1
|
Xue Z, Xuan H, Lau K, Su Y, Wegener M, Li K, Turner L, Adams M, Shi X, Wen H. Expression of ENL YEATS domain tumor mutations in nephrogenic or stromal lineage impairs kidney development. Nat Commun 2025; 16:2531. [PMID: 40087269 PMCID: PMC11909213 DOI: 10.1038/s41467-025-57926-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 03/05/2025] [Indexed: 03/17/2025] Open
Abstract
Recurrent gain-of-function mutations in the histone reader protein ENL have been identified in Wilms tumor, the most prevalent pediatric kidney cancer. However, their pathological significance in kidney development and tumorigenesis in vivo remains elusive. Here, we generate mouse models mimicking ENL tumor (ENLT) mutations and show that heterozygous mutant expression in Six2+ nephrogenic or Foxd1+ stromal lineages leads to severe, lineage-specific kidney defects, both resulting in neonatal lethality. Six2-ENLT mutant kidneys display compromised cap mesenchyme, scant nephron tubules, and cystic glomeruli, indicative of premature progenitor commitment and blocked differentiation. Bulk and spatial transcriptomic analyses reveal aberrant activation of Hox and Wnt signaling genes in mutant nephrogenic cells. In contrast, Foxd1-ENLT mutant kidneys exhibit expansion in renal capsule and cap mesenchyme, with dysregulated stromal gene expression affecting stroma-epithelium crosstalk. Our findings uncover distinct pathways through which ENL mutations disrupt nephrogenesis, providing a foundation for further investigations into their role in tumorigenesis.
Collapse
Affiliation(s)
- Zhaoyu Xue
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Hongwen Xuan
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Kin Lau
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Yangzhou Su
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Marc Wegener
- Genomics Core, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Kuai Li
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Lisa Turner
- Pathology Core, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Marie Adams
- Genomics Core, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Xiaobing Shi
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Hong Wen
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
2
|
Tain YL, Lin YJ, Hsu CN. Animal Models for Studying Developmental Origins of Cardiovascular-Kidney-Metabolic Syndrome. Biomedicines 2025; 13:452. [PMID: 40002865 PMCID: PMC11853432 DOI: 10.3390/biomedicines13020452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Cardiovascular-kidney-metabolic syndrome (CKMS) has become a significant global health challenge. Since CKMS often originates early in life, as outlined by the developmental origins of health and disease (DOHaD) concept, prevention is a more effective strategy than treatment. Various animal models, classified by environmental exposures or mechanisms, are used to explore the developmental origins of CKMS. However, no single model can fully replicate all aspects of CKMS or its clinical stages, limiting the advancement of preventive and therapeutic strategies. This review aims to assist researchers by comparing the strengths and limitations of common animal models used in CKMS programming studies and highlighting key considerations for selecting suitable models.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Pediatrics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
| | - Ying-Jui Lin
- Division of Critical Care, Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
- Division of Cardiology, Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Department of Early Childhood Care and Education, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Depatrtment of Pharmacy, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
| |
Collapse
|
3
|
Kurtzeborn K, El-Dahr SS, Pakkasjärvi N, Tortelote GG, Kuure S. Kidney development at a glance: metabolic regulation of renal progenitor cells. Curr Top Dev Biol 2024; 163:15-44. [PMID: 40254344 DOI: 10.1016/bs.ctdb.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
The aberrant regulation of renal progenitor cells during kidney development leads to congenital kidney anomalies and dysplasia. Recently, significant progress has been made in understanding the metabolic needs of renal progenitor cells during mammalian kidney development, with evidence indicating that multiple metabolic pathways play essential roles in determining the cell fates of distinct renal progenitor populations. This review summarizes recent findings and explores the prospects of integrating this novel information into current diagnostic and treatment strategies for renal diseases. Reciprocal interactions between various embryonic kidney progenitor populations establish the foundation for normal kidney organogenesis, with the three principal kidney structures-the nephrons, the collecting duct network, and the stroma-being generated by nephron progenitor cells, ureteric bud/collecting duct progenitor cells, and interstitial progenitor cells. While energy metabolism is well recognized for its importance in organism development, physiological function regulation, and responses to environmental stimuli, research has primarily focused on nephron progenitor metabolism, highlighting its role in maintaining self-renewal. In contrast, studies on the metabolic requirements of ureteric bud/collecting duct and stromal progenitors remain limited. Given the importance of interactions between progenitor populations during kidney development, further research into the metabolic regulation of self-renewal and differentiation in ureteric bud and stromal progenitor cells will be critical.
Collapse
Affiliation(s)
- K Kurtzeborn
- Helsinki Institute of Life Science, University of Helsinki, Finland; Stem Cells and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Finland
| | - S S El-Dahr
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, United States
| | - N Pakkasjärvi
- Stem Cells and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Finland; Department of Pediatric Surgery, Section of Pediatric Urology, New Children's Hospital, Helsinki University Hospital, Helsinki, Finland
| | - G G Tortelote
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, United States.
| | - S Kuure
- Helsinki Institute of Life Science, University of Helsinki, Finland; Stem Cells and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Finland; Laboratory Animal Centre, University of Helsinki, Finland.
