1
|
Ohkura T, Burns AJ, Hotta R. Updates and Challenges in ENS Cell Therapy for the Treatment of Neurointestinal Diseases. Biomolecules 2024; 14:229. [PMID: 38397466 PMCID: PMC10887039 DOI: 10.3390/biom14020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Neurointestinal diseases represent a significant challenge in clinical management with current palliative approaches failing to overcome disease and treatment-related morbidity. The recent progress with cell therapy to restore missing or defective components of the gut neuromusculature offers new hope for potential cures. This review discusses the progress that has been made in the sourcing of putative stem cells and the studies into their biology and therapeutic potential. We also explore some of the practical challenges that must be overcome before cell-based therapies can be applied in the clinical setting. Although a number of obstacles remain, the rapid advances made in the enteric neural stem cell field suggest that such therapies are on the near horizon.
Collapse
Affiliation(s)
- Takahiro Ohkura
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (T.O.); (A.J.B.)
| | - Alan J. Burns
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (T.O.); (A.J.B.)
- Stem Cells and Regenerative Medicine, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (T.O.); (A.J.B.)
| |
Collapse
|
2
|
Pan W, Goldstein AM, Hotta R. Opportunities for novel diagnostic and cell-based therapies for Hirschsprung disease. J Pediatr Surg 2022; 57:61-68. [PMID: 34852916 PMCID: PMC9068833 DOI: 10.1016/j.jpedsurg.2021.10.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/17/2021] [Accepted: 10/28/2021] [Indexed: 12/26/2022]
Abstract
Despite significant progress in our understanding of the etiology and pathophysiology of Hirschsprung disease (HSCR), early and accurate diagnosis and operative management can be challenging. Moreover, long-term morbidity following surgery, including fecal incontinence, constipation, and Hirschsprung-associated enterocolitis (HAEC), remains problematic. Recent advances applying state-of-the art imaging for visualization of the enteric nervous system and utilizing neuronal stem cells to replace the missing enteric neurons and glial cells offer the possibility of a promising new future for patients with HSCR. In this review, we summarize recent research advances that may one day offer novel approaches for the diagnosis and management of this disease.
Collapse
Affiliation(s)
- Weikang Pan
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, 185 Cambridge St, CPZN 6-215, Boston, MA 02114, USA; Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, 185 Cambridge St, CPZN 6-215, Boston, MA 02114, USA
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, 185 Cambridge St, CPZN 6-215, Boston, MA 02114, USA.
| |
Collapse
|
3
|
Höving AL, Windmöller BA, Knabbe C, Kaltschmidt B, Kaltschmidt C, Greiner JFW. Between Fate Choice and Self-Renewal-Heterogeneity of Adult Neural Crest-Derived Stem Cells. Front Cell Dev Biol 2021; 9:662754. [PMID: 33898464 PMCID: PMC8060484 DOI: 10.3389/fcell.2021.662754] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/18/2021] [Indexed: 12/16/2022] Open
Abstract
Stem cells of the neural crest (NC) vitally participate to embryonic development, but also remain in distinct niches as quiescent neural crest-derived stem cell (NCSC) pools into adulthood. Although NCSC-populations share a high capacity for self-renewal and differentiation resulting in promising preclinical applications within the last two decades, inter- and intrapopulational differences exist in terms of their expression signatures and regenerative capability. Differentiation and self-renewal of stem cells in developmental and regenerative contexts are partially regulated by the niche or culture condition and further influenced by single cell decision processes, making cell-to-cell variation and heterogeneity critical for understanding adult stem cell populations. The present review summarizes current knowledge of the cellular heterogeneity within NCSC-populations located in distinct craniofacial and trunk niches including the nasal cavity, olfactory bulb, oral tissues or skin. We shed light on the impact of intrapopulational heterogeneity on fate specifications and plasticity of NCSCs in their niches in vivo as well as during in vitro culture. We further discuss underlying molecular regulators determining fate specifications of NCSCs, suggesting a regulatory network including NF-κB and NC-related transcription factors like SLUG and SOX9 accompanied by Wnt- and MAPK-signaling to orchestrate NCSC stemness and differentiation. In summary, adult NCSCs show a broad heterogeneity on the level of the donor and the donors' sex, the cell population and the single stem cell directly impacting their differentiation capability and fate choices in vivo and in vitro. The findings discussed here emphasize heterogeneity of NCSCs as a crucial parameter for understanding their role in tissue homeostasis and regeneration and for improving their applicability in regenerative medicine.
Collapse
Affiliation(s)
- Anna L. Höving
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
- Institute for Laboratory- and Transfusion Medicine, Heart and Diabetes Centre North Rhine-Westphalia (NRW), Ruhr University Bochum, Bad Oeynhausen, Germany
| | - Beatrice A. Windmöller
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Bielefeld, Germany
| | - Cornelius Knabbe
- Institute for Laboratory- and Transfusion Medicine, Heart and Diabetes Centre North Rhine-Westphalia (NRW), Ruhr University Bochum, Bad Oeynhausen, Germany
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Bielefeld, Germany
| | - Barbara Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Bielefeld, Germany
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany
| | - Christian Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Bielefeld, Germany
| | - Johannes F. W. Greiner
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Bielefeld, Germany
| |
Collapse
|
4
|
Pilon N. Treatment and Prevention of Neurocristopathies. Trends Mol Med 2021; 27:451-468. [PMID: 33627291 DOI: 10.1016/j.molmed.2021.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023]
Abstract
Neurocristopathies form a heterogeneous group of rare diseases caused by abnormal development of neural crest cells. Heterogeneity of neurocristopathies directly relates to the nature of these migratory and multipotent cells, which generate dozens of specialized cell types throughout the body. Neurocristopathies are thus characterized by congenital malformations of tissues/organs that otherwise appear to have very little in common, such as the craniofacial skeleton and enteric nervous system. Treatment options are currently very limited, mainly consisting of corrective surgeries. Yet, as reviewed here, analyses of normal and pathological neural crest development in model organisms have opened up the possibility for better treatment options involving cellular and molecular approaches. These approaches provide hope that some neurocristopathies might soon be curable or preventable.
Collapse
Affiliation(s)
- Nicolas Pilon
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal H3C 3P8, Québec, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal H2X 3Y7, Québec, Canada; Département de Pédiatrie, Université de Montréal, Montréal H3T 1C5, Québec, Canada.
| |
Collapse
|
5
|
Soto J, Ding X, Wang A, Li S. Neural crest-like stem cells for tissue regeneration. Stem Cells Transl Med 2021; 10:681-693. [PMID: 33533168 PMCID: PMC8046096 DOI: 10.1002/sctm.20-0361] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Neural crest stem cells (NCSCs) are a transient population of cells that arise during early vertebrate development and harbor stem cell properties, such as self‐renewal and multipotency. These cells form at the interface of non‐neuronal ectoderm and neural tube and undergo extensive migration whereupon they contribute to a diverse array of cell and tissue derivatives, ranging from craniofacial tissues to cells of the peripheral nervous system. Neural crest‐like stem cells (NCLSCs) can be derived from pluripotent stem cells, placental tissues, adult tissues, and somatic cell reprogramming. NCLSCs have a differentiation capability similar to NCSCs, and possess great potential for regenerative medicine applications. In this review, we present recent developments on the various approaches to derive NCLSCs and the therapeutic application of these cells for tissue regeneration.
Collapse
Affiliation(s)
- Jennifer Soto
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA
| | - Xili Ding
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, People's Republic of China
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, USA.,Department of Biomedical Engineering, University of California Davis, Davis, California, USA
| | - Song Li
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA.,Department of Medicine, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
6
|
Tian DH, Qin CH, Xu WY, Pan WK, Zhao YY, Zheng BJ, Chen XL, Liu Y, Gao Y, Yu H. Phenotypic and functional comparison of rat enteric neural crest-derived cells during fetal and early-postnatal stages. Neural Regen Res 2021; 16:2310-2315. [PMID: 33818517 PMCID: PMC8354115 DOI: 10.4103/1673-5374.310701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In our previous study, we showed that with increasing time in culture, the growth characteristics of enteric neural crest-derived cells (ENCCs) change, and that the proliferation, migration and neural differentiation potential of these cells in vitro notably diminish. However, there are no studies on the developmental differences in these characteristics between fetal and early-postnatal stages in vitro or in vivo. In this study, we isolated fetal (embryonic day 14.5) and postnatal (postnatal day 2) ENCCs from the intestines of rats. Fetal ENCCs had greater maximum cross-sectional area of the neurospheres, stronger migration ability, and reduced apoptosis, compared with postnatal ENCCs. However, fetal and postnatal ENCCs had a similar differentiation ability. Fetal and postnatal ENCCs both survived after transplant into a rat model of Hirschsprung's disease. In these rats with Hirschsprung's disease, the number of ganglionic cells in the myenteric plexus was higher and the distal intestinal pressure change was greater in animals treated with fetal ENCCs compared with those treated with postnatal ENCCs. These findings suggest that, compared with postnatal ENCCs, fetal ENCCs exhibit higher survival and proliferation and migration abilities, and are therefore a more appropriate seed cell for the treatment of Hirschsprung's disease. This study was approved by the Animal Ethics Committee of the Second Affiliated Hospital of Xi'an Jiaotong University (approval No. 2016086) on March 3, 2016.
Collapse
Affiliation(s)
- Dong-Hao Tian
- Department of Pediatric Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Chuan-Hui Qin
- Department of Anorectal, Suizhou Central Hospital, Hubei University of Medicine, Suizhou, Hubei Province, China
| | - Wen-Yao Xu
- Department of Pediatric Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Wei-Kang Pan
- Department of Pediatric Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Yu-Ying Zhao
- Department of Pediatric Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Bai-Jun Zheng
- Department of Pediatric Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Xin-Lin Chen
- Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Yong Liu
- Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Ya Gao
- Department of Pediatric Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Hui Yu
- Department of Pediatric Surgery, the Second Affiliated Hospital; Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
7
|
Fleming MA, Ehsan L, Moore SR, Levin DE. The Enteric Nervous System and Its Emerging Role as a Therapeutic Target. Gastroenterol Res Pract 2020; 2020:8024171. [PMID: 32963521 PMCID: PMC7495222 DOI: 10.1155/2020/8024171] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/03/2020] [Accepted: 08/24/2020] [Indexed: 02/08/2023] Open
Abstract
The gastrointestinal (GI) tract is innervated by the enteric nervous system (ENS), an extensive neuronal network that traverses along its walls. Due to local reflex circuits, the ENS is capable of functioning with and without input from the central nervous system. The functions of the ENS range from the propulsion of food to nutrient handling, blood flow regulation, and immunological defense. Records of it first being studied emerged in the early 19th century when the submucosal and myenteric plexuses were discovered. This was followed by extensive research and further delineation of its development, anatomy, and function during the next two centuries. The morbidity and mortality associated with the underdevelopment, infection, or inflammation of the ENS highlight its importance and the need for us to completely understand its normal function. This review will provide a general overview of the ENS to date and connect specific GI diseases including short bowel syndrome with neuronal pathophysiology and current therapies. Exciting opportunities in which the ENS could be used as a therapeutic target for common GI diseases will also be highlighted, as the further unlocking of such mechanisms could open the door to more therapy-related advances and ultimately change our treatment approach.
Collapse
Affiliation(s)
- Mark A. Fleming
- Department of Surgery, Division of Pediatric Surgery, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Lubaina Ehsan
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology, and Nutrition, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Sean R. Moore
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology, and Nutrition, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Daniel E. Levin
- Department of Surgery, Division of Pediatric Surgery, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| |
Collapse
|
8
|
Shen H, Gan M, Yang H, Zou J. An integrated cell isolation and purification method for rat dorsal root ganglion neurons. J Int Med Res 2019; 47:3253-3260. [PMID: 31213102 PMCID: PMC6683899 DOI: 10.1177/0300060519855585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Objective Neurobiology studies are increasingly focused on the dorsal root ganglion (DRG), which plays an important role in neuropathic pain. Existing DRG neuron primary culture methods have considerable limitations, including challenging cell isolation and poor cell yield, which cause difficulty in signaling pathway studies. The present study aimed to establish an integrated primary culture method for DRG neurons. Methods DRGs were obtained from fetal rats by microdissection, and then dissociated with trypsin. The dissociated neurons were treated with 5-fluorouracil to promote growth of neurons from the isolated cells. Then, reverse transcription polymerase chain reaction and immunofluorescence assays were used to identify and purify DRG neurons. Results Isolated DRGs were successfully dissociated and showed robust growth as individual DRG neurons in neurobasal medium. Both mRNA and protein assays confirmed that DRG neurons expressed neurofilament-200 and neuron-specific enolase. Conclusions Highly purified, stable DRG neurons could be easily harvested and grown for extended periods by using this integrated cell isolation and purification method, which may help to elucidate the mechanisms underlying neuropathic pain.
Collapse
Affiliation(s)
- Huaishuang Shen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Minfeng Gan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Huilin Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Zou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
9
|
Sobrino V, Annese V, Navarro-Guerrero E, Platero-Luengo A, Pardal R. The carotid body: a physiologically relevant germinal niche in the adult peripheral nervous system. Cell Mol Life Sci 2019; 76:1027-1039. [PMID: 30498994 PMCID: PMC11105339 DOI: 10.1007/s00018-018-2975-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/05/2018] [Accepted: 11/22/2018] [Indexed: 12/26/2022]
Abstract
Oxygen constitutes a vital element for the survival of every single cell in multicellular aerobic organisms like mammals. A complex homeostatic oxygen-sensing system has evolved in these organisms, including detectors and effectors, to guarantee a proper supply of the element to every cell. The carotid body represents the most important peripheral arterial chemoreceptor organ in mammals and informs about hypoxemic situations to the effectors at the brainstem cardiorespiratory centers. To optimize organismal adaptation to maintained hypoxemic situations, the carotid body has evolved containing a niche of adult tissue-specific stem cells with the capacity to differentiate into both neuronal and vascular cell types in response to hypoxia. These neurogenic and angiogenic processes are finely regulated by the niche and by hypoxia itself. Our recent data on the cellular and molecular mechanisms underlying the functioning of this niche might help to comprehend a variety of different diseases coursing with carotid body failure, and might also improve our capacity to use these stem cells for the treatment of neurological disease. Herein, we review those data about the recent characterization of the carotid body niche, focusing on the study of the phenotype and behavior of multipotent stem cells within the organ, comparing them with other well-documented neural stem cells within the adult nervous system.
Collapse
Affiliation(s)
- Verónica Sobrino
- Instituto de Biomedicina de Sevilla (IBiS), Laboratory 103, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Dpto. de Fisiología Médica y Biofísica, Avda, Manuel Siurot, s/n., 41013, Sevilla, Spain
| | - Valentina Annese
- Instituto de Biomedicina de Sevilla (IBiS), Laboratory 103, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Dpto. de Fisiología Médica y Biofísica, Avda, Manuel Siurot, s/n., 41013, Sevilla, Spain
| | - Elena Navarro-Guerrero
- Instituto de Biomedicina de Sevilla (IBiS), Laboratory 103, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Dpto. de Fisiología Médica y Biofísica, Avda, Manuel Siurot, s/n., 41013, Sevilla, Spain
| | - Aida Platero-Luengo
- Instituto de Biomedicina de Sevilla (IBiS), Laboratory 103, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Dpto. de Fisiología Médica y Biofísica, Avda, Manuel Siurot, s/n., 41013, Sevilla, Spain
| | - Ricardo Pardal
- Instituto de Biomedicina de Sevilla (IBiS), Laboratory 103, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Dpto. de Fisiología Médica y Biofísica, Avda, Manuel Siurot, s/n., 41013, Sevilla, Spain.
| |
Collapse
|
10
|
Hu H, Ding Y, Mu W, Li Y, Wang Y, Jiang W, Fu Y, Tou J, Chen W. DRG-Derived Neural Progenitors Differentiate into Functional Enteric Neurons Following Transplantation in the Postnatal Colon. Cell Transplant 2018; 28:157-169. [PMID: 30442032 PMCID: PMC6362519 DOI: 10.1177/0963689718811061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cell therapy has great promise for treating gastrointestinal motility disorders caused by intestinal nervous system (ENS) diseases. However, appropriate sources, other than enteric neural stem cells and human embryonic stem cells, are seldom reported. Here, we show that neural progenitors derived from the dorsal root ganglion (DRG) of EGFP mice survived, differentiated into enteric neurons and glia cells, migrated widely from the site of injection, and established neuron-muscle connections following transplantation into the distal colon of postnatal mice. The exogenous EGFP+ neurons were physiologically functional as shown by the activity of calcium imaging. This study shows that that other tissues besides the postnatal bowel harbor neural crest stem cells or neural progenitors that have the potential to differentiate into functional enteric neurons in vivo and can potentially be used for intestinal nerve regeneration. These DRG-derived neural progenitor cells may be a choice for cell therapy of ENS disease as an allograft. The new knowledge provided by our study is important for the development of neural crest stem cell and cell therapy for the treatment of intestinal neuropathy.
Collapse
Affiliation(s)
- Hui Hu
- 1 Children's Hospital Affiliated and Key Laboratory of Diagnosis and Treatment of Neonatal Diseases of Zhejiang Province, School of Medicine, Zhejiang University, China.,2 Institute of Translational Medicine, School of Medicine, Zhejiang University, China
| | - Yuanyuan Ding
- 1 Children's Hospital Affiliated and Key Laboratory of Diagnosis and Treatment of Neonatal Diseases of Zhejiang Province, School of Medicine, Zhejiang University, China.,2 Institute of Translational Medicine, School of Medicine, Zhejiang University, China
| | - Wenbo Mu
- 1 Children's Hospital Affiliated and Key Laboratory of Diagnosis and Treatment of Neonatal Diseases of Zhejiang Province, School of Medicine, Zhejiang University, China.,2 Institute of Translational Medicine, School of Medicine, Zhejiang University, China
| | - Ying Li
- 1 Children's Hospital Affiliated and Key Laboratory of Diagnosis and Treatment of Neonatal Diseases of Zhejiang Province, School of Medicine, Zhejiang University, China.,2 Institute of Translational Medicine, School of Medicine, Zhejiang University, China
| | - Yanpeng Wang
- 3 Department of Gynecology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, China
| | - Weifang Jiang
- 4 Department of Neonatal Surgery, Children's Hospital, School of Medicine, Zhejiang University, China
| | - Yong Fu
- 1 Children's Hospital Affiliated and Key Laboratory of Diagnosis and Treatment of Neonatal Diseases of Zhejiang Province, School of Medicine, Zhejiang University, China.,5 Otolaryngological Department, Children's Hospital, School of Medicine, Zhejiang University, China
| | - Jinfa Tou
- 1 Children's Hospital Affiliated and Key Laboratory of Diagnosis and Treatment of Neonatal Diseases of Zhejiang Province, School of Medicine, Zhejiang University, China.,4 Department of Neonatal Surgery, Children's Hospital, School of Medicine, Zhejiang University, China
| | - Wei Chen
- 1 Children's Hospital Affiliated and Key Laboratory of Diagnosis and Treatment of Neonatal Diseases of Zhejiang Province, School of Medicine, Zhejiang University, China.,2 Institute of Translational Medicine, School of Medicine, Zhejiang University, China.,6 Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, School of Medicine, Zhejiang University, China
| |
Collapse
|
11
|
Bondurand N, Dufour S, Pingault V. News from the endothelin-3/EDNRB signaling pathway: Role during enteric nervous system development and involvement in neural crest-associated disorders. Dev Biol 2018; 444 Suppl 1:S156-S169. [PMID: 30171849 DOI: 10.1016/j.ydbio.2018.08.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/27/2018] [Accepted: 08/27/2018] [Indexed: 01/08/2023]
Abstract
The endothelin system is a vertebrate-specific innovation with important roles in regulating the cardiovascular system and renal and pulmonary processes, as well as the development of the vertebrate-specific neural crest cell population and its derivatives. This system is comprised of three structurally similar 21-amino acid peptides that bind and activate two G-protein coupled receptors. In 1994, knockouts of the Edn3 and Ednrb genes revealed their crucial function during development of the enteric nervous system and melanocytes, two neural-crest derivatives. Since then, human and mouse genetics, combined with cellular and developmental studies, have helped to unravel the role of this signaling pathway during development and adulthood. In this review, we will summarize the known functions of the EDN3/EDNRB pathway during neural crest development, with a specific focus on recent scientific advances, and the enteric nervous system in normal and pathological conditions.
Collapse
Affiliation(s)
- Nadege Bondurand
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM U1163, Institut Imagine, Paris, France; Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France.
| | - Sylvie Dufour
- INSERM, U955, Equipe 06, Créteil 94000, France; Université Paris Est, Faculté de Médecine, Créteil 94000, France
| | - Veronique Pingault
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM U1163, Institut Imagine, Paris, France; Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France; Service de Génétique Moléculaire, Hôpital Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France
| |
Collapse
|
12
|
Lasrado R, Boesmans W, Kleinjung J, Pin C, Bell D, Bhaw L, McCallum S, Zong H, Luo L, Clevers H, Vanden Berghe P, Pachnis V. Lineage-dependent spatial and functional organization of the mammalian enteric nervous system. Science 2018; 356:722-726. [PMID: 28522527 DOI: 10.1126/science.aam7511] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/10/2017] [Indexed: 12/11/2022]
Abstract
The enteric nervous system (ENS) is essential for digestive function and gut homeostasis. Here we show that the amorphous neuroglia networks of the mouse ENS are composed of overlapping clonal units founded by postmigratory neural crest-derived progenitors. The spatial configuration of ENS clones depends on proliferation-driven local interactions of ENS progenitors with lineally unrelated neuroectodermal cells, the ordered colonization of the serosa-mucosa axis by clonal descendants, and gut expansion. Single-cell transcriptomics and mutagenesis analysis delineated dynamic molecular states of ENS progenitors and identified RET as a regulator of neurogenic commitment. Clonally related enteric neurons exhibit synchronous activity in response to network stimulation. Thus, lineage relationships underpin the organization of the peripheral nervous system.
Collapse
Affiliation(s)
- Reena Lasrado
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Werend Boesmans
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.,Laboratory for Enteric Neuroscience (LENS), Translational Research in GastroIntestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, University of Leuven, Leuven, Belgium
| | - Jens Kleinjung
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Carmen Pin
- Institute of Food Research, Norwich NR4 7UA, UK
| | - Donald Bell
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Leena Bhaw
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Sarah McCallum
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Hui Zong
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Liqun Luo
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Hans Clevers
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Centre Utrecht, 3584 CT Utrecht, Netherlands
| | - Pieter Vanden Berghe
- Laboratory for Enteric Neuroscience (LENS), Translational Research in GastroIntestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, University of Leuven, Leuven, Belgium
| | - Vassilis Pachnis
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
13
|
Zhang L, Zhao B, Liu W, Ma R, Wu R, Gao Y. Cotransplantation of neuroepithelial stem cells with interstitial cells of Cajal improves neuronal differentiation in a rat aganglionic model. J Pediatr Surg 2017; 52:1188-1195. [PMID: 28190556 DOI: 10.1016/j.jpedsurg.2017.01.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 12/29/2016] [Accepted: 01/28/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND Recent advances have raised the possibility of treating Hirschsprung's disease (HSCR) with transplanted neural stem cells. Although these cells have been shown to migrate and differentiate after transplantation, the restoration of intestinal motility by grafted cells is also mediated via the interstitial cells of Cajal (ICCs). We therefore aimed to evaluate the effect of cografting with ICC on neural stem cells after transplanted into aganglionic bowel. METHODS Neuroepithelial stem cells (NESCs) and ICCs were isolated from neural tube of embryonic rat (embryonic day 11.5) and colon of neonatal rats respectively. After cotransplantation into the benzalkonium chloride-induced rat aganglionic colon, survival and differentiation of the implanted cells were assessed 8weeks posttransplantation using immunofluorescence and Western blotting. Colonic motility was assessed by measuring the changes of intraluminal pressure responding to inflating stimulation and the response of muscle strips to electrical field stimulation. RESULTS Cotransplantation with ICC accelerated neuronal differentiation compared with transplantation of NESCs alone. Moreover, the contractile response to inflation and EFS-induced reaction of the colon after coimplantation were successfully evoked. CONCLUSIONS These data indicate that reconstitution of elements in the intestinal environment such as ICC enhances efficacy of NESCs therapy. This may aid development of a stem cell-based treatment for HSCR.
Collapse
Affiliation(s)
- Lijuan Zhang
- Department of Pediatric Surgery, Provincial Hospital affiliated to Shandong University, 324 Jingwu Road, Jinan, Shandong Province, PR China
| | - Bin Zhao
- Department of Pediatric Surgery, Taian City Central Hospital, 29 Longtan Road, Taian City, Shandong Province, PR China
| | - Wei Liu
- Department of Pediatric Surgery, Provincial Hospital affiliated to Shandong University, 324 Jingwu Road, Jinan, Shandong Province, PR China
| | - Rui Ma
- Shandong Medical Imaging Research Institute, Medical School of Shandong University, 324 Jingwu Road, Jinan, Shandong Province, PR China
| | - Rongde Wu
- Department of Pediatric Surgery, Provincial Hospital affiliated to Shandong University, 324 Jingwu Road, Jinan, Shandong Province, PR China.
| | - Yingmao Gao
- Department of Histology and Embryology, School of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, PR China
| |
Collapse
|
14
|
Liu JA, Cheung M. Neural crest stem cells and their potential therapeutic applications. Dev Biol 2016; 419:199-216. [PMID: 27640086 DOI: 10.1016/j.ydbio.2016.09.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/07/2016] [Accepted: 09/07/2016] [Indexed: 12/13/2022]
Abstract
The neural crest (NC) is a remarkable transient structure generated during early vertebrate development. The neural crest progenitors have extensive migratory capacity and multipotency, harboring stem cell-like characteristics such as self-renewal. They can differentiate into a variety of cell types from craniofacial skeletal tissues to the trunk peripheral nervous system (PNS). Multiple regulators such as signaling factors, transcription factors, and migration machinery components are expressed at different stages of NC development. Gain- and loss-of-function studies in various vertebrate species revealed epistatic relationships of these molecules that could be assembled into a gene regulatory network defining the processes of NC induction, specification, migration, and differentiation. These basic developmental studies led to the subsequent establishment and molecular validation of neural crest stem cells (NCSCs) derived by various strategies. We provide here an overview of the isolation and characterization of NCSCs from embryonic, fetal, and adult tissues; the experimental strategies for the derivation of NCSCs from embryonic stem cells, induced pluripotent stem cells, and skin fibroblasts; and recent developments in the use of patient-derived NCSCs for modeling and treating neurocristopathies. We discuss future research on further refinement of the culture conditions required for the differentiation of pluripotent stem cells into axial-specific NC progenitors and their derivatives, developing non-viral approaches for the generation of induced NC cells (NCCs), and using a genomic editing approach to correct genetic mutations in patient-derived NCSCs for transplantation therapy. These future endeavors should facilitate the therapeutic applications of NCSCs in the clinical setting.
Collapse
Affiliation(s)
- Jessica Aijia Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Martin Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
15
|
Combination of basic fibroblast growth factor and epidermal growth factor enhances proliferation and neuronal/glial differential of postnatal human enteric neurosphere cells in vitro. Neuroreport 2016; 27:858-63. [DOI: 10.1097/wnr.0000000000000626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Decreased proliferative, migrative and neuro-differentiative potential of postnatal rat enteric neural crest-derived cells during culture in vitro. Exp Cell Res 2016; 343:218-222. [PMID: 27068376 DOI: 10.1016/j.yexcr.2016.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 03/11/2016] [Accepted: 04/07/2016] [Indexed: 11/20/2022]
Abstract
A growing body of evidence supports the potential use of enteric neural crest-derived cells (ENCCs) as a cell replacement therapy for Hirschsprung's disease. Based on previous observations of robust propagation of primary ENCCs, as opposed to their progeny, it is suggested that their therapeutic potential after in vitro expansion may be restricted. We therefore examined the growth and differentiation activities and phenotypic characteristics of continuous ENCC cultures. ENCCs were isolated from the intestines of postnatal rats and were identified using an immunocytochemical approach. During continuous ENCC culture expansion, proliferation, migration, apoptosis, and differentiation potentials were monitored. The Cell Counting Kit-8 was used for assessment of ENCC vitality, Transwell inserts for cell migration, immunocytochemistry for cell counts and identification, and flow cytometry for apoptosis. Over six continuous generations, ENCC proliferation potency was reduced and with prolonged culture, the ratio of migratory ENCCs was decreased. The percentage of apoptosis showed an upward trend with prolonged intragenerational culture, but showed a downward trend with prolonged culture of combined generations. Furthermore, the percentage of peripherin(+) cells decreased whilst the percentage of GFAP(+) cells increased with age. The results demonstrated that alterations in ENCC growth characteristics occur with increased culture time, which may partially account for the poor results of proposed cell therapies.
Collapse
|
17
|
Burns AJ, Goldstein AM, Newgreen DF, Stamp L, Schäfer KH, Metzger M, Hotta R, Young HM, Andrews PW, Thapar N, Belkind-Gerson J, Bondurand N, Bornstein JC, Chan WY, Cheah K, Gershon MD, Heuckeroth RO, Hofstra RMW, Just L, Kapur RP, King SK, McCann CJ, Nagy N, Ngan E, Obermayr F, Pachnis V, Pasricha PJ, Sham MH, Tam P, Vanden Berghe P. White paper on guidelines concerning enteric nervous system stem cell therapy for enteric neuropathies. Dev Biol 2016; 417:229-51. [PMID: 27059883 DOI: 10.1016/j.ydbio.2016.04.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 03/29/2016] [Accepted: 04/02/2016] [Indexed: 12/22/2022]
Abstract
Over the last 20 years, there has been increasing focus on the development of novel stem cell based therapies for the treatment of disorders and diseases affecting the enteric nervous system (ENS) of the gastrointestinal tract (so-called enteric neuropathies). Here, the idea is that ENS progenitor/stem cells could be transplanted into the gut wall to replace the damaged or absent neurons and glia of the ENS. This White Paper sets out experts' views on the commonly used methods and approaches to identify, isolate, purify, expand and optimize ENS stem cells, transplant them into the bowel, and assess transplant success, including restoration of gut function. We also highlight obstacles that must be overcome in order to progress from successful preclinical studies in animal models to ENS stem cell therapies in the clinic.
Collapse
Affiliation(s)
- Alan J Burns
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK; Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Donald F Newgreen
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville 3052, Victoria, Australia
| | - Lincon Stamp
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Karl-Herbert Schäfer
- University of Applied Sciences, Kaiserlautern, Germany; Clinic of Pediatric Surgery, University Hospital Mannheim, University Heidelberg, Germany
| | - Marco Metzger
- Fraunhofer-Institute Interfacial Engineering and Biotechnology IGB Translational Centre - Würzburg branch and University Hospital Würzburg - Tissue Engineering and Regenerative Medicine (TERM), Würzburg, Germany
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Heather M Young
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Peter W Andrews
- Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Nikhil Thapar
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Jaime Belkind-Gerson
- Division of Gastroenterology, Hepatology and Nutrition, Massachusetts General Hospital for Children, Harvard Medical School, Boston, USA
| | - Nadege Bondurand
- INSERM U955, 51 Avenue du Maréchal de Lattre de Tassigny, F-94000 Créteil, France; Université Paris-Est, UPEC, F-94000 Créteil, France
| | - Joel C Bornstein
- Department of Physiology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Wood Yee Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Kathryn Cheah
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong
| | - Michael D Gershon
- Department of Pathology and Cell Biology, Columbia University, New York 10032, USA
| | - Robert O Heuckeroth
- Department of Pediatrics, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA; Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, PA 19104, USA
| | - Robert M W Hofstra
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK; Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Lothar Just
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Germany
| | - Raj P Kapur
- Department of Pathology, University of Washington and Seattle Children's Hospital, Seattle, WA, USA
| | - Sebastian K King
- Department of Paediatric and Neonatal Surgery, The Royal Children's Hospital, Melbourne, Australia
| | - Conor J McCann
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Nandor Nagy
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Elly Ngan
- Department of Surgery, The University of Hong Kong, Hong Kong
| | - Florian Obermayr
- Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital Tübingen, D-72076 Tübingen, Germany
| | | | | | - Mai Har Sham
- Department of Biochemistry, The University of Hong Kong, Hong Kong
| | - Paul Tam
- Department of Surgery, The University of Hong Kong, Hong Kong
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), TARGID, University of Leuven, Belgium
| |
Collapse
|
18
|
Hotta R, Cheng L, Graham H, Pan W, Nagy N, Belkind-Gerson J, Goldstein AM. Isogenic enteric neural progenitor cells can replace missing neurons and glia in mice with Hirschsprung disease. Neurogastroenterol Motil 2016; 28:498-512. [PMID: 26685978 PMCID: PMC4808355 DOI: 10.1111/nmo.12744] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 11/04/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND Transplanting autologous patient-derived enteric neuronal stem/progenitor cells (ENSCs) is an innovative approach to replacing missing enteric neurons in patients with Hirschsprung disease (HSCR). Using autologous cells eliminates immunologic and ethical concerns raised by other cell sources. However, whether postnatal aganglionic bowel is permissive for transplanted ENSCs and whether ENSCs from HSCR patients can be successfully isolated, cultured, and transplanted in vivo remains unknown. METHODS ENSCs isolated from the ganglionic intestine of Ednrb(-/-) mice (HSCR-ENSCs) were characterized immunohistochemically and evaluated for their capacity to proliferate and differentiate in vitro. Fluorescently labeled ENSCs were co-cultured ex vivo with aganglionic Ednrb(-/-) colon. For in vivo transplantation, HSCR-ENSCs were labeled with lentivirus expressing green fluorescent protein (GFP) and implanted into aganglionic embryonic chick gut in ovo and postnatal aganglionic Ednrb(-/-) rectum in vivo. KEY RESULTS HSCR-ENSCs maintain normal capacity self-renewal and neuronal differentiation. Moreover, the Ednrb(-/-) aganglionic environment is permissive to engraftment by wild-type ENSCs ex vivo and supports migratrion and neuroglial differentiation of these cells following transplantation in vivo. Lentiviral GFP-labeled HSCR-ENSCs populated embryonic chick hindgut and postnatal colon of Ednrb(-/-) HSCR, with cells populating the intermuscular layer and forming enteric neurons and glia. CONCLUSIONS & INFERENCES ENSCs can be isolated and cultured from mice with HSCR, and transplanted into the aganglionic bowel of HSCR littermates to generate enteric neuronal networks. These results in an isogenic model establish the potential of using autologous-derived stem cells to treat HSCR and other intestinal neuropathies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Allan M. Goldstein
- ,Corresponding Author: Allan M. Goldstein, Massachusetts General Hospital, Warren 1153, Boston, MA 02114, Tel: 617-726-0270, Fax: 617-726-2167,
| |
Collapse
|
19
|
Luzón-Toro B, Gui H, Ruiz-Ferrer M, Sze-Man Tang C, Fernández RM, Sham PC, Torroglosa A, Kwong-Hang Tam P, Espino-Paisán L, Cherny SS, Bleda M, Enguix-Riego MDV, Dopazo J, Antiñolo G, García-Barceló MM, Borrego S. Exome sequencing reveals a high genetic heterogeneity on familial Hirschsprung disease. Sci Rep 2015; 5:16473. [PMID: 26559152 PMCID: PMC4642299 DOI: 10.1038/srep16473] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/14/2015] [Indexed: 11/24/2022] Open
Abstract
Hirschsprung disease (HSCR; OMIM 142623) is a developmental disorder characterized by aganglionosis along variable lengths of the distal gastrointestinal tract, which results in intestinal obstruction. Interactions among known HSCR genes and/or unknown disease susceptibility loci lead to variable severity of phenotype. Neither linkage nor genome-wide association studies have efficiently contributed to completely dissect the genetic pathways underlying this complex genetic disorder. We have performed whole exome sequencing of 16 HSCR patients from 8 unrelated families with SOLID platform. Variants shared by affected relatives were validated by Sanger sequencing. We searched for genes recurrently mutated across families. Only variations in the FAT3 gene were significantly enriched in five families. Within-family analysis identified compound heterozygotes for AHNAK and several genes (N = 23) with heterozygous variants that co-segregated with the phenotype. Network and pathway analyses facilitated the discovery of polygenic inheritance involving FAT3, HSCR known genes and their gene partners. Altogether, our approach has facilitated the detection of more than one damaging variant in biologically plausible genes that could jointly contribute to the phenotype. Our data may contribute to the understanding of the complex interactions that occur during enteric nervous system development and the etiopathology of familial HSCR.
Collapse
Affiliation(s)
- Berta Luzón-Toro
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Spain
| | - Hongsheng Gui
- Centre for Genomic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Macarena Ruiz-Ferrer
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Spain
| | - Clara Sze-Man Tang
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Raquel M Fernández
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Spain
| | - Pak-Chung Sham
- Centre for Genomic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Centre for Reproduction, Development, and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ana Torroglosa
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Spain
| | - Paul Kwong-Hang Tam
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Centre for Reproduction, Development, and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Laura Espino-Paisán
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
| | - Stacey S Cherny
- Centre for Genomic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Marta Bleda
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Spain.,Computational Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - María Del Valle Enguix-Riego
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Spain
| | - Joaquín Dopazo
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Spain.,Computational Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.,Functional Genomics Node, (INB) at CIPF, Valencia, Spain
| | - Guillermo Antiñolo
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Spain
| | - María-Mercé García-Barceló
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Centre for Reproduction, Development, and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Salud Borrego
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Spain
| |
Collapse
|
20
|
Nishikawa R, Hotta R, Shimojima N, Shibata S, Nagoshi N, Nakamura M, Matsuzaki Y, Okano HJ, Kuroda T, Okano H, Morikawa Y. Migration and differentiation of transplanted enteric neural crest-derived cells in murine model of Hirschsprung's disease. Cytotechnology 2014; 67:661-70. [PMID: 25230796 DOI: 10.1007/s10616-014-9754-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 06/07/2014] [Indexed: 11/28/2022] Open
Abstract
Stem cell therapy offers the potential of rebuilding the enteric nervous system (ENS) in the aganglionic bowel of patients with Hirschsprung's disease. P0-Cre/Floxed-EGFP mice in which neural crest-derived cells express EGFP were used to obtain ENS stem/progenitor cells. ENS stem/progenitor cells were transplanted into the bowel of Ret(-/-) mouse, an animal model of Hirschsprung's disease. Immunohistochemical analysis was performed to determine whether grafted cells gave rise to neurons in the recipient bowel. EGFP expressing neural crest-derived cells accounted for 7.01 ± 2.52 % of total cells of gastrointestinal tract. ENS stem/progenitor cells were isolated using flow cytometry and expanded as neurosphere-like bodies (NLBs) in a serum-free culture condition. Some cells in NLBs expressed neural crest markers, p75 and Sox10 and neural stem/progenitor cells markers, Nestin and Musashi1. Multipotency of isolated ENS stem/progenitor cells was determined as they differentiated into neurons, glial cells, and myofibloblasts in culture. When co-cultured with explants of hindgut of Ret(-/-) mice, ENS stem/progenitor cells migrated into the aganglionic bowel and gave rise to neurons. ENS stem/progenitor cells used in this study appear to be clinically relevant donor cells in cell therapy to treat Hirschsprung's disease capable of colonizing the affected bowel and giving rise to neurons.
Collapse
Affiliation(s)
- Ryuhei Nishikawa
- Department of Pediatric Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Zhang D, Ighaniyan S, Stathopoulos L, Rollo B, Landman K, Hutson J, Newgreen D. The neural crest: a versatile organ system. ACTA ACUST UNITED AC 2014; 102:275-98. [PMID: 25227568 DOI: 10.1002/bdrc.21081] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 08/26/2014] [Indexed: 02/02/2023]
Abstract
The neural crest is the name given to the strip of cells at the junction between neural and epidermal ectoderm in neurula-stage vertebrate embryos, which is later brought to the dorsal neural tube as the neural folds elevate. The neural crest is a heterogeneous and multipotent progenitor cell population whose cells undergo EMT then extensively and accurately migrate throughout the embryo. Neural crest cells contribute to nearly every organ system in the body, with derivatives of neuronal, glial, neuroendocrine, pigment, and also mesodermal lineages. This breadth of developmental capacity has led to the neural crest being termed the fourth germ layer. The neural crest has occupied a prominent place in developmental biology, due to its exaggerated migratory morphogenesis and its remarkably wide developmental potential. As such, neural crest cells have become an attractive model for developmental biologists for studying these processes. Problems in neural crest development cause a number of human syndromes and birth defects known collectively as neurocristopathies; these include Treacher Collins syndrome, Hirschsprung disease, and 22q11.2 deletion syndromes. Tumors in the neural crest lineage are also of clinical importance, including the aggressive melanoma and neuroblastoma types. These clinical aspects have drawn attention to the selection or creation of neural crest progenitor cells, particularly of human origin, for studying pathologies of the neural crest at the cellular level, and also for possible cell therapeutics. The versatility of the neural crest lends itself to interlinked research, spanning basic developmental biology, birth defect research, oncology, and stem/progenitor cell biology and therapy.
Collapse
|
22
|
Intestinal stem cells and stem cell-based therapy for intestinal diseases. Cytotechnology 2014; 67:177-89. [PMID: 24981313 DOI: 10.1007/s10616-014-9753-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 06/07/2014] [Indexed: 01/17/2023] Open
Abstract
Currently, many gastrointestinal diseases are a major reason for the increased mortality rate of children and adults every year. Additionally, these patients may cope with the high cost of the parenteral nutrition (PN), which aids in the long-term survival of the patients. Other treatment options include surgical lengthening, which is not sufficient in many cases, and intestinal transplantation. However, intestinal transplantation is still accompanied by many challenges, including immune rejection and donor availability, which may limit the transplant's success. The development of more safe and promising alternative treatments for intestinal diseases is still ongoing. Stem cell-based therapy (SCT) and tissue engineering (TE) appear to be the next promising choices for the regeneration of the damaged intestine. However, suitable stem cell source is required for the SCT and TE process. Thus, in this review we discuss how intestinal stem cells (ISCs) are a promising cell source for small intestine diseases. We will also discuss the different markers were used to identify ISCs. Moreover, we discuss the dominant Wnt signaling pathway in the ISC niche and its involvement in some intestinal diseases. Additionally, we discuss ISC culture and expansion, which are critical to providing enough cells for SCT and TE. Finally, we conclude and recommend that ISC isolation, culture and expansion should be considered when SCT is a treatment option for intestinal disorders. Therefore, we believe that ISCs should be considered a cell source for SCT for many gastrointestinal diseases and should be highlighted in future clinical applications.
Collapse
|
23
|
Abstract
The enteric nervous system is vulnerable to a range of congenital and acquired disorders that disrupt the function of its neurons or lead to their loss. The resulting enteric neuropathies are some of the most challenging clinical conditions to manage. Neural stem cells offer the prospect of a cure given their potential ability to replenish missing or dysfunctional neurons. This article discusses diseases that might be targets for stem cell therapies and the barriers that could limit treatment application. We explore various sources of stem cells and the proof of concept for their use. The critical steps that remain to be addressed before these therapies can be used in patients are also discussed. Key milestones include the harvesting of neural stem cells from the human gut and the latest in vivo transplantation studies in animals. The tremendous progress in the field has brought experimental studies exploring the potential of stem cell therapies for the management of enteric neuropathies to the cusp of clinical application.
Collapse
Affiliation(s)
- Alan J Burns
- Neural Development and Gastroenterology Units, Birth Defects Research Centre, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Nikhil Thapar
- 1] Neural Development and Gastroenterology Units, Birth Defects Research Centre, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK. [2] Division of Neurogastroenterology and Motility, Department of Paediatric Gastroenterology, Great Ormond Street Hospital, Great Ormond Street, London WC1N 3JH, UK
| |
Collapse
|
24
|
Takaki M, Goto K, Kawahara I. The 5-hydroxytryptamine 4 Receptor Agonist-induced Actions and Enteric Neurogenesis in the Gut. J Neurogastroenterol Motil 2014; 20:17-30. [PMID: 24466442 PMCID: PMC3895605 DOI: 10.5056/jnm.2014.20.1.17] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 10/15/2013] [Accepted: 10/19/2013] [Indexed: 12/13/2022] Open
Abstract
We explored a novel effect of 5-hydroxytryptamine 4 receptor (5-HT4R) agonists in vivo to reconstruct the enteric neural circuitry that mediates a fundamental distal gut reflex. The neural circuit insult was performed in guinea pigs and rats by rectal transection and anastomosis. A 5-HT4R-agonist, mosapride citrate (MOS) applied orally and locally at the anastomotic site for 2 weeks promoted the regeneration of the impaired neural circuit or the recovery of the distal gut reflex. MOS generated neurofilament-, 5-HT4R- and 5-bromo-2'-deoxyuridine-positive cells and formed neural network in the granulation tissue at the anastomosis. Possible neural stem cell markers increased during the same time period. These novel actions by MOS were inhibited by specific 5-HT4R-antagonist such as GR113808 (GR) or SB-207266. The activation of enteric neural 5-HT4R promotes reconstruction of an enteric neural circuit that involves possibly neural stem cells. We also succeeded in forming dense enteric neural networks by MOS in a gut differentiated from mouse embryonic stem cells. GR abolished the formation of enteric neural networks. MOS up-regulated the expression of mRNA of 5-HT4R, and GR abolished this upregulation, suggesting MOS differentiated enteric neural networks, mediated via activation of 5-HT4R. In the small intestine in H-line: Thy1 promoter green fluorescent protein (GFP) mice, we obtained clear 3-dimensional imaging of enteric neurons that were newly generated by oral application of MOS after gut transection and anastomosis. All findings indicate that treatment with 5-HT4R-agonists could be a novel therapy for generating new enteric neurons to rescue aganglionic disorders in the whole gut.
Collapse
Affiliation(s)
- Miyako Takaki
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara, Nara, Japan
| | - Kei Goto
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara, Nara, Japan
| | - Isao Kawahara
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara, Nara, Japan
| |
Collapse
|
25
|
Bondurand N, Sham MH. The role of SOX10 during enteric nervous system development. Dev Biol 2013; 382:330-43. [DOI: 10.1016/j.ydbio.2013.04.024] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 04/24/2013] [Indexed: 12/30/2022]
|
26
|
Hotta R, Stamp LA, Foong JPP, McConnell SN, Bergner AJ, Anderson RB, Enomoto H, Newgreen DF, Obermayr F, Furness JB, Young HM. Transplanted progenitors generate functional enteric neurons in the postnatal colon. J Clin Invest 2013; 123:1182-91. [PMID: 23454768 DOI: 10.1172/jci65963] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 12/11/2012] [Indexed: 01/11/2023] Open
Abstract
Cell therapy has the potential to treat gastrointestinal motility disorders caused by diseases of the enteric nervous system. Many studies have demonstrated that various stem/progenitor cells can give rise to functional neurons in the embryonic gut; however, it is not yet known whether transplanted neural progenitor cells can migrate, proliferate, and generate functional neurons in the postnatal bowel in vivo. We transplanted neurospheres generated from fetal and postnatal intestinal neural crest-derived cells into the colon of postnatal mice. The neurosphere-derived cells migrated, proliferated, and generated neurons and glial cells that formed ganglion-like clusters within the recipient colon. Graft-derived neurons exhibited morphological, neurochemical, and electrophysiological characteristics similar to those of enteric neurons; they received synaptic inputs; and their neurites projected to muscle layers and the enteric ganglia of the recipient mice. These findings show that transplanted enteric neural progenitor cells can generate functional enteric neurons in the postnatal bowel and advances the notion that cell therapy is a promising strategy for enteric neuropathies.
Collapse
Affiliation(s)
- Ryo Hotta
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Theocharatos S, Wilkinson DJ, Darling S, Wilm B, Kenny SE, Edgar D. Regulation of progenitor cell proliferation and neuronal differentiation in enteric nervous system neurospheres. PLoS One 2013; 8:e54809. [PMID: 23372773 PMCID: PMC3553067 DOI: 10.1371/journal.pone.0054809] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 12/17/2012] [Indexed: 12/18/2022] Open
Abstract
Enteric nervous system (ENS) progenitor cells isolated from mouse and human bowel can be cultured in vitro as neurospheres which are aggregates of the proliferating progenitor cells, together with neurons and glial cells derived from them. To investigate the factors regulating progenitor cell proliferation and differentiation, we first characterised cell proliferation in mouse ENS neurospheres by pulse chase experiments using thymidine analogs. We demonstrate rapid and continuous cell proliferation near the neurosphere periphery, after which postmitotic cells move away from the periphery to become distributed throughout the neurosphere. While many proliferating cells expressed glial markers, expression of the neuronal markers β-tubulin III (Tuj1) and nitric oxide synthase was detected in increasing numbers of post-mitotic cells after a delay of several days. Treatment of both mouse and human neurospheres with the γ-secretase inhibitor N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) reduced expression of the transcription factors Hes1 and Hes5, demonstrating inhibition of Notch signaling. DAPT treatment also inhibited progenitor cell proliferation and increased the numbers of differentiating neurons expressing Tuj1 and nitric oxide synthase. To confirm that the cellular effects of DAPT treatment were due to inhibition of Notch signaling, siRNA knockdown of RBPjκ, a key component of the canonical Notch signaling pathway, was demonstrated both to reduce proliferation and to increase neuronal differentiation in neurosphere cells. These observations indicate that Notch signaling promotes progenitor cell proliferation and inhibits neuronal differentiation in ENS neurospheres.
Collapse
Affiliation(s)
- Sokratis Theocharatos
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, United Kingdom
| | - David J. Wilkinson
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, United Kingdom
- Institute of Child Health, University of Liverpool, Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom
| | - Sarah Darling
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, United Kingdom
| | - Bettina Wilm
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, United Kingdom
| | - Simon E. Kenny
- Institute of Child Health, University of Liverpool, Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom
| | - David Edgar
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Belkind-Gerson J, Carreon A, Benedict LA, Steiger C, Pieretti A, Nagy N, Dietrich J, Goldstein AM. Nestin-expressing cells in the gut give rise to enteric neurons and glial cells. Neurogastroenterol Motil 2013; 25:61-9.e7. [PMID: 22998406 PMCID: PMC3531577 DOI: 10.1111/nmo.12015] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Neuronal stem cells (NSCs) are promising for neurointestinal disease therapy. Although NSCs have been isolated from intestinal musclularis, their presence in mucosa has not been well described. Mucosa-derived NSCs are accessible endoscopically and could be used autologously. Brain-derived Nestin-positive NSCs are important in endogenous repair and plasticity. The aim was to isolate and characterize mucosa-derived NSCs, determine their relationship to Nestin-expressing cells and to demonstrate their capacity to produce neuroglial networks in vitro and in vivo. METHODS Neurospheres were generated from periventricular brain, colonic muscularis (Musc), and mucosa-submucosa (MSM) of mice expressing green fluorescent protein (GFP) controlled by the Nestin promoter (Nestin-GFP). Neuronal stem cells were also grown as adherent colonies from intestinal mucosal organoids. Their differentiation potential was assessed using immunohistochemistry using glial and neuronal markers. Brain and gut-derived neurospheres were transplanted into explants of chick embryonic aneural hindgut to determine their fate. KEY RESULTS Musc- and MSM-derived neurospheres expressed Nestin and gave rise to cells of neuronal, glial, and mesenchymal lineage. Although Nestin expression in tissue was mostly limited to glia co-labelled with glial fibrillary acid protein (GFAP), neurosphere-derived neurons and glia both expressed Nestin in vitro, suggesting that Nestin+/GFAP+ glial cells may give rise to new neurons. Moreover, following transplantation into aneural colon, brain- and gut-derived NSCs were able to differentiate into neurons. CONCLUSIONS & INFERENCES Nestin-expressing intestinal NSCs cells give rise to neurospheres, differentiate into neuronal, glial, and mesenchymal lineages in vitro, generate neurons in vivo and can be isolated from mucosa. Further studies are needed for exploring their potential for treating neuropathies.
Collapse
Affiliation(s)
- Jaime Belkind-Gerson
- Department of Pediatric Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Alfonso Carreon
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA,Instituto Nacional de Salud Publica, Cuernavaca, Mexico
| | - Leo Andrew Benedict
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Casey Steiger
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Alberto Pieretti
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Nandor Nagy
- Department of Human Morphology and Developmental Biology, Faculty of Medicine, Semmelweis University, Budapest-1094, Hungary
| | - Jorg Dietrich
- Department of Neurology, Massachusetts General Hospital Cancer Center & Center for Regenerative Medicine, Harvard Medical School, Boston, MA
| | - Allan M. Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
29
|
Kulkarni S, Becker L, Pasricha PJ. Stem cell transplantation in neurodegenerative disorders of the gastrointestinal tract: future or fiction? Gut 2012; 61:613-21. [PMID: 21816959 PMCID: PMC4119942 DOI: 10.1136/gut.2010.235614] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Current advances in our understanding of stem and precursor cell biology and in the protocols of stem cell isolation and transplantation have opened up the possibility of transplanting neural stem cells for the treatment of gastrointestinal motility disorders. This review summarises the current status of research in this field, identifies the major gaps in our knowledge and discusses the potential opportunities and hurdles for clinical application.
Collapse
Affiliation(s)
- Subhash Kulkarni
- Division of Gastroenterology and Hepatology, Stanford University, School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|
30
|
Dupin E, Sommer L. Neural crest progenitors and stem cells: from early development to adulthood. Dev Biol 2012; 366:83-95. [PMID: 22425619 DOI: 10.1016/j.ydbio.2012.02.035] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 02/29/2012] [Indexed: 01/09/2023]
Abstract
In the vertebrate embryo, the neural crest forms transiently in the dorsal neural primordium to yield migratory cells that will invade nearly all tissues and later, will differentiate into bones and cartilages, neurons and glia, endocrine cells, vascular smooth muscle cells and melanocytes. Due to the amazingly diversified array of cell types it produces, the neural crest is an attractive model system in the stem cell field. We present here in vivo and in vitro studies of single cell fate, which led to the discovery and the characterization of stem cells in the neural crest of avian and mammalian embryos. Some of the key issues in neural crest cell diversification are discussed, such as the time of segregation of mesenchymal vs. neural/melanocytic lineages, and the origin and close relationships between the glial and melanocytic lineages. An overview is also provided of the diverse types of neural crest-like stem cells and progenitors, recently identified in a growing number of adult tissues in animals and humans. Current and future work, in which in vivo lineage studies and the use of injury models will complement the in vitro culture analysis, should help in unraveling the properties and function of neural crest-derived progenitors in development and disease.
Collapse
Affiliation(s)
- Elisabeth Dupin
- INSERM U894 Equipe Plasticité Gliale, Centre de Psychiatrie et de Neuroscience, 2 ter Rue d'Alésia 75014 Paris, France.
| | | |
Collapse
|
31
|
Griswold SL, Lwigale PY. Analysis of neural crest migration and differentiation by cross-species transplantation. J Vis Exp 2012:3622. [PMID: 22349214 DOI: 10.3791/3622] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Avian embryos provide a unique platform for studying many vertebrate developmental processes, due to the easy access of the embryos within the egg. Chimeric avian embryos, in which quail donor tissue is transplanted into a chick embryo in ovo, combine the power of indelible genetic labeling of cell populations with the ease of manipulation presented by the avian embryo. Quail-chick chimeras are a classical tool for tracing migratory neural crest cells (NCCs). NCCs are a transient migratory population of cells in the embryo, which originate in the dorsal region of the developing neural tube. They undergo an epithelial to mesenchymal transition and subsequently migrate to other regions of the embryo, where they differentiate into various cell types including cartilage, melanocytes, neurons and glia. NCCs are multipotent, and their ultimate fate is influenced by 1) the region of the neural tube in which they originate along the rostro-caudal axis of the embryo, 2) signals from neighboring cells as they migrate, and 3) the microenvironment of their ultimate destination within the embryo. Tracing these cells from their point of origin at the neural tube, to their final position and fate within the embryo, provides important insight into the developmental processes that regulate patterning and organogenesis. Transplantation of complementary regions of donor neural tube (homotopic grafting) or different regions of donor neural tube (heterotopic grafting) can reveal differences in pre-specification of NCCs along the rostro-caudal axis. This technique can be further adapted to transplant a unilateral compartment of the neural tube, such that one side is derived from donor tissue, and the contralateral side remains unperturbed in the host embryo, yielding an internal control within the same sample. It can also be adapted for transplantation of brain segments in later embryos, after HH10, when the anterior neural tube has closed. Here we report techniques for generating quail-chick chimeras via neural tube transplantation, which allow for tracing of migratory NCCs derived from a discrete segment of the neural tube. Species-specific labeling of the donor-derived cells with the quail-specific QCPN antibody allows the researcher to distinguish donor and host cells at the experimental end point. This technique is straightforward, inexpensive, and has many applications, including fate-mapping, cell lineage tracing, and identifying pre-patterning events along the rostro-caudal axis. Because of the ease of access to the avian embryo, the quail-chick graft technique may be combined with other manipulations, including but not limited to lens ablation, injection of inhibitory molecules, or genetic manipulation via electroporation of expression plasmids, to identify the response of particular migratory streams of NCCs to perturbations in the embryo's developmental program. Furthermore, this grafting technique may also be used to generate other interspecific chimeric embryos such as quail-duck chimeras to study NCC contribution to craniofacial morphogenesis, or mouse-chick chimeras to combine the power of mouse genetics with the ease of manipulation of the avian embryo.
Collapse
|
32
|
Achilleos A, Trainor PA. Neural crest stem cells: discovery, properties and potential for therapy. Cell Res 2012; 22:288-304. [PMID: 22231630 DOI: 10.1038/cr.2012.11] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Neural crest (NC) cells are a migratory cell population synonymous with vertebrate evolution. They generate a wide variety of cell and tissue types during embryonic and adult development including cartilage and bone, connective tissue, pigment and endocrine cells as well as neurons and glia amongst many others. Such incredible lineage potential combined with a limited capacity for self-renewal, which persists even into adult life, demonstrates that NC cells bear the key hallmarks of stem and progenitor cells. In this review, we describe the identification, characterization and isolation of NC stem and progenitor cells from different tissues in both embryo and adult organisms. We discuss their specific properties and their potential application in cell-based tissue and disease-specific repair.
Collapse
Affiliation(s)
- Annita Achilleos
- Stowers Institute for Medical Research, 1000 East 50th Street Kansas City, MO 64110, USA
| | | |
Collapse
|
33
|
Stem cells for GI motility disorders. Curr Opin Pharmacol 2011; 11:617-23. [PMID: 22056114 DOI: 10.1016/j.coph.2011.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 09/23/2011] [Indexed: 12/23/2022]
Abstract
Currently available therapies for gastrointestinal motility conditions are often inadequate. Recent scientific advances, however, have facilitated the identification of neural stem cells as novel tools for cellular replenishment. Such cells can be generated from a number of tissue sources including the gut itself. Neural stem cells can readily be harvested from postnatal human gut including by conventional endoscopy, and in experimental transplantation studies appear capable of generating a neo-Enteric Nervous System. Current initiatives are addressing pre-clinical proof of concept studies in vivo utilising animal models of disease. Although definitive cell replenishment therapies for gut motility disorders appear to be an exciting and realistic prospect, even in the short-term, a number of challenges remain to be addressed before definitive clinical application.
Collapse
|
34
|
Peripheral nervous system progenitors can be reprogrammed to produce myelinating oligodendrocytes and repair brain lesions. J Neurosci 2011; 31:6379-91. [PMID: 21525278 DOI: 10.1523/jneurosci.0129-11.2011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neural crest stem cells (NCSCs) give rise to the neurons and glia of the peripheral nervous system (PNS). NCSC-like cells can be isolated from multiple peripheral organs and maintained in neurosphere culture. Combining in vitro culture and transplantation, we show that expanded embryonic NCSC-like cells lose PNS traits and are reprogrammed to generate CNS cell types. When transplanted into the embryonic or adult mouse CNS, they differentiate predominantly into cells of the oligodendrocyte lineage without any signs of tumor formation. NCSC-derived oligodendrocytes generate CNS myelin and contribute to the repair of the myelin deficiency in shiverer mice. These results demonstrate a reprogramming of PNS progenitors to CNS fates without genetic modification and imply that PNS cells could be a potential source for cell-based CNS therapy.
Collapse
|
35
|
Geisbauer CL, Wu BM, Dunn JCY. Transplantation of enteric cells into the aganglionic rodent small intestines. J Surg Res 2011; 176:20-8. [PMID: 21704327 DOI: 10.1016/j.jss.2011.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 05/09/2011] [Accepted: 05/10/2011] [Indexed: 01/27/2023]
Abstract
BACKGROUND Enteric cells, a mixture of cells isolated from the longitudinal and circular muscle of the gut, may contain neural crest stem cells (NCSCs) and therefore may be a potential source to regenerate the enteric nervous system. MATERIALS AND METHODS Benzylalkonium chloride (BAC) was employed to ablate the myenteric and submucosal plexi of the rodent jejunum. Enteric cells were then injected into this BAC-treated segment of the jejunum either with or without basic fibroblast growth factor (bFGF) mixed in collagen. RESULTS Expression of peripherin, S100, and synaptophysin were found in all of the cell injection sites. Peripherin and S100 expression appeared in close proximity in ganglion-like structures when bFGF was injected simultaneously with enteric cells. Synapses that were formed in the presence of bFGF were elongated compared with those formed in the absence of exogenously delivered bFGF. A small percentage of enteric cells expressed peripherin in the injection site after transplantation. CONCLUSIONS Enteric cells transplanted with collagen and bFGF in an aganglionic segment of jejunum regenerated ganglion-like structures and may hold potential as a cellular therapeutic for various motility disorders of the gastrointestinal tract.
Collapse
Affiliation(s)
- Carrie L Geisbauer
- Biomedical Engineering Interdepartmental Program, University of California, Los Angeles, California 90095-7098, USA
| | | | | |
Collapse
|
36
|
Motohashi T, Yamanaka K, Chiba K, Miyajima K, Aoki H, Hirobe T, Kunisada T. Neural crest cells retain their capability for multipotential differentiation even after lineage-restricted stages. Dev Dyn 2011; 240:1681-93. [PMID: 21594952 DOI: 10.1002/dvdy.22658] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2011] [Indexed: 11/06/2022] Open
Abstract
Multipotency of neural crest cells (NC cells) is thought to be a transient phase at the early stage of their generation; after NC cells emerge from the neural tube, they are specified into the lineage-restricted precursors. We analyzed the differentiation of early-stage NC-like cells derived from Sox10-IRES-Venus ES cells, where the expression of Sox10 can be visualized with a fluorescent protein. Unexpectedly, both the Sox10+/Kit- cells and the Sox10+/Kit+ cells, which were restricted in vivo to the neuron (N)-glial cell (G) lineage and melanocyte (M) lineage, respectively, generated N, G, and M, showing that they retain multipotency. We generated mice from the Sox10-IRES-Venus ES cells and analyzed the differentiation of their NC cells. Both the Sox10+/Kit- cells and Sox10+/Kit+ cells isolated from these mice formed colonies containing N, G, and M, showing that they are also multipotent. These findings suggest that NC cells retain multipotency even after the initial lineage-restricted stages.
Collapse
Affiliation(s)
- Tsutomu Motohashi
- Department of Tissue and Organ Development, Regeneration, and Advanced Medical Science, Gifu University Graduate School of Medicine, CREST-JST, Gifu, Japan.
| | | | | | | | | | | | | |
Collapse
|
37
|
Tsai YH, Murakami N, Gariepy CE. Postnatal intestinal engraftment of prospectively selected enteric neural crest stem cells in a rat model of Hirschsprung disease. Neurogastroenterol Motil 2011; 23:362-9. [PMID: 21199176 PMCID: PMC3105196 DOI: 10.1111/j.1365-2982.2010.01656.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Identification of neuronal progenitor/stem cells in the postnatal gut suggests the development of transplantation approaches to enteric nervous system (ENS) diseases. Many clinical applications would require engrafting large segments of postnatal gut in vivo. We investigated the ability of unselected gut cells vs selected enteric neural crest stem cells (eNCSCs) to engraft and differentiate in the postnatal gut in the Hirschsprung disease (HD, ednrb(sl/sl)) rat. METHODS Total intestinal cells or eNCSCs (α(4) integrin(+), p75(++)) from embryonic day (E)14.5 rats carrying a marker transgene (human placental alkaline phosphatase, hPAP) were injected intraperitoneally (i.p.) into neonatal HD rats and their healthy littermates. The entire gut was systematically analyzed 3 weeks later for hPAP(+) cells between the serosal surface and the muscularis mucosae. Engrafted cells were examined for HuC/D, S-100B, neuropeptide Y (NPY), neuronal nitric oxide synthase (nNOS), and vasoactive intestinal peptide (VIP) expression. KEY RESULTS No rats (0/33) injected with unselected cells had hPAP(+) cells in the ENS that expressed neuronal or glial markers. 5/11 healthy and 4/5 HD rats injected with eNCSCs showed widespread but low density engraftment in the ENS with cells expressing neuronal or glial markers. Neurons expressed nNOS and VIP. There was no engraftment in the colon of either HD or wildtype rats. CONCLUSIONS & INFERENCES Enteric neural crest stem cells will engraft diffusely throughout the postnatal gut of HD rats and differentiate into neurons and glia. Engraftment is not uniform, likely related to age-dependent changes in the gut mesenchyme. Intraperitoneal injection is easily performed in sick neonates and may be developed as a technique to supply exogenous ENS cells to the diseased postnatal gut.
Collapse
Affiliation(s)
- Yu-Hwai Tsai
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan 48109-0622
| | - Naoko Murakami
- The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio 43205
| | - Cheryl E. Gariepy
- The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio 43205, Department of Pediatrics, The Ohio State University College of Medicine, Columbus Ohio 43210, Pediatric Gastroenterology, Nationwide Children’s Hospital, Columbus, Ohio 43205
| |
Collapse
|
38
|
Pan WK, Zheng BJ, Gao Y, Qin H, Liu Y. Transplantation of neonatal gut neural crest progenitors reconstructs ganglionic function in benzalkonium chloride-treated homogenic rat colon. J Surg Res 2011; 167:e221-30. [PMID: 21392806 DOI: 10.1016/j.jss.2011.01.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 12/24/2010] [Accepted: 01/07/2011] [Indexed: 01/03/2023]
Abstract
BACKGROUND To value the possibility and the future feasibility of the use of autograft cells transplantation in disorders of the enteric neural system, we postulate that isolated neonatal nongenetically modified neural crest progenitors could survive and differentiate into neurons and glia in homogenic denervated rats and, therefore, restore partial intestinal function after transplantation. METHODS Neural crest progenitors were isolated from neonatal rats. After passages, the cells were labeled with CM-DiI. The labeled cells were then delivered into the muscular distal denervated colon of rats whose neural plexuses were eliminated using benzalkonium chloride. The treated colons of recipients were harvested at 1, 4, and 8 wk, and identified by immunofluorescent staining. The physiologic and functional improvements on treated colons were well examined after transplantation 8 wk. RESULTS Progenitors could generate neurospheres and differentiate into neurons and glia in vitro. After transplantation, red fluorescent cells were observed in the injected tissue for up to 8 wk, and they differentiated into neurons and glia in the host colon. Functional examinations indicated that symptoms and intestinal dysfunction of the denervated model were reversed. CONCLUSIONS We provide herein further evidence that autologous cell transplantation is a feasible therapy for enteric nervous system disorders.
Collapse
Affiliation(s)
- Wei Kang Pan
- Department of Pediatric Surgery, Second Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | | | | | | | | |
Collapse
|
39
|
Mundell NA, Labosky PA. Neural crest stem cell multipotency requires Foxd3 to maintain neural potential and repress mesenchymal fates. Development 2011; 138:641-52. [PMID: 21228004 DOI: 10.1242/dev.054718] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neural crest (NC) progenitors generate a wide array of cell types, yet molecules controlling NC multipotency and self-renewal and factors mediating cell-intrinsic distinctions between multipotent versus fate-restricted progenitors are poorly understood. Our earlier work demonstrated that Foxd3 is required for maintenance of NC progenitors in the embryo. Here, we show that Foxd3 mediates a fate restriction choice for multipotent NC progenitors with loss of Foxd3 biasing NC toward a mesenchymal fate. Neural derivatives of NC were lost in Foxd3 mutant mouse embryos, whereas abnormally fated NC-derived vascular smooth muscle cells were ectopically located in the aorta. Cranial NC defects were associated with precocious differentiation towards osteoblast and chondrocyte cell fates, and individual mutant NC from different anteroposterior regions underwent fate changes, losing neural and increasing myofibroblast potential. Our results demonstrate that neural potential can be separated from NC multipotency by the action of a single gene, and establish novel parallels between NC and other progenitor populations that depend on this functionally conserved stem cell protein to regulate self-renewal and multipotency.
Collapse
Affiliation(s)
- Nathan A Mundell
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-0494, USA
| | | |
Collapse
|
40
|
Geisbauer CL, Chapin JC, Wu BM, Dunn JCY. Transplantation of enteric cells expressing p75 in the rodent stomach. J Surg Res 2011; 174:257-65. [PMID: 21324400 DOI: 10.1016/j.jss.2010.12.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 10/20/2010] [Accepted: 12/10/2010] [Indexed: 12/17/2022]
Abstract
BACKGROUND Neural crest stem cells may hold potential as a cellular therapeutic to repopulate the enteric nervous system. The expression of the low-affinity nerve growth factor receptor, p75, may enrich enteric cells isolated from the neonatal rodent intestinal tract for neural crest stem cells. While these cells have shown tremendous promise in vitro, it remains to be determined whether they will survive and differentiate after in vivo transplantation. MATERIALS AND METHODS Cells isolated from the neonatal rodent intestinal muscularis were sorted according to their degree of p75 expression. The parent, p75-high, and p75-low expressing populations were injected into the rodent stomach for 7 d in vivo. RESULTS Cells that expressed high levels of p75 also expressed high levels of nestin. Evaluation of the parent, p75-high, and p75-low populations of cells showed 420-, 130-, and 20-fold growth, respectively, after 11 d of culture. Transplantation of these populations of cells into syngeneic rodent stomachs showed cell survival in the injection site after 7 d. Cells expressing either the neuronal marker, peripherin, or the glial marker, S100, were present in and around the injection site when the parent and the p75-high populations were transplanted. CONCLUSIONS Enteric cells survive transplantation into the rodent stomach and induce the expression of differentiation markers in and around the injection site. Based on these results, enteric cells may hold potential as a cellular therapeutic in a variety of gastrointestinal disorders.
Collapse
Affiliation(s)
- Carrie L Geisbauer
- Biomedical Engineering Interdepartmental Program, University of California, Los Angeles, California 90095-7098, USA
| | | | | | | |
Collapse
|
41
|
Nishino J, Saunders TL, Sagane K, Morrison SJ. Lgi4 promotes the proliferation and differentiation of glial lineage cells throughout the developing peripheral nervous system. J Neurosci 2010; 30:15228-40. [PMID: 21068328 PMCID: PMC3059102 DOI: 10.1523/jneurosci.2286-10.2010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 08/14/2010] [Accepted: 09/07/2010] [Indexed: 11/21/2022] Open
Abstract
The mechanisms that regulate peripheral nervous system (PNS) gliogenesis are incompletely understood. For example, gut neural crest stem cells (NCSCs) do not respond to known gliogenic factors, suggesting that yet-unidentified factors regulate gut gliogenesis. To identify new mechanisms, we performed gene expression profiling to identify factors secreted by gut NCSCs during the gliogenic phase of development. These cells highly expressed leucine-rich glioma inactivated 4 (Lgi4) despite the fact that Lgi4 has never been implicated in stem cell function or enteric nervous system development. Lgi4 is known to regulate peripheral nerve myelination (having been identified as the mutated gene in spontaneously arising claw paw mutant mice), but Lgi4 is not known to play any role in PNS development outside of peripheral nerves. To systematically analyze Lgi4 function, we generated gene-targeted mice. Lgi4-deficient mice exhibited a more severe phenotype than claw paw mice and had gliogenic defects in sensory, sympathetic, and enteric ganglia. We found that Lgi4 is required for the proliferation and differentiation of glial-restricted progenitors throughout the PNS. Analysis of compound-mutant mice revealed that the mechanism by which Lgi4 promotes enteric gliogenesis involves binding the ADAM22 receptor. Our results identify a new mechanism regulating enteric gliogenesis as well as novel functions for Lgi4 regulating the proliferation and maturation of glial lineage cells throughout the PNS.
Collapse
Affiliation(s)
- Jinsuke Nishino
- Howard Hughes Medical Institute, Life Sciences Institute, Department of Internal Medicine, and Center for Stem Cell Biology, and
| | - Thomas L. Saunders
- Transgenic Animal Model Core, University of Michigan, Ann Arbor, Michigan 48109-2216, and
| | - Koji Sagane
- Tsukuba Research Laboratories, Eisai Company, Tsukuba, Ibaraki 300-2635, Japan
| | - Sean J. Morrison
- Howard Hughes Medical Institute, Life Sciences Institute, Department of Internal Medicine, and Center for Stem Cell Biology, and
| |
Collapse
|
42
|
Zhao MT, Prather RS. The multi-potentiality of skin-derived stem cells in pigs. Theriogenology 2010; 75:1372-80. [PMID: 20688375 DOI: 10.1016/j.theriogenology.2010.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 06/03/2010] [Accepted: 06/03/2010] [Indexed: 02/04/2023]
Abstract
Multipotent skin-derived stem cells represent neural-crest derived precursors which have neural and mesodermal potency and can generate neurons, glias, smooth muscle cells, and adipocytes. Transcriptional profiling studies show that both intrinsic programs and extrinsic signaling pathways mediate their neural and mesodermal potency. In addition, recent progress implies that skin-derived stem cells may have a broader developmental potency than previously expected, of which is their potential to generate germline cells in vitro. In this review, we discuss the transcriptional profiling of multipotency and neural crest-derived characteristics of skin-derived stem cells, and argue for their potential germ-line competency in the view of nuclear and cellular reprogramming.
Collapse
Affiliation(s)
- Ming-Tao Zhao
- Division of Animal Sciences, University of Missouri, Columbia, MO 65201, USA
| | | |
Collapse
|
43
|
Hotta R, Pepdjonovic L, Anderson RB, Zhang D, Bergner AJ, Leung J, Pébay A, Young HM, Newgreen DF, Dottori M. Small-molecule induction of neural crest-like cells derived from human neural progenitors. Stem Cells 2010; 27:2896-905. [PMID: 19711454 DOI: 10.1002/stem.208] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neural crest (NC) cells are stem cells that are specified within the embryonic neuroectodermal epithelium and migrate to stereotyped peripheral sites for differentiation into many cell types. Several neurocristopathies involve a deficit of NC-derived cells, raising the possibility of stem cell therapy. In Hirschsprung's disease the distal bowel lacks an enteric nervous system caused by a failure of colonization by NC-derived cells. We have developed a robust method of producing migrating NC-like cells from human embryonic stem cell-derived neural progenitors using a coculture system of mouse embryonic fibroblasts. Significantly, subsequent exposure to Y27632, a small-molecule inhibitor of the Rho effectors ROCKI/II, dramatically increased the efficiency of differentiation into NC-like cells, identified by marker expression in vitro. NC-like cells derived by this method were able to migrate along NC pathways in avian embryos in ovo and within explants of murine bowel, and to differentiate into cells with neuronal and glial markers. This is the first study to report the use of a small molecule to induce cells with NC characteristics from embryonic stem cells that can migrate and generate neurons and support cells in complex tissue. Furthermore, this study demonstrates that small-molecule regulators of ROCKI/II signaling may be valuable tools for stem cell research aimed at treatment of neurocristopathies.
Collapse
Affiliation(s)
- Ryo Hotta
- Department of Anatomy & Cell Biology,, The University of Melbourne, Parkville, Victoria, Australia 3010
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zhang D, Brinas IM, Binder BJ, Landman KA, Newgreen DF. Neural crest regionalisation for enteric nervous system formation: Implications for Hirschsprung's disease and stem cell therapy. Dev Biol 2010; 339:280-94. [DOI: 10.1016/j.ydbio.2009.12.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 12/02/2009] [Accepted: 12/10/2009] [Indexed: 01/21/2023]
|
45
|
Hotta R, Anderson RB, Kobayashi K, Newgreen DF, Young HM. Effects of tissue age, presence of neurones and endothelin-3 on the ability of enteric neurone precursors to colonize recipient gut: implications for cell-based therapies. Neurogastroenterol Motil 2010; 22:331-e86. [PMID: 19775251 DOI: 10.1111/j.1365-2982.2009.01411.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Most enteric neurones arise from neural crest cells that originate in the post-otic hindbrain, and migrate into and along the developing gastrointestinal tract. There is currently great interest in the possibility of cell therapy to replace diseased or absent enteric neurones in patients with enteric neuropathies, such as Hirschsprung's disease. However, it is unclear whether neural crest stem/progenitor cells will be able to colonize colon (i) in which the mesenchyme has differentiated into distinct layers, (ii) that already contains enteric neurones or (iii) that lacks a gene expressed by the gut mesenchyme, such as endothelin-3 (Et-3). METHODS Co-cultures were used to examine the ability of enteric neural crest-derived cells (ENCCs) from E11.5 mouse gut to colonize a variety of recipient hindguts. KEY RESULTS Enteric neural crest-derived cells migrated and gave rise to neurones in E14.5 and E16.5 aneural colon in which the external muscle layers had differentiated, but they did not migrate as far as in younger colon. There was no evidence of altered ENCC proliferation, cell death or neuronal differentiation in older recipient explants. Enteric neural crest-derived cells failed to enter most recipient E14.5 and E16.5 colon explants already containing enteric neurones, and the few that did showed very limited migration. Finally, ENCCs migrated a shorter distance and a higher proportion expressed the pan-neuronal marker, Hu, in recipient E11.5 Et-3(-/-) colon compared to wild-type recipient colon. CONCLUSIONS & INFERENCES Age and an absence of Et-3 from the recipient gut both significantly reduced but did not prevent ENCC migration, but the presence of neurones almost totally prevented ENCC migration.
Collapse
Affiliation(s)
- R Hotta
- Department of Anatomy & Cell Biology, University of Melbourne, Victoria, Australia
| | | | | | | | | |
Collapse
|
46
|
Hotta R, Natarajan D, Thapar N. Potential of cell therapy to treat pediatric motility disorders. Semin Pediatr Surg 2009; 18:263-73. [PMID: 19782309 DOI: 10.1053/j.sempedsurg.2009.07.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Gut motility disorders represent a significant challenge in clinical management with current palliative approaches failing to overcome disease and treatment-related morbidity. The recent progress with stem cells to restore missing or defective elements of the gut neuromusculature offers new hope for potential cure. Focusing on enteric neuropathies such as Hirschsprung's disease, the review discusses the progress that has been made in the sourcing of putative stem cells and the studies into their biology and therapeutic potential. It also explores the practical challenges that must be overcome before stem cell-based therapies can be applied in the clinical arena. Although many obstacles remain, the speed of advancement of the enteric stem cell field suggests that such therapies are on the horizon.
Collapse
Affiliation(s)
- Ryo Hotta
- Department of Anatomy & Cell Biology, University of Melbourne, Victoria, Australia
| | | | | |
Collapse
|
47
|
Metzger M, Caldwell C, Barlow AJ, Burns AJ, Thapar N. Enteric nervous system stem cells derived from human gut mucosa for the treatment of aganglionic gut disorders. Gastroenterology 2009; 136:2214-25.e1-3. [PMID: 19505425 DOI: 10.1053/j.gastro.2009.02.048] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 01/13/2009] [Accepted: 02/10/2009] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Enteric nervous system stem cells (ENSSCs) provide potential therapeutic tools to replenish absent ganglia in Hirschsprung's disease. Although full-thickness human postnatal gut tissue can be used to generate ENSSCs, reliance on its harvesting from surgical resection poses significant practical limitations. This study aimed to explore whether gut tissue obtained utilizing minimally invasive routine endoscopy techniques could be used to generate ENSSCs and whether such cells retain the potential to generate an ENS upon transplantation into aganglionic gut. METHODS Postnatal human gut mucosal tissue obtained from children undergoing gastrointestinal endoscopy was used to generate cell cultures in which ENSSCs were contained within neurosphere-like bodies (NLBs). These NLBs were characterized by immunostaining, and their potential to generate components of the ENS, in vitro and upon transplantation into models of aganglionic gut, was examined. RESULTS Gut mucosal biopsy specimens were obtained from 75 children (age, 9 months-17 years). The biopsy specimens contained neural cells and ENSSCs and, on culturing, generated characteristic NLBs at all ages examined. Postnatal mucosa-derived NLBs contained cells that, akin to their embryonic counterparts, were proliferating, expressed ENSSC markers, were bipotent, and capable of generating large colonies in clonogenic cultures and multiple ENS neuronal subtypes. Upon transplantation, cells from NLBs colonized cultured recipient aganglionic chick and human hindgut to generate ganglia-like structures and enteric neurons and glia. CONCLUSIONS The results represent a significant practical advance toward the development of definitive cell replenishment therapies for ENS disorders such as Hirschsprung's disease.
Collapse
Affiliation(s)
- Marco Metzger
- Gastroenterology, Institute of Child Health, University College London, London, United Kingdom
| | | | | | | | | |
Collapse
|
48
|
|
49
|
Zhao M, Isom SC, Lin H, Hao Y, Zhang Y, Zhao J, Whyte JJ, Dobbs KB, Prather RS. Tracing the stemness of porcine skin-derived progenitors (pSKP) back to specific marker gene expression. CLONING AND STEM CELLS 2009; 11:111-22. [PMID: 19226215 DOI: 10.1089/clo.2008.0071] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Multipotent skin-derived progenitors (SKP) can produce both neural and mesodermal progeny in vitro, sharing the characteristics of embryonic neural crest stem cells. However, the molecular basis for the property of multiple lineage potential and neural crest origin of SKPs is still elusive. Here we report the cooperative expression of pluripotency related genes (POU5F1, SOX2, NANOG, STAT3) and neural crest marker genes (p75NTR, TWIST1, PAX3, SNAI2, SOX9, SOX10) in GFP-transgenic porcine skin-derived progenitors (pSKP). The proportion of cells positive for POU5F1, nestin, fibronectin, and vimentin were 12.3%, 15.1%, 67.9% and 53.7%, showing the heterogeneity of pSKP spheres. Moreover, pSKP cells can generate both neural (neurons and glia) and mesodermal cell types (smooth muscle cells and adipocytes) in vitro, indicating the multiple lineage potency. Four transcription factors (POU5F1, SNAI2, SOX9, and PAX3) were identified that were sensitive to mitogen (FBS) and/or growth factors (EGF and bFGF). We infer that POU5F1, SNAI2, SOX9, and PAX3 may be the key players for maintaining the neural crest derived multipotency of SKP cells in vitro. This study has provided new insight into the molecular mechanism of stemness for somatic-derived stem cells at the level of transcriptional regulation.
Collapse
Affiliation(s)
- Mingtao Zhao
- Institute of Biotechnology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Thomas S, Thomas M, Wincker P, Babarit C, Xu P, Speer MC, Munnich A, Lyonnet S, Vekemans M, Etchevers HC. Human neural crest cells display molecular and phenotypic hallmarks of stem cells. Hum Mol Genet 2008; 17:3411-25. [PMID: 18689800 PMCID: PMC2566525 DOI: 10.1093/hmg/ddn235] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The fields of both developmental and stem cell biology explore how functionally distinct cell types arise from a self-renewing founder population. Multipotent, proliferative human neural crest cells (hNCC) develop toward the end of the first month of pregnancy. It is assumed that most differentiate after migrating throughout the organism, although in animal models neural crest stem cells reportedly persist in postnatal tissues. Molecular pathways leading over time from an invasive mesenchyme to differentiated progeny such as the dorsal root ganglion, the maxillary bone or the adrenal medulla are altered in many congenital diseases. To identify additional components of such pathways, we derived and maintained self-renewing hNCC lines from pharyngulas. We show that, unlike their animal counterparts, hNCC are able to self-renew ex vivo under feeder-free conditions. While cross species comparisons showed extensive overlap between human, mouse and avian NCC transcriptomes, some molecular cascades are only active in the human cells, correlating with phenotypic differences. Furthermore, we found that the global hNCC molecular profile is highly similar to that of pluripotent embryonic stem cells when compared with other stem cell populations or hNCC derivatives. The pluripotency markers NANOG, POU5F1 and SOX2 are also expressed by hNCC, and a small subset of transcripts can unambiguously identify hNCC among other cell types. The hNCC molecular profile is thus both unique and globally characteristic of uncommitted stem cells.
Collapse
Affiliation(s)
- Sophie Thomas
- INSERM, U781, Hôpital Necker-Enfants Malades, 149 rue de Sèvres, 75015 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|