1
|
Palma-Flores C, Cano-Martínez LJ, Fernández-Valverde F, Torres-Pérez I, de Los Santos S, Hernández-Hernández JM, Hernández-Herrera AF, García S, Canto P, Zentella-Dehesa A, Coral-Vázquez RM. Differential histological features and myogenic protein levels in distinct muscles of d-sarcoglycan null muscular dystrophy mouse model. J Mol Histol 2023; 54:405-413. [PMID: 37358754 DOI: 10.1007/s10735-023-10136-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/18/2023] [Indexed: 06/27/2023]
Abstract
Skeletal muscle (SkM) comprises slow and fast-twitch fibers, which differ in molecular composition, function, and systemic energy consumption. In addition, muscular dystrophies (DM), a group of diverse hereditary diseases, present different patterns of muscle involvement, progression, and severity, suggesting that the regeneration-degeneration process may differ depending on the muscle type. Therefore, the study aimed to explore the expression of proteins involved in the repair process in different muscles at an early stage of muscular dystrophy in the δ-sarcoglycan null mice (Sgcd-null), a limb-girdle muscular dystrophy 2 F model. Hematoxylin & Eosin (H&E) Staining showed a high number of central nuclei in soleus (Sol), tibialis (Ta), gastrocnemius (Gas), and extensor digitorum longus (Edl) from four months Sgcd-null mice. However, fibrosis, determined by trichrome of Gomori modified staining, was only observed in Sgcd-null Sol. In addition, the number of Type I and II fibers variated differentially in the Sgcd-null muscles vs. wild-type muscles. Besides, the protein expression level of β-catenin, myomaker, MyoD, and myogenin also presented different expression levels in all the Sgcd-null muscles studied. In summary, our study reveals that muscles with different metabolic characteristics showed distinct expression patterns of proteins involved in the muscle regeneration process. These results could be relevant in designing therapies for genetic and acquired myopathy.
Collapse
Affiliation(s)
- Carlos Palma-Flores
- Catedrático CONACYT, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Luis Javier Cano-Martínez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Francisca Fernández-Valverde
- Laboratorio de Patología Experimental, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico City, Mexico
| | - Itzel Torres-Pérez
- Subdirección de Enseñanza e Investigación, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Mexico City, Mexico
| | - Sergio de Los Santos
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - J Manuel Hernández-Hernández
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados, CINVESTAV-IPN, Mexico City, Mexico
| | - Adriana Fabiola Hernández-Herrera
- Subdirección de Enseñanza e Investigación, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Mexico City, Mexico
| | - Silvia García
- Subdirección de Enseñanza e Investigación, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Mexico City, Mexico
| | - Patricia Canto
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alejandro Zentella-Dehesa
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico City, Mexico
| | - Ramón Mauricio Coral-Vázquez
- Subdirección de Enseñanza e Investigación, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Mexico City, Mexico.
- Sección de Estudios de Posgrado e Investigación Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n Col. Casco de Santo Tomas, C.P. 11340, Mexico City, Mexico.
| |
Collapse
|
2
|
Taye N, Singh M, Baldock C, Hubmacher D. Secreted ADAMTS-like 2 promotes myoblast differentiation by potentiating WNT signaling. Matrix Biol 2023; 120:24-42. [PMID: 37187448 PMCID: PMC10238107 DOI: 10.1016/j.matbio.2023.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/25/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023]
Abstract
Myogenesis is the process that generates multinucleated contractile myofibers from muscle stem cells during skeletal muscle development and regeneration. Myogenesis is governed by myogenic regulatory transcription factors, including MYOD1. Here, we identified the secreted matricellular protein ADAMTS-like 2 (ADAMTSL2) as part of a Wnt-dependent positive feedback loop, which augmented or sustained MYOD1 expression and thus promoted myoblast differentiation. ADAMTSL2 depletion resulted in severe retardation of myoblast differentiation in vitro and its ablation in myogenic precursor cells resulted in aberrant skeletal muscle architecture. Mechanistically, ADAMTSL2 potentiated WNT signaling by binding to WNT ligands and WNT receptors. We identified the WNT-binding ADAMTSL2 peptide, which was sufficient to promote myogenesis in vitro. Since ADAMTSL2 was previously described as a negative regulator of TGFβ signaling in fibroblasts, ADAMTSL2 now emerges as a signaling hub that could integrate WNT, TGFβ and potentially other signaling pathways within the dynamic microenvironment of differentiating myoblasts during skeletal muscle development and regeneration.
Collapse
Affiliation(s)
- Nandaraj Taye
- Orthopedic Research Laboratories, Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Mukti Singh
- Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Wellcome Centre for Cell-Matrix Research, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Clair Baldock
- Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Wellcome Centre for Cell-Matrix Research, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Dirk Hubmacher
- Orthopedic Research Laboratories, Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
3
|
Yeh CJ, Sattler KM, Lepper C. Molecular regulation of satellite cells via intercellular signaling. Gene 2023; 858:147172. [PMID: 36621659 PMCID: PMC9928918 DOI: 10.1016/j.gene.2023.147172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Somatic stem cells are tissue-specific reserve cells tasked to sustain tissue homeostasis in adulthood and/or effect tissue regeneration after traumatic injury. The stem cells of skeletal muscle tissue are the satellite cells, which were originally described and named after their localization beneath the muscle fiber lamina and attached to the multi-nucleated muscle fibers. During adult homeostasis, satellite cells are maintained in quiescence, a state of reversible cell cycle arrest. Yet, upon injury, satellite cells are rapidly activated, becoming highly mitotically active to generate large numbers of myoblasts that differentiate and fuse to regenerate the injured muscle fibers. A subset self-renews to replenish the pool of muscle stem cells.Complex intrinsic gene regulatory networks maintain the quiescent state of satellite cells, or upon injury, direct their activation, proliferation, differentiation and self-renewal. Molecular cues from the satellite cells' environment provide the essential information as to when and where satellite cells are to stay quiescent or break quiescence and effect regenerative myogenesis. Predominantly, these cues are secreted, diffusible or membrane-bound ligands that bind to and activate their specific cognate receptors on the satellite cell to activate downstream signaling cascades and elicit context-specific cell behavior. This review aims to offer a concise overview of major intercellular signaling pathways regulating satellite cells during quiescence and in injury-induced skeletal muscle regeneration.
Collapse
Affiliation(s)
- Chung-Ju Yeh
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States
| | - Kristina M Sattler
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States
| | - Christoph Lepper
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
4
|
Vo L, Schmidtke MW, Da Rosa-Junior NT, Ren M, Schlame M, Greenberg ML. Cardiolipin metabolism regulates expression of muscle transcription factor MyoD1 and muscle development. J Biol Chem 2023; 299:102978. [PMID: 36739949 PMCID: PMC9999232 DOI: 10.1016/j.jbc.2023.102978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The mitochondrial phospholipid cardiolipin (CL) is critical for numerous essential biological processes, including mitochondrial dynamics and energy metabolism. Mutations in the CL remodeling enzyme TAFAZZIN cause Barth syndrome, a life-threatening genetic disorder that results in severe physiological defects, including cardiomyopathy, skeletal myopathy, and neutropenia. To study the molecular mechanisms whereby CL deficiency leads to skeletal myopathy, we carried out transcriptomic analysis of the TAFAZZIN-knockout (TAZ-KO) mouse myoblast C2C12 cell line. Our data indicated that cardiac and muscle development pathways are highly decreased in TAZ-KO cells, consistent with a previous report of defective myogenesis in this cell line. Interestingly, the muscle transcription factor myoblast determination protein 1 (MyoD1) is significantly repressed in TAZ-KO cells and TAZ-KO mouse hearts. Exogenous expression of MyoD1 rescued the myogenesis defects previously observed in TAZ-KO cells. Our data suggest that MyoD1 repression is caused by upregulation of the MyoD1 negative regulator, homeobox protein Mohawk, and decreased Wnt signaling. Our findings reveal, for the first time, that CL metabolism regulates muscle differentiation through MyoD1 and identify the mechanism whereby MyoD1 is repressed in CL-deficient cells.
Collapse
Affiliation(s)
- Linh Vo
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Michael W Schmidtke
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | | | - Mindong Ren
- Department of Anesthesiology, Perioperative Care, and Pain Medicine at New York University Grossman School of Medicine, New York, New York, USA; Department of Cell Biology at New York University Grossman School of Medicine, New York, New York, USA
| | - Michael Schlame
- Department of Anesthesiology, Perioperative Care, and Pain Medicine at New York University Grossman School of Medicine, New York, New York, USA; Department of Cell Biology at New York University Grossman School of Medicine, New York, New York, USA
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA.
| |
Collapse
|
5
|
Huang M, Wang X, Banerjee M, Mukherji ST, Kutz LC, Zhao A, Sepanski M, Fan CM, Zhu GZ, Tian J, Wang DZ, Zhu H, Xie ZJ, Pierre SV, Cai L. Regulation of Myogenesis by a Na/K-ATPase α1 Caveolin-Binding Motif. Stem Cells 2022; 40:133-148. [PMID: 35257186 PMCID: PMC8943859 DOI: 10.1093/stmcls/sxab012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/25/2021] [Indexed: 01/12/2024]
Abstract
The N-terminal caveolin-binding motif (CBM) in Na/K-ATPase (NKA) α1 subunit is essential for cell signaling and somitogenesis in animals. To further investigate the molecular mechanism, we have generated CBM mutant human-induced pluripotent stem cells (iPSCs) through CRISPR/Cas9 genome editing and examined their ability to differentiate into skeletal muscle (Skm) cells. Compared with the parental wild-type human iPSCs, the CBM mutant cells lost their ability of Skm differentiation, which was evidenced by the absence of spontaneous cell contraction, marker gene expression, and subcellular myofiber banding structures in the final differentiated induced Skm cells. Another NKA functional mutant, A420P, which lacks NKA/Src signaling function, did not produce a similar defect. Indeed, A420P mutant iPSCs retained intact pluripotency and ability of Skm differentiation. Mechanistically, the myogenic transcription factor MYOD was greatly suppressed by the CBM mutation. Overexpression of a mouse Myod cDNA through lentiviral delivery restored the CBM mutant cells' ability to differentiate into Skm. Upstream of MYOD, Wnt signaling was demonstrated from the TOPFlash assay to have a similar inhibition. This effect on Wnt activity was further confirmed functionally by defective induction of the presomitic mesoderm marker genes BRACHYURY (T) and MESOGENIN1 (MSGN1) by Wnt3a ligand or the GSK3 inhibitor/Wnt pathway activator CHIR. Further investigation through immunofluorescence imaging and cell fractionation revealed a shifted membrane localization of β-catenin in CBM mutant iPSCs, revealing a novel molecular component of NKA-Wnt regulation. This study sheds light on a genetic regulation of myogenesis through the CBM of NKA and control of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Minqi Huang
- Marshall Institute for Interdisciplinary Research (MIIR) at Marshall University, Huntington, WV 25703, USA
| | - Xiaoliang Wang
- Marshall Institute for Interdisciplinary Research (MIIR) at Marshall University, Huntington, WV 25703, USA
- Joan C. Edwards School of Medicine at Marshall University, Huntington, WV 25703, USA
| | - Moumita Banerjee
- Marshall Institute for Interdisciplinary Research (MIIR) at Marshall University, Huntington, WV 25703, USA
| | - Shreya T Mukherji
- Marshall Institute for Interdisciplinary Research (MIIR) at Marshall University, Huntington, WV 25703, USA
| | - Laura C Kutz
- Marshall Institute for Interdisciplinary Research (MIIR) at Marshall University, Huntington, WV 25703, USA
| | - Aijie Zhao
- Marshall Institute for Interdisciplinary Research (MIIR) at Marshall University, Huntington, WV 25703, USA
| | - Michael Sepanski
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD 21218, USA
| | - Chen-Ming Fan
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD 21218, USA
| | - Guo-Zhang Zhu
- Department of Biological Sciences, Marshall University, Huntington, WV 25703, USA
| | - Jiang Tian
- Marshall Institute for Interdisciplinary Research (MIIR) at Marshall University, Huntington, WV 25703, USA
- Joan C. Edwards School of Medicine at Marshall University, Huntington, WV 25703, USA
| | - Da-Zhi Wang
- University of South Florida Health Heart Institute, Morsani College of Medicine, University of South Florida, 560 Channelside Drive, Tampa, FL 33602, USA
| | - Hua Zhu
- Department of Surgery, The Ohio State University, 396 Biomedical Research Tower, 460 W. 12th Avenue, Columbus, OH 43210, USA
| | - Zi-Jian Xie
- Marshall Institute for Interdisciplinary Research (MIIR) at Marshall University, Huntington, WV 25703, USA
| | - Sandrine V Pierre
- Marshall Institute for Interdisciplinary Research (MIIR) at Marshall University, Huntington, WV 25703, USA
| | - Liquan Cai
- Marshall Institute for Interdisciplinary Research (MIIR) at Marshall University, Huntington, WV 25703, USA
| |
Collapse
|
6
|
Chien P, Xi H, Pyle AD. Recapitulating human myogenesis ex vivo using human pluripotent stem cells. Exp Cell Res 2021; 411:112990. [PMID: 34973262 DOI: 10.1016/j.yexcr.2021.112990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 11/25/2022]
Abstract
Human pluripotent stem cells (hPSCs) provide a human model for developmental myogenesis, disease modeling and development of therapeutics. Differentiation of hPSCs into muscle stem cells has the potential to provide a cell-based therapy for many skeletal muscle wasting diseases. This review describes the current state of hPSCs towards recapitulating human myogenesis ex vivo, considerations of stem cell and progenitor cell state as well as function for future use of hPSC-derived muscle cells in regenerative medicine.
Collapse
Affiliation(s)
- Peggie Chien
- Department of Microbiology, Immunology and Molecular Genetics, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
| | - Haibin Xi
- Department of Microbiology, Immunology and Molecular Genetics, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
| | - April D Pyle
- Department of Microbiology, Immunology and Molecular Genetics, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
7
|
Genetic Characterization, Current Model Systems and Prognostic Stratification in PAX Fusion-Negative vs. PAX Fusion-Positive Rhabdomyosarcoma. Genes (Basel) 2021; 12:genes12101500. [PMID: 34680895 PMCID: PMC8535289 DOI: 10.3390/genes12101500] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/19/2021] [Accepted: 09/24/2021] [Indexed: 12/17/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children and adolescents and accounts for approximately 2% of soft tissue sarcomas in adults. It is subcategorized into distinct subtypes based on histological features and fusion status (PAX-FOXO1/VGLL2/NCOA2). Despite advances in our understanding of the pathobiological and molecular landscape of RMS, the prognosis of these tumors has not significantly improved in recent years. Developing a better understanding of genetic abnormalities and risk stratification beyond the fusion status are crucial to developing better therapeutic strategies. Herein, we aim to highlight the genetic pathways/abnormalities involved, specifically in fusion-negative RMS, assess the currently available model systems to study RMS pathogenesis, and discuss available prognostic factors as well as their importance for risk stratification to achieve optimal therapeutic management.
Collapse
|
8
|
Fan W, Yuan W, Ding X, Zhu L. β-catenin has potential effects on the expression, subcellular localization, and release of high mobility group box 1 during bovine herpesvirus 1 productive infection in MDBK cell culture. Virulence 2021; 12:1345-1361. [PMID: 34008469 PMCID: PMC8143255 DOI: 10.1080/21505594.2021.1926409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
High mobility group box 1 (HMGB1), a ubiquitous DNA-binding protein, can be released into extracellular space and function as a strong proinflammatory cytokine, which plays critical roles in the pathogenesis of various inflammatory diseases. Here, we showed that BoHV-1 productive infection in MDBK cells at later stage significantly increases HMGB1 mRNA expression and the protein release, but decreases the steady-state protein levels. Virus infection increases accumulation of HMGB1 protein in both nucleus and mitochondria, and relocalizes nuclear HMGB1 to assemble in highlighted foci via a confocal microscope assay. Interestingly, β-catenin-specific inhibitor iCRT14 is able to increase HMGB1 transcription and the protein release, and subcellular translocation in virus-infected cells. HMGB1-specific inhibitor, glycyrrhizin, could differentially affect virus gene transcription such as, the viral regulatory protein bICP0, bICP4 and bICP22, as well as glycoprotein gD. In summary, our data provides a novel mechanism that β-catenin signaling may regulate inflammatory response via affecting HMGB1 signaling.
Collapse
Affiliation(s)
- Wenqing Fan
- College of Veterinary Medicine, Yangzhou University and Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou China.,College of Life Sciences, Hebei University, Baoding China
| | - Weifeng Yuan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing China
| | - Xiuyan Ding
- College of Veterinary Medicine, Yangzhou University and Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou China.,College of Life Sciences, Hebei University, Baoding China
| | - Liqian Zhu
- College of Veterinary Medicine, Yangzhou University and Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou China.,College of Life Sciences, Hebei University, Baoding China
| |
Collapse
|
9
|
Esteves de Lima J, Bou Akar R, Mansour M, Rocancourt D, Buckingham M, Relaix F. M-Cadherin Is a PAX3 Target During Myotome Patterning. Front Cell Dev Biol 2021; 9:652652. [PMID: 33869209 PMCID: PMC8047199 DOI: 10.3389/fcell.2021.652652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/12/2021] [Indexed: 11/13/2022] Open
Abstract
PAX3 belongs to the paired-homeobox family of transcription factors and plays a key role as an upstream regulator of muscle progenitor cells during embryonic development. Pax3-mutant embryos display impaired somite development, yet the consequences for myotome formation have not been characterized. The early myotome is formed by PAX3-expressing myogenic cells that delaminate from the dermomyotomal lips and migrate between the dermomyotome and sclerotome where they terminally differentiate. Here we show that in Pax3-mutant embryos, myotome formation is impaired, displays a defective basal lamina and the regionalization of the structural protein Desmin is lost. In addition, this phenotype is more severe in embryos combining Pax3-null and Pax3 dominant-negative alleles. We identify the adhesion molecule M-Cadherin as a PAX3 target gene, the expression of which is modulated in the myotome according to Pax3 gain- and loss-of-function alleles analyzed. Taken together, we identify M-Cadherin as a PAX3-target linked to the formation of the myotome.
Collapse
Affiliation(s)
- Joana Esteves de Lima
- Univ Paris Est Creteil, Institut National de la Santé et de la Recherche Médicale (INSERM), EnvA, Etablissement Français du Sang (EFS), Assistance Publique Hopitaux de Paris (AP-HP), Institut Mondor de Recherche Biomedicale (IMRB), Creteil, France
| | - Reem Bou Akar
- Univ Paris Est Creteil, Institut National de la Santé et de la Recherche Médicale (INSERM), EnvA, Etablissement Français du Sang (EFS), Assistance Publique Hopitaux de Paris (AP-HP), Institut Mondor de Recherche Biomedicale (IMRB), Creteil, France
| | - Myriam Mansour
- Univ Paris Est Creteil, Institut National de la Santé et de la Recherche Médicale (INSERM), EnvA, Etablissement Français du Sang (EFS), Assistance Publique Hopitaux de Paris (AP-HP), Institut Mondor de Recherche Biomedicale (IMRB), Creteil, France
| | - Didier Rocancourt
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
| | - Margaret Buckingham
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
| | - Frédéric Relaix
- Univ Paris Est Creteil, Institut National de la Santé et de la Recherche Médicale (INSERM), EnvA, Etablissement Français du Sang (EFS), Assistance Publique Hopitaux de Paris (AP-HP), Institut Mondor de Recherche Biomedicale (IMRB), Creteil, France
| |
Collapse
|
10
|
Angelopoulou E, Paudel YN, Piperi C. Emerging Pathogenic and Prognostic Significance of Paired Box 3 (PAX3) Protein in Adult Gliomas. Transl Oncol 2019; 12:1357-1363. [PMID: 31352198 PMCID: PMC6664158 DOI: 10.1016/j.tranon.2019.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 07/08/2019] [Indexed: 01/19/2023] Open
Abstract
Gliomas present the most common type of brain tumors in adults, characterized by high morbidity and mortality. In search of potential molecular targets, members of paired box (PAX) family have been found expressed in neural crest cells, regulating their proliferation, apoptosis, migration and differentiation. Recently, PAX3 overexpression has been implicated in glioma tumorigenesis by enhancing proliferation, increasing invasiveness and inducing resistance to apoptosis of glioma cells, while maintaining brain glioma stem cells (BGSCs) stemness. Although the oncogenic potential of PAX3 in gliomas is still under investigation, experimental evidence suggests that PAX3 function is mainly mediated through the canonical and non-canonical Wnt signaling pathway as well as through its interaction with GFAP and p53 proteins. In addition, PAX3 may contribute to the chemoresistance of glioma cells and modulates the effectiveness of novel experimental therapies. Further evidence indicates that PAX3 may represent a novel diagnostic and prognostic biomarker for gliomas, facilitating personalized treatment. This review addresses the emerging role of PAX3 in glioma diagnosis, prognosis and treatment, aiming to shed more light on the underlying molecular mechanisms that could lead to more effective treatment approaches.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Yam Nath Paudel
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
11
|
Zhang X, Wang L, Qiu K, Xu D, Yin J. Dynamic membrane proteome of adipogenic and myogenic precursors in skeletal muscle highlights EPHA2 may promote myogenic differentiation through ERK signaling. FASEB J 2019; 33:5495-5509. [PMID: 30668921 PMCID: PMC6436648 DOI: 10.1096/fj.201801907r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The balance of myogenic and adipogenic differentiation is crucial for skeletal muscle homeostasis. Given the vital role of membrane proteins (MBPs) in cell signal perception, membrane proteomics was conducted to delineate mechanisms regulating differentiation of adipogenic and myogenic precursors in skeletal muscle. Adipogenic and myogenic precursors with divergent differentiation potential were isolated from the longissimus dorsi muscle of neonatal pigs by the preplate method. A total of 85 differentially expressed MBPs (P < 0.05 and fold change ≥1.2 or ≤0.83) between 2 precursors were detected via isobaric tags for relative and absolute quantitation (iTRAQ) assay, including 67 up-regulated and 18 down-regulated in myogenic precursors. Functional enrichment analysis uncovered that myogenic and adipogenic precursors showed significant differences in cytoskeleton organization, syncytium formation, environmental information processing, and organismal systems. Furthermore, key MBPs in regulating cell differentiation were also characterized, including ITGB3, ITGAV, ITPR3, and EPHA2. Noteworthily, EPHA2 was required for myogenic differentiation, and it may promote myogenic differentiation through ERK signaling. Collectively, our study provided an insight into the distinct MBP profile between myogenic and adipogenic precursors in skeletal muscle and served as a solid basis for supporting the role of MBPs in regulating differentiation.—Zhang, X., Wang, L., Qiu, K., Xu, D., Yin, J. Dynamic membrane proteome of adipogenic and myogenic precursors in skeletal muscle highlights EPHA2 may promote myogenic differentiation through ERK signaling.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Liqi Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kai Qiu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Doudou Xu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jingdong Yin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
12
|
Jama A, Huang D, Alshudukhi AA, Chrast R, Ren H. Lipin1 is required for skeletal muscle development by regulating MEF2c and MyoD expression. J Physiol 2018; 597:889-901. [PMID: 30511745 DOI: 10.1113/jp276919] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/03/2018] [Indexed: 12/19/2022] Open
Abstract
KEY POINTS Lipin1 is critical for skeletal muscle development. Lipin1 regulates MyoD and myocyte-specific enhancer factor 2C (MEF2c) expression via the protein kinase C (PKC)/histone deacetylase 5-mediated pathway. Inhibition of PKCμ activity suppresses myoblast differentiation by inhibiting MyoD and MEF2c expression. ABSTRACT Our previous characterization of global lipin1-deficient (fld) mice demonstrated that lipin1 played a novel role in skeletal muscle (SM) regeneration. The present study using cell type-specific Myf5-cre;Lipin1fl/fl conditional knockout mice (Lipin1Myf5cKO ) shows that lipin1 is a major determinant of SM development. Lipin1 deficiency induced reduced muscle mass and myopathy. Our results from lipin1-deficient myoblasts suggested that lipin1 regulates myoblast differentiation via the protein kinase Cμ (PKCμ)/histone deacetylase 5 (HDAC5)/myocyte-specific enhancer factor 2C (MEF2c):MyoD-mediated pathway. Lipin1 deficiency leads to the suppression of PKC isoform activities, as well as inhibition of the downstream target of PKCμ, class II deacetylase HDAC5 nuclear export, and, consequently, inhibition of MEF2c and MyoD expression in the SM of lipin1Myf5cKO mice. Restoration of diacylglycerol-mediated signalling in lipin1 deficient myoblasts by phorbol 12-myristate 13-acetate transiently activated PKC and HDAC5, and upregulated MEF2c expression. Our findings provide insights into the signalling circuitry that regulates SM development, and have important implications for developing intervention aimed at treating muscular dystrophy.
Collapse
Affiliation(s)
- Abdulrahman Jama
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - Dengtong Huang
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - Abdullah A Alshudukhi
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - Roman Chrast
- Department of Neuroscience and Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Hongmei Ren
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| |
Collapse
|
13
|
Suzuki A, Minamide R, Iwata J. WNT/β-catenin signaling plays a crucial role in myoblast fusion through regulation of nephrin expression during development. Development 2018; 145:dev.168351. [PMID: 30389854 DOI: 10.1242/dev.168351] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/24/2018] [Indexed: 01/06/2023]
Abstract
Skeletal muscle development is controlled by a series of multiple orchestrated regulatory pathways. WNT/β-catenin is one of the most important pathways for myogenesis; however, it remains unclear how this signaling pathway regulates myogenesis in a temporal- and spatial-specific manner. Here, we show that WNT/β-catenin signaling is crucial for myoblast fusion through regulation of the nephrin (Nphs1) gene in the Myog-Cre-expressing myoblast population. Mice deficient for the β-catenin gene in Myog-Cre-expressing myoblasts (Ctnnb1F/F;Myog-Cre mice) displayed myoblast fusion defects, but not migration or cell proliferation defects. The promoter region of Nphs1 contains the conserved β-catenin-binding element, and Nphs1 expression was induced by the activation of WNT/β-catenin signaling. The induction of Nphs1 in cultured myoblasts from Ctnnb1F/F;Myog-Cre mice restored the myoblast fusion defect, indicating that nephrin is functionally relevant in WNT/β-catenin-dependent myoblast fusion. Taken together, our results indicate that WNT/β-catenin signaling is crucial for myoblast fusion through the regulation of the Nphs1 gene.
Collapse
Affiliation(s)
- Akiko Suzuki
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston (UT Health) School of Dentistry, Houston, TX 77054, USA.,Center for Craniofacial Research, UT Health School of Dentistry, Houston, TX 77054, USA
| | - Ryohei Minamide
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston (UT Health) School of Dentistry, Houston, TX 77054, USA.,Center for Craniofacial Research, UT Health School of Dentistry, Houston, TX 77054, USA
| | - Junichi Iwata
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston (UT Health) School of Dentistry, Houston, TX 77054, USA .,Center for Craniofacial Research, UT Health School of Dentistry, Houston, TX 77054, USA.,MD Anderson Cancer Center, UT Health Graduate School of Biomedical Sciences, Houston, TX 77054, USA
| |
Collapse
|
14
|
Adhikari A, Davie J. JARID2 and the PRC2 complex regulate skeletal muscle differentiation through regulation of canonical Wnt signaling. Epigenetics Chromatin 2018; 11:46. [PMID: 30119689 PMCID: PMC6097338 DOI: 10.1186/s13072-018-0217-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/10/2018] [Indexed: 12/31/2022] Open
Abstract
Background JARID2 is a non-catalytic member of the polycomb repressive complex 2 (PRC2), which is known to regulate developmental target genes in embryonic stem cells. Here, we provide mechanistic insight into the modulation of Wnt signaling by JARID2 during murine skeletal muscle differentiation. Results We show that JARID2 is expressed in proliferating myoblasts, but downregulated upon muscle differentiation. Unexpectedly, depletion of JARID2 or the catalytic subunit of the PRC2 complex, EZH2, inhibited differentiation, suggesting that JARID2 and the PRC2 complex are required to initiate this process. Expression of the myogenic regulatory factors required to promote differentiation, MYOD and MYOG, was downregulated in the absence of JARID2, even though decreases in the methylation of histone H3 lysine 27 (H3K27me3) were observed on both promoters. We found that activation of the Wnt signaling pathway upregulated MYOD and restored differentiation. Activation of the Wnt pathway in JARID2 depleted cells caused β-catenin to translocate to the nucleus, where it bound to and activated the Myod1 promoter. We show that the Wnt antagonist SFRP1 is highly upregulated in the absence of JARID2 and is a direct target of JARID2 and the PRC2 complex. Ectopic expression of SFRP1 blocked MYOD and late muscle gene expression and inhibited the translocation of β-catenin to the nucleus. Finally, we show that JARID2 and SFRP1 are inversely correlated in melanoma, confirming that the JARID2-mediated repression of SFRP1 extends beyond skeletal muscle and has important implications in many cellular systems, including cancer. Conclusions We show that JARID2 and the PRC2 complex regulate muscle differentiation by modulating Wnt signaling through the direct repression of Wnt antagonists. Electronic supplementary material The online version of this article (10.1186/s13072-018-0217-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Abhinav Adhikari
- Department of Biochemistry and Molecular Biology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Carbondale, IL, 62901, USA
| | - Judith Davie
- Department of Biochemistry and Molecular Biology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Carbondale, IL, 62901, USA.
| |
Collapse
|
15
|
Chang CN, Kioussi C. Location, Location, Location: Signals in Muscle Specification. J Dev Biol 2018; 6:E11. [PMID: 29783715 PMCID: PMC6027348 DOI: 10.3390/jdb6020011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 12/15/2022] Open
Abstract
Muscles control body movement and locomotion, posture and body position and soft tissue support. Mesoderm derived cells gives rise to 700 unique muscles in humans as a result of well-orchestrated signaling and transcriptional networks in specific time and space. Although the anatomical structure of skeletal muscles is similar, their functions and locations are specialized. This is the result of specific signaling as the embryo grows and cells migrate to form different structures and organs. As cells progress to their next state, they suppress current sequence specific transcription factors (SSTF) and construct new networks to establish new myogenic features. In this review, we provide an overview of signaling pathways and gene regulatory networks during formation of the craniofacial, cardiac, vascular, trunk, and limb skeletal muscles.
Collapse
Affiliation(s)
- Chih-Ning Chang
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA.
- Molecular Cell Biology Graduate Program, Oregon State University, Corvallis, OR 97331, USA.
| | - Chrissa Kioussi
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA.
- Molecular Cell Biology Graduate Program, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
16
|
Asfour HA, Allouh MZ, Said RS. Myogenic regulatory factors: The orchestrators of myogenesis after 30 years of discovery. Exp Biol Med (Maywood) 2018; 243:118-128. [PMID: 29307280 DOI: 10.1177/1535370217749494] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Prenatal and postnatal myogenesis share many cellular and molecular aspects. Myogenic regulatory factors are basic Helix-Loop-Helix transcription factors that indispensably regulate both processes. These factors (Myf5, MyoD, Myogenin, and MRF4) function as an orchestrating cascade, with some overlapped actions. Prenatally, myogenic regulatory factors are restrictedly expressed in somite-derived myogenic progenitor cells and their derived myoblasts. Postnatally, myogenic regulatory factors are important in regulating the myogenesis process via satellite cells. Many positive and negative regulatory mechanisms exist either between myogenic regulatory factors themselves or between myogenic regulatory factors and other proteins. Upstream factors and signals are also involved in the control of myogenic regulatory factors expression within different prenatal and postnatal myogenic cells. Here, the authors have conducted a thorough and an up-to-date review of the myogenic regulatory factors since their discovery 30 years ago. This review discusses the myogenic regulatory factors structure, mechanism of action, and roles and regulations during prenatal and postnatal myogenesis. Impact statement Myogenic regulatory factors (MRFs) are key players in the process of myogenesis. Despite a considerable amount of literature regarding these factors, their exact mechanisms of actions are still incompletely understood with several overlapped functions. Herein, we revised what has hitherto been reported in the literature regarding MRF structures, molecular pathways that regulate their activities, and their roles during pre- and post-natal myogenesis. The work submitted in this review article is considered of great importance for researchers in the field of skeletal muscle formation and regeneration, as it provides a comprehensive summary of all the biological aspects of MRFs and advances a better understanding of the cellular and molecular mechanisms regulating myogenesis. Indeed, attaining a better understanding of MRFs could be utilized in developing novel therapeutic protocols for multiple myopathies.
Collapse
Affiliation(s)
- Hasan A Asfour
- Department of Anatomy, Faculty of Medicine, 37251 Jordan University of Science & Technology , Irbid 22110, Jordan
| | - Mohammed Z Allouh
- Department of Anatomy, Faculty of Medicine, 37251 Jordan University of Science & Technology , Irbid 22110, Jordan
| | - Raed S Said
- Department of Anatomy, Faculty of Medicine, 37251 Jordan University of Science & Technology , Irbid 22110, Jordan
| |
Collapse
|
17
|
Girardi F, Le Grand F. Wnt Signaling in Skeletal Muscle Development and Regeneration. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 153:157-179. [DOI: 10.1016/bs.pmbts.2017.11.026] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
18
|
Hernández-Hernández JM, García-González EG, Brun CE, Rudnicki MA. The myogenic regulatory factors, determinants of muscle development, cell identity and regeneration. Semin Cell Dev Biol 2017; 72:10-18. [PMID: 29127045 DOI: 10.1016/j.semcdb.2017.11.010] [Citation(s) in RCA: 393] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/04/2017] [Accepted: 11/06/2017] [Indexed: 10/18/2022]
Abstract
The Myogenic Regulatory Factors (MRFs) Myf5, MyoD, myogenin and MRF4 are members of the basic helix-loop-helix family of transcription factors that control the determination and differentiation of skeletal muscle cells during embryogenesis and postnatal myogenesis. The dynamics of their temporal and spatial expression as well as their biochemical properties have allowed the identification of a precise and hierarchical relationship between the four MRFs. This relationship establishes the myogenic lineage as well as the maintenance of the terminal myogenic phenotype. The application of genome-wide technologies has provided important new information as to how the MRFs function to activate muscle gene expression. Application of combined functional genomics technologies along with single cell lineage tracing strategies will allow a deeper understanding of the mechanisms mediating myogenic determination, cell differentiation and muscle regeneration.
Collapse
Affiliation(s)
- J Manuel Hernández-Hernández
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada; Departments of Medicine and Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Estela G García-González
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada; Departments of Medicine and Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Caroline E Brun
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada; Departments of Medicine and Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Michael A Rudnicki
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada; Departments of Medicine and Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
19
|
Edea Z, Jeoung YH, Shin SS, Ku J, Seo S, Kim IH, Kim SW, Kim KS. Genome-wide association study of carcass weight in commercial Hanwoo cattle. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 31:327-334. [PMID: 29103288 PMCID: PMC5838337 DOI: 10.5713/ajas.17.0276] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/12/2017] [Accepted: 10/22/2017] [Indexed: 12/25/2022]
Abstract
Objective The objective of the present study was to validate genes and genomic regions associated with carcass weight using a low-density single nucleotide polymorphism (SNP) Chip in Hanwoo cattle breed. Methods Commercial Hanwoo steers (n = 220) were genotyped with 20K GeneSeek genomic profiler BeadChip. After applying the quality control of criteria of a call rate ≥90% and minor allele frequency (MAF) ≥0.01, a total of 15,235 autosomal SNPs were left for genome-wide association (GWA) analysis. The GWA tests were performed using single-locus mixed linear model. Age at slaughter was fitted as fixed effect and sire included as a covariate. The level of genome-wide significance was set at 3.28×10−6 (0.05/15,235), corresponding to Bonferroni correction for 15,235 multiple independent tests. Results By employing EMMAX approach which is based on a mixed linear model and accounts for population stratification and relatedness, we identified 17 and 16 loci significantly (p<0.001) associated with carcass weight for the additive and dominant models, respectively. The second most significant (p = 0.000049) SNP (ARS-BFGL-NGS-28234) on bovine chromosome 4 (BTA4) at 21 Mb had an allele substitution effect of 43.45 kg. Some of the identified regions on BTA2, 6, 14, 22, and 24 were previously reported to be associated with quantitative trait loci for carcass weight in several beef cattle breeds. Conclusion This is the first genome-wide association study using SNP chips on commercial Hanwoo steers, and some of the loci newly identified in this study may help to better DNA markers that determine increased beef production in commercial Hanwoo cattle. Further studies using a larger sample size will allow confirmation of the candidates identified in this study.
Collapse
Affiliation(s)
- Zewdu Edea
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | | | - Sung-Sub Shin
- Korea Institute for Animal products Quality Evaluation, Sejong 30100, Korea
| | - Jaeul Ku
- Biomedical Research Center, Turbosoft Inc. Cheongju 28161, Korea
| | - Sungbo Seo
- Biomedical Research Center, Turbosoft Inc. Cheongju 28161, Korea
| | - Il-Hoi Kim
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Sang-Wook Kim
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Kwan-Suk Kim
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
20
|
Type 5 phosphodiesterase regulates glioblastoma multiforme aggressiveness and clinical outcome. Oncotarget 2017; 8:13223-13239. [PMID: 28099939 PMCID: PMC5355091 DOI: 10.18632/oncotarget.14656] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 12/12/2016] [Indexed: 01/27/2023] Open
Abstract
Expression of type 5 phosphodiesterase (PDE5), a cGMP-specific hydrolytic enzyme, is frequently altered in human cancer, but its specific role in tumorigenesis remains controversial. Herein, by analyzing a cohort of 69 patients affected by glioblastoma multiforme (GBM) who underwent chemo- and radiotherapy after surgical resection of the tumor, we found that PDE5 was strongly expressed in cancer cells in about 50% of the patients. Retrospective analysis indicated that high PDE5 expression in GBM cells significantly correlated with longer overall survival of patients. Furthermore, silencing of endogenous PDE5 by short hairpin lentiviral transduction (sh-PDE5) in the T98G GBM cell line induced activation of an invasive phenotype. Similarly, pharmacological inhibition of PDE5 activity strongly enhanced cell motility and invasiveness in T98G cells. This invasive phenotype was accompanied by increased secretion of metallo-proteinase 2 (MMP-2) and activation of protein kinase G (PKG). Moreover, PDE5 silencing markedly enhanced DNA damage repair and cell survival following irradiation. The enhanced radio-resistance of sh-PDE5 GBM cells was mediated by an increase of poly(ADP-ribosyl)ation (PARylation) of cellular proteins and could be counteracted by poly(ADP-ribose) polymerase (PARP) inhibitors. Conversely, PDE5 overexpression in PDE5-negative U87G cells significantly reduced MMP-2 secretion, inhibited their invasive potential and interfered with DNA damage repair and cell survival following irradiation. These studies identify PDE5 as a favorable prognostic marker for GBM, which negatively affects cell invasiveness and survival to ionizing radiation. Moreover, our work highlights the therapeutic potential of targeting PKG and/or PARP activity in this currently incurable subset of brain cancers.
Collapse
|
21
|
Beyer S, Pontis J, Schirwis E, Battisti V, Rudolf A, Le Grand F, Ait-Si-Ali S. Canonical Wnt signalling regulates nuclear export of Setdb1 during skeletal muscle terminal differentiation. Cell Discov 2016; 2:16037. [PMID: 27790377 PMCID: PMC5067623 DOI: 10.1038/celldisc.2016.37] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 09/19/2016] [Indexed: 02/06/2023] Open
Abstract
The histone 3 lysine 9 methyltransferase Setdb1 is essential for both stem cell pluripotency and terminal differentiation of different cell types. To shed light on the roles of Setdb1 in these mutually exclusive processes, we used mouse skeletal myoblasts as a model of terminal differentiation. Ex vivo studies on isolated single myofibres showed that Setdb1 is required for adult muscle stem cells expansion following activation. In vitro studies in skeletal myoblasts confirmed that Setdb1 suppresses terminal differentiation. Genomic binding analyses showed a release of Setdb1 from selected target genes upon myoblast terminal differentiation, concomitant to a nuclear export of Setdb1 to the cytoplasm. Both genomic release and cytoplasmic Setdb1 relocalisation during differentiation were dependent on canonical Wnt signalling. Transcriptomic assays in myoblasts unravelled a significant overlap between Setdb1 and Wnt3a regulated genetic programmes. Together, our findings revealed Wnt-dependent subcellular relocalisation of Setdb1 as a novel mechanism regulating Setdb1 functions and myogenesis.
Collapse
Affiliation(s)
- Sophie Beyer
- Centre National de la Recherche Scientifique CNRS-Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate UMR7216 , Paris, France
| | - Julien Pontis
- Centre National de la Recherche Scientifique CNRS-Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate UMR7216 , Paris, France
| | - Elija Schirwis
- Institut Cochin, Université Paris-Descartes, Centre National de la Recherche Scientifique (CNRS) UMR8104, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Valentine Battisti
- Centre National de la Recherche Scientifique CNRS-Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate UMR7216 , Paris, France
| | - Anja Rudolf
- Institut Cochin, Université Paris-Descartes, Centre National de la Recherche Scientifique (CNRS) UMR8104, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Fabien Le Grand
- Institut Cochin, Université Paris-Descartes, Centre National de la Recherche Scientifique (CNRS) UMR8104, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Slimane Ait-Si-Ali
- Centre National de la Recherche Scientifique CNRS-Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate UMR7216 , Paris, France
| |
Collapse
|
22
|
Seo HH, Lee CY, Lee J, Lim S, Choi E, Park JC, Lee S, Hwang KC. The role of nuclear factor of activated T cells during phorbol myristate acetate-induced cardiac differentiation of mesenchymal stem cells. Stem Cell Res Ther 2016; 7:90. [PMID: 27405982 PMCID: PMC4942985 DOI: 10.1186/s13287-016-0348-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/03/2016] [Accepted: 06/17/2016] [Indexed: 11/16/2022] Open
Abstract
Background We previously reported that phorbol 12-myristate 13-acetate (PMA) treatment can induce the cardiac differentiation of mesenchymal stem cells (MSCs). In the present study, we investigated how PMA induces cardiac differentiation of MSCs, focusing on its effect on the transcription factors responsible for increased cardiac marker gene expression. Methods Human MSCs (hMSCs) were treated with 1 μM PMA for 9 days. The expression of MSC markers and cardiac markers in the PMA-treated hMSC, as well as the nuclear translocation of transcription factors, nuclear factor of activated T cells (NFAT), and myogenic differentiation 1 (MyoD), was examined. Transcriptional activity of NFAT was examined by utilizing a green fluorescent protein (GFP) vector containing NFAT motif of human interleukin-2 promoter. The effect of PMA on the expression of key cell cycle regulators was examined. Results PMA induces the transcriptional activity of NFAT and MyoD, which have been associated with increased expression of cardiac troponin T (cTnT) and myosin heavy chain (MHC), respectively. Our data suggested that protein kinase C (PKC) mediates the effect of PMA on NFAT activation. Furthermore, PMA treatment increased cell-cycle regulator p27kip1 expression, suggesting that PMA triggers the cardiac differentiation program in MSCs by regulating key transcription factors and cell cycle regulators. Conclusions The results of this study demonstrate the importance of NFAT activation during PMA-induced MSC differentiation and help us to better understand the underlying mechanisms of small molecule-mediated MSC differentiation so that we can develop a strategy for synthesizing novel and improved differentiation-inducing small molecules. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0348-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hyang-Hee Seo
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, South Korea
| | - Chang Youn Lee
- Department of Integrated Omics for Biomedical Sciences, Yonsei University, Seoul, South Korea
| | - Jiyun Lee
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, South Korea
| | - Soyeon Lim
- Institute for Bio-medical Convergence, Catholic Kwandong University, Incheon, South Korea
| | - Eunhyun Choi
- Institute for Bio-medical Convergence, Catholic Kwandong University, Incheon, South Korea
| | - Jong-Chul Park
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Seoul, South Korea
| | - Seahyoung Lee
- Institute for Bio-medical Convergence, Catholic Kwandong University, Incheon, South Korea. .,Department of Biomedical Sciences, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do, South Korea.
| | - Ki-Chul Hwang
- Institute for Bio-medical Convergence, Catholic Kwandong University, Incheon, South Korea. .,Department of Biomedical Sciences, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do, South Korea.
| |
Collapse
|
23
|
|
24
|
Rooper LM, Huang SC, Antonescu CR, Westra WH, Bishop JA. Biphenotypic sinonasal sarcoma: an expanded immunoprofile including consistent nuclear β-catenin positivity and absence of SOX10 expression. Hum Pathol 2016; 55:44-50. [PMID: 27137987 DOI: 10.1016/j.humpath.2016.04.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/01/2016] [Accepted: 04/15/2016] [Indexed: 11/26/2022]
Abstract
Biphenotypic sinonasal sarcoma (BSNS) is a recently recognized low-grade sarcoma that exhibits both neural and myogenic differentiation. This unique dual phenotype stems from recurrent rearrangements in PAX3, a transcription factor that promotes commitment along both lineages. While identification of PAX3 rearrangements by fluorescence in situ hybridization (FISH) can confirm a BSNS diagnosis, this assay is not widely available. This study evaluates whether an expanded immunohistochemical panel can facilitate recognition of BSNS without molecular analysis. Eleven cases of BSNS were identified from the surgical pathology archives of two academic medical centers. In 8 cases, the diagnosis was confirmed by FISH using custom probes for PAX3. In 3 cases, FISH failed but histologic and immunophenotypic findings were diagnostic for BSNS. All 11 BSNS (100%) were at least focally positive for S100 as well as calponin and/or smooth muscle actin. In addition, 10 (91%) of 11 expressed nuclear β-catenin, 8 (80%) of 10 expressed factor XIIIa, 4 (36%) of 11 expressed desmin, and 3 (30%) of 10 expressed myogenin. All 11 tumors were negative for SOX10. While no single marker resolves immunohistochemical overlap between BSNS and its histologic mimickers such as nerve sheath tumors, an extended immunohistochemical panel that includes β-catenin and SOX10 helps to support the diagnosis of BSNS without the need for gene rearrangement studies.
Collapse
Affiliation(s)
- Lisa M Rooper
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
| | - Shih-Chiang Huang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Cristina R Antonescu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - William H Westra
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA; Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA; Department of Oncology, The Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
| | - Justin A Bishop
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA; Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA; Department of Oncology, The Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA.
| |
Collapse
|
25
|
Endo T. Molecular mechanisms of skeletal muscle development, regeneration, and osteogenic conversion. Bone 2015; 80:2-13. [PMID: 26453493 DOI: 10.1016/j.bone.2015.02.028] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 02/18/2015] [Accepted: 02/28/2015] [Indexed: 12/21/2022]
Abstract
Both skeletal muscle and bone are of mesodermal origin and derived from somites during embryonic development. Somites differentiate into the dorsal dermomyotome and the ventral sclerotome, which give rise to skeletal muscle and bone, respectively. Extracellular signaling molecules, such as Wnt and Shh, secreted from the surrounding environment, determine the developmental fate of skeletal muscle. Dermomyotome cells are specified as trunk muscle progenitor cells by transcription factor networks involving Pax3. These progenitor cells delaminate and migrate to form the myotome, where they are determined as myoblasts that differentiate into myotubes or myofibers. The MyoD family of transcription factors plays pivotal roles in myogenic determination and differentiation. Adult skeletal muscle regenerates upon exercise, muscle injury, or degeneration. Satellite cells are muscle-resident stem cells and play essential roles in muscle growth and regeneration. Muscle regeneration recapitulates the process of muscle development in many aspects. In certain muscle diseases, ectopic calcification or heterotopic ossification, as well as fibrosis and adipogenesis, occurs in skeletal muscle. Muscle-resident mesenchymal progenitor cells, which may be derived from vascular endothelial cells, are responsible for the ectopic osteogenesis, fibrogenesis, and adipogenesis. The small GTPase M-Ras is likely to participate in the ectopic calcification and ossification, as well as in osteogenesis during development. This article is part of a Special Issue entitled "Muscle Bone Interactions".
Collapse
Affiliation(s)
- Takeshi Endo
- Department of Biology, Graduate School of Science, Chiba University, Yayoicho, Inageku, Chiba, Chiba 263-8522, Japan.
| |
Collapse
|
26
|
Buckingham M, Relaix F. PAX3 and PAX7 as upstream regulators of myogenesis. Semin Cell Dev Biol 2015; 44:115-25. [PMID: 26424495 DOI: 10.1016/j.semcdb.2015.09.017] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/23/2015] [Indexed: 10/23/2022]
Abstract
Like other subclasses within the PAX transcription factor family, PAX3 and PAX7 play important roles in the emergence of a number of different tissues during development. PAX3 regulates neural crest and, together with its orthologue PAX7, is also expressed in parts of the central nervous system. In this chapter we will focus on their role in skeletal muscle. Both factors are key regulators of myogenesis where Pax3 plays a major role during early skeletal muscle formation in the embryo while Pax7 predominates during post-natal growth and muscle regeneration in the adult. We review the expression and functions of these factors in the myogenic context. We also discuss mechanistic aspects of PAX3/7 function and modulation of their activity by interaction with other proteins, as well as the post-transcriptional and transcriptional regulation of their expression.
Collapse
Affiliation(s)
- Margaret Buckingham
- Department of Developmental and Stem Cell Biology, CNRS URA 2578, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France.
| | - Frédéric Relaix
- INSERM U955 IMRB, Team 10, 94000 Creteil, France; UPEC Paris Est-Creteil University, Faculty of Medicine, F-94000 Creteil, France; Etablissement Français du Sang, 94017 Creteil, France; Université Paris Est, Ecole Nationale Veterinaire d'Alfort, 94700 Maison Alfort, France.
| |
Collapse
|
27
|
Wnt3a signal pathways activate MyoD expression by targeting cis-elements inside and outside its distal enhancer. Biosci Rep 2015; 35:BSR20140177. [PMID: 25651906 PMCID: PMC4370097 DOI: 10.1042/bsr20140177] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Wnt proteins are secreted cytokines and several Wnts are expressed in the developing somites and surrounding tissues. Without proper Wnt stimulation, the organization of the dermomyotome and myotome can become defective. These Wnt signals received by somitic cells can lead to activation of Pax3/Pax7 and myogenic regulatory factors (MRFs), especially Myf5 and MyoD. However, it is currently unknown whether Wnts activate Myf5 and MyoD through direct targeting of their cis-regulatory elements or via indirect pathways. To clarify this issue, in the present study, we tested the regulation of MyoD cis-regulatory elements by Wnt3a secreted from human embryonic kidney (HEK)-293T cells. We found that Wnt3a activated the MyoD proximal 6.0k promoter (P6P) only marginally, but highly enhanced the activity of the composite P6P plus distal enhancer (DE) reporter through canonical and non-canonical pathways. Further screening of the intervening fragments between the DE and the P6P identified a strong Wnt-response element (WRE) in the upstream −8 to −9k region (L fragment) that acted independently of the DE, but was dependent on the P6P. Deletion of a Pax3/Pax7-targeted site in the L fragment significantly reduced its response to Wnt3a, implying that Wnt3a activates the L fragment partially through Pax3/Pax7 action. Binding of β-catenin and Pax7 to their target sites in the DE and the L fragment respectively was also demonstrated by ChIP. These observations demonstrated the first time that Wnt3a can directly activate MyoD expression through targeting cis-elements in the DE and the L fragment. We found that Wnt3a can directly activate MyoD expression through targeting cis-elements in the distal enhancer and in the upstream −8 to −9k region. A novel Pax3/Pax7-involved pathway and both canonical and non-canonical Wnt pathways are involved in this activation.
