsynaptic cells. Here we review the roles of these transient cell-cell interactions in a variety of developmental contexts and describe the mechanisms through which they organize neural connections.
Collapse
|
17
|
Tamada A, Kumada T, Zhu Y, Matsumoto T, Hatanaka Y, Muguruma K, Chen Z, Tanabe Y, Torigoe M, Yamauchi K, Oyama H, Nishida K, Murakami F. Crucial roles of Robo proteins in midline crossing of cerebellofugal axons and lack of their up-regulation after midline crossing. Neural Dev 2008; 3:29. [PMID: 18986510 PMCID: PMC2613388 DOI: 10.1186/1749-8104-3-29] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Accepted: 11/05/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Robo1, Robo2 and Rig-1 (Robo3), members of the Robo protein family, are candidate receptors for the chemorepellents Slit and are known to play a crucial role in commissural axon guidance in the spinal cord. However, their roles at other axial levels remain unknown. Here we examine expression of Robo proteins by cerebellofugal (CF) commissural axons in the rostral hindbrain and investigate their roles in CF axon pathfinding by analysing Robo knockout mice. RESULTS We analysed the expression of Robo proteins by CF axons originating from deep cerebellar neurons in rodent embryos, focusing on developmental stages of their midline crossing and post-crossing navigation. At the stage of CF axon midline crossing, mRNAs of Robo1 and Robo2 are expressed in the nuclear transitory zone of the cerebellum, where the primordium of the deep cerebellar nuclei are located, supporting the notion that CF axons express Robo1 and Robo2. Indeed, immunohistochemical analysis of CF axons labelled by electroporation to deep cerebellar nuclei neurons indicates that Robo1 protein, and possibly also Robo2 protein, is expressed by CF axons crossing the midline. However, weak or no expression of these proteins is found on the longitudinal portion of CF axons. In Robo1/2 double knockout mice, many CF axons reach the midline but fail to exit it. We find that CF axons express Rig-1 (Robo3) before they reach the midline but not after the longitudinal turn. Consistent with this in vivo observation, axons elicited from a cerebellar explant in co-culture with a floor plate explant express Rig-1. In Rig-1 deficient mouse embryos, CF axons appear to project ipsilaterally without reaching the midline. CONCLUSION These results indicate that Robo1, Robo2 or both are required for midline exit of CF axons. In contrast, Rig-1 is required for their approach to the midline. However, post-crossing up-regulation of these proteins, which plays an important role in spinal commissural axon guidance, does not appear to be required for the longitudinal navigation of CF axons after midline crossing. Our results illustrate that although common mechanisms operate for midline crossing at different axial levels, significant variation exists in post-crossing navigation.
Collapse
MESH Headings
- Animals
- Axons/metabolism
- Axons/physiology
- Blotting, Western
- Cerebellum/embryology
- Cerebellum/metabolism
- Female
- Gene Expression Regulation, Developmental
- Genetic Vectors/genetics
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Immunohistochemistry
- In Situ Hybridization
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Membrane Proteins/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Fluorescence
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Nerve Tissue Proteins/physiology
- Pregnancy
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Receptors, Cell Surface
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/physiology
- Rhombencephalon/embryology
- Rhombencephalon/metabolism
- Tissue Culture Techniques
- Transfection
- Roundabout Proteins
Collapse
Affiliation(s)
- Atsushi Tamada
- National Institute for Basic Biology, Myodaiji-cho, Okazaki 444-8585, Japan
- RIKEN Brain Science Institute, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Tatsuro Kumada
- National Institute for Basic Biology, Myodaiji-cho, Okazaki 444-8585, Japan
- CREST, JST (Japan Science and Technology), Kawauguchi, 332-0012, Japan
- Hamamatsu University School of Medicine, 1-20-1, Handayama, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Yan Zhu
- SORST, JST, Kawauguchi, 332-0012, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-8531, Japan
| | - Tomoko Matsumoto
- SORST, JST, Kawauguchi, 332-0012, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-8531, Japan
| | - Yumiko Hatanaka
- National Institute for Basic Biology, Myodaiji-cho, Okazaki 444-8585, Japan
- CREST, JST (Japan Science and Technology), Kawauguchi, 332-0012, Japan
- Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Keiko Muguruma
- CREST, JST (Japan Science and Technology), Kawauguchi, 332-0012, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-8531, Japan
- RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo, Kobe 650-0047, Japan
| | - Zhe Chen
- Division of Research, Genentech Inc, South San Francisco, CA 94080, USA
| | - Yasuto Tanabe
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-8531, Japan
| | - Makio Torigoe
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-8531, Japan
| | - Kenta Yamauchi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-8531, Japan
| | - Hiroshi Oyama
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-8531, Japan
| | - Kazuhiko Nishida
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-8531, Japan
| | - Fujio Murakami
- National Institute for Basic Biology, Myodaiji-cho, Okazaki 444-8585, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-8531, Japan
| |
Collapse
|
18
|
Farmer WT, Altick AL, Nural HF, Dugan JP, Kidd T, Charron F, Mastick GS. Pioneer longitudinal axons navigate using floor plate and Slit/Robo signals. Development 2008; 135:3643-53. [PMID: 18842816 PMCID: PMC2768610 DOI: 10.1242/dev.023325] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Longitudinal axons transmit all signals between the brain and spinal cord. Their axon tracts through the brain stem are established by a simple set of pioneer axons with precise trajectories parallel to the floor plate. To identify longitudinal guidance mechanisms in vivo, the overall role of floor plate tissue and the specific roles of Slit/Robo signals were tested. Ectopic induction or genetic deletion of the floor plate diverted longitudinal axons into abnormal trajectories. The expression patterns of the diffusible cues of the Slit family were altered in the floor plate experiments, suggesting their involvement in longitudinal guidance. Genetic tests of Slit1 and Slit2, and the Slit receptors Robo1 and Robo2 were carried out in mutant mice. Slit1;Slit2 double mutants had severe longitudinal errors, particularly for ventral axons, including midline crossing and wandering longitudinal trajectories. Robo1 and Robo2 were largely genetically redundant, and neither appeared to specify specific tract positions. However, combined Robo1 and Robo2 mutations strongly disrupted each pioneer tract. Thus, pioneer axons depend on long-range floor plate cues, with Slit/Robo signaling required for precise longitudinal trajectories.
Collapse
Affiliation(s)
- W. Todd Farmer
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Amy L. Altick
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | | | - James P. Dugan
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Thomas Kidd
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Frédéric Charron
- Molecular Biology of Neural Development, Institut de recherches cliniques de Montréal (IRCM), 110 Pine Avenue West, Montreal, Quebec H2W 1R7, Canada
| | - Grant S. Mastick
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
19
|
Disruption of Esrom and Ryk identifies the roof plate boundary as an intermediate target for commissure formation. Mol Cell Neurosci 2007; 37:271-83. [PMID: 18060805 DOI: 10.1016/j.mcn.2007.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 10/10/2007] [Indexed: 01/14/2023] Open
Abstract
Growth cones are guided to their final destination by intermediate targets. Here, we identify intermediate targets and signaling components acting on zebrafish habenula commissural axons. Live imaging establishes that axons pause at the medial habenula before and after crossing the roof plate. esrom mutants axons fail to advance beyond the ipsilateral medial habenula. Tsc2 function is reduced in mutant axons, indicating cell autonomous defects in signaling. Consistent with signaling properties changing outside the roof plate, EphB is surface localized on axon segments within a zone demarcated by the medial habenula. wnt4a is expressed in the medial habenula and morpholino knockdown causes loss of the commissure. Electroporation of truncated Ryk causes axons to reenter the midline after reaching the contralateral habenula. These data identify Esrom as a mediator of growth cone navigation at an intermediate target and underscore the importance of midline boundaries as signaling centers for commissure formation.
Collapse
|
20
|
Imondi R, Jevince AR, Helms AW, Johnson JE, Kaprielian Z. Mis-expression of L1 on pre-crossing spinal commissural axons disrupts pathfinding at the ventral midline. Mol Cell Neurosci 2007; 36:462-71. [PMID: 17884558 PMCID: PMC2111042 DOI: 10.1016/j.mcn.2007.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 07/30/2007] [Accepted: 08/06/2007] [Indexed: 10/22/2022] Open
Abstract
In vertebrates, spinal commissural axons project along a transverse path toward and across the floor plate (FP). Post-crossing commissural axons alter their responsiveness to FP-associated guidance cues and turn to project longitudinally in a fasciculated manner prior to extending away from the midline. The upregulation of the neural cell adhesion molecule L1 on crossed commissural axon segments has been proposed to facilitate pathfinding on the contralateral side of the FP. To explore this possibility in vivo, we used Math1 regulatory sequences to target L1 to commissural axons before they cross the ventral midline. L1 mis-expression did not alter the distribution of commissural axon-associated markers or the ventral extension of commissural axons toward the midline. However, commissural axons often stalled or inappropriately projected into the longitudinal plane at the ipsilateral FP margin. These observations suggest that L1-mediated pathfinding decisions are normally delayed until axons have crossed the ventral midline (VM).
Collapse
Affiliation(s)
- Ralph Imondi
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Angela R. Jevince
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Amy W. Helms
- Departments of Cell Biology and Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Jane E. Johnson
- Departments of Cell Biology and Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Zaven Kaprielian
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
- Author for correspondence: Zaven Kaprielian, Departments of Pathology and Neuroscience, Albert Einstein College of Medicine, Kennedy Center, Rm. 624, 1410 Pelham Parkway South, Bronx, NY 10461, Phone: (718) 430-2162, Fax: (718) 430-3758,
| |
Collapse
|