| |
Collapse
|
4
|
Ide H, Miike K, Ohmori T, Maruyama K, Izumi Y, Tanigawa S, Nishinakamura R. Mouse embryonic kidney transplantation identifies maturation defects in the medulla. Sci Rep 2024; 14:30293. [PMID: 39639083 PMCID: PMC11621804 DOI: 10.1038/s41598-024-81984-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024] Open
Abstract
Kidney organoids are connected to the host circulation and mature after transplantation. However, they are still immature compared to the adult kidneys, and their precise maturation stages remain unclear. By transplanting the mouse embryonic kidney as a model system for organoid transplantation, we report here the maturation defects of the graft, especially in the medulla. Single cell profiling of the developing kidneys in vivo identified gene sets associated with the maturation of the collecting duct epithelium and medullary stroma. These data revealed an upregulation of genes associated with channel/transporter functions and immune defense, as well as a downregulation of neuronal genes. Using these marker genes, we found that the maturation of the collecting duct and medullary stroma in the grafts barely corresponds to the perinatal stage, which was confirmed histologically by using representative genes. Thus, the gene sets obtained serve as maturation coordinates for the renal medulla and will be helpful in analyzing its maturation defects after transplantation. They will also provide a useful basis for further maturation of transplanted kidney organoids.
Collapse
Affiliation(s)
- Hiroshi Ide
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Koichiro Miike
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Tomoko Ohmori
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Kosuke Maruyama
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Yuichiro Izumi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Shunsuke Tanigawa
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Ryuichi Nishinakamura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan.
| |
Collapse
|
5
|
Park K, Gao WW, Zheng J, Oh KT, Kim IY, You S. Hydrogel-Mediated Local Delivery of Induced Nephron Progenitor Cell-Sourced Molecules as a Cell-Free Approach for Acute Kidney Injury. Int J Mol Sci 2024; 25:10615. [PMID: 39408943 PMCID: PMC11477367 DOI: 10.3390/ijms251910615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Acute kidney injury (AKI) constitutes a severe condition characterized by a sudden decrease in kidney function. Utilizing lineage-restricted stem/progenitor cells, directly reprogrammed from somatic cells, is a promising therapeutic option in personalized medicine for serious and incurable diseases such as AKI. The present study describes the therapeutic potential of induced nephron progenitor cell-sourced molecules (iNPC-SMs) as a cell-free strategy against cisplatin (CP)-induced nephrotoxicity, employing hyaluronic acid (HA) hydrogel-mediated local delivery to minimize systemic leakage and degradation. iNPC-SMs exhibited anti-apoptotic effects on HK-2 cells by inhibiting CP-induced ROS generation. Additionally, the localized biodistribution facilitated by hydrogel-mediated iNPC-SM delivery contributed to enhanced renal function, anti-inflammatory response, and renal regeneration in AKI mice. This study could serve as a 'proof of concept' for injectable hydrogel-mediated iNPC-SM delivery in AKI and as a model for further exploration of the development of cell-free regenerative medicine strategies.
Collapse
Affiliation(s)
- Kyoungmin Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (K.P.); (W.-W.G.); (J.Z.); (K.T.O.)
| | - Wei-Wei Gao
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (K.P.); (W.-W.G.); (J.Z.); (K.T.O.)
| | - Jie Zheng
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (K.P.); (W.-W.G.); (J.Z.); (K.T.O.)
| | - Kyung Taek Oh
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (K.P.); (W.-W.G.); (J.Z.); (K.T.O.)
| | - In-Yong Kim
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Seungkwon You
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (K.P.); (W.-W.G.); (J.Z.); (K.T.O.)
- Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
6
|
Moorwood K, Smith FM, Garfield AS, Cowley M, Holt LJ, Daly RJ, Ward A. Grb7, Grb10 and Grb14, encoding the growth factor receptor-bound 7 family of signalling adaptor proteins have overlapping functions in the regulation of fetal growth and post-natal glucose metabolism. BMC Biol 2024; 22:221. [PMID: 39343875 PMCID: PMC11441139 DOI: 10.1186/s12915-024-02018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND The growth factor receptor bound protein 7 (Grb7) family of signalling adaptor proteins comprises Grb7, Grb10 and Grb14. Each can interact with the insulin receptor and other receptor tyrosine kinases, where Grb10 and Grb14 inhibit insulin receptor activity. In cell culture studies they mediate functions including cell survival, proliferation, and migration. Mouse knockout (KO) studies have revealed physiological roles for Grb10 and Grb14 in glucose-regulated energy homeostasis. Both Grb10 KO and Grb14 KO mice exhibit increased insulin signalling in peripheral tissues, with increased glucose and insulin sensitivity and a modestly increased ability to clear a glucose load. In addition, Grb10 strongly inhibits fetal growth such that at birth Grb10 KO mice are 30% larger by weight than wild type littermates. RESULTS Here, we generate a Grb7 KO mouse model. We show that during fetal development the expression patterns of Grb7 and Grb14 each overlap with that of Grb10. Despite this, Grb7 and Grb14 did not have a major role in influencing fetal growth, either alone or in combination with Grb10. At birth, in most respects both Grb7 KO and Grb14 KO single mutants were indistinguishable from wild type, while Grb7:Grb10 double knockout (DKO) were near identical to Grb10 KO single mutants and Grb10:Grb14 DKO mutants were slightly smaller than Grb10 KO single mutants. In the developing kidney Grb7 had a subtle positive influence on growth. An initial characterisation of Grb7 KO adult mice revealed sexually dimorphic effects on energy homeostasis, with females having a significantly smaller renal white adipose tissue depot and an enhanced ability to clear glucose from the circulation, compared to wild type littermates. Males had elevated fasted glucose levels with a trend towards smaller white adipose depots, without improved glucose clearance. CONCLUSIONS Grb7 and Grb14 do not have significant roles as inhibitors of fetal growth, unlike Grb10, and instead Grb7 may promote growth of the developing kidney. In adulthood, Grb7 contributes subtly to glucose mediated energy homeostasis, raising the possibility of redundancy between all three adaptors in physiological regulation of insulin signalling and glucose handling.