Collapse
|
28
|
WNT/β-Catenin Signaling Regulates Multiple Steps of Myogenesis by Regulating Step-Specific Targets. Mol Cell Biol 2015; 35:1763-76. [PMID: 25755281 DOI: 10.1128/mcb.01180-14] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 02/27/2015] [Indexed: 12/23/2022] Open
Abstract
Molecules involved in WNT/β-catenin signaling show specific spatiotemporal expression and play vital roles in myogenesis; however, it is still largely unknown how WNT/β-catenin signaling regulates each step of myogenesis. Here, we show that WNT/β-catenin signaling can control diverse biological processes of myogenesis by regulating step-specific molecules. In order to identify the temporally specific roles of WNT/β-catenin signaling molecules in muscle development and homeostasis, we used in vitro culture systems for both primary mouse myoblasts and C2C12 cells, which can differentiate into myofibers. We found that a blockade of WNT/β-catenin signaling in the proliferating cells decreases proliferation activity, but does not induce cell death, through the regulation of genes cyclin A2 (Ccna2) and cell division cycle 25C (Cdc25c). During muscle differentiation, the inhibition of WNT/β-catenin signaling blocks myoblast fusion through the inhibition of the Fermitin family homolog 2 (Fermt2) gene. Blocking WNT/β-catenin signaling in the well-differentiated myofibers results in the failure of maintenance of their structure by disruption of cadherin/β-catenin/actin complex formation, which plays a crucial role in connecting a myofiber's cytoskeleton to the surrounding extracellular matrix. Thus, our results indicate that WNT/β-catenin signaling can regulate multiple steps of myogenesis, including cell proliferation, myoblast fusion, and homeostasis, by targeting step-specific molecules.
Collapse
|
29
|
Fan CM, Li L, Rozo ME, Lepper C. Making skeletal muscle from progenitor and stem cells: development versus regeneration. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 1:315-27. [PMID: 22737183 DOI: 10.1002/wdev.30] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
For locomotion, vertebrate animals use the force generated by contractile skeletal muscles. These muscles form an actin/myosin-based biomachinery that is attached to skeletal elements to affect body movement and maintain posture. The mechanics, physiology, and homeostasis of skeletal muscles in normal and disease states are of significant clinical interest. How muscles originate from progenitors during embryogenesis has attracted considerable attention from developmental biologists. How skeletal muscles regenerate and repair themselves after injury by the use of stem cells is an important process to maintain muscle homeostasis throughout lifetime. In recent years, much progress has been made toward uncovering the origins of myogenic progenitors and stem cells as well as the regulation of these cells during development and regeneration.
Collapse
Affiliation(s)
- Chen-Ming Fan
- Department of Embryology, Carnegie Institution of Washington, Baltimore, MD, USA.
| | | | | | | |
Collapse
|
30
|
Gene regulatory networks and transcriptional mechanisms that control myogenesis. Dev Cell 2014; 28:225-38. [PMID: 24525185 DOI: 10.1016/j.devcel.2013.12.020] [Citation(s) in RCA: 444] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/24/2013] [Accepted: 12/27/2013] [Indexed: 12/11/2022]
Abstract
We discuss the upstream regulators of myogenesis that lead to the activation of myogenic determination genes and subsequent differentiation, focusing on the mouse model. Key upstream genes, such as Pax3 and Pax7, Six1 and Six4, or Pitx2, participate in gene regulatory networks at different sites of skeletal muscle formation. MicroRNAs also intervene, with emerging evidence for the role of other noncoding RNAs. Myogenic determination and subsequent differentiation depend on members of the MyoD family. We discuss new insights into mechanisms underlying the transcriptional activity of these factors.
Collapse
|
31
|
Doi R, Endo M, Yamakoshi K, Yamanashi Y, Nishita M, Fukada SI, Minami Y. Critical role of Frizzled1 in age-related alterations of Wnt/β-catenin signal in myogenic cells during differentiation. Genes Cells 2014; 19:287-96. [PMID: 24475942 DOI: 10.1111/gtc.12132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 12/12/2013] [Indexed: 11/30/2022]
Abstract
Activation of Wnt/β-catenin signal in muscle satellite cells (mSCs) of aged mice during myogenic differentiation has been appreciated as an important age-related feature of the skeletal muscles, resulting in impairment of their regenerative ability following muscle injury. However, it remains elusive about molecules involved in this age-related alteration of Wnt/β-catenin signal in myogenic cells. To clarify this issue, we carried out expression analyses of Wnt receptor genes using real-time RT-PCR in mSCs isolated from the skeletal muscles of young and aged mice. Here, we show that expression of Frizzled1 (Fzd1) was detected at high levels in mSCs of aged mice. Higher expression levels of Fzd1 were also detected in mSC-derived myogenic cells from aged mice and associated with activation of Wnt/β-catenin signal during their myogenic differentiation in vitro. We also provide evidence that suppressed expression of Fzd1 in myogenic cells from aged mice results in a significant increase in myogenic differentiation, and its forced expression in those from young mice results in its drastic inhibition. These findings indicate the critical role of Fzd1 in altered myogenic differentiation associated with aging.
Collapse
Affiliation(s)
- Ryosuke Doi
- Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Regulation of the follistatin gene by RSPO-LGR4 signaling via activation of the WNT/β-catenin pathway in skeletal myogenesis. Mol Cell Biol 2013; 34:752-64. [PMID: 24344199 DOI: 10.1128/mcb.01285-13] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
WNT signaling plays multiple roles in skeletal myogenesis during gestation and postnatal stages. The R-spondin (RSPO) family of secreted proteins and their cognate receptors, members of leucine-rich repeat-containing G protein-coupled receptor (LGR) family, have emerged as new regulatory components of the WNT signaling pathway. We previously showed that RSPO2 promoted myogenic differentiation via activation of WNT/β-catenin signaling in mouse myoblast C2C12 cells in vitro. However, the molecular mechanism by which RSPO2 regulates myogenic differentiation is unknown. Herein, we show that depletion of the LGR4 receptor severely disrupts myogenic differentiation and significantly diminishes the response to RSPO2 in C2C12 cells, showing a requirement of LGR4 in RSPO signaling during myogenic differentiation. We identify the transforming growth factor β (TGF-β) antagonist follistatin (Fst) as a key mediator of RSPO-LGR4 signaling in myogenic differentiation. We further demonstrate that Fst is a direct target of the WNT/β-catenin pathway. Activation and inactivation of β-catenin induced and inhibited Fst expression, respectively, in both C2C12 cells and mouse embryos. Specific TCF/LEF1 binding sites within the promoter and intron 1 region of the Fst gene were required for RSPO2 and WNT/β-catenin-induced Fst expression. This study uncovers a molecular cross talk between WNT/β-catenin and TGF-β signaling pivotal in myogenic differentiation.
Collapse
|
33
|
Dubinska-Magiera M, Zaremba-Czogalla M, Rzepecki R. Muscle development, regeneration and laminopathies: how lamins or lamina-associated proteins can contribute to muscle development, regeneration and disease. Cell Mol Life Sci 2012; 70:2713-41. [PMID: 23138638 PMCID: PMC3708280 DOI: 10.1007/s00018-012-1190-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 09/28/2012] [Accepted: 10/03/2012] [Indexed: 12/22/2022]
Abstract
The aim of this review article is to evaluate the current knowledge on associations between muscle formation and regeneration and components of the nuclear lamina. Lamins and their partners have become particularly intriguing objects of scientific interest since it has been observed that mutations in genes coding for these proteins lead to a wide range of diseases called laminopathies. For over the last 10 years, various laboratories worldwide have tried to explain the pathogenesis of these rare disorders. Analyses of the distinct aspects of laminopathies resulted in formulation of different hypotheses regarding the mechanisms of the development of these diseases. In the light of recent discoveries, A-type lamins—the main building blocks of the nuclear lamina—together with other key elements, such as emerin, LAP2α and nesprins, seem to be of great importance in the modulation of various signaling pathways responsible for cellular differentiation and proliferation.
Collapse
Affiliation(s)
- Magda Dubinska-Magiera
- Department of Animal Developmental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335, Wroclaw, Poland
| | | | | |
Collapse
|
34
|
von Maltzahn J, Chang NC, Bentzinger CF, Rudnicki MA. Wnt signaling in myogenesis. Trends Cell Biol 2012; 22:602-9. [PMID: 22944199 DOI: 10.1016/j.tcb.2012.07.008] [Citation(s) in RCA: 292] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 07/24/2012] [Accepted: 07/30/2012] [Indexed: 02/05/2023]
Abstract
The formation of skeletal muscle is a tightly regulated process that is critically modulated by Wnt signaling. Myogenesis is dependent on the precise and dynamic integration of multiple Wnt signals allowing self-renewal and progression of muscle precursors in the myogenic lineage. Dysregulation of Wnt signaling can lead to severe developmental defects and perturbation of muscle homeostasis. Recent work has revealed novel roles for the non-canonical planar cell polarity (PCP) and AKT/mTOR pathways in mediating the effects of Wnt on skeletal muscle. In this review, we discuss the role of Wnt signaling in myogenesis and in regulating the homeostasis of adult muscle.
Collapse
Affiliation(s)
- Julia von Maltzahn
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
35
|
Nitric oxide in myogenesis and therapeutic muscle repair. Mol Neurobiol 2012; 46:682-92. [PMID: 22821188 DOI: 10.1007/s12035-012-8311-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 07/12/2012] [Indexed: 12/20/2022]
Abstract
Nitric oxide is a short-lived intracellular and intercellular messenger. The first realisation that nitric oxide is important in physiology occurred in 1987 when its identity with the endothelium-derived relaxing factor was discovered. Subsequent studies have shown that nitric oxide possesses a number of physiological functions that are essential not only to vascular homeostasis but also to neurotransmission, such as in the processes of learning and memory and endocrine gland regulation, as well as inflammation and immune responses. The discovery in 1995 that a splice variant of the neuronal nitric oxide synthase is localised at the sarcolemma via the dystrophin-glycoprotein complex and of its displacement in Duchenne muscular dystrophy has stimulated a host of studies exploring the role of nitric oxide in skeletal muscle physiology. Recently, nitric oxide has emerged as a relevant messenger also of myogenesis that it regulates at several key steps, especially when the process is stimulated for muscle repair following acute and chronic muscle injuries. Here, we will review briefly the mechanisms and functions of nitric oxide in skeletal muscle and discuss its role in myogenesis, with specific attention to the promising nitric oxide-based approaches now being explored at the pre-clinical and clinical level for the therapy of muscular dystrophy.
Collapse
|
36
|
Divergent regulation of Wnt-mediated development of the dorsomedial and ventrolateral dermomyotomal lips. Histochem Cell Biol 2012; 138:503-14. [DOI: 10.1007/s00418-012-0971-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2012] [Indexed: 10/28/2022]
|
37
|
Buono R, Vantaggiato C, Pisa V, Azzoni E, Bassi MT, Brunelli S, Sciorati C, Clementi E. Nitric oxide sustains long-term skeletal muscle regeneration by regulating fate of satellite cells via signaling pathways requiring Vangl2 and cyclic GMP. Stem Cells 2012; 30:197-209. [PMID: 22084027 PMCID: PMC3378700 DOI: 10.1002/stem.783] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Satellite cells are myogenic precursors that proliferate, activate, and differentiate on muscle injury to sustain the regenerative capacity of adult skeletal muscle; in this process, they self-renew through the return to quiescence of the cycling progeny. This mechanism, while efficient in physiological conditions does not prevent exhaustion of satellite cells in pathologies such as muscular dystrophy where numerous rounds of damage occur. Here, we describe a key role of nitric oxide, an important signaling molecule in adult skeletal muscle, on satellite cells maintenance, studied ex vivo on isolated myofibers and in vivo using the α-sarcoglycan null mouse model of dystrophy and a cardiotoxin-induced model of repetitive damage. Nitric oxide stimulated satellite cells proliferation in a pathway dependent on cGMP generation. Furthermore, it increased the number of Pax7+/Myf5− cells in a cGMP-independent pathway requiring enhanced expression of Vangl2, a member of the planar cell polarity pathway involved in the Wnt noncanonical pathway. The enhanced self-renewal ability of satellite cells induced by nitric oxide is sufficient to delay the reduction of the satellite cell pool during repetitive acute and chronic damages, favoring muscle regeneration; in the α-sarcoglycan null dystrophic mouse, it also slowed disease progression persistently. These results identify nitric oxide as a key messenger in satellite cells maintenance, expand the significance of the Vangl2-dependent Wnt noncanonical pathway in myogenesis, and indicate novel strategies to optimize nitric oxide-based therapies for muscular dystrophy. Stem Cells 2012; 30:197–209.
Collapse
Affiliation(s)
- Roberta Buono
- Division of Regenerative Medicine, San Raffaele Scientific Institute, Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Belyea B, Kephart JG, Blum J, Kirsch DG, Linardic CM. Embryonic signaling pathways and rhabdomyosarcoma: contributions to cancer development and opportunities for therapeutic targeting. Sarcoma 2012; 2012:406239. [PMID: 22619564 PMCID: PMC3350847 DOI: 10.1155/2012/406239] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 01/17/2012] [Indexed: 11/18/2022] Open
Abstract
Rhabdomyosarcoma is the most common soft tissue sarcoma of childhood and adolescence, accounting for approximately 7% of childhood cancers. Current therapies include nonspecific cytotoxic chemotherapy regimens, radiation therapy, and surgery; however, these multimodality strategies are unsuccessful in the majority of patients with high-risk disease. It is generally believed that these tumors represent arrested or aberrant skeletal muscle development, and, accordingly, developmental signaling pathways critical to myogenesis such as Notch, WNT, and Hedgehog may represent new therapeutic targets. In this paper, we summarize the current preclinical studies linking these embryonic pathways to rhabdomyosarcoma tumorigenesis and provide support for the investigation of targeted therapies in this embryonic cancer.
Collapse
Affiliation(s)
- Brian Belyea
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA
| | - Julie Grondin Kephart
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jordan Blum
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - David G. Kirsch
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Corinne M. Linardic
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
39
|
Bentzinger CF, Wang YX, Rudnicki MA. Building muscle: molecular regulation of myogenesis. Cold Spring Harb Perspect Biol 2012; 4:4/2/a008342. [PMID: 22300977 DOI: 10.1101/cshperspect.a008342] [Citation(s) in RCA: 778] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The genesis of skeletal muscle during embryonic development and postnatal life serves as a paradigm for stem and progenitor cell maintenance, lineage specification, and terminal differentiation. An elaborate interplay of extrinsic and intrinsic regulatory mechanisms controls myogenesis at all stages of development. Many aspects of adult myogenesis resemble or reiterate embryonic morphogenetic episodes, and related signaling mechanisms control the genetic networks that determine cell fate during these processes. An integrative view of all aspects of myogenesis is imperative for a comprehensive understanding of muscle formation. This article provides a holistic overview of the different stages and modes of myogenesis with an emphasis on the underlying signals, molecular switches, and genetic networks.
Collapse
Affiliation(s)
- C Florian Bentzinger
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Health Research Institute, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
40
|
Ribas R, Moncaut N, Siligan C, Taylor K, Cross JW, Rigby PW, Carvajal JJ. Members of the TEAD family of transcription factors regulate the expression of Myf5 in ventral somitic compartments. Dev Biol 2011; 355:372-80. [PMID: 21527258 PMCID: PMC3123743 DOI: 10.1016/j.ydbio.2011.04.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 04/11/2011] [Accepted: 04/11/2011] [Indexed: 01/16/2023]
Abstract
The transcriptional regulation of the Mrf4/Myf5 locus depends on a multitude of enhancers that, in equilibria with transcription balancing sequences and the promoters, regulate the expression of the two genes throughout embryonic development and in the adult. Transcription in a particular set of muscle progenitors can be driven by the combined outputs of several enhancers that are not able to recapitulate the entire expression pattern in isolation, or by the action of a single enhancer the activity of which in isolation is equivalent to that within the context of the locus. We identified a new enhancer element of this second class, ECR111, which is highly conserved in all vertebrate species and is necessary and sufficient to drive Myf5 expression in ventro-caudal and ventro-rostral somitic compartments in the mouse embryo. EMSA analyses and data obtained from binding-site mutations in transgenic embryos show that a binding site for a TEA Domain (TEAD) transcription factor is essential for the function of this new enhancer, while ChIP assays show that at least two members of the family of transcription factors bind to it in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jaime J. Carvajal
- Section of Gene Function and Regulation, The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| |
Collapse
|
41
|
Braun T, Gautel M. Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis. Nat Rev Mol Cell Biol 2011; 12:349-61. [PMID: 21602905 DOI: 10.1038/nrm3118] [Citation(s) in RCA: 506] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Skeletal muscle is the dominant organ system in locomotion and energy metabolism. Postnatal muscle grows and adapts largely by remodelling pre-existing fibres, whereas embryonic muscle grows by the proliferation of myogenic cells. Recently, the genetic hierarchies of the myogenic transcription factors that control vertebrate muscle development - by myoblast proliferation, migration, fusion and functional adaptation into fast-twitch and slow-twitch fibres - have become clearer. The transcriptional mechanisms controlling postnatal hypertrophic growth, remodelling and functional differentiation redeploy myogenic factors in concert with serum response factor (SRF), JUNB and forkhead box protein O3A (FOXO3A). It has also emerged that there is extensive post-transcriptional regulation by microRNAs in development and postnatal remodelling.
Collapse
Affiliation(s)
- Thomas Braun
- Max-Planck-Institute for Heart and Lung Research, Department for Cardiac Development and Remodelling, Benekestrasse, Bad Nauheim, Germany. thomas.braun@ mpi-bn.mpg.de
| | | |
Collapse
|
42
|
Dedeic Z, Cetera M, Cohen TV, Holaska JM. Emerin inhibits Lmo7 binding to the Pax3 and MyoD promoters and expression of myoblast proliferation genes. J Cell Sci 2011; 124:1691-702. [DOI: 10.1242/jcs.080259] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
X-linked Emery–Dreifuss muscular dystrophy (X-EDMD) is caused by mutations in the inner nuclear membrane protein emerin. Previous studies have shown that emerin binds to and inhibits the activity of LIM domain only 7 (Lmo7), a transcription factor that regulates the expression of genes implicated in X-EDMD. Here, we analyzed Lmo7 function in C2C12 myoblast differentiation and its regulation by emerin. We found that Lmo7 was required for proper myoblast differentiation. Lmo7-downregulated myoblasts exhibited reduced expression of Pax3, Pax7, Myf5 and MyoD, whereas overexpression of GFP–Lmo7 increased the expression of MyoD and Myf5. Upon myotube formation, Lmo7 shuttled from the nucleus to the cytoplasm, concomitant with reduced expression of MyoD, Pax3 and Myf5. Importantly, we show that Lmo7 bound the Pax3, MyoD and Myf5 promoters both in C2C12 myoblasts and in vitro. Because emerin inhibited Lmo7 activity, we tested whether emerin competed with the MyoD promoter for binding to Lmo7 or whether emerin sequestered promoter-bound Lmo7 to the nuclear periphery. Supporting the competition model, emerin binding to Lmo7 inhibited Lmo7 binding to and activation of the MyoD and Pax3 promoters. These findings support the hypothesis that the functional interaction between emerin and Lmo7 is crucial for temporally regulating the expression of key myogenic differentiation genes.
Collapse
Affiliation(s)
- Zinaida Dedeic
- University of Chicago Committee on Developmental Biology, 920 East 58th Street, Chicago IL 60637, USA
| | - Maureen Cetera
- University of Chicago Committee on Developmental Biology, 920 East 58th Street, Chicago IL 60637, USA
| | - Tatiana V. Cohen
- Children's National Medical Center, Center for Genetic Medicine, 111 Michigan Avenue, Washington DC 20010-2970, USA
| | - James M. Holaska
- University of Chicago Committee on Developmental Biology, 920 East 58th Street, Chicago IL 60637, USA
- Department of Medicine, Section of Cardiology, The University of Chicago, 947 East 58th Street, Chicago, IL 60637, USA
- Committee on Genetics, Genomics and Systems Biology, 5812 S. Ellis Street, Chicago IL 60637, USA
| |
Collapse
|
43
|
Han XH, Jin YR, Seto M, Yoon JK. A WNT/beta-catenin signaling activator, R-spondin, plays positive regulatory roles during skeletal myogenesis. J Biol Chem 2011; 286:10649-59. [PMID: 21252233 PMCID: PMC3060516 DOI: 10.1074/jbc.m110.169391] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 01/14/2011] [Indexed: 11/06/2022] Open
Abstract
R-spondins (RSPOs) are a recently characterized family of secreted proteins that activate WNT/β-catenin signaling. In this study, we investigated the potential roles of the RSPO proteins during myogenic differentiation. Overexpression of the Rspo1 gene or administration of recombinant RSPO2 protein enhanced mRNA and protein expression of a basic helix-loop-helix (bHLH) class myogenic determination factor, MYF5, in both C2C12 myoblasts and primary satellite cells, whereas MYOD or PAX7 expression was not affected. RSPOs also promoted myogenic differentiation and induced hypertrophic myotube formation in C2C12 cells. In addition, Rspo2 and Rspo3 gene knockdown by RNA interference significantly compromised MYF5 expression, myogenic differentiation, and myotube formation. Furthermore, Myf5 expression was reduced in the developing limbs of mouse embryos lacking the Rspo2 gene. Finally, we demonstrated that blocking of WNT/β-catenin signaling by DKK1 or a dominant-negative form of TCF4 reversed MYF5 expression, myogenic differentiation, and hypertrophic myotube formation induced by RSPO2, indicating that RSPO2 exerts its activity through the WNT/β-catenin signaling pathway. Our results provide strong evidence that RSPOs are key positive regulators of skeletal myogenesis acting through the WNT/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xiang Hua Han
- From the Center of Biomedical Research Excellence in Stem Cell Biology and Regenerative Medicine, Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074 and
| | - Yong-Ri Jin
- From the Center of Biomedical Research Excellence in Stem Cell Biology and Regenerative Medicine, Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074 and
| | - Marianne Seto
- From the Center of Biomedical Research Excellence in Stem Cell Biology and Regenerative Medicine, Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074 and
- Graduate School of Biomedical Sciences, University of Maine, Orono, Maine 04469
| | - Jeong Kyo Yoon
- From the Center of Biomedical Research Excellence in Stem Cell Biology and Regenerative Medicine, Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074 and
| |
Collapse
|
44
|
The extracellular matrix dimension of skeletal muscle development. Dev Biol 2011; 354:191-207. [PMID: 21420400 DOI: 10.1016/j.ydbio.2011.03.015] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 03/10/2011] [Accepted: 03/11/2011] [Indexed: 12/25/2022]
Abstract
Cells anchor to substrates by binding to extracellular matrix (ECM). In addition to this anchoring function however, cell-ECM binding is a mechanism for cells to sense their surroundings and to communicate and coordinate behaviour amongst themselves. Several ECM molecules and their receptors play essential roles in muscle development and maintenance. Defects in these proteins are responsible for some of the most severe muscle dystrophies at every stage of life from neonates to adults. However, recent studies have also revealed a role of cell-ECM interactions at much earlier stages of development as skeletal muscle forms. Here we review which ECM molecules are present during the early phases of myogenesis, how myogenic cells interact with the ECM that surrounds them and the potential consequences of those interactions. We conclude that cell-ECM interactions play significant roles during all stages of skeletal muscle development in the embryo and suggest that this "extracellular matrix dimension" should be added to our conceptual network of factors contributing to skeletal myogenesis.
Collapse
|
45
|
Nagarajan R, Datta S, Scutari M, Beggs ML, Nolen GT, Peterson CA. Functional relationships between genes associated with differentiation potential of aged myogenic progenitors. Front Physiol 2010; 1:21. [PMID: 21423363 PMCID: PMC3059939 DOI: 10.3389/fphys.2010.00021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 06/23/2010] [Indexed: 11/25/2022] Open
Abstract
Aging is accompanied by considerable heterogeneity with possible co-expression of differentiation pathways. The present study investigates the interplay between crucial myogenic, adipogenic, and Wnt-related genes orchestrating aged myogenic progenitor differentiation (AMPD) using clonal gene expression profiling in conjunction with Bayesian structure learning (BSL) techniques. The expression of three myogenic regulatory factor genes (Myogenin, Myf-5, MyoD1), four genes involved in regulating adipogenic potential (C/EBPα, DDIT3, FoxC2, PPARγ), and two genes in the Wnt signaling pathway (Lrp5, Wnt5a) known to influence both differentiation programs were determined across 34 clones by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Three control genes were used for normalization of the clonal expression data (18S, GAPDH, and B2M). Constraint-based BSL techniques, namely (a) PC Algorithm, (b) Grow-shrink (GS) algorithm, and (c) Incremental Association Markov Blanket (IAMB) were used to model the functional relationships (FRs) in the form of acyclic networks from the clonal expression profiles. A novel resampling approach that obviates the need for a user-defined confidence threshold is proposed to identify statistically significant FRs at small sample sizes. Interestingly, the resulting acyclic network consisted of FRs corresponding to myogenic, adipogenic, Wnt-related genes and their interaction. A significant number of these FRs were robust to normalization across the three house-keeping genes and the choice of the BSL technique. The results presented elucidate the delicate balance between differentiation pathways (i.e., myogenic as well as adipogenic) and possible cross-talk between pathways in AMPD.
Collapse
Affiliation(s)
- Radhakrishnan Nagarajan
- Division of Biomedical Informatics, University of Arkansas for Medical Sciences Little Rock, AR, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Effect of the g.–723G→T Polymorphism in the Bovine Myogenic Factor 5 (Myf5) Gene Promoter Region on Gene Transcript Level in the Longissimus Dorsi Muscle and on Meat Traits of Polish Holstein-Friesian Cattle. Biochem Genet 2010; 48:450-64. [DOI: 10.1007/s10528-009-9328-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 11/05/2009] [Indexed: 10/19/2022]
|
47
|
Abu-Elmagd M, Robson L, Sweetman D, Hadley J, Francis-West P, Münsterberg A. Wnt/Lef1 signaling acts via Pitx2 to regulate somite myogenesis. Dev Biol 2010; 337:211-9. [PMID: 19850024 DOI: 10.1016/j.ydbio.2009.10.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 09/18/2009] [Accepted: 10/14/2009] [Indexed: 11/17/2022]
Abstract
Wnt signaling has been implicated in somite, limb, and branchial arch myogenesis but the mechanisms and roles are not clear. We now show that Wnt signaling via Lef1 acts to regulate the number of premyogenic cells in somites but does not regulate myogenic initiation in the limb bud or maintenance in the first or second branchial arch. We have also analysed the function and regulation of a putative downstream transcriptional target of canonical Wnt signaling, Pitx2. We show that loss-of-function of Pitx2 decreases the number of myogenic cells in the somite, whereas overexpression increases myocyte number particularly in the epaxial region of the myotome. Increased numbers of mitotic cells were observed following overexpression of Pitx2 or an activated form of Lef1, suggesting an effect on cell proliferation. In addition, we show that Pitx2 expression is regulated by canonical Wnt signaling in the epaxial somite and second branchial arch, but not in the limb or the first branchial arch. These results suggest that Wnt/Lef1 signaling regulates epaxial myogenesis via Pitx2 but that this link is uncoupled in other regions of the body, emphasizing the unique molecular networks that control the development of various muscles in vertebrates.
Collapse
Affiliation(s)
- Muhammad Abu-Elmagd
- University of East Anglia, School of Biological Sciences, Norwich, NR4 7TJ Earlham Road, UK
| | | | | | | | | | | |
Collapse
|
48
|
Lagha M, Brunelli S, Messina G, Cumano A, Kume T, Relaix F, Buckingham ME. Pax3:Foxc2 Reciprocal Repression in the Somite Modulates Muscular versus Vascular Cell Fate Choice in Multipotent Progenitors. Dev Cell 2009; 17:892-9. [DOI: 10.1016/j.devcel.2009.10.021] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 08/25/2009] [Accepted: 10/26/2009] [Indexed: 11/30/2022]
|
49
|
Buckingham M, Vincent SD. Distinct and dynamic myogenic populations in the vertebrate embryo. Curr Opin Genet Dev 2009; 19:444-53. [PMID: 19762225 DOI: 10.1016/j.gde.2009.08.001] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 07/21/2009] [Accepted: 08/07/2009] [Indexed: 11/24/2022]
Abstract
Myogenic cells in the body of vertebrates derive from the dorsal somite, the dermomyotome, where multipotent cells are present. Regulation of cell fate choice is discussed, as is that of progenitor cell self-renewal once cells have entered the myogenic programme. Ongoing research on the formation of the first skeletal muscle, the myotome, is presented with emphasis on mechanisms controlling the early segregation of slow and fast muscle lineages that characterizes this process in the zebrafish embryo. Further insights into myogenic populations that contribute to trunk and limb development at different stages are summarized and the distinct regulatory networks that underlie the formation of head muscles are discussed.
Collapse
|
50
|
Brack AS, Murphy-Seiler F, Hanifi J, Deka J, Eyckerman S, Keller C, Aguet M, Rando TA. BCL9 is an essential component of canonical Wnt signaling that mediates the differentiation of myogenic progenitors during muscle regeneration. Dev Biol 2009; 335:93-105. [PMID: 19699733 DOI: 10.1016/j.ydbio.2009.08.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 08/05/2009] [Accepted: 08/17/2009] [Indexed: 11/17/2022]
Abstract
Muscle stem cells and their progeny play a fundamental role in the regeneration of adult skeletal muscle. We have previously shown that activation of the canonical Wnt/beta-catenin signaling pathway in adult myogenic progenitors is required for their transition from rapidly dividing transient amplifying cells to more differentiated progenitors. Whereas Wnt signaling in Drosophila is dependent on the presence of the co-regulator Legless, previous studies of the mammalian ortholog of Legless, BCL9 (and its homolog, BCL9-2), have not revealed an essential role of these proteins in Wnt signaling in specific tissues during development. Using Cre-lox technology to delete BCL9 and BCL9-2 in the myogenic lineage in vivo and RNAi technology to knockdown the protein levels in vitro, we show that BCL9 is required for activation of the Wnt/beta-catenin cascade in adult mammalian myogenic progenitors. We observed that the nuclear localization of beta-catenin and downstream TCF/LEF-mediated transcription, which are normally observed in myogenic progenitors upon addition of exogenous Wnt and during muscle regeneration, were abrogated when BCL9/9-2 levels were reduced. Furthermore, reductions of BCL9/9-2 inhibited the promotion of myogenic differentiation by Wnt and the normal regenerative response of skeletal muscle. These results suggest a critical role of BCL9/9-2 in the Wnt-mediated regulation of adult, as opposed to embryonic, myogenic progenitors.
Collapse
Affiliation(s)
- Andrew S Brack
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305-5235, USA.
| | | | | | | | | | | | | | | |
Collapse
|