1
|
Yang P, Xiao Y, Chen L, Yang C, Cheng Q, Li H, Chen D, Wu J, Liao Z, Yang C, Wang C, Wang H, Huang B, Ke E, Bai X, Li K. Targeting Fascin1 maintains chondrocytes phenotype and attenuates osteoarthritis development. Bone Res 2024; 12:50. [PMID: 39231936 PMCID: PMC11374990 DOI: 10.1038/s41413-024-00357-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/05/2024] [Accepted: 07/16/2024] [Indexed: 09/06/2024] Open
Abstract
Osteoarthritis (OA) is the most common form of arthritic disease, and phenotypic modification of chondrocytes is an important mechanism that contributes to the loss of cartilage homeostasis. This study identified that Fascin actin-bundling protein 1 (FSCN1) plays a pivotal role in regulating chondrocytes phenotype and maintaining cartilage homeostasis. Proteome-wide screening revealed markedly upregulated FSCN1 protein expression in human OA cartilage. FSCN1 accumulation was confirmed in the superficial layer of OA cartilage from humans and mice, primarily in dedifferentiated-like chondrocytes, associated with enhanced actin stress fiber formation and upregulated type I and III collagens. FSCN1-inducible knockout mice exhibited delayed cartilage degeneration following experimental OA surgery. Mechanistically, FSCN1 promoted actin polymerization and disrupted the inhibition of Decorin on TGF-β1, leading to excessive TGF-β1 production and ALK1/Smad1/5 signaling activation, thus, accelerated chondrocyte dedifferentiation. Intra-articular injection of FSCN1-overexpressing adeno-associated virus exacerbated OA progression in mice, which was mitigated by an ALK1 inhibitor. Moreover, FSCN1 inhibitor NP-G2-044 effectively reduced extracellular matrix degradation in OA mice, cultured human OA chondrocytes, and cartilage explants by suppressing ALK1/Smad1/5 signaling. These findings suggest that targeting FSCN1 represents a promising therapeutic approach for OA.
Collapse
Affiliation(s)
- Panpan Yang
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yun Xiao
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Liangyu Chen
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Chengliang Yang
- Guangxi Key Laboratory of Basic and Translational Research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Qinwei Cheng
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Honghao Li
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Dalin Chen
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Junfeng Wu
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Zhengquan Liao
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Changsheng Yang
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Chong Wang
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan, Guangdong, China
| | - Hong Wang
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Bin Huang
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Ee Ke
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong Lung Cancer Institute, Guangzhou, China
| | - Xiaochun Bai
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, China.
| | - Kai Li
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Groven RVM, Kuik C, Greven J, Mert Ü, Bouwman FG, Poeze M, Blokhuis TJ, Huber-Lang M, Hildebrand F, Cillero-Pastor B, van Griensven M. Fracture haematoma proteomics. Bone Joint Res 2024; 13:214-225. [PMID: 38699779 PMCID: PMC11090216 DOI: 10.1302/2046-3758.135.bjr-2023-0323.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/05/2024] Open
Abstract
Aims The aim of this study was to determine the fracture haematoma (fxH) proteome after multiple trauma using label-free proteomics, comparing two different fracture treatment strategies. Methods A porcine multiple trauma model was used in which two fracture treatment strategies were compared: early total care (ETC) and damage control orthopaedics (DCO). fxH was harvested and analyzed using liquid chromatography-tandem mass spectrometry. Per group, discriminating proteins were identified and protein interaction analyses were performed to further elucidate key biomolecular pathways in the early fracture healing phase. Results The early fxH proteome was characterized by immunomodulatory and osteogenic proteins, and proteins involved in the coagulation cascade. Treatment-specific proteome alterations were observed. The fxH proteome of the ETC group showed increased expression of pro-inflammatory proteins related to, among others, activation of the complement system, neutrophil functioning, and macrophage activation, while showing decreased expression of proteins related to osteogenesis and tissue remodelling. Conversely, the fxH proteome of the DCO group contained various upregulated or exclusively detected proteins related to tissue regeneration and remodelling, and proteins related to anti-inflammatory and osteogenic processes. Conclusion The early fxH proteome of the ETC group was characterized by the expression of immunomodulatory, mainly pro-inflammatory, proteins, whereas the early fxH proteome of the DCO group was more regenerative and osteogenic in nature. These findings match clinical observations, in which enhanced surgical trauma after multiple trauma causes dysbalanced inflammation, potentially leading to reduced tissue regeneration, and gained insights into regulatory mechanisms of fracture healing after severe trauma.
Collapse
Affiliation(s)
- Rald V. M. Groven
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
- Division of Trauma Surgery, Department of Surgery, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Christel Kuik
- Maastricht Multimodal Molecular Imaging (M4i) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, Netherlands
| | - Johannes Greven
- Experimental Orthopaedics and Trauma Surgery, Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Ümit Mert
- Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Freek G. Bouwman
- NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Martijn Poeze
- Division of Trauma Surgery, Department of Surgery, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Taco J. Blokhuis
- Division of Trauma Surgery, Department of Surgery, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Frank Hildebrand
- Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Berta Cillero-Pastor
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
- Maastricht Multimodal Molecular Imaging (M4i) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, Netherlands
| | - Martijn van Griensven
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
3
|
Chen N, Wu RW, Lam Y, Chan WC, Chan D. Hypertrophic chondrocytes at the junction of musculoskeletal structures. Bone Rep 2023; 19:101698. [PMID: 37485234 PMCID: PMC10359737 DOI: 10.1016/j.bonr.2023.101698] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/12/2023] [Accepted: 07/01/2023] [Indexed: 07/25/2023] Open
Abstract
Hypertrophic chondrocytes are found at unique locations at the junction of skeletal tissues, cartilage growth plate, articular cartilage, enthesis and intervertebral discs. Their role in the skeleton is best understood in the process of endochondral ossification in development and bone fracture healing. Chondrocyte hypertrophy occurs in degenerative conditions such as osteoarthritis. Thus, the role of hypertrophic chondrocytes in skeletal biology and pathology is context dependent. This review will focus on hypertrophic chondrocytes in endochondral ossification, in which they exist in a transient state, but acting as a central regulator of differentiation, mineralization, vascularization and conversion to bone. The amazing journey of a chondrocyte from being entrapped in the extracellular matrix environment to becoming proliferative then hypertrophic will be discussed. Recent studies on the dynamic changes and plasticity of hypertrophic chondrocytes have provided new insights into how we view these cells, not as terminally differentiated but as cells that can dedifferentiate to more progenitor-like cells in a transition to osteoblasts and adipocytes, as well as a source of skeletal stem and progenitor cells residing in the bone marrow. This will provide a foundation for studies of hypertrophic chondrocytes at other skeletal sites in development, tissue maintenance, pathology and therapy.
Collapse
Affiliation(s)
- Ning Chen
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Robin W.H. Wu
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Yan Lam
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Wilson C.W. Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
- Department of Orthopaedics Surgery and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen 518053, China
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
4
|
Chan B, Glogauer M, Wang Y, Wrana J, Chan K, Beier F, Bali S, Hinz B, Parreno J, Ashraf S, Kandel R. Adseverin, an actin-binding protein, modulates hypertrophic chondrocyte differentiation and osteoarthritis progression. SCIENCE ADVANCES 2023; 9:eadf1130. [PMID: 37540756 PMCID: PMC10403223 DOI: 10.1126/sciadv.adf1130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 07/06/2023] [Indexed: 08/06/2023]
Abstract
In osteoarthritis (OA), a disease characterized by progressive articular cartilage degradation and calcification, the articular chondrocyte phenotype changes and this correlates with actin cytoskeleton alterations suggesting that it regulates gene expression essential for proper phenotype. This study reports that OA is associated with the loss of adseverin, an actin capping and severing protein. Adseverin deletion (Adseverin-/-) in mice compromised articular chondrocyte function, by reducing F-actin and aggrecan expression and increasing apoptosis, Indian hedgehog, Runx2, MMP13, and collagen type X expression, and cell proliferation. This led to stiffer cartilage and decreased hyaline and increased calcified cartilage thickness. Together, these changes predisposed the articular cartilage to enhanced OA severity in Adseverin-/- mice who underwent surgical induction of OA. Adseverin-/- chondrocyte RNA sequencing and in vitro studies together suggests that adseverin modulates cell viability and prevents mineralization. Thus, adseverin maintains articular chondrocyte phenotype and cartilage tissue homeostasis by preventing progression to hypertrophic differentiation in vivo. Adseverin may be chondroprotective and a potential therapeutic target.
Collapse
Affiliation(s)
- Byron Chan
- Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Yongqiang Wang
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Jeffrey Wrana
- Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Kin Chan
- Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Frank Beier
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Supinder Bali
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Boris Hinz
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
- Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON, Canada
| | - Justin Parreno
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Sajjad Ashraf
- Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Rita Kandel
- Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Wu J, Yang F, Wu X, Liu X, Zheng D. Comparison of genome-wide DNA methylation patterns between antler precartilage and cartilage. Mol Genet Genomics 2023; 298:343-352. [PMID: 36513842 DOI: 10.1007/s00438-022-01983-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022]
Abstract
Deer antlers are the only mammalian organs that can fully regenerate after being lost and provide a valuable model for cartilage development. As one of the best-studied epigenetic mechanisms, DNA methylation is known to engage in organ and tissue development. This study aimed to investigate the role of DNA methylation in antler chondrogenesis by comparing whole-genome DNA methylation between precartilage and cartilage. Quantitative reverse transcription PCR (RT-qPCR) showed significant differences in the expression levels of DNA methyltransferase genes (DNMT1, DNMT3A, and DNMT3B) between precartilage and cartilage. Subsequently, we obtained DNA methylation profiles of antler precartilage and cartilage tissues by whole-genome bisulfite sequencing. Although sequencing data indicated that overall methylation levels at CpG and non-CpG sites were similar between precartilage and cartilage, 140,784 differentially methylated regions (DMRs, P < 0.05) and 3,941 DMR-related genes were identified. Gene ontology (GO) analysis of DMR-related genes demonstrated some significantly enriched GO terms (P < 0.05) related to chondrogenesis, including insulin receptor binding, collage trimer, integrin binding, and extracellular matrix structural constituent. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of DMR-related genes uncovered that the PI3K/AKT, cortisol synthesis and secretion, glycosaminoglycan biosynthesis-keratan sulfate, Hippo, and NF-κB signaling pathways might play a pivotal role in the transition of precartilage to cartilage. Moreover, we found that 25 DMR-related genes, including CD44, IGF1, ITGAV, ITGB1, RUNX1, COL2A1, COMP, and TAGLN, were most likely involved in antler chondrogenesis. In conclusion, this study revealed the genome-wide DNA methylation patterns of antler precartilage and cartilage, which may contribute to understanding the epigenetic regulation of antler chondrogenesis.
Collapse
Affiliation(s)
- Jin Wu
- Laboratory of Genetics and Molecular Biology, College of Wildlife and Protected Area, Northeast Forestry University, No. 26, Hexing Road, Harbin, 150040, Heilongjiang, China
| | - Fan Yang
- Laboratory of Genetics and Molecular Biology, College of Wildlife and Protected Area, Northeast Forestry University, No. 26, Hexing Road, Harbin, 150040, Heilongjiang, China
| | - Xuanye Wu
- Laboratory of Genetics and Molecular Biology, College of Wildlife and Protected Area, Northeast Forestry University, No. 26, Hexing Road, Harbin, 150040, Heilongjiang, China
| | - Xuedong Liu
- Laboratory of Genetics and Molecular Biology, College of Wildlife and Protected Area, Northeast Forestry University, No. 26, Hexing Road, Harbin, 150040, Heilongjiang, China.
| | - Dong Zheng
- Laboratory of Genetics and Molecular Biology, College of Wildlife and Protected Area, Northeast Forestry University, No. 26, Hexing Road, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
6
|
Mechanism of the inhibitory effect of acupotomy on chondrocyte apoptosis in KOA rabbits explored via proteomics 运用蛋白质组学技术探讨针刀抗KOA兔软骨细胞凋亡的作用机制. WORLD JOURNAL OF ACUPUNCTURE-MOXIBUSTION 2023. [DOI: 10.1016/j.wjam.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
7
|
Feldt J, Schicht M, Welss J, Gelse K, Sesselmann S, Tsokos M, Socher E, Garreis F, Müller T, Paulsen F. Production and Secretion of Gelsolin by Both Human Macrophage- and Fibroblast-like Synoviocytes and GSN Modulation in the Synovial Fluid of Patients with Various Forms of Arthritis. Biomedicines 2022; 10:723. [PMID: 35327525 PMCID: PMC8945596 DOI: 10.3390/biomedicines10030723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 12/04/2022] Open
Abstract
Gelsolin (GSN) is an actin-binding protein involved in cell formation, metabolism and wound closure processes. Since this protein is known to play a role in arthritis, here we investigate how the synovial membrane with its specific synoviocytes contributes to the expression of GSN and how the amount of GSN expressed is modulated by different types of arthritis. Synovial membranes from adult healthy subjects and patients with rheumatoid arthritis (RA) and osteoarthritis (OA) are analyzed by immunofluorescence, Western blot and ELISA. Macrophage-like synoviocytes (MLS) and fibroblast-like synoviocytes (FLS) were isolated, cultured and analyzed for their potential to produce and secrete GSN. In addition, the GSN concentrations in the synovial fluid of various forms of arthritis are determined by ELISA. GSN is produced by the healthy and arthritic synovial membranes. Both forms of synoviocytes (MLS and FLS) release GSN. The results show that there is a significant reduction in GSN in the synovial fluid in adult patients with OA. This reduction is also detectable in adult patients with RA but is not as evident. In juvenile arthritis, there is a slight increase in GSN concentration in the synovial fluid. This study shows that primary MLS and FLS express GSN and that these cells, in addition to articular chondrocytes, contribute to GSN levels in synovial fluid. Furthermore, GSN concentrations are modulated in different types of arthritis. Further studies are needed to fully understand how GSN is involved in joint homeostasis.
Collapse
Affiliation(s)
- Jessica Feldt
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Universitätsstr. 19, 91054 Erlangen, Germany; (J.F.); (J.W.); (E.S.); (F.G.)
| | - Martin Schicht
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Universitätsstr. 19, 91054 Erlangen, Germany; (J.F.); (J.W.); (E.S.); (F.G.)
| | - Jessica Welss
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Universitätsstr. 19, 91054 Erlangen, Germany; (J.F.); (J.W.); (E.S.); (F.G.)
| | - Kolja Gelse
- Department of Trauma Surgery and Orthopaedic Surgery, Hospital Traunstein, 83278 Traunstein, Germany;
| | - Stefan Sesselmann
- Institute for Medical Engineering, University of Applied Sciences Amberg-Weiden, 92224 Amberg, Germany;
| | - Michael Tsokos
- Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany;
| | - Eileen Socher
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Universitätsstr. 19, 91054 Erlangen, Germany; (J.F.); (J.W.); (E.S.); (F.G.)
| | - Fabian Garreis
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Universitätsstr. 19, 91054 Erlangen, Germany; (J.F.); (J.W.); (E.S.); (F.G.)
| | - Thomas Müller
- Department of Child and Adolescent Medicine, Pediatrics I, Pediatric Rheumatology, Martin Luther University Halle-Wittenberg (MLU), 06108 Halle (Saale), Germany;
| | - Friedrich Paulsen
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Universitätsstr. 19, 91054 Erlangen, Germany; (J.F.); (J.W.); (E.S.); (F.G.)
| |
Collapse
|
8
|
McDonough RC, Price C. Targeted Activation of GPCR-Mediated Ca 2+ Signaling Drives Enhanced Cartilage-Like Matrix Formation. Tissue Eng Part A 2021; 28:405-419. [PMID: 34693731 PMCID: PMC9271335 DOI: 10.1089/ten.tea.2021.0078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Intracellular calcium ([Ca2+]i) signaling is a critical regulator of chondrogenesis, chondrocyte differentiation, and cartilage development. Calcium (Ca2+) signaling is known to direct processes that govern chondrocyte gene expression, protein synthesis, cytoskeletal remodeling, and cell fate. Control of chondrocyte/chondroprogenitor Ca2+ signaling has been attempted through mechanical and/or pharmacological activation of endogenous Ca2+ signaling transducers; however, such approaches can lack specificity and/or precision regarding Ca2+ activation mechanisms. Synthetic signaling platforms permitting precise and selective Ca2+ signal transduction can improve dissection of the roles that [Ca2+]i signaling play in chondrocyte behavior. One such platform is the chemogenetic hM3Dq DREADD (designer receptor exclusively activated by designer drugs) that activates [Ca2+]i signaling via the Gαq-PLCβ-IP3-ER pathway upon clozapine N-oxide (CNO) administration. We previously demonstrated hM3Dq's ability to precisely and synthetically initiate robust [Ca2+]i transients and oscillatory [Ca2+]i signaling in chondrocyte-like ATDC5 cells. Here, we investigate the effects that long-term CNO stimulatory culture have on hM3Dq [Ca2+]i signaling dynamics, proliferation, and protein deposition in 2D ATDC5 cultures. Long-term culturing under repeated CNO stimulation modified the temporal dynamics of hM3Dq [Ca2+]i signaling, increased cell proliferation, and enhanced matrix production in a CNO dose- and frequency-dependent manner, and triggered the formation of cell condensations that developed aligned, anisotropic neotissue structures rich in cartilaginous proteoglycans and collagens, all in the absence of differentiation inducers. This study demonstrated Gαq-GPCR-mediated [Ca2+]i signaling involvement in chondroprogenitor proliferation and cartilage-like matrix production, and established hM3Dq as a powerful tool for elucidating the role of GPCR-mediated Ca2+ signaling in chondrogenesis and chondrocyte differentiation.
Collapse
Affiliation(s)
- Ryan C McDonough
- University of Delaware, 5972, Biomedical Engineering, 161 Colburn Lab, Newark, Delaware, United States, 19716-5600;
| | - Christopher Price
- University of Delaware, 5972, Biomedical Engineering, Newark, Delaware, United States;
| |
Collapse
|
9
|
Ebata T, Terkawi MA, Hamasaki M, Matsumae G, Onodera T, Aly MK, Yokota S, Alhasan H, Shimizu T, Takahashi D, Homan K, Kadoya K, Iwasaki N. Flightless I is a catabolic factor of chondrocytes that promotes hypertrophy and cartilage degeneration in osteoarthritis. iScience 2021; 24:102643. [PMID: 34142066 PMCID: PMC8187833 DOI: 10.1016/j.isci.2021.102643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/11/2021] [Accepted: 05/20/2021] [Indexed: 02/05/2023] Open
Abstract
Synovial macrophages that are activated by cartilage fragments initiate synovitis, a condition that promotes hypertrophic changes in chondrocytes leading to cartilage degeneration in OA. In this study, we analyzed the molecular response of chondrocytes under condition of this type of stimulation to identify a molecular therapeutic target. Stimulated macrophages promoted hypertrophic changes in chondrocytes resulting in production of matrix-degrading enzymes of cartilage. Among the top-upregulated genes, FliI was found to be released from activated chondrocytes and exerted autocrine/paracrine effects on chondrocytes leading to an increase in expression of catabolic and hypertrophic factors. Silencing FliI in stimulated cells significantly reduced expression of catabolic and hypertrophic factors in cocultured chondrocytes. Our further results demonstrated that the FliI-TLR4-ERK1/2 axis is involved in the hypertrophic signaling of chondrocytes and catabolism of cartilage. Our findings provide a new insight into the pathogenesis of OA and identify a potentially new molecular target for diagnostics and therapeutics. Activated macrophages promote the secretion of FliI from chondrocytes FliI acts as a DAMP-triggering molecule in cartilage FliI promotes chondrocyte hypertrophy and cartilage catabolism FliI represents attractive target for therapeutic intervention
Collapse
Affiliation(s)
- Taku Ebata
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan
| | - Mohamad Alaa Terkawi
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan
| | - Masanari Hamasaki
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan
| | - Gen Matsumae
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan
| | - Tomohiro Onodera
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan
| | - Mahmoud Khamis Aly
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan
| | - Shunichi Yokota
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan
| | - Hend Alhasan
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan
| | - Tomohiro Shimizu
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan
| | - Daisuke Takahashi
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan
| | - Kentaro Homan
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan
| | - Ken Kadoya
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan
| | - Norimasa Iwasaki
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan
| |
Collapse
|
10
|
Articular Chondrocyte Phenotype Regulation through the Cytoskeleton and the Signaling Processes That Originate from or Converge on the Cytoskeleton: Towards a Novel Understanding of the Intersection between Actin Dynamics and Chondrogenic Function. Int J Mol Sci 2021; 22:ijms22063279. [PMID: 33807043 PMCID: PMC8004672 DOI: 10.3390/ijms22063279] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 02/08/2023] Open
Abstract
Numerous studies have assembled a complex picture, in which extracellular stimuli and intracellular signaling pathways modulate the chondrocyte phenotype. Because many diseases are mechanobiology-related, this review asked to what extent phenotype regulators control chondrocyte function through the cytoskeleton and cytoskeleton-regulating signaling processes. Such information would generate leverage for advanced articular cartilage repair. Serial passaging, pro-inflammatory cytokine signaling (TNF-α, IL-1α, IL-1β, IL-6, and IL-8), growth factors (TGF-α), and osteoarthritis not only induce dedifferentiation but also converge on RhoA/ROCK/Rac1/mDia1/mDia2/Cdc42 to promote actin polymerization/crosslinking for stress fiber (SF) formation. SF formation takes center stage in phenotype control, as both SF formation and SOX9 phosphorylation for COL2 expression are ROCK activity-dependent. Explaining how it is molecularly possible that dedifferentiation induces low COL2 expression but high SF formation, this review theorized that, in chondrocyte SOX9, phosphorylation by ROCK might effectively be sidelined in favor of other SF-promoting ROCK substrates, based on a differential ROCK affinity. In turn, actin depolymerization for redifferentiation would “free-up” ROCK to increase COL2 expression. Moreover, the actin cytoskeleton regulates COL1 expression, modulates COL2/aggrecan fragment generation, and mediates a fibrogenic/catabolic expression profile, highlighting that actin dynamics-regulating processes decisively control the chondrocyte phenotype. This suggests modulating the balance between actin polymerization/depolymerization for therapeutically controlling the chondrocyte phenotype.
Collapse
|
11
|
Onofre TS, Rodrigues JPF, Shio MT, Macedo S, Juliano MA, Yoshida N. Interaction of Trypanosoma cruzi Gp82 With Host Cell LAMP2 Induces Protein Kinase C Activation and Promotes Invasion. Front Cell Infect Microbiol 2021; 11:627888. [PMID: 33777840 PMCID: PMC7996063 DOI: 10.3389/fcimb.2021.627888] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/23/2021] [Indexed: 11/13/2022] Open
Abstract
The surface molecule gp82 of metacyclic trypomastigote (MT) forms of Trypanosoma cruzi, the protozoan parasite that causes Chagas disease, mediates the host cell invasion, a process critical for the establishment of infection. Gp82 is known to bind to the target cell in a receptor-dependent manner, triggering Ca2+ signal, actin cytoskeleton rearrangement and lysosome spreading. The host cell receptor for gp82 was recently identified as LAMP2, the major lysosome membrane-associated protein. To further clarify the mechanisms of MT invasion, we aimed in this study at identifying the LAMP2 domain that interacts with gp82 and investigated whether target cell PKC and ERK1/2, previously suggested to be implicated in MT invasion, are activated by gp82. Interaction of MT, or the recombinant gp82 (r-gp82), with human epithelial HeLa cells induced the activation of Ca2+-dependent PKC and ERK1/2. The LAMP2 sequence predicted to bind gp82 was mapped and the synthetic peptide based on that sequence inhibited MT invasion, impaired the binding of r-gp82 to HeLa cells, and blocked the PKC and ERK1/2 activation induced by r-gp82. Treatment of HeLa cells with specific inhibitor of focal adhesion kinase resulted in inhibition of r-gp82-induced PKC and ERK1/2 activation, as well as in alteration of the actin cytoskeleton architecture. PKC activation by r-gp82 was also impaired by treatment of HeLa cells with inhibitor of phospholipase C, which mediates the production of diacylglycerol, which activates PKC, and inositol 1,4,5-triphosphate that releases Ca2+ from intracellular stores. Taken together, our results indicate that recognition of MT gp82 by LAMP2 induces in the host cell the activation of phosholipase C, with generation of products that contribute for PKC activation and the downstream ERK1/2. This chain of events leads to the actin cytoskeleton disruption and lysosome spreading, promoting MT internalization.
Collapse
Affiliation(s)
- Thiago Souza Onofre
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - João Paulo Ferreira Rodrigues
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marina Tiemi Shio
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Silene Macedo
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Maria Aparecida Juliano
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Nobuko Yoshida
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Lee JH, Zou L, Yang R, Han J, Wan Q, Zhang X, El Baghdady S, Roman A, Elly C, Jin HS, Park Y, Croft M, Liu YC. The deubiquitinase CYLD controls protective immunity against helminth infection by regulation of Treg cell plasticity. J Allergy Clin Immunol 2020; 148:209-224.e9. [PMID: 33309741 DOI: 10.1016/j.jaci.2020.10.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Type 2 immunity can be modulated by regulatory T (Treg) cell activity. It has been suggested that the deubiquitinase cylindromatosis (CYLD) plays a role in the development or function of Treg cells, implying that it could be important for normal protective immunity, where type 2 responses are prevalent. OBJECTIVE We sought to investigate the role of CYLD in Treg cell function and TH2 cell immune responses under steady-state conditions and during helminth infection. METHODS Foxp3-restricted CYLD conditional knockout (KO) mice were examined in mouse models of allergen-induced airway inflammation and Nippostrongylus brasiliensis infection. We performed multiplex magnetic bead assays, flow cytometry, and quantitative PCR to understand how a lack of CYLD affected cytokine production, homing, and suppression in Treg cells. Target genes regulated by CYLD were identified and validated by microarray analysis, coimmunoprecipitation, short hairpin RNA knockdown, and transfection assays. RESULTS Treg cell-specific CYLD KO mice showed severe spontaneous pulmonary inflammation with increased migration of Treg cells into the lung. CYLD-deficient Treg cells furthermore produced high levels of IL-4 and failed to suppress allergen-induced lung inflammation. Supporting this, the conditional KO mice displayed enhanced protection against N brasiliensis infection by contributing to type 2 immunity. Treg cell conversion into IL-4-producing cells was due to augmented mitogen-activated protein kinase and nuclear factor κB signaling. Moreover, Scinderin, a member of the actin-binding gelsolin family, was highly upregulated in CYLD-deficient Treg cells, and controlled IL-4 production through forming complexes with mitogen-activated protein kinase kinase/extracellular receptor kinase. Correspondingly, both excessive IL-4 production in vivo and the protective role of CYLD-deficient Treg cells against N brasiliensis were reversed by Scinderin ablation. CONCLUSIONS Our findings indicate that CYLD controls type 2 immune responses by regulating Treg cell conversion into TH2 cell-like effector cells, which potentiates parasite resistance.
Collapse
Affiliation(s)
- Jee H Lee
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, Calif; Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, Calif.
| | - Le Zou
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, Calif; Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Runqing Yang
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Jihye Han
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, Calif
| | - Qingqing Wan
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, Calif; Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Xian Zhang
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Sarah El Baghdady
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, Calif
| | - Andrea Roman
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, Calif
| | - Chris Elly
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, Calif
| | - Hyung-Seung Jin
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, Calif; Department of Convergence Medicine, ASAN Institute for Life Sciences, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yoon Park
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, Calif; Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Korea
| | - Michael Croft
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, Calif
| | - Yun-Cai Liu
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, Calif; Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
13
|
Mota C, Camarero-Espinosa S, Baker MB, Wieringa P, Moroni L. Bioprinting: From Tissue and Organ Development to in Vitro Models. Chem Rev 2020; 120:10547-10607. [PMID: 32407108 PMCID: PMC7564098 DOI: 10.1021/acs.chemrev.9b00789] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Indexed: 02/08/2023]
Abstract
Bioprinting techniques have been flourishing in the field of biofabrication with pronounced and exponential developments in the past years. Novel biomaterial inks used for the formation of bioinks have been developed, allowing the manufacturing of in vitro models and implants tested preclinically with a certain degree of success. Furthermore, incredible advances in cell biology, namely, in pluripotent stem cells, have also contributed to the latest milestones where more relevant tissues or organ-like constructs with a certain degree of functionality can already be obtained. These incredible strides have been possible with a multitude of multidisciplinary teams around the world, working to make bioprinted tissues and organs more relevant and functional. Yet, there is still a long way to go until these biofabricated constructs will be able to reach the clinics. In this review, we summarize the main bioprinting activities linking them to tissue and organ development and physiology. Most bioprinting approaches focus on mimicking fully matured tissues. Future bioprinting strategies might pursue earlier developmental stages of tissues and organs. The continuous convergence of the experts in the fields of material sciences, cell biology, engineering, and many other disciplines will gradually allow us to overcome the barriers identified on the demanding path toward manufacturing and adoption of tissue and organ replacements.
Collapse
Affiliation(s)
- Carlos Mota
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Sandra Camarero-Espinosa
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Matthew B. Baker
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Paul Wieringa
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| |
Collapse
|
14
|
Superficial and deep zone articular chondrocytes exhibit differences in actin polymerization status and actin-associated molecules in vitro. OSTEOARTHRITIS AND CARTILAGE OPEN 2020; 2:100071. [DOI: 10.1016/j.ocarto.2020.100071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/04/2020] [Indexed: 12/26/2022] Open
|
15
|
Chan B, Parreno J, Glogauer M, Wang Y, Kandel R. Adseverin, an actin binding protein, regulates articular chondrocyte phenotype. J Tissue Eng Regen Med 2019; 13:1438-1452. [PMID: 31090208 DOI: 10.1002/term.2898] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 11/11/2022]
Abstract
Chondrocytes dedifferentiate as a result of monolayer culture for cell number expansion. This is associated with the development of an elongated shape, increased actin polymerization, development of stress fibres, and expression of contractile molecules. Given the changes in actin status with dedifferentiation, the hypothesis of this study was that adseverin, an actin severing and capping protein, plays a role in regulating chondrocyte phenotype and function. This study reports that serial passaging of articular chondrocytes in monolayer culture resulted in loss of adseverin protein expression as early as Day 14 of culture and remained repressed in Passage 2 (P2) cells. Knockdown of adseverin by siRNA in primary chondrocytes promoted an increase in cell size and an elongated shape, actin stress fibres, decreased G-/F-actin ratio, and increased number of actin-free barbed ends. The cells also showed increased expression of the contractile genes and proteins, vinculin and α-smooth muscle actin, and increased ability to contract collagen gels. These are all features of dedifferentiation. These effects were due to adseverin as adseverin overexpression following transfection of the green fluorescent protein-adseverin plasmid partially reversed all of these changes in P2 chondrocytes. Furthermore, sox9 and aggrecan chondrogenic gene expression was upregulated, and collagen type I genes expression was downregulated with adseverin overexpression. The change in aggrecan mRNA expression had functional consequence as these cells exhibited increased total proteoglycan synthesis. These findings demonstrate that adseverin regulates features indicative of redifferentiation in passaged articular chondrocytes through modulation of the actin cytoskeleton status and potentially may regulate the maintenance of phenotype in primary chondrocytes.
Collapse
Affiliation(s)
- Byron Chan
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Justin Parreno
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Yongqiang Wang
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Rita Kandel
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Qiao X, Zhou Y, Xie W, Wang Y, Zhang Y, Tian T, Dou J, Yang X, Shen S, Hu J, Qiao S, Wu Y. Scinderin is a novel transcriptional target of BRMS1 involved in regulation of hepatocellular carcinoma cell apoptosis. Am J Cancer Res 2018; 8:1008-1018. [PMID: 30034938 PMCID: PMC6048394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/18/2018] [Indexed: 06/08/2023] Open
Abstract
Tumor metastasis suppressor factor BRMS1 can regulate the metastasis of breast cancer and other tumors. Here we report scinderin (SCIN) as a novel transcriptional target of BRMS1. SCIN protein belongs to the cytoskeletal gelsolin protein superfamily and its involvement in tumorigenesis remains largely illusive. An inverse correlation between the expression levels of BRMS1 and SCIN was observed in hepatocellular carcinoma (HCC) cells and tissues. On the molecular level, BRMS1 binds to SCIN promoter and exerts a suppressive role in regulating SCIN transcription. FACS analysis and caspase 9 immunoblot reveal that knockdown of SCIN expression can sensitize HCC cells to chemotherapeutic drugs, leading to suppression of tumor growth in vivo. Consistently, overexpression of SCIN protects cells from apoptotic death, contributing to increased xenografted HCC cell growth. In summary, our study reveals SCIN as a functional apoptosis regulator as well as a novel target of BRMS1 during HCC tumorigenesis. Inhibition of SCIN might bring a potential cancer therapy approach.
Collapse
Affiliation(s)
- Xiaojing Qiao
- School of Life Sciences, Fudan UniversityShanghai 200433, P. R. China
| | - Yiren Zhou
- School of Life Sciences, Fudan UniversityShanghai 200433, P. R. China
| | - Wenjuan Xie
- School of Life Sciences, Fudan UniversityShanghai 200433, P. R. China
| | - Yi Wang
- School of Life Sciences, Fudan UniversityShanghai 200433, P. R. China
| | - Yicheng Zhang
- School of Life Sciences, Fudan UniversityShanghai 200433, P. R. China
| | - Tian Tian
- School of Life Sciences, Fudan UniversityShanghai 200433, P. R. China
- Centre for Discovery Brain Sciences, University of EdinburghEdinburgh, EH89XD, Scotland
| | - Jianming Dou
- School of Life Sciences, Fudan UniversityShanghai 200433, P. R. China
| | - Xi Yang
- School of Life Sciences, Fudan UniversityShanghai 200433, P. R. China
| | - Suqin Shen
- School of Life Sciences, Fudan UniversityShanghai 200433, P. R. China
| | - Jianwei Hu
- Endoscopy Center and Department of General Surgery, Zhongshan Hospital of Fudan UniversityShanghai 200032, P. R. China
| | - Shouyi Qiao
- School of Life Sciences, Fudan UniversityShanghai 200433, P. R. China
| | - Yanhua Wu
- School of Life Sciences, Fudan UniversityShanghai 200433, P. R. China
| |
Collapse
|
17
|
Kao XB, Chen Q, Gao Y, Fan P, Chen JH, Wang ZL, Wang YQ, Chen YN, Yan YP. SP600125 blocks the proteolysis of cytoskeletal proteins in apoptosis induced by gas signaling molecule (NO) via decreasing the activation of caspase-3 in rabbit chondrocytes. Eur J Pharmacol 2018; 824:40-47. [PMID: 29409910 DOI: 10.1016/j.ejphar.2018.01.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 11/25/2022]
Abstract
NO plays a key role in the pathological mechanisms of articular diseases. As cytoskeletal proteins are responsible for the polymerization, stabilization, and dynamics of the cytoskeleton network, we investigated whether cytoskeletal proteins are the intracellular pathological targets of NO. We aimed at clarifying whether the cytoskeleton perturbations involved in apoptosis are induced in rabbit articular chondrocytes by NO, which can be liberated by sodium nitroprusside (SNP) treatment. The first passage rabbit articular chondrocytes were cultured as monolayer for the experiments, and the effects of NO were tested in the presence of JNK-specific inhibitor, SP600125. SNP treatment of cultured chondrocytes caused significant apoptosis in a concentration-dependent manner (time and dose), as evaluated by TUNEL assay and Annexin V flow cytometry, while the apoptosis was reduced by the SP600125 addition 30 min before SNP treatment. Besides, SP600125 decreased significantly the protein expression of total caspase-3 and the intracellular gene expression of caspase-3, measured by Western blot analysis and PCR. SP600125 also increased the cytoskeletal protein expressions. These results suggested that JNK pathway plays a critical role in the NO-induced chondrocyte apoptosis, and SP600125 treatment blocks the dissolution of the cytoskeletal proteins via activation of caspase-3 pathways.
Collapse
Affiliation(s)
- Xi-Bin Kao
- The Fourth Military Medical University, Changle Western Road, 710032, People's Republic of China; Institute for Hygiene of Ordnance Industry, Xi'an, 710065 Shaanxi, People's Republic of China
| | - Qun Chen
- Institute of Endemic Diseases, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission of the people's Rupublic of China, Xi'an Jiaotong University Health Science Center, People's Republic of China
| | - Yan Gao
- Institute of Health Supervision, Beilin District, Xi'an 710003, Shaanxi, People's Republic of China
| | - Pin Fan
- Shaanxi Province Hospital of Traditional Chinese Medicine, People's Republic of China
| | - Jing-Hong Chen
- Institute of Endemic Diseases, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission of the people's Rupublic of China, Xi'an Jiaotong University Health Science Center, People's Republic of China
| | - Zhi-Lun Wang
- Institute of Endemic Diseases, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission of the people's Rupublic of China, Xi'an Jiaotong University Health Science Center, People's Republic of China
| | - Yan-Qi Wang
- Institute for Hygiene of Ordnance Industry, Xi'an, 710065 Shaanxi, People's Republic of China
| | - Ya-Ni Chen
- Institute for Hygiene of Ordnance Industry, Xi'an, 710065 Shaanxi, People's Republic of China
| | - Yong-Ping Yan
- The Fourth Military Medical University, Changle Western Road, 710032, People's Republic of China.
| |
Collapse
|
18
|
Montone R, Romanelli MG, Baruzzi A, Ferrarini F, Liboi E, Lievens PMJ. Mutant FGFR3 associated with SADDAN disease causes cytoskeleton disorganization through PLCγ1/Src-mediated paxillin hyperphosphorylation. Int J Biochem Cell Biol 2017; 95:17-26. [PMID: 29242050 DOI: 10.1016/j.biocel.2017.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 11/15/2017] [Accepted: 12/08/2017] [Indexed: 10/18/2022]
Abstract
K650M/E substitutions in the Fibroblast growth factor receptor 3 (FGFR3) are associated with Severe Achondroplasia with Developmental Delay and Acanthosis Nigricans (SADDAN) and Thanatophoric Dysplasia type II (TDII), respectively. Both SADDAN and TDII present with affected endochondral ossification marked by impaired chondrocyte functions and growth plate disorganization. In vitro, K650M/E substitutions confer FGFR3 constitutive kinase activity leading to impaired biosynthesis and accumulation of immature receptors in endoplasmic reticulum (ER)/Golgi. From those compartments, both SADDAN-FGFR3 and TDII-FGFR3 receptors engender uncontrolled signalling, activating PLCγ1, signal transducer and activator of transcription 1, 3 and 5 (STAT1/3/5) and ERK1/2 effectors. Here, we investigated the impact of SADDAN-FGFR3 and TDII-FGFR3 signalling on cytoskeletal organization. We report that SADDAN-FGFR3, but not TDII-FGFR3, affects F-actin organization by inducing tyrosine hyperphosphorylation of paxillin, a key regulator of focal adhesions and actin dynamics. Paxillin phosphorylation was upregulated at tyrosine 118, a functional target of Src and FAK kinases. By using Src-deficient cells and a Src kinase inhibitor, we established a role played by Src activation in paxillin hyperphosphorylation. Moreover, we found that SADDAN-FGFR3 induced FAK phosphorylation at tyrosines 576/577, suggesting its involvement as a Src co-activator in paxillin phosphorylation. Interestingly, paxillin hyperphosphorylation by SADDAN-FGFR3 caused paxillin mislocalization and partial co-localization with the mutant receptor. Finally, the SADDAN-FGFR3 double mutant unable to bind PLCγ1 failed to promote paxillin hyperphosphorylation, pointing to PLCγ1 as an early player in mediating paxillin alterations. Overall, our findings contribute to elucidate the molecular mechanism leading to cell dysfunctions caused by SADDAN-FGFR3 signalling.
Collapse
Affiliation(s)
- R Montone
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona Medical School, Verona, Italy
| | - M G Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona Medical School, Verona, Italy
| | - A Baruzzi
- Department of Pathology and Diagnostics, University of Verona Medical School, Verona, Italy
| | - F Ferrarini
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona Medical School, Verona, Italy
| | - E Liboi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona Medical School, Verona, Italy
| | - P M-J Lievens
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona Medical School, Verona, Italy.
| |
Collapse
|
19
|
Chuang E, Augustine M, Jung M, Schwartz RH, Singh NJ. Density dependent re-tuning of autoreactive T cells alleviates their pathogenicity in a lymphopenic environment. Immunol Lett 2017; 192:61-71. [PMID: 29111199 DOI: 10.1016/j.imlet.2017.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/04/2017] [Accepted: 10/09/2017] [Indexed: 10/18/2022]
Abstract
Peripheral T cell tolerance is challenging to induce in partially lymphopenic hosts and this is relevant for clinical situations involving transplant tolerance. While the shortage of regulatory cells is thought to be one reason for this, T cell-intrinsic tolerance processes such as anergy are also poorly triggered in such hosts. In order to understand the latter, we used a T cell deficient mouse model system where adoptively transferred autoreactive T cells are significantly tolerized in a cell intrinsic fashion, without differentiation to regulatory T cells. Intriguingly these T cells often retain sufficient effector functions to trigger autoimmune pathology. Here we find that the high population density of the autoreactive T cells that accumulated in such a host limits the progression of the cell-intrinsic tolerance process in T cells. Accordingly, reducing the cell density during a second transfer allowed T cells to further tune down their responsiveness to antigenic stimulation. The retuning of T cells was reflected by a loss of the T cell's abilities to proliferate, produces cytokines or help B cells. We further suggest, based on altering the levels of chronic antigen using miniosmotic pumps, that the effects of cell-density on T cell re-tuning may reflect the effective changes in the antigen dose perceived by individual T cells. This could proportionally elicit more negative feedback downstream of the TCR. Consistent with this, the retuned T cells showed signaling defects both proximal and distal to the TCR. Therefore, similar to the immunogenic activation of T cells, cell-intrinsic T cell tolerance may also involve a quantitative and progressive process of tuning down its antigen-responsiveness. The progress of such tuning seems to be stabilized at multiple intermediate stages by factors such as cell density, rather than just absolute antigen levels.
Collapse
Affiliation(s)
- Eleanore Chuang
- Laboratory of Cellular & Molecular Immunology, National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), 4/211, Center Drive, Bethesda, MD 20892-0420, United States; John A. Burns School of Medicine, Department of Tropical Medicine, Hawaii Center for AIDS, University of Hawaii, Honolulu, HI 96813, United States
| | - Marilyn Augustine
- Laboratory of Cellular & Molecular Immunology, National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), 4/211, Center Drive, Bethesda, MD 20892-0420, United States; University of Pittsburgh, Division of Endocrinology and Metabolism, 200 Lothrop Street, E1140 BST, Pittsburgh, PA 15261, United States
| | - Matthew Jung
- Laboratory of Cellular & Molecular Immunology, National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), 4/211, Center Drive, Bethesda, MD 20892-0420, United States; Washington University School of Medicine, Deptartment of Otolaryngology Head and Neck Surgery, 660 South Euclid Ave, St. Louis, MO 63110, United States
| | - Ronald H Schwartz
- Laboratory of Cellular & Molecular Immunology, National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), 4/211, Center Drive, Bethesda, MD 20892-0420, United States
| | - Nevil J Singh
- Laboratory of Cellular & Molecular Immunology, National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), 4/211, Center Drive, Bethesda, MD 20892-0420, United States; Department of Microbiology and Immunology, University of Maryland School of Medicine, HH 320A, 660 W Baltimore Street, Baltimore, MD 21201, United States.
| |
Collapse
|
20
|
Cao Y, Wang Y, Sprangers S, Picavet DI, Glogauer M, McCulloch CA, Everts V. Deletion of Adseverin in Osteoclasts Affects Cell Structure But Not Bone Metabolism. Calcif Tissue Int 2017; 101:207-216. [PMID: 28389691 PMCID: PMC5498625 DOI: 10.1007/s00223-017-0271-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/20/2017] [Indexed: 11/30/2022]
Abstract
Adseverin is an actin-severing/capping protein that may contribute to osteoclast differentiation in vitro but its role in bone remodeling of healthy animals is not defined. We analyzed bone and osteoclast structure in adseverin conditional null mice at alveolar and long bone sites. In wild-type and adseverin null mice, as measured by dual-energy X-ray absorptiometry, there were no differences of bone mineral content or bone mineral density, indicating no change of bone metabolism. In tibiae, TRAcP+ osteoclasts were formed in comparable numbers in adseverin null and wild-type mice. Ultrastructural analysis showed normal and similar abundance of ruffled borders, sealing zones, and mitochondria, and with no difference of osteoclast nuclear numbers. In contrast, analyses of long bone showed that in the absence of adseverin osteoclasts were smaller (120 ± 13 vs. 274 ± 19 µm2; p < 0.05), as were nuclear size and the surface area of cytoplasm. The nuclei of adseverin null osteoclasts exhibited more heterochromatin (31 ± 3%) than wild-type cells (8 ± 1%), suggesting that adseverin affects cell differentiation. The data indicate that in healthy, developing tissues, adseverin contributes to the regulation of osteoclast structure but not to bone metabolism in vivo.
Collapse
Affiliation(s)
- Yixuan Cao
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), Research Institute MOVE, University of Amsterdam and VU University Amsterdam, 11N-43, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands.
| | - Yongqiang Wang
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Ontario, Canada
| | - Sara Sprangers
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), Research Institute MOVE, University of Amsterdam and VU University Amsterdam, 11N-43, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Daisy I Picavet
- Department of Cell Biology and Histology, Core Facility Cellular Imaging, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Michael Glogauer
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Ontario, Canada
| | | | - Vincent Everts
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), Research Institute MOVE, University of Amsterdam and VU University Amsterdam, 11N-43, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Killion CH, Mitchell EH, Duke CG, Serra R. Mechanical loading regulates organization of the actin cytoskeleton and column formation in postnatal growth plate. Mol Biol Cell 2017; 28:1862-1870. [PMID: 28539407 PMCID: PMC5541837 DOI: 10.1091/mbc.e17-02-0084] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/21/2017] [Accepted: 05/17/2017] [Indexed: 12/14/2022] Open
Abstract
Longitudinal growth of bones occurs at the growth plates where chondrocytes align into columns that allow directional growth. Little is known about the mechanisms controlling the ability of chondrocytes to form columns. We hypothesize that mechanical load and the resulting force on chondrocytes are necessary during active growth for proper growth plate development and limb length. To test this hypothesis, we created a mouse model in which a portion of the sciatic nerve from one hind limb was transected at postnatal day 8 to cause paralysis to that limb. At 6 and 12 wk postsurgery, the hind limb had significantly less bone mineral density than contralateral controls, confirming reduced load. At 8 and 14 wk postsurgery, tibiae were significantly shorter than controls. The paralyzed growth plate showed disruptions to column organization, with fewer and shorter columns. Polarized light microscopy indicated alterations in collagen fiber organization in the growth plate. Furthermore, organization of the actin cytoskeleton in growth plate chondrocytes was disrupted. We conclude that mechanical load and force on chondrocytes within the growth plate regulate postnatal development of the long bones.
Collapse
Affiliation(s)
- Christy H Killion
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Elizabeth H Mitchell
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Corey G Duke
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Rosa Serra
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
22
|
Kaneva MK, Greco KV, Headland SE, Montero-Melendez T, Mori P, Greenslade K, Pitzalis C, Moore A, Perretti M. Identification of Novel Chondroprotective Mediators in Resolving Inflammatory Exudates. THE JOURNAL OF IMMUNOLOGY 2017; 198:2876-2885. [PMID: 28242648 DOI: 10.4049/jimmunol.1601111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 01/29/2017] [Indexed: 12/11/2022]
Abstract
We hypothesized that exudates collected at the beginning of the resolution phase of inflammation might be enriched for tissue protective molecules; thus an integrated cellular and molecular approach was applied to identify novel chondroprotective bioactions. Exudates were collected 6 h (inflammatory) and 24 h (resolving) following carrageenan-induced pleurisy in rats. The resolving exudate was subjected to gel filtration chromatography followed by proteomics, identifying 61 proteins. Fractions were added to C28/I2 chondrocytes, grown in micromasses, ions with or without IL-1β or osteoarthritic synovial fluids for 48 h. Three proteins were selected from the proteomic analysis, α1-antitrypsin (AAT), hemopexin (HX), and gelsolin (GSN), and tested against catabolic stimulation for their effects on glycosaminoglycan deposition as assessed by Alcian blue staining, and gene expression of key anabolic proteins by real-time PCR. In an in vivo model of inflammatory arthritis, cartilage integrity was determined histologically 48 h after intra-articular injection of AAT or GSN. The resolving exudate displayed protective activities on chondrocytes, using multiple readouts: these effects were retained in low m.w. fractions of the exudate (46.7% increase in glycosaminoglycan deposition; ∼20% upregulation of COL2A1 and aggrecan mRNA expression), which reversed the effect of IL-1β. Exogenous administration of HX, GSN, or AAT abrogated the effects of IL-1β and osteoarthritic synovial fluids on anabolic gene expression and increased glycosaminoglycan deposition. Intra-articular injection of AAT or GSN protected cartilage integrity in mice with inflammatory arthritis. In summary, the strategy for identification of novel chondroprotective activities in resolving exudates identified HX, GSN and AAT as potential leads for new drug discovery programs.
Collapse
Affiliation(s)
- Magdalena K Kaneva
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom; and
| | - Karin V Greco
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom; and
| | - Sarah E Headland
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom; and
| | - Trinidad Montero-Melendez
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom; and
| | | | | | - Costantino Pitzalis
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom; and
| | | | - Mauro Perretti
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom; and
| |
Collapse
|
23
|
Oittinen M, Popp A, Kurppa K, Lindfors K, Mäki M, Kaikkonen MU, Viiri K. Polycomb Repressive Complex 2 Enacts Wnt Signaling in Intestinal Homeostasis and Contributes to the Instigation of Stemness in Diseases Entailing Epithelial Hyperplasia or Neoplasia. Stem Cells 2016; 35:445-457. [PMID: 27570105 DOI: 10.1002/stem.2479] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/11/2016] [Accepted: 07/29/2016] [Indexed: 12/15/2022]
Abstract
Canonical Wnt/β-catenin signaling regulates the homeostasis of intestinal epithelium by controlling the balance between intestinal stem cell self-renewal and differentiation but epigenetic mechanisms enacting the process are not known. We hypothesized that epigenetic regulator, Polycomb Repressive Complex-2 (PRC2), is involved in Wnt-mediated epithelial homeostasis on the crypt-villus axis and aberrancies therein are implicated both in celiac disease and in intestinal malignancies. We found that PRC2 establishes repressive crypt and villus specific trimethylation of histone H3 lysine 27 (H3K27me3) signature on genes responsible for, for example, nutrient transport and cell killing in crypts and, for example, proliferation and differentiation in mature villi, suggesting that PRC2 facilitates the Wnt-governed intestinal homeostasis. When celiac patients are on gluten-containing diet PRC2 is out-of-bounds active and consequently its target genes were found affected in intestinal epithelium. Significant set of effective intestinal PRC2 targets are also differentially expressed in colorectal adenoma and carcinomas. Our results suggest that PRC2 gives rise and maintains polar crypt and villus specific H3K27me3 signatures. As H3K27me3 is a mark enriched in developmentally important genes, identified intestinal PRC2 targets are possibly imperative drivers for enterocyte differentiation and intestinal stem cell maintenance downstream to Wnt-signaling. Our work also elucidates the mechanism sustaining the crypt hyperplasia in celiac disease and suggest that PRC2-dependent fostering of epithelial stemness is a common attribute in intestinal diseases in which epithelial hyperplasia or neoplasia prevails. Finally, this work demonstrates that in intestine PRC2 represses genes having both pro-stemness and pro-differentiation functions, fact need to be considered when designing epigenetic therapies including PRC2 as a drug target. Stem Cells 2017;35:445-457.
Collapse
Affiliation(s)
- Mikko Oittinen
- Tampere Centre for Child Health Research, University of Tampere, Department of Pediatrics and Tampere University Hospital, Tampere, Finland
| | - Alina Popp
- Tampere Centre for Child Health Research, University of Tampere, Department of Pediatrics and Tampere University Hospital, Tampere, Finland.,University of Medicine and Pharmacy "Carol Davila", Department of Pediatrics and Institute for Mother and Child Care, Bucharest, Romania
| | - Kalle Kurppa
- Tampere Centre for Child Health Research, University of Tampere, Department of Pediatrics and Tampere University Hospital, Tampere, Finland
| | - Katri Lindfors
- Tampere Centre for Child Health Research, University of Tampere, Department of Pediatrics and Tampere University Hospital, Tampere, Finland
| | - Markku Mäki
- Tampere Centre for Child Health Research, University of Tampere, Department of Pediatrics and Tampere University Hospital, Tampere, Finland
| | - Minna U Kaikkonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Keijo Viiri
- Tampere Centre for Child Health Research, University of Tampere, Department of Pediatrics and Tampere University Hospital, Tampere, Finland
| |
Collapse
|
24
|
Scinderin promotes the invasion and metastasis of gastric cancer cells and predicts the outcome of patients. Cancer Lett 2016; 376:110-7. [PMID: 27033455 DOI: 10.1016/j.canlet.2016.03.035] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/20/2016] [Accepted: 03/21/2016] [Indexed: 12/31/2022]
Abstract
Invasion and metastasis are major malignant characteristics of human gastric cancer (GC), but the underlying molecular mechanisms are poorly understood. Recent studies have shown that scinderin (SCIN), an actin severing and capping protein that regulates the actin cytoskeleton, is involved in the proliferation and migration of certain cancer cells. Accordingly, this study aimed to investigate the potential role of SCIN in the invasion and metastasis of human GC cells and to evaluate its prognostic value for GC patients. We found that high levels of SCIN expression in GC tumors were correlated with poor overall survival of patients. Silencing of SCIN effectively suppressed the migratory and invasive capabilities of human GC cells in vitro and tumorigenicity and metastasis in vivo. Furthermore, knockdown of SCIN markedly inhibited the formation of filopodia, decreasing GC cell migration and the expression of Cdc42, an important regulator of filopodia by GC cells. These findings suggest that SCIN may be a novel prognostic marker and a potential therapeutic target in human GC.
Collapse
|
25
|
Santa Maria C, Cheng Z, Li A, Wang J, Shoback D, Tu CL, Chang W. Interplay between CaSR and PTH1R signaling in skeletal development and osteoanabolism. Semin Cell Dev Biol 2016; 49:11-23. [PMID: 26688334 PMCID: PMC4761456 DOI: 10.1016/j.semcdb.2015.12.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 12/05/2015] [Indexed: 12/01/2022]
Abstract
Parathyroid hormone (PTH)-related peptide (PTHrP) controls the pace of pre- and post-natal growth plate development by activating the PTH1R in chondrocytes, while PTH maintains mineral and skeletal homeostasis by modulating calciotropic activities in kidneys, gut, and bone. The extracellular calcium-sensing receptor (CaSR) is a member of family C, G protein-coupled receptor, which regulates mineral and skeletal homeostasis by controlling PTH secretion in parathyroid glands and Ca(2+) excretion in kidneys. Recent studies showed the expression of CaSR in chondrocytes, osteoblasts, and osteoclasts and confirmed its non-redundant roles in modulating the recruitment, proliferation, survival, and differentiation of the cells. This review emphasizes the actions of CaSR and PTH1R signaling responses in cartilage and bone and discusses how these two signaling cascades interact to control growth plate development and maintain skeletal metabolism in physiological and pathological conditions. Lastly, novel therapeutic regimens that exploit interrelationship between the CaSR and PTH1R are proposed to produce more robust osteoanabolism.
Collapse
Affiliation(s)
- Christian Santa Maria
- Endocrine Research Unit, University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Zhiqiang Cheng
- Endocrine Research Unit, University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Alfred Li
- Endocrine Research Unit, University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Jiali Wang
- Endocrine Research Unit, University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Dolores Shoback
- Endocrine Research Unit, University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Chia-Ling Tu
- Endocrine Research Unit, University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Wenhan Chang
- Endocrine Research Unit, University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, CA, USA.
| |
Collapse
|
26
|
Adseverin mediates RANKL-induced osteoclastogenesis by regulating NFATc1. Exp Mol Med 2015; 47:e199. [PMID: 26642432 PMCID: PMC4686697 DOI: 10.1038/emm.2015.94] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 09/07/2015] [Accepted: 09/17/2015] [Indexed: 11/08/2022] Open
Abstract
Adseverin is a Ca2+-dependent actin filament-severing protein that has been reported to regulate exocytosis via rearrangements of the actin cytoskeleton in secretory cells. However, the role of adseverin in bone cells has not yet been well characterized. Here, we investigated the role of adseverin in osteoclastogenesis using primary osteoclast precursor cells. Adseverin expression was upregulated during RANKL (receptor activator of nuclear factor-κB ligand)-induced osteoclast differentiation. Moreover, genetic silencing of adseverin decreased the number of osteoclasts generated by RANKL. Adseverin knockdown also suppressed the RANKL-mediated induction of nuclear factor of activated T-cell c1 (NFATc1), which is a key transcription factor in osteoclastogenesis. In addition, adseverin knockdown impaired bone resorption and the secretion of bone-degrading enzymes from osteoclasts. These effects were accompanied by decreased NFATc1 expression and the activation of nuclear factor-κB. Collectively, our results indicate that adseverin has a crucial role in osteoclastogenesis by regulating NFATc1.
Collapse
|
27
|
Kudelko M, Chan CWL, Sharma R, Yao Q, Lau E, Chu IK, Cheah KSE, Tanner JA, Chan D. Label-Free Quantitative Proteomics Reveals Survival Mechanisms Developed by Hypertrophic Chondrocytes under ER Stress. J Proteome Res 2015; 15:86-99. [DOI: 10.1021/acs.jproteome.5b00537] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | | | - Rakesh Sharma
- Department
of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Ahi EP, Steinhäuser SS, Pálsson A, Franzdóttir SR, Snorrason SS, Maier VH, Jónsson ZO. Differential expression of the aryl hydrocarbon receptor pathway associates with craniofacial polymorphism in sympatric Arctic charr. EvoDevo 2015; 6:27. [PMID: 26388986 PMCID: PMC4574265 DOI: 10.1186/s13227-015-0022-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/04/2015] [Indexed: 12/03/2022] Open
Abstract
Background The developmental basis of craniofacial morphology hinges on interactions of numerous signalling systems. Extensive craniofacial variation in the polymorphic Arctic charr, a member of the salmonid family, from Lake Thingvallavatn (Iceland), offers opportunities to find and study such signalling pathways and their key regulators, thereby shedding light on the developmental pathways, and the genetics of trophic divergence. Results To identify genes involved in the craniofacial differences between benthic and limnetic Arctic charr, we used transcriptome data from different morphs, spanning early development, together with data on craniofacial expression patterns and skeletogenesis in model vertebrate species. Out of 20 genes identified, 7 showed lower gene expression in benthic than in limnetic charr morphs. We had previously identified a conserved gene network involved in extracellular matrix (ECM) organization and skeletogenesis, showing higher expression in developing craniofacial elements of benthic than in limnetic Arctic charr morphs. The present study adds a second set of genes constituting an expanded gene network with strong, benthic–limnetic differential expression. To identify putative upstream regulators, we performed knowledge-based motif enrichment analyses on the regulatory sequences of the identified genes which yielded potential binding sites for a set of known transcription factors (TFs). Of the 8 TFs that we examined using qPCR, two (Ahr2b and Ap2) were found to be differentially expressed between benthic and limnetic charr. Expression analysis of several known AhR targets indicated higher activity of the AhR pathway during craniofacial development in benthic charr morphotypes. Conclusion These results suggest a key role of the aryl hydrocarbon receptor (AhR) pathway in the observed craniofacial differences between distinct charr morphotypes. Electronic supplementary material The online version of this article (doi:10.1186/s13227-015-0022-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland
| | - Sophie S Steinhäuser
- Biomedical Center, University of Iceland, Vatnsmýrarvegur 16, 101 Reykjavik, Iceland
| | - Arnar Pálsson
- Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland ; Biomedical Center, University of Iceland, Vatnsmýrarvegur 16, 101 Reykjavik, Iceland
| | - Sigrídur Rut Franzdóttir
- Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland
| | - Sigurdur S Snorrason
- Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland
| | - Valerie H Maier
- Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland ; Biomedical Center, University of Iceland, Vatnsmýrarvegur 16, 101 Reykjavik, Iceland
| | - Zophonías O Jónsson
- Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland ; Biomedical Center, University of Iceland, Vatnsmýrarvegur 16, 101 Reykjavik, Iceland
| |
Collapse
|
29
|
Calcium-controlled conformational choreography in the N-terminal half of adseverin. Nat Commun 2015; 6:8254. [PMID: 26365202 PMCID: PMC4647846 DOI: 10.1038/ncomms9254] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 08/03/2015] [Indexed: 01/23/2023] Open
Abstract
Adseverin is a member of the calcium-regulated gelsolin superfamily of actin-binding proteins. Here we report the crystal structure of the calcium-free N-terminal half of adseverin (iA1-A3) and the Ca(2+)-bound structure of A3, which reveal structural similarities and differences with gelsolin. Solution small-angle X-ray scattering combined with ensemble optimization revealed a dynamic Ca(2+)-dependent equilibrium between inactive, intermediate and active conformations. Increasing calcium concentrations progressively shift this equilibrium from a main population of inactive conformation to the active form. Molecular dynamics simulations of iA1-A3 provided insights into Ca(2+)-induced destabilization, implicating a critical role for the A2 type II calcium-binding site and the A2A3 linker in the activation process. Finally, mutations that disrupt the A1/A3 interface increase Ca(2+)-independent F-actin severing by A1-A3, albeit at a lower efficiency than observed for gelsolin domains G1-G3. Together, these data address the calcium dependency of A1-A3 activity in relation to the calcium-independent activity of G1-G3.
Collapse
|
30
|
Chen L, Shi K, Frary CE, Ditzel N, Hu H, Qiu W, Kassem M. Inhibiting actin depolymerization enhances osteoblast differentiation and bone formation in human stromal stem cells. Stem Cell Res 2015. [PMID: 26209815 DOI: 10.1016/j.scr.2015.06.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Remodeling of the actin cytoskeleton through actin dynamics is involved in a number of biological processes, but its role in human stromal (skeletal) stem cells (hMSCs) differentiation is poorly understood. In the present study, we demonstrated that stabilizing actin filaments by inhibiting gene expression of the two main actin depolymerizing factors (ADFs): Cofilin 1 (CFL1) and Destrin (DSTN) in hMSCs, enhanced cell viability and differentiation into osteoblastic cells (OB) in vitro, as well as heterotopic bone formation in vivo. Similarly, treating hMSC with Phalloidin, which is known to stabilize polymerized actin filaments, increased hMSCs viability and OB differentiation. Conversely, Cytocholasin D, an inhibitor of actin polymerization, reduced cell viability and inhibited OB differentiation of hMSC. At a molecular level, preventing Cofilin phosphorylation through inhibition of LIM domain kinase 1 (LIMK1) decreased cell viability and impaired OB differentiation of hMSCs. Moreover, depolymerizing actin reduced FAK, p38 and JNK activation during OB differentiation of hMSCs, while polymerizing actin enhanced these signaling pathways. Our results demonstrate that the actin dynamic reassembly and Cofilin phosphorylation loop is involved in the control of hMSC proliferation and osteoblasts differentiation.
Collapse
Affiliation(s)
- Li Chen
- Molecular Endocrinology Laboratory (KMEB), Odense University Hospital, University of South Denmark, DK-5000 Odense C, Denmark.
| | - Kaikai Shi
- Molecular Endocrinology Laboratory (KMEB), Odense University Hospital, University of South Denmark, DK-5000 Odense C, Denmark
| | - Charles Edward Frary
- Molecular Endocrinology Laboratory (KMEB), Odense University Hospital, University of South Denmark, DK-5000 Odense C, Denmark
| | - Nicholas Ditzel
- Molecular Endocrinology Laboratory (KMEB), Odense University Hospital, University of South Denmark, DK-5000 Odense C, Denmark
| | - Huimin Hu
- Molecular Endocrinology Laboratory (KMEB), Odense University Hospital, University of South Denmark, DK-5000 Odense C, Denmark; Department of Spine Surgery, Honghui Hospital, Xi'an JiaoTong University College of Medicine, 710054 Xi'an, China
| | - Weimin Qiu
- Molecular Endocrinology Laboratory (KMEB), Odense University Hospital, University of South Denmark, DK-5000 Odense C, Denmark
| | - Moustapha Kassem
- Molecular Endocrinology Laboratory (KMEB), Odense University Hospital, University of South Denmark, DK-5000 Odense C, Denmark; Danish Stem Cell Center (DanStem), Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
31
|
Gudbrandsson J, Ahi EP, Franzdottir SR, Kapralova KH, Kristjansson BK, Steinhaeuser SS, Maier VH, Johannesson IM, Snorrason SS, Jonsson ZO, Palsson A. The developmental transcriptome of contrasting Arctic charr (Salvelinus alpinus) morphs. F1000Res 2015; 4:136. [PMID: 27635217 PMCID: PMC5007756 DOI: 10.12688/f1000research.6402.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
Species and populations with parallel evolution of specific traits can help illuminate how predictable adaptations and divergence are at the molecular and developmental level. Following the last glacial period, dwarfism and specialized bottom feeding morphology evolved rapidly in several landlocked Arctic charrSalvelinus alpinuspopulations in Iceland. To study the genetic divergence between small benthic morphs and limnetic morphs, we conducted RNA-sequencing charr embryos at four stages in early development. We studied two stocks with contrasting morphologies: the small benthic (SB) charr from Lake Thingvallavatn and Holar aquaculture (AC) charr.The data reveal significant differences in expression of several biological pathways during charr development. There was also an expression difference between SB- and AC-charr in genes involved in energy metabolism and blood coagulation genes. We confirmed differing expression of five genes in whole embryos with qPCR, includinglysozymeandnatterin-likewhich was previously identified as a fish-toxin of a lectin family that may be a putative immunopeptide. We also verified differential expression of 7 genes in the developing head that associated consistently with benthic v.s.limnetic morphology (studied in 4 morphs). Comparison of single nucleotide polymorphism (SNP) frequencies reveals extensive genetic differentiation between the SB and AC-charr (~1300 with more than 50% frequency difference). Curiously, three derived alleles in the otherwise conserved 12s and 16s mitochondrial ribosomal RNA genes are found in benthic charr.The data implicate multiple genes and molecular pathways in divergence of small benthic charr and/or the response of aquaculture charr to domestication. Functional, genetic and population genetic studies on more freshwater and anadromous populations are needed to confirm the specific loci and mutations relating to specific ecological traits in Arctic charr.
Collapse
|
32
|
Gudbrandsson J, Ahi EP, Franzdottir SR, Kapralova KH, Kristjansson BK, Steinhaeuser SS, Maier VH, Johannesson IM, Snorrason SS, Jonsson ZO, Palsson A. The developmental transcriptome of contrasting Arctic charr ( Salvelinus alpinus) morphs. F1000Res 2015; 4:136. [PMID: 27635217 PMCID: PMC5007756 DOI: 10.12688/f1000research.6402.2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/05/2016] [Indexed: 12/23/2022] Open
Abstract
Species and populations with parallel evolution of specific traits can help illuminate how predictable adaptations and divergence are at the molecular and developmental level. Following the last glacial period, dwarfism and specialized bottom feeding morphology evolved rapidly in several landlocked Arctic charr
Salvelinus alpinus populations in Iceland. To study the genetic divergence between small benthic morphs and limnetic morphs, we conducted RNA-sequencing charr embryos at four stages in early development. We studied two stocks with contrasting morphologies: the small benthic (SB) charr from Lake Thingvallavatn and Holar aquaculture (AC) charr. The data reveal significant differences in expression of several biological pathways during charr development. There was also an expression difference between SB- and AC-charr in genes involved in energy metabolism and blood coagulation genes. We confirmed differing expression of five genes in whole embryos with qPCR, including
lysozyme and
natterin-like which was previously identified as a fish-toxin of a lectin family that may be a putative immunopeptide. We also verified differential expression of 7 genes in the developing head that associated consistently with benthic v.s.limnetic morphology (studied in 4 morphs). Comparison of single nucleotide polymorphism (SNP) frequencies reveals extensive genetic differentiation between the SB and AC-charr (~1300 with more than 50% frequency difference). Curiously, three derived alleles in the otherwise conserved 12s and 16s mitochondrial ribosomal RNA genes are found in benthic charr. The data implicate multiple genes and molecular pathways in divergence of small benthic charr and/or the response of aquaculture charr to domestication. Functional, genetic and population genetic studies on more freshwater and anadromous populations are needed to confirm the specific loci and mutations relating to specific ecological traits in Arctic charr.
Collapse
Affiliation(s)
- Johannes Gudbrandsson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Ehsan P Ahi
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Sigridur R Franzdottir
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Kalina H Kapralova
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | | | - S Sophie Steinhaeuser
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Valerie H Maier
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Isak M Johannesson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Sigurdur S Snorrason
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Zophonias O Jonsson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Arnar Palsson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| |
Collapse
|
33
|
Li X, Jiang H, Huang Y, Gong Q, Wang J, Ling J. Expression and Function of the Actin-severing Protein Adseverin in the Proliferation, Migration, and Differentiation of Dental Pulp Cells. J Endod 2015; 41:493-500. [DOI: 10.1016/j.joen.2014.11.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 11/29/2014] [Accepted: 11/30/2014] [Indexed: 12/18/2022]
|
34
|
Jiang H, Wang Y, Viniegra A, Sima C, McCulloch CA, Glogauer M. Adseverin plays a role in osteoclast differentiation and periodontal disease-mediated bone loss. FASEB J 2015; 29:2281-91. [PMID: 25681458 DOI: 10.1096/fj.14-265744] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/23/2015] [Indexed: 01/27/2023]
Abstract
Osteoclast differentiation and function are highly dependent on the assembly and turnover of actin filaments, but little is known about the roles of actin binding proteins in these processes. Adseverin (Ads), a member of the gelsolin superfamily of actin capping and severing proteins, regulates actin filament turnover and can regulate the turnover of cortical actin filaments of chromaffin cells during exocytosis. Using a conditional Ads knockout mouse model, we confirmed our previous finding in cultured cells that Ads plays a role in osteoclastogenesis (OCG) and actin cytoskeletal organization in osteoclasts. Here we show that Ads is required for osteoclast formation and that when alveolar bone resorption is experimentally induced in mice, genetic deletion of Ads prevents osteoclast-mediated bone loss. Further, when Ads-null osteoclasts are cultured, they exhibit defective OCG, disorganized podosome-based actin filament superstructures, and decreased bone resorption. Reintroduction of Ads into Ads-null osteoclast precursor cells restored these osteoclast defects. Collectively, these data demonstrate a unique and osteoclast-specific role for Ads in OCG and osteoclast function.
Collapse
Affiliation(s)
- Hongwei Jiang
- *Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Ontario, Canada; and Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yongqiang Wang
- *Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Ontario, Canada; and Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Ana Viniegra
- *Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Ontario, Canada; and Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Corneliu Sima
- *Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Ontario, Canada; and Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Christopher A McCulloch
- *Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Ontario, Canada; and Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Michael Glogauer
- *Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Ontario, Canada; and Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
35
|
Eckhardt A, Jágr M, Pataridis S, Mikšík I. Proteomic Analysis of Human Tooth Pulp: Proteomics of Human Tooth. J Endod 2014; 40:1961-6. [DOI: 10.1016/j.joen.2014.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 06/25/2014] [Accepted: 07/03/2014] [Indexed: 01/17/2023]
|
36
|
Qi W, Gao Y, Tian J, Jiang H. Adseverin knockdown inhibits osteoclastogenesis in RAW264.7 cells. Int J Mol Med 2014; 34:1483-91. [PMID: 25339151 PMCID: PMC4214352 DOI: 10.3892/ijmm.2014.1941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 09/11/2014] [Indexed: 11/08/2022] Open
Abstract
Osteoclastogenesis is a complex process that is highly dependent on the dynamic regulation of the actin cytoskeleton. Adseverin (Ads), a member of the gelsolin superfamily of actin-binding proteins, regulates actin remodeling by severing and capping actin filaments. The objective of the present study was to characterize the role of Ads during osteoclastogenesis by assessing Ads expression and using a knockdown strategy. Immunoblot analyses were used to examine Ads expression during osteoclastogenesis. A stable Ads knockdown macrophage cell line was generated using a retroviral shRNA construct. Osteoclast differentiation was morphologically examined via cell staining with osteoclast specific markers and light microscopy. The results showed that Ads expression was significantly increased in response to receptor activator of nuclear factor-κB ligand during osteoclastogenesis, and Ads was highly expressed in mature osteoclasts. Ads-knockdown macrophages showed major osteoclastogenesis defects, most likely caused by a pre-osteoclast fusion defect. These results indicate that Ads deficiency in monocytes inhibits osteoclastogenesis. Thus, in future studies it could be noteworthy to investigate the function of Ads in bone marrow monocytes during osteoclastogenesis.
Collapse
Affiliation(s)
- Wenting Qi
- Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Yan Gao
- Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Jun Tian
- Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Hongwei Jiang
- Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
37
|
Liu H, Shi D, Liu T, Yu Z, Zhou C. Lentivirus-mediated silencing of SCIN inhibits proliferation of human lung carcinoma cells. Gene 2014; 554:32-9. [PMID: 25303873 DOI: 10.1016/j.gene.2014.10.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 09/11/2014] [Accepted: 10/06/2014] [Indexed: 10/25/2022]
Abstract
SCIN (scinderin) is a calcium-dependent actin severing and capping protein. Homologue in zebrafish has been found to be related with cell death. In the present study, we found that SCIN is highly expressed in human lung cancer specimens. However, the role of SCIN in lung cancer has not yet been determined. To investigate the function of SCIN in lung carcinoma cells, we took advantage of lentivirus-mediated RNA interference (RNAi) to knockdown SCIN expression in two lung carcinoma cell lines A549 and H1299. Silencing of SCIN significantly inhibited the proliferation and colony formation ability of both cell lines in vitro. Moreover, flow cytometry analysis showed that knockdown of SCIN led to G0/G1 phase cell cycle arrest as well as an excess accumulation of cells in the sub-G1 phase. Furthermore, depletion of SCIN resulted in a significant increase in Cyclin B1, p21 and PARP expression, and a little decrease in Cyclin D1 expression. These results suggest that SCIN plays an important role in lung carcinoma cell proliferation, and lentivirus-mediated silencing of SCIN might be a potential therapeutic approach for the treatment of lung cancer.
Collapse
Affiliation(s)
- Hongxu Liu
- Department of Thoracic Surgery, The First Hospital, China Medical University, Shenyang 110001, China.
| | - Daiwang Shi
- Department of Thoracic Surgery, The First Hospital, China Medical University, Shenyang 110001, China
| | - Tieqin Liu
- Department of Thoracic Surgery, The First Hospital, China Medical University, Shenyang 110001, China
| | - Zhanwu Yu
- Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Chuanjiang Zhou
- Department of Thoracic Surgery, Benxi Central Hospital, Benxi 117000, China
| |
Collapse
|
38
|
Hassanpour S, Jiang H, Wang Y, Kuiper JWP, Glogauer M. The actin binding protein adseverin regulates osteoclastogenesis. PLoS One 2014; 9:e109078. [PMID: 25275604 PMCID: PMC4183545 DOI: 10.1371/journal.pone.0109078] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 09/07/2014] [Indexed: 11/29/2022] Open
Abstract
Adseverin (Ads), a member of the Gelsolin superfamily of actin binding proteins, regulates the actin cytoskeleton architecture by severing and capping existing filamentous actin (F-actin) strands and nucleating the assembly of new F-actin filaments. Ads has been implicated in cellular secretion, exocytosis and has also been shown to regulate chondrogenesis and megakaryoblastic leukemia cell differentiation. Here we report for the first time that Ads is involved in regulating osteoclastogenesis (OCG). Ads is induced during OCG downstream of RANK-ligand (RANKL) stimulation and is highly expressed in mature osteoclasts. The D5 isoform of Ads is not involved in regulating OCG, as its expression is not induced in response to RANKL. Three clonal Ads knockdown RAW264.7 (RAW) macrophage cell lines with varying degrees of Ads expression and OCG deficiency were generated. The most drastic OCG defect was noted in the clonal cell line with the greatest degree of Ads knockdown as indicated by a lack of TRAcP staining and multinucleation. RNAi mediated knockdown of Ads in osteoclast precursors resulted in distinct morphological changes characterized by altered F-actin distribution and increased filopodia formation. Ads knockdown precursor cells experienced enhanced migration while fusion of knockdown precursors cells was limited. Transient reintroduction of de novo Ads back into the knockdown system was capable of rescuing TRAcP expression but not osteoclast multinucleation most likely due to the transient nature of Ads expression. This preliminary study allows us to conclude that Ads is a RANKL induced early regulator of OCG with a potential role in pre-osteoclast differentiation and fusion.
Collapse
Affiliation(s)
- Siavash Hassanpour
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Hongwei Jiang
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, P. R. China
| | - Yongqiang Wang
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Johannes W. P. Kuiper
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Michael Glogauer
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
39
|
Abstract
Herein, we review the regulation of differentiation of the growth plate chondrocytes by G-proteins. In connection with this, we summarize the current knowledge regarding each family of G-protein α subunit, specifically, Gα(s), Gα(q/11), Gα(12/13), and Gα(i/o). We discuss different mechanisms involved in chondrocyte differentiation downstream of G-proteins and different G-protein-coupled receptors (GPCRs) activating G-proteins in the epiphyseal chondrocytes. We conclude that among all G-proteins and GPCRs expressed by chondrocytes, Gα(s) has the most important role and prevents premature chondrocyte differentiation. Receptor for parathyroid hormone (PTHR1) appears to be the major activator of Gα(s) in chondrocytes and ablation of either one leads to accelerated chondrocyte differentiation, premature fusion of the postnatal growth plate, and ultimately short stature.
Collapse
Affiliation(s)
- Andrei S Chagin
- Department of Physiology and PharmacologyKarolinska Institutet, Nanna Svartz Vagen 2, Stockholm 17177, SwedenEndocrine UnitMassachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114-2696, USA
| | - Henry M Kronenberg
- Department of Physiology and PharmacologyKarolinska Institutet, Nanna Svartz Vagen 2, Stockholm 17177, SwedenEndocrine UnitMassachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114-2696, USA
| |
Collapse
|
40
|
Ferré FC, Larjava H, Loison-Robert LS, Berbar T, Owen GR, Berdal A, Chérifi H, Gogly B, Häkkinen L, Fournier BPJ. Formation of cartilage and synovial tissue by human gingival stem cells. Stem Cells Dev 2014; 23:2895-907. [PMID: 25003637 DOI: 10.1089/scd.2013.0547] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Human gingival stem cells (HGSCs) can be easily isolated and manipulated in culture to investigate their multipotency. Osteogenic differentiation of bone-marrow-derived mesenchymal stem/stromal cells has been well documented. HGSCs derive from neural crests, however, and their differentiation capacity has not been fully established. The aim of the present report was to investigate whether HGSCs can be induced to differentiate to osteoblasts and chondrocytes. HGSCs were cultured either in a classical monolayer culture or in three-dimensional floating micromass pellet cultures in specific differentiation media. HGSC differentiation to osteogenic and chondrogenic lineages was determined by protein and gene expression analyses, and also by specific staining of cells and tissue pellets. HGSCs cultured in osteogenic differentiation medium showed induction of Runx2, alkaline phosphatase (ALPL), and osterix expression, and subsequently formed mineralized nodules consistent with osteogenic differentiation. Interestingly, HGSC micromass cultures maintained in chondrogenic differentiation medium showed SOX9-dependent differentiation to both chondrocyte and synoviocyte lineages. Chondrocytes at different stages of differentiation were identified by gene expression profiles and by histochemical and immunohistochemical staining. In 3-week-old cultures, peripheral cells in the micromass cultures organized in layers of cuboidal cells with villous structures facing the medium. These cells were strongly positive for cadherin-11, a marker of synoviocytes. In summary, the findings indicate that HGSCs have the capacity to differentiate to osteogenic, chondrogenic, and synoviocyte lineages. Therefore, HGSCs could serve as an alternative source for stem cell therapies in regenerative medicine for patients with cartilage and joint destructions, such as observed in rheumatoid arthritis.
Collapse
Affiliation(s)
- François Côme Ferré
- 1 INSERM UMR 1138, Laboratory of Oral Molecular Physiopathology, Cordeliers Research Center, Team 5, Paris Diderot, Pierre and Marie Curie, Paris Descartes Universities , Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Sutherland BJG, Koczka KW, Yasuike M, Jantzen SG, Yazawa R, Koop BF, Jones SRM. Comparative transcriptomics of Atlantic Salmo salar, chum Oncorhynchus keta and pink salmon O. gorbuscha during infections with salmon lice Lepeophtheirus salmonis. BMC Genomics 2014; 15:200. [PMID: 24628956 PMCID: PMC4004277 DOI: 10.1186/1471-2164-15-200] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 03/04/2014] [Indexed: 12/21/2022] Open
Abstract
Background Salmon species vary in susceptibility to infections with the salmon louse (Lepeophtheirus salmonis). Comparing mechanisms underlying responses in susceptible and resistant species is important for estimating impacts of infections on wild salmon, selective breeding of farmed salmon, and expanding our knowledge of fish immune responses to ectoparasites. Herein we report three L. salmonis experimental infection trials of co-habited Atlantic Salmo salar, chum Oncorhynchus keta and pink salmon O. gorbuscha, profiling hematocrit, blood cortisol concentrations, and transcriptomic responses of the anterior kidney and skin to the infection. Results In all trials, infection densities (lice per host weight (g)) were consistently highest on chum salmon, followed by Atlantic salmon, and lowest in pink salmon. At 43 days post-exposure, all lice had developed to motile stages, and infection density was uniformly low among species. Hematocrit was reduced in infected Atlantic and chum salmon, and cortisol was elevated in infected chum salmon. Systemic transcriptomic responses were profiled in all species and large differences in response functions were identified between Atlantic and Pacific (chum and pink) salmon. Pink and chum salmon up-regulated acute phase response genes, including complement and coagulation components, and down-regulated antiviral immune genes. The pink salmon response involved the largest and most diverse iron sequestration and homeostasis mechanisms. Pattern recognition receptors were up-regulated in all species but the active components were often species-specific. C-type lectin domain family 4 member M and acidic mammalian chitinase were specifically up-regulated in the resistant pink salmon. Conclusions Experimental exposures consistently indicated increased susceptibility in chum and Atlantic salmon, and resistance in pink salmon, with differences in infection density occurring within the first three days of infection. Transcriptomic analysis suggested candidate resistance functions including local inflammation with cytokines, specific innate pattern recognition receptors, and iron homeostasis. Suppressed antiviral immunity in both susceptible and resistant species indicates the importance of future work investigating co-infections of viral pathogens and lice. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-200) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Ben F Koop
- Centre for Biomedical Research, Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada.
| | | |
Collapse
|
42
|
Matta C, Mobasheri A. Regulation of chondrogenesis by protein kinase C: Emerging new roles in calcium signalling. Cell Signal 2014; 26:979-1000. [PMID: 24440668 DOI: 10.1016/j.cellsig.2014.01.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/09/2014] [Indexed: 01/14/2023]
Abstract
During chondrogenesis, complex intracellular signalling pathways regulate an intricate series of events including condensation of chondroprogenitor cells and nodule formation followed by chondrogenic differentiation. Reversible phosphorylation of key target proteins is of particular importance during this process. Among protein kinases known to be involved in these pathways, protein kinase C (PKC) subtypes play pivotal roles. However, the precise function of PKC isoenzymes during chondrogenesis and in mature articular chondrocytes is still largely unclear. In this review, we provide a historical overview of how the concept of PKC-mediated chondrogenesis has evolved, starting from the first discoveries of PKC isoform expression and activity. Signalling components upstream and downstream of PKC, leading to the stimulation of chondrogenic differentiation, are also discussed. Although it is evident that we are only at the beginning to understand what roles are assigned to PKC subtypes during chondrogenesis and how they are regulated, there are many yet unexplored aspects in this area. There is evidence that calcium signalling is a central regulator in differentiating chondroprogenitors; still, clear links between intracellular calcium signalling and prototypical calcium-dependent PKC subtypes such as PKCalpha have not been established. Exploiting putative connections and shedding more light on how exactly PKC signalling pathways influence cartilage formation should open new perspectives for a better understanding of healthy as well as pathological differentiation processes of chondrocytes, and may also lead to the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Csaba Matta
- Department of Anatomy, Histology and Embryology, Medical and Health Science Centre, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary.
| | - Ali Mobasheri
- D-BOARD European Consortium for Biomarker Discovery, Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Arthritis Research UK Pain Centre, Medical Research Council and Arthritis Research UK Centre for Musculoskeletal Ageing Research, School of Medicine, Faculty of Medicine and Health Sciences, The University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom; School of Pharmacy, University of Bradford, Richmond Road, Bradford BD7 1DP, United Kingdom; School of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP, United Kingdom; Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
43
|
Wang D, Sun SQ, Yu YH, Wu WZ, Yang SL, Tan JM. Suppression of SCIN inhibits human prostate cancer cell proliferation and induces G0/G1 phase arrest. Int J Oncol 2013; 44:161-6. [PMID: 24212916 DOI: 10.3892/ijo.2013.2170] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 10/08/2013] [Indexed: 11/05/2022] Open
Abstract
SCIN is a calcium regulated actin severing and capping protein. Its homologue in zebrafish is found to be related with cell death. In the present study, we found that SCIN is highly expressed in human prostate cancer specimens. However, the functions of SCIN in human prostate carcinoma cells are largely unknown. To address the function of SCIN in prostate carcinoma cells, we used lentivirus-mediated RNAi to knock down SCIN expression in PC3 cells, a prostate carcinoma cell line. We found that in vitro silencing of SCIN could inhibit the proliferation and colony formation ability of PC3 cells. Furthermore, cell cycle analysis showed that reduced SCIN expression lead to G0/G1 cell cycle arrest through the regulation of cell cycle-related genes, such as p21Waf1/Cip1, cyclin-dependent kinase inhibitor 2A (CDKN2A, p16Ink4A) and cyclin A2. These results suggest that SCIN plays an important role in the proliferation of prostate cancer cells and lentivirus-mediated inhibition of SCIN expression may be a potential therapeutic method for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Dong Wang
- Department of Urology, Fuzhou General Hospital, Fuzhou 350025, P.R. China
| | | | | | | | | | | |
Collapse
|
44
|
Quantitative apical membrane proteomics reveals vasopressin-induced actin dynamics in collecting duct cells. Proc Natl Acad Sci U S A 2013; 110:17119-24. [PMID: 24085853 DOI: 10.1073/pnas.1309219110] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In kidney collecting duct cells, filamentous actin (F-actin) depolymerization is a critical step in vasopressin-induced trafficking of aquaporin-2 to the apical plasma membrane. However, the molecular components of this response are largely unknown. Using stable isotope-based quantitative protein mass spectrometry and surface biotinylation, we identified 100 proteins that showed significant abundance changes in the apical plasma membrane of mouse cortical collecting duct cells in response to vasopressin. Fourteen of these proteins are involved in actin cytoskeleton regulation, including actin itself, 10 actin-associated proteins, and 3 regulatory proteins. Identified were two integral membrane proteins (Clmn, Nckap1) and one actin-binding protein (Mpp5) that link F-actin to the plasma membrane, five F-actin end-binding proteins (Arpc2, Arpc4, Gsn, Scin, and Capzb) involved in F-actin reorganization, and two actin adaptor proteins (Dbn1, Lasp1) that regulate actin cytoskeleton organization. There were also protease (Capn1), protein kinase (Cdc42bpb), and Rho guanine nucleotide exchange factor 2 (Arhgef2) that mediate signal-induced F-actin changes. Based on these findings, we devised a live-cell imaging method to observe vasopressin-induced F-actin dynamics in polarized mouse cortical collecting duct cells. In response to vasopressin, F-actin gradually disappeared near the center of the apical plasma membrane while consolidating laterally near the tight junction. This F-actin peripheralization was blocked by calcium ion chelation. Vasopressin-induced apical aquaporin-2 trafficking and forskolin-induced water permeability increase were blocked by F-actin disruption. In conclusion, we identified a vasopressin-regulated actin network potentially responsible for vasopressin-induced apical F-actin dynamics that could explain regulation of apical aquaporin-2 trafficking and water permeability increase.
Collapse
|
45
|
Vieira FA, Thorne MAS, Stueber K, Darias M, Reinhardt R, Clark MS, Gisbert E, Power DM. Comparative analysis of a teleost skeleton transcriptome provides insight into its regulation. Gen Comp Endocrinol 2013; 191:45-58. [PMID: 23770218 DOI: 10.1016/j.ygcen.2013.05.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/24/2013] [Accepted: 05/29/2013] [Indexed: 12/16/2022]
Abstract
An articulated endoskeleton that is calcified is a unifying innovation of the vertebrates, however the molecular basis of the structural divergence between terrestrial and aquatic vertebrates, such as teleost fish, has not been determined. In the present study long-read next generation sequencing (NGS, Roche 454 platform) was used to characterize acellular perichondral bone (vertebrae) and chondroid bone (gill arch) in the gilthead sea bream (Sparus auratus). A total of 15.97 and 14.53Mb were produced, respectively from vertebrae and gill arch cDNA libraries and yielded 32,374 and 28,371 contigs (consensus sequences) respectively. 10,455 contigs from vertebrae and 10,625 contigs from gill arches were annotated with gene ontology terms. Comparative analysis of the global transcriptome revealed 4249 unique transcripts in vertebrae, 4201 unique transcripts in the gill arches and 3700 common transcripts. Several core gene networks were conserved between the gilthead sea bream and mammalian skeleton. Transcripts for putative endocrine factors were identified in acellular gilthead sea bream bone suggesting that in common with mammalian bone it can act as an endocrine tissue. The acellular bone of the vertebra, in contrast to current opinion based on histological analysis, was responsive to a short fast and significant (p<0.05) down-regulation of several transcripts identified by NGS, osteonectin, osteocalcin, cathepsin K and IGFI occurred. In gill arches fasting caused a significant (p<0.05) down-regulation of osteocalcin and up-regulation of MMP9.
Collapse
|
46
|
Nag S, Larsson M, Robinson RC, Burtnick LD. Gelsolin: The tail of a molecular gymnast. Cytoskeleton (Hoboken) 2013; 70:360-84. [DOI: 10.1002/cm.21117] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/24/2013] [Indexed: 12/14/2022]
Affiliation(s)
| | - Mårten Larsson
- Institute of Molecular and Cell Biology, A*STAR; Singapore
| | | | - Leslie D. Burtnick
- Department of Chemistry and Centre for Blood Research; Life Sciences Institute, University of British Columbia; Vancouver; British Columbia; Canada
| |
Collapse
|
47
|
Studer D, Lischer S, Jochum W, Ehrbar M, Zenobi-Wong M, Maniura-Weber K. Ribosomal protein l13a as a reference gene for human bone marrow-derived mesenchymal stromal cells during expansion, adipo-, chondro-, and osteogenesis. Tissue Eng Part C Methods 2012; 18:761-71. [PMID: 22533734 DOI: 10.1089/ten.tec.2012.0081] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the field of human mesenchymal stromal cell (MSC) research, quantitative real-time reverse transcription-polymerase chain reaction (qPCR) is the method of choice to study changes in gene expression patterns upon differentiation, application of stimuli, or of factors such as inhibitors or siRNAs. To reliably detect small changes, the use of a reference gene (RG) that is stably expressed under all conditions is essential. The large number of different RGs used in the field and the lack of validation of their suitability make the comparison between studies impossible. Therefore, this work aims to establish one single RG for mesodermal differentiation studies that use MSCs. Seven commonly used RGs (glyceraldehyde-3-phosphate dehydrogenase [GAPDH], ribosomal protein L13a [RPL13a], beta-actin [ACTB], tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta-polypeptide [YWHAZ], eukaryotic translational elongation factor 1 alpha [EF1α], β2-microglobulin [B2M], and 18S ribosomal RNA [18S]) were investigated concerning their mRNA expression stability during expansion of bone marrow-derived MSCs up to four passages as well as during their adipo-, chondro-, and osteogenenic differentiation on days 9, 16, and 22 after induction. RPL13a was validated for qPCR studies of MSCs (bone marrow- and placenta-derived) and, additionally, for primary human bone cells (HBCs) and the osteosarcoma cell line MG-63. GAPDH and ACTB, the two most frequently used RGs, showed the highest expression variance. The superior performance of RPL13a should make it the RG of choice for all MSC studies addressing mesodermal differentiation.
Collapse
Affiliation(s)
- Deborah Studer
- Laboratory for Materials-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Testing and Research, St. Gallen, Switzerland
| | | | | | | | | | | |
Collapse
|
48
|
Shanmugasundaram S, Logan-Mauney S, Burgos K, Nurminskaya M. Tissue transglutaminase regulates chondrogenesis in mesenchymal stem cells on collagen type XI matrices. Amino Acids 2011; 42:1045-53. [PMID: 21830118 DOI: 10.1007/s00726-011-1019-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 06/07/2011] [Indexed: 11/29/2022]
Abstract
Tissue transglutaminase (tTG) is a multifunctional enzyme with a plethora of potential applications in regenerative medicine and tissue bioengineering. In this study, we examined the role of tTG as a regulator of chondrogenesis in human mesenchymal stem cells (MSC) using nanofibrous scaffolds coated with collagen type XI. Transient treatment of collagen type XI films and 3D scaffolds with tTG results in enhanced attachment of MSC and supports rounded cell morphology compared to the untreated matrices or those incubated in the continuous presence of tTG. Accordingly, enhanced cell aggregation and augmented chondrogenic differentiation have been observed on the collagen type XI-coated poly-(L-lactide) nanofibrous scaffolds treated with tTG prior to cell seeding. These changes implicate that MSC chondrogenesis is enhanced by the tTG-mediated modifications of the collagen matrix. For example, exogenous tTG increases resistance to collagenolysis in collagen type XI matrices by catalyzing intermolecular cross-linking, detected by a shift in the denaturation temperature. In addition, tTG auto-crosslinks to collagen type XI as detected by western blot and immunofluorescent analysis. This study identifies tTG as a novel regulator of MSC chondrogenesis further contributing to the expanding use of these cells in cartilage bioengineering.
Collapse
Affiliation(s)
- Shobana Shanmugasundaram
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
49
|
Gawlitta D, Farrell E, Malda J, Creemers LB, Alblas J, Dhert WJA. Modulating endochondral ossification of multipotent stromal cells for bone regeneration. TISSUE ENGINEERING PART B-REVIEWS 2011; 16:385-95. [PMID: 20131956 DOI: 10.1089/ten.teb.2009.0712] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
For years it has been recognized that engineering of large bone constructs will be feasible only if the hurdle of vascularization is overcome. Attempts to engineer bone tissue have predominantly focused on intramembranous (direct) bone formation. A relatively new and most likely more physiological approach in this line is endochondral bone formation, comprising an intermediate cartilaginous stage. Cartilage in nature is an avascular tissue and its cells are equipped to survive the poor oxygenation and nutritional conditions inherent to implanted tissues. Subsequent terminal differentiation (hypertrophy) of the chondrocytes initiates the formation of a mineralized matrix that will then be converted into bone. Through this mechanism, our long bones grow and most fractures heal through the process of secondary fracture healing. The feasibility of the attractive concept of endochondral bone tissue engineering has already been shown. Most emphasis has gone to the multipotent stromal cells because of their great potential for expansion and differentiation and immunoprivileged nature. This review will focus on the promises and current status of this new field. Further, potent modulators of endochondral bone tissue engineering, including oxygen tension and mechanical stimuli, will be discussed.
Collapse
Affiliation(s)
- Debby Gawlitta
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
50
|
Shahdadfar A, Løken S, Dahl JA, Tunheim SH, Collas P, Reinholt FP, Engebretsen L, Brinchmann JE. Persistence of collagen type II synthesis and secretion in rapidly proliferating human articular chondrocytes in vitro. Tissue Eng Part A 2009; 14:1999-2007. [PMID: 18636947 DOI: 10.1089/ten.tea.2007.0344] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Articular chondrocytes (AC) expanded in vitro for tissue engineering rapidly turn off collagen type II (COL2) synthesis. We wanted to inhibit this process sufficiently to obtain therapeutically useful numbers of AC without losing COL2 synthesis. To this end, AC were expanded on their own extracellular matrix (ECM) in structures designated chondrocytes in autologous ECM (CA-ECM). Here, AC maintained a rounded shape and proliferated rapidly. After 13-15 days in culture, 40 x 10(6) cells (median) could be obtained from a cartilage biopsy. Real-time RT-PCR showed a reduced, but persistent, production of COL2A1 mRNA at this time. Flow cytometry showed high levels of intracellular COL2, and immunogold electron microscopy showed high density of well-organized COL2 fibrils in newly synthesized ECM. Interestingly, high levels of COL1A1 mRNA and intracellular protein were detected, but no COL1 was found in the ECM. The slow loss of COL2A1 mRNA was paralleled by a loss of the COL2 regulating transcription factor SOX9 mRNA. Chromatin immunoprecipitation assays could not identify epigenetic histone modifications that would explain the observed changes in COL2 synthesis. Thus, the CA-ECM strategy allows AC to proliferate to clinically useful numbers while maintaining COL2 synthesis and secretion. This strategy may improve tissue engineering of joint surfaces.
Collapse
|