Collapse
Affiliation(s)
- Kim Moorwood
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Florentia M Smith
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Alastair S Garfield
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Michael Cowley
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
- Present Address: Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Campus, Box 7633, Raleigh, NC, 27695, USA
| | - Lowenna J Holt
- Cancer Research Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, 2010, Australia
| | - Roger J Daly
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Andrew Ward
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
7
|
Ma YS, Deng SQ, Zhang P, Thomsen JS, Andreasen A, Chang SJ, Zhang J, Gu L, Zhai XY. Identification of countercurrent tubule-vessel arrangements in the early development of mouse kidney based on immunohistochemistry and computer-assisted 3D visualization. PLoS One 2024; 19:e0307223. [PMID: 39137214 PMCID: PMC11321558 DOI: 10.1371/journal.pone.0307223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/02/2024] [Indexed: 08/15/2024] Open
Abstract
Nephron loop-vessel countercurrent arrangement in the medulla provides the structural basis for the formation of concentrated urine. To date, the morphogenesis of it and relevant water and solutes transportation has not been fully elucidated. In this study, with immunohistochemistry for aquaporins (AQP) and Na-K-2Cl co-transporter (NKCC2), as well as 3D visualization, we noticed in embryonic day 14.5 kidneys that the countercurrent arrangement of two pairs of loop-vessel was established as soon as the loop and vessel both extended into the medulla. One pair happened between descending limb and ascending vasa recta, the other occurred between thick ascending limb and descending vasa recta. Meanwhile, the immunohistochemical results showed that the limb and vessel expressing AQP-1 such as descending thick and thin limb and descending vasa recta was always accompanied with AQP-1 negative ascending vasa recta or capillaries and thick ascending limb, respectively. Moreover, the thick ascending limb expressing NKCC2 closely contacted with descending vasa recta without expressing NKCC2. As kidney developed, an increasing number of loop-vessels in countercurrent arrangement extended into the interstitium of the medulla. In addition, we observed that the AQP-2 positive ureteric bud and their branches were separated from those pairs of tubule-vessels by a relatively large and thin-walled veins or capillaries. Thus, the present study reveals that the loop-vessel countercurrent arrangement is formed at the early stage of nephrogenesis, which facilitates the efficient transportation of water and electrolytes to maintain the medullary osmolality and to form a concentrated urine.
Collapse
Affiliation(s)
- Yun-Sheng Ma
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, Liaoning, China
- Department of Morphology, Medical College of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Si-Qi Deng
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, Liaoning, China
- Department of Pathology, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ping Zhang
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, Liaoning, China
- Department of Morphology, Medical College of Jinzhou Medical University, Jinzhou, Liaoning, China
| | | | - Arne Andreasen
- Department of Biomedicine–Anatomy, Aarhus University, Aarhus, Denmark
| | - Shi-Jie Chang
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
| | - Jie Zhang
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, Liaoning, China
| | - Ling Gu
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, Liaoning, China
| | - Xiao-Yue Zhai
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, Liaoning, China
- Institute of Nephropathology, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
8
|
Moorwood K, Smith FM, Garfield AS, Ward A. Imprinted Grb10, encoding growth factor receptor bound protein 10, regulates fetal growth independently of the insulin-like growth factor type 1 receptor (Igf1r) and insulin receptor (Insr) genes. BMC Biol 2024; 22:127. [PMID: 38816743 PMCID: PMC11140863 DOI: 10.1186/s12915-024-01926-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/22/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Optimal size at birth dictates perinatal survival and long-term risk of developing common disorders such as obesity, type 2 diabetes and cardiovascular disease. The imprinted Grb10 gene encodes a signalling adaptor protein capable of inhibiting receptor tyrosine kinases, including the insulin receptor (Insr) and insulin-like growth factor type 1 receptor (Igf1r). Grb10 restricts fetal growth such that Grb10 knockout (KO) mice are at birth some 25-35% larger than wild type. Using a mouse genetic approach, we test the widely held assumption that Grb10 influences growth through interaction with Igf1r, which has a highly conserved growth promoting role. RESULTS Should Grb10 interact with Igf1r to regulate growth Grb10:Igf1r double mutant mice should be indistinguishable from Igf1r KO single mutants, which are around half normal size at birth. Instead, Grb10:Igf1r double mutants were intermediate in size between Grb10 KO and Igf1r KO single mutants, indicating additive effects of the two signalling proteins having opposite actions in separate pathways. Some organs examined followed a similar pattern, though Grb10 KO neonates exhibited sparing of the brain and kidneys, whereas the influence of Igf1r extended to all organs. An interaction between Grb10 and Insr was similarly investigated. While there was no general evidence for a major interaction for fetal growth regulation, the liver was an exception. The liver in Grb10 KO mutants was disproportionately overgrown with evidence of excess lipid storage in hepatocytes, whereas Grb10:Insr double mutants were indistinguishable from Insr single mutants or wild types. CONCLUSIONS Grb10 acts largely independently of Igf1r or Insr to control fetal growth and has a more variable influence on individual organs. Only the disproportionate overgrowth and excess lipid storage seen in the Grb10 KO neonatal liver can be explained through an interaction between Grb10 and the Insr. Our findings are important for understanding how positive and negative influences on fetal growth dictate size and tissue proportions at birth.
Collapse
Affiliation(s)
- Kim Moorwood
- Department of Life Sciences, University of Bath, Building 4 South, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Florentia M Smith
- Department of Life Sciences, University of Bath, Building 4 South, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Alastair S Garfield
- Department of Life Sciences, University of Bath, Building 4 South, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Andrew Ward
- Department of Life Sciences, University of Bath, Building 4 South, Claverton Down, Bath, BA2 7AY, United Kingdom.
| |
Collapse
|
9
|
Huang Y, Geng J, Wang M, Liu W, Hu H, Shi W, Li M, Huo G, Huang G, Xu A. A simple protocol to establish a conditionally immortalized mouse podocyte cell line. Sci Rep 2024; 14:11591. [PMID: 38773220 PMCID: PMC11109129 DOI: 10.1038/s41598-024-62547-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024] Open
Abstract
Podocytes are specialized terminally differentiated cells in the glomerulus that are the primary target cells in many glomerular diseases. However, the current podocyte cell lines suffer from prolonged in vitro differentiation and limited survival time, which impede research progress. Therefore, it is necessary to establish a cell line that exhibits superior performance and characteristics. We propose a simple protocol to obtain an immortalized mouse podocyte cell (MPC) line from suckling mouse kidneys. Primary podocytes were cultured in vitro and infected with the SV40 tsA58 gene to obtain immortalized MPCs. The podocytes were characterized using Western blotting and quantitative real-time PCR. Podocyte injury was examined using the Cell Counting Kit-8 assay and flow cytometry. First, we successfully isolated an MPC line and identified 39 °C as the optimal differentiation temperature. Compared to undifferentiated MPCs, the expression of WT1 and synaptopodin was upregulated in differentiated MPCs. Second, the MPCs ceased proliferating at a nonpermissive temperature after day 4, and podocyte-specific proteins were expressed normally after at least 15 passages. Finally, podocyte injury models were induced to simulate podocyte injury in vitro. In summary, we provide a simple and popularized protocol to establish a conditionally immortalized MPC, which is a powerful tool for the study of podocytes.
Collapse
Affiliation(s)
- Yujiao Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jie Geng
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Mengdan Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Wenbin Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Haikun Hu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Wei Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Mei Li
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Guiyang Huo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Guangrui Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Anlong Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
10
|
Xu B, Zhang JE, Ye L, Yuan CW. The Role of the ADAMTS18 Gene-Induced Immune Microenvironment in Mouse Kidney Development. Biomedicines 2024; 12:396. [PMID: 38397998 PMCID: PMC10887409 DOI: 10.3390/biomedicines12020396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The aim of this study is to investigate the role of the ADAMTS18 gene in regulating the renal development of mice. PAS staining was used to observe the kidney development of E12.5-E17.5 mice, while immunofluorescence staining and RT-PCR were used to observe the expression of ADAMTS18. Ureteric bud (UB) branches were observed using immunofluorescence staining using the UB marker E-cadherin, and the apoptosis and proliferation of posterior renal mesenchymal cells were analyzed using TUNEL and PH3 fluorescence staining. Flow cytometry was used to analyze the immune cell infiltration, and western blotting (WB) was used to analyze the expression of PD-1/PD-L1 and CTLA-4. As a result, the ADAMTS18 gene expression gradually increased as the kidney continued to mature during embryonic development. Compared with that in the control and vector groups, UB branching was significantly reduced in the ADAMTS18 deletion group (p < 0.05), but that deletion of ADAMTS18 did not affect posterior renal mesenchymal cell proliferation or apoptosis (p > 0.05). Compared with those in the control and vector groups, the proportion of embryonic kidney B cells and the proportion of CD8+ cells were significantly greater after ADAMTS18 was knocked down (p < 0.05), but the difference in neutrophil counts was not significant (p > 0.05). The WB analysis revealed that the PD-1/PD-L1 and CTLA-4 expression was significantly increased after ADAMTS18 was knocked down (p < 0.05). In conclusion, the ADAMTS18 gene may be involved in mice kidney development by regulating the immune microenvironment and activating immune checkpoints. Deletion of the ADAMTS18 gene may be unfavorable for kidney development.
Collapse
Affiliation(s)
- Ben Xu
- Department of Urology, Peking University First Hospital and Institute of Urology, Peking University, Beijing 100034, China
| | | | | | | |
Collapse
|
11
|
Pahuja A, Goux Corredera I, Moya-Rull D, Garreta E, Montserrat N. Engineering physiological environments to advance kidney organoid models from human pluripotent stem cells. Curr Opin Cell Biol 2024; 86:102306. [PMID: 38194750 DOI: 10.1016/j.ceb.2023.102306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/11/2024]
Abstract
During embryogenesis, the mammalian kidney arises because of reciprocal interactions between the ureteric bud (UB) and the metanephric mesenchyme (MM), driving UB branching and nephron induction. These morphogenetic processes involve a series of cellular rearrangements that are tightly controlled by gene regulatory networks and signaling cascades. Here, we discuss how kidney developmental studies have informed the definition of procedures to obtain kidney organoids from human pluripotent stem cells (hPSCs). Moreover, bioengineering techniques have emerged as potential solutions to externally impose controlled microenvironments for organoid generation from hPSCs. Next, we summarize some of these advances with major focus On recent works merging hPSC-derived kidney organoids (hPSC-kidney organoids) with organ-on-chip to develop robust models for drug discovery and disease modeling applications. We foresee that, in the near future, coupling of different organoid models through bioengineering approaches will help advancing to recreate organ-to-organ crosstalk to increase our understanding on kidney disease progression in the human context and search for new therapeutics.
Collapse
Affiliation(s)
- Anisha Pahuja
- Pluripotency for Organ Regeneration. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Iphigénie Goux Corredera
- Pluripotency for Organ Regeneration. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Daniel Moya-Rull
- Pluripotency for Organ Regeneration. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Elena Garreta
- Pluripotency for Organ Regeneration. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; University of Barcelona, 08028 Barcelona, Spain.
| | - Nuria Montserrat
- Pluripotency for Organ Regeneration. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; University of Barcelona, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
12
|
Honeycutt SE, N'Guetta PEY, Hardesty DM, Xiong Y, Cooper SL, Stevenson MJ, O'Brien LL. Netrin 1 directs vascular patterning and maturity in the developing kidney. Development 2023; 150:dev201886. [PMID: 37818607 PMCID: PMC10690109 DOI: 10.1242/dev.201886] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/02/2023] [Indexed: 10/12/2023]
Abstract
The intricate vascular system of the kidneys supports body fluid and organ homeostasis. However, little is known about how vascular architecture is established during kidney development. More specifically, how signals from the kidney influence vessel maturity and patterning remains poorly understood. Netrin 1 (Ntn1) is a secreted ligand that is crucial for vessel and neuronal guidance. Here, we demonstrate that Ntn1 is expressed by Foxd1+ stromal progenitors in the developing mouse kidney and conditional deletion (Foxd1GC/+;Ntn1fl/fl) results in hypoplastic kidneys with extended nephrogenesis. Wholemount 3D analyses additionally revealed the loss of a predictable vascular pattern in Foxd1GC/+;Ntn1fl/fl kidneys. As vascular patterning has been linked to vessel maturity, we investigated arterialization. Quantification of the CD31+ endothelium at E15.5 revealed no differences in metrics such as the number of branches or branch points, whereas the arterial vascular smooth muscle metrics were significantly reduced at both E15.5 and P0. In support of our observed phenotypes, whole kidney RNA-seq revealed disruptions to genes and programs associated with stromal cells, vasculature and differentiating nephrons. Together, our findings highlight the significance of Ntn1 to proper vascularization and kidney development.
Collapse
Affiliation(s)
- Samuel E. Honeycutt
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pierre-Emmanuel Y. N'Guetta
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Deanna M. Hardesty
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yubin Xiong
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shamus L. Cooper
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew J. Stevenson
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lori L. O'Brien
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
13
|
Schuh MP, Yarlagadda S, Alkhudairy L, Preusse K, Kopan R. Characterizing post-branching nephrogenesis in the neonatal rabbit. Sci Rep 2023; 13:19234. [PMID: 37932368 PMCID: PMC10628296 DOI: 10.1038/s41598-023-46624-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023] Open
Abstract
Human nephrogenesis ends prior to birth in term infants (34-36 week gestation), with most (60%) nephrons forming in late gestation in two post-branching nephrogenesis (PBN) periods: arcading and lateral branch nephrogenesis. Preterm infants, however, must execute PBN postnatally. Extreme prematurity is associated with low nephron counts. Identifying additional model(s) that undergo PBN postnatally will help support postnatal PBN in preterm infants. The rabbit exhibits longer postnatal nephrogenesis than the mouse but whether it forms nephrons through PBN has not been determined. We performed morphologic and immunohistological assessments of rabbit nephrogenesis from birth (post-conceptual day 31 or 32) to PC49 using H&E and antibodies against SIX1, SIX2, WT1, ZO-1, and JAG1 in the postnatal period. We performed 3D rendering of the nephrogenic niche to assess for PBN, and supplemented the staining with RNAScope to map the expression of Six1, Six2 (nephron progenitors, NPC), and Ret (ureteric bud tip) transcripts to determine the nephrogenic niche postnatal lifespan. Unlike the mouse, rabbit SIX2 disappeared from NPC before SIX1, resembling the human niche. Active nephrogenesis as defined by the presence of SIX1 + naïve NPC/tip population persisted only until PC35-36 (3-5 postnatal days). 3D morphologic assessments of the cortical nephrons identified an elongated tubule with attached glomeruli extending below the UB tip, consistent with PBN arcades, but not with lateral branch nephrogenesis. We conclude that the rabbit shows morphologic and molecular evidence of PBN arcades continuing postnatally for a shorter period than previously thought. The rabbit is the first non-primate expressing SIX1 in the progenitor population. Our findings suggest that studies of arcading in postnatal nephrogenic niche should be performed within the first 5 days of life in the rabbit.
Collapse
Affiliation(s)
- Meredith P Schuh
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 7022, Cincinnati, OH, 45229, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Sunitha Yarlagadda
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 7022, Cincinnati, OH, 45229, USA
| | - Lyan Alkhudairy
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 7022, Cincinnati, OH, 45229, USA
| | - Kristina Preusse
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Raphael Kopan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
14
|
Matsui K, Yamanaka S, Chen S, Matsumoto N, Morimoto K, Kinoshita Y, Inage Y, Saito Y, Takamura T, Fujimoto T, Tajiri S, Matsumoto K, Kobayashi E, Yokoo T. Long-term viable chimeric nephrons generated from progenitor cells are a reliable model in cisplatin-induced toxicity. Commun Biol 2023; 6:1097. [PMID: 37898693 PMCID: PMC10613230 DOI: 10.1038/s42003-023-05484-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023] Open
Abstract
Kidney organoids have shown promise as evaluation tools, but their in vitro maturity remains limited. Transplantation into adult mice has aided in maturation; however, their lack of urinary tract connection limits long-term viability. Thus, long-term viable generated nephrons have not been demonstrated. In this study, we present an approachable method in which mouse and rat renal progenitor cells are injected into the developing kidneys of neonatal mice, resulting in the generation of chimeric nephrons integrated with the host urinary tracts. These chimeric nephrons exhibit similar maturation to the host nephrons, long-term viability with excretion and reabsorption functions, and cisplatin-induced renal injury in both acute and chronic phases, as confirmed by single-cell RNA-sequencing. Additionally, induced human nephron progenitor cells differentiate into nephrons within the neonatal kidneys. Collectively, neonatal injection represents a promising approach for in vivo nephron generation, with potential applications in kidney regeneration, drug screening, and pathological analysis.
Collapse
Affiliation(s)
- Kenji Matsui
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Shuichiro Yamanaka
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan.
| | - Sandy Chen
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Naoto Matsumoto
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Keita Morimoto
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Yoshitaka Kinoshita
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8654, Japan
| | - Yuka Inage
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
- Department of Pediatrics, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Yatsumu Saito
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Tsuyoshi Takamura
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Toshinari Fujimoto
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Susumu Tajiri
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Kei Matsumoto
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Eiji Kobayashi
- Department of Kidney Regenerative Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan.
| |
Collapse
|
15
|
Tain YL, Hsu CN. The NOS/NO System in Renal Programming and Reprogramming. Antioxidants (Basel) 2023; 12:1629. [PMID: 37627624 PMCID: PMC10451971 DOI: 10.3390/antiox12081629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Nitric oxide (NO) is a gaseous signaling molecule with renoprotective properties. NO can be produced in NO synthase (NOS)-dependent or -independent manners. NO deficiency plays a decisive role in chronic kidney disease (CKD). Kidney development can be affected in response to adverse intrauterine conditions that induce renal programming, thereby raising the risk of developing CKD in adulthood. Conversely, detrimental programming processes could be postponed or halted prior to the onset of CKD by early treatments, namely reprogramming. The current review provides an overview of the NOS/NO research performed in the context of renal programming and reprogramming. NO deficiency has been increasingly found to interact with the different mechanisms behind renal programming, such as oxidative stress, aberrant function of the renin-angiotensin system, disturbed nutrient-sensing mechanisms, dysregulated hydrogen sulfide signaling, and gut microbiota dysbiosis. The supplementation of NOS substrates, the inhibition of asymmetric dimethylarginine (ADMA), the administration of NO donors, and the enhancement of NOS during gestation and lactation have shown beneficial effects against renal programming in preclinical studies. Although human data on maternal NO deficiency and offspring kidney disease are scarce, experimental data indicate that targeting NO could be a promising reprogramming strategy in the setting of renal programming.
Collapse
Affiliation(s)
- You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
16
|
Greenberg D, D’Cruz R, Lacanlale JL, Rowan CJ, Rosenblum ND. Hedgehog-GLI mediated control of renal formation and malformation. FRONTIERS IN NEPHROLOGY 2023; 3:1176347. [PMID: 37675356 PMCID: PMC10479618 DOI: 10.3389/fneph.2023.1176347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/31/2023] [Indexed: 09/08/2023]
Abstract
CAKUT is the leading cause of end-stage kidney disease in children and comprises a broad spectrum of phenotypic abnormalities in kidney and ureter development. Molecular mechanisms underlying the pathogenesis of CAKUT have been elucidated in genetic models, predominantly in the mouse, a paradigm for human renal development. Hedgehog (Hh) signaling is critical to normal embryogenesis, including kidney development. Hh signaling mediates the physiological development of the ureter and stroma and has adverse pathophysiological effects on the metanephric mesenchyme, ureteric, and nephrogenic lineages. Further, disruption of Hh signaling is causative of numerous human developmental disorders associated with renal malformation; Pallister-Hall Syndrome (PHS) is characterized by a diverse spectrum of malformations including CAKUT and caused by truncating variants in the middle-third of the Hh signaling effector GLI3. Here, we outline the roles of Hh signaling in regulating murine kidney development, and review human variants in Hh signaling genes in patients with renal malformation.
Collapse
Affiliation(s)
- Dina Greenberg
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Robert D’Cruz
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jon L. Lacanlale
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Christopher J. Rowan
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Norman D. Rosenblum
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Division of Nephrology, Hospital for Sick Children, Toronto, ON, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Honeycutt SE, N’Guetta PEY, Hardesty DM, Xiong Y, Cooper SL, O’Brien LL. Netrin-1 directs vascular patterning and maturity in the developing kidney. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.14.536975. [PMID: 37131589 PMCID: PMC10153117 DOI: 10.1101/2023.04.14.536975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Blood filtering by the kidney requires the establishment of an intricate vascular system that works to support body fluid and organ homeostasis. Despite these critical roles, little is known about how vascular architecture is established during kidney development. More specifically, how signals from the kidney influence vessel maturity and patterning remains poorly understood. Netrin-1 (Ntn1) is a secreted ligand critical for vessel and neuronal guidance. Here, we demonstrate that Ntn1 is expressed by stromal progenitors in the developing kidney, and conditional deletion of Ntn1 from Foxd1+ stromal progenitors (Foxd1GC/+;Ntn1fl/fl) results in hypoplastic kidneys that display extended nephrogenesis. Despite expression of the netrin-1 receptor Unc5c in the adjacent nephron progenitor niche, Unc5c knockout kidneys develop normally. The netrin-1 receptor Unc5b is expressed by embryonic kidney endothelium and therefore we interrogated the vascular networks of Foxd1GC/+;Ntn1fl/fl kidneys. Wholemount, 3D analyses revealed the loss of a predictable vascular pattern in mutant kidneys. As vascular patterning has been linked to vessel maturity, we investigated arterialization in these mutants. Quantification of the CD31+ endothelium at E15.5 revealed no differences in metrics such as the number of branches or branch points, whereas the arterial vascular smooth muscle metrics were significantly reduced at both E15.5 and P0. In support of these results, whole kidney RNA-seq showed upregulation of angiogenic programs and downregulation of muscle-related programs which included smooth muscle-associated genes. Together, our findings highlight the significance of netrin-1 to proper vascularization and kidney development.
Collapse
Affiliation(s)
- Samuel Emery Honeycutt
- Department of Cell Biology and Physiology University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Deanna Marie Hardesty
- Department of Cell Biology and Physiology University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yubin Xiong
- Department of Cell Biology and Physiology University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shamus Luke Cooper
- Department of Cell Biology and Physiology University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lori Lynn O’Brien
- Department of Cell Biology and Physiology University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
18
|
Jiang W, Li Y, Li R, Chen W, Song M, Zhang Q, Chen S. The Prognostic Significance of FOXD1 Expression in Head and Neck Squamous Cell Carcinoma. J Pers Med 2023; 13:530. [PMID: 36983712 PMCID: PMC10053205 DOI: 10.3390/jpm13030530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
It has been reported that forkhead box D1 (FOXD1) plays an established role in human early embryonic development and is broadly involved in various malignancies. However, there is limited information regarding FOXD1 expression in head and neck squamous cell carcinoma (HNSCC). This present study aimed to explore the clinical significance of FOXD1 in patients with HNSCC. Tissue microarrays of 334 primary HNSCC patients who underwent surgery between 2008 and 2010 at Sun Yat-sen University Cancer Center were investigated by immunohistochemistry regarding FOXD1 expression. χ2 test was used to estimate the relationship of FOXD1 expression with clinicopathologic characteristics. Univariate and multivariate analyses were performed to identify FOXD1 expression as an independent prognostic indicator of overall survival (OS) and disease-free survival (DFS). FOXD1 expression is closely associated with postoperative recurrence. HNSCC patients with high FOXD1 expression have poorer prognoses than the low-expression group (p < 0.05). According to multivariate analysis, FOXD1 was an independent prognostic factor for OS and DFS. The results revealed that FOXD1 could be a prognostic factor for HNSCC and might serve as a potential target for novel therapies.
Collapse
Affiliation(s)
| | | | | | | | | | - Quan Zhang
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China (M.S.)
| | - Shuwei Chen
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China (M.S.)
| |
Collapse
|
19
|
Mechanism of cystogenesis by Cd79a-driven, conditional mTOR activation in developing mouse nephrons. Sci Rep 2023; 13:508. [PMID: 36627370 PMCID: PMC9832032 DOI: 10.1038/s41598-023-27766-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
Polycystic kidney disease (PKD) is a common genetic disorder arising from developmental and postnatal processes. Defects in primary cilia and their signaling (eg, mTOR) underlie the pathogenesis. However, how mTOR regulates tubular integrity remains unclear. The paucity of faithful models has limited our understanding of pathogenesis and, therefore, the refinement of therapeutic targets. To understand the role of mTOR in early cystogenesis, we studied an in-house mouse model, Cd79a-Cre;Tsc1ff. (Cd79a-Tsc1 KO hereafter), recapitulating human autosomal-dominant PKD histology. Cre-mediated Tsc1 depletion driven by the promoter for Cd79a, a known B-cell receptor, activated mTORC1 exclusively along the distal nephron from embryonic day 16 onward. Cysts appeared in the distal nephron at 1 weeks of age and mice developed definite PKD by 4 weeks. Cd79a-Tsc1 KO tubule cells proliferated at a rate comparable to controls after birth but continued to divide even after postnatal day 14 when tubulogenesis is normally completed. Apoptosis occurred only after 9 weeks. During postnatal days 7-11, pre-cystic Cd79a-Tsc1 KO tubule cells showed cilia elongation, aberrant cell intercalation, and mitotic division, suggesting that defective cell planar polarity (PCP) may underlie cystogenesis. mTORC1 was activated in a portion of cyst-lining cells and occasionally even when Tsc1 was not depleted, implying a non-autonomous mechanism. Our results indicate that mTORC1 overactivation in developing distal tubules impairs their postnatal narrowing by disrupting morphogenesis, which orients an actively proliferating cell toward the elongating axis. The interplay between mTOR and cilium signaling, which coordinate cell proliferation with PCP, may be essential for cystogenesis.
Collapse
|
20
|
Habib RS, Alhaaik AG. Age-related glomerular histogenesis in inbred indigenous rabbit (Oryctolagus cuniculus): A morphological, morphometrical, and immunohistochemical study with emphasis on Lgr5-positive cells. Acta Histochem 2023; 125:151994. [PMID: 36610219 DOI: 10.1016/j.acthis.2022.151994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023]
Abstract
Although the regeneration of renal glomeruli and nephrons after injuries especially in adult mammals is not possible, understanding normal glomerular histogenesis is important. Here, we sought to study the morphometrical and histological development of the normal renal glomeruli of rabbits from birth until postnatal day 40. Moreover, we immunohistochemically evaluated the extent and rate of the Lgr5 expression in the immature renal stem/progenitor cells. The untreated, clinically healthy inbred indigenous rabbits (from Duhok city of Iraqi Kurdistan) were sacrificed at postnatal days 1, 10, 15, 30, and 40. After being processed and embedded in paraffin, rabbit anti-human Lgr5 as a primary antibody and rabbit ImmunoCruz LSAB as a staining kit were used for the immunohistochemical detection of Lgr5+ve cells. For normal histology, hematoxylin and eosin were used. The peak generation and regression of renal corpuscles were at postnatal days 10, and 40, respectively, with 50% decrease. The glomeruli diameter significantly increased (1.3-fold, p = 0.001), whereas the Bowman's space diameter decreased (50%, p < 0.0001) from postnatal day 1-40. The immature nephrons were seen only in one-day postnatal rabbits. While the superficial glomeruli were compact and small, the juxtamedullary glomeruli were larger and segmented. The formation and development of the juxtaglomerular apparatus were documented at postnatal days 30 and 40 only. Our data revealed highly expressed Lgr5 protein at postnatal day one, and the expression level decreased gradually with advancing age. It was moderately expressed on day 10 and mildly expressed on day 15, whereas no expression was recorded on days 30 and 40 postnatally. Our study provides evidence that the Lgr5 gene, within multipotent stem cells and their lineage progeny, was activated within newly formed glomeruli throughout the early postnatal stages of nephrogenesis.
Collapse
Affiliation(s)
- Ronak Saber Habib
- Department of Anatomy, Physiology, and Theriogenology, College of Veterinary Medicine, University of Duhok, Duhok City, Kurdistan Region, Iraq.
| | - Ammar Ghanim Alhaaik
- Department of Anatomy and Histology, College of Veterinary Medicine, University of Mosul, Mosul City, Iraq.
| |
Collapse
|
21
|
Perinatal Oxidative Stress and Kidney Health: Bridging the Gap between Animal Models and Clinical Reality. Antioxidants (Basel) 2022; 12:antiox12010013. [PMID: 36670875 PMCID: PMC9855228 DOI: 10.3390/antiox12010013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/02/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress arises when the generation of reactive oxygen species or reactive nitrogen species overwhelms antioxidant systems. Developing kidneys are vulnerable to oxidative stress, resulting in adult kidney disease. Oxidative stress in fetuses and neonates can be evaluated by assessing various biomarkers. Using animal models, our knowledge of oxidative-stress-related renal programming, the molecular mechanisms underlying renal programming, and preventive interventions to avert kidney disease has grown enormously. This comprehensive review provides an overview of the impact of perinatal oxidative stress on renal programming, the implications of antioxidant strategies on the prevention of kidney disease, and the gap between animal models and clinical reality.
Collapse
|
22
|
Perl AJ, Schuh MP, Kopan R. Regulation of nephron progenitor cell lifespan and nephron endowment. Nat Rev Nephrol 2022; 18:683-695. [PMID: 36104510 PMCID: PMC11078284 DOI: 10.1038/s41581-022-00620-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2022] [Indexed: 11/08/2022]
Abstract
Low nephron number - resulting, for example, from prematurity or developmental anomalies - is a risk factor for the development of hypertension, chronic kidney disease and kidney failure. Considerable interest therefore exists in the mechanisms that regulate nephron endowment and contribute to the premature cessation of nephrogenesis following preterm birth. The cessation of nephrogenesis in utero or shortly after birth is synchronized across multiple niches in all mammals, and is coupled with the exhaustion of nephron progenitor cells. Consequently, no nephrons are formed after the cessation of developmental nephrogenesis, and lifelong renal function therefore depends on the complement of nephrons generated during gestation. In humans, a tenfold variation in nephron endowment between individuals contributes to differences in susceptibility to kidney disease; however, the mechanisms underlying this variation are not yet clear. Salient advances in our understanding of environmental inputs, and of intrinsic molecular mechanisms that contribute to the regulation of cessation timing or nephron progenitor cell exhaustion, have the potential to inform interventions to enhance nephron endowment and improve lifelong kidney health for susceptible individuals.
Collapse
Affiliation(s)
- Alison J Perl
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Meredith P Schuh
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Raphael Kopan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
23
|
Tagawa M, Terasaki M, Mii A, Toda E, Kajimoto Y, Kunugi S, Terasaki Y, Shimizu A. The reduced number of nephrons with shortening renal tubules in mouse postnatal adverse environment. Pediatr Res 2022:10.1038/s41390-022-02332-0. [PMID: 36302857 DOI: 10.1038/s41390-022-02332-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 08/10/2022] [Accepted: 09/18/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND The intrauterine adverse environment during nephrogenesis reduces the nephron number, probably associates with impaired ureteric bud (UB) branching. METHODS The kidneys in C57/BL6 mice were irradiated with a single dose of 10 gray (10 Gy) as adverse environment on postnatal day 3 (irradiated PND3 kidneys) after UB branching ceased. The renal functions and pathological findings of irradiated PND3 kidneys were compared with those of non-irradiated control and 10 Gy irradiation on PND14 (irradiated PND14 kidney) from 1 to 18 months. RESULTS The number and density of glomeruli in irradiated PND3 kidneys were reduced by 1 month with renal dysfunction at 6 months. The morphologically incomplete glomeruli with insufficient capillaries were involuted by 1 month in the superficial cortex. Reduced tubular numbers and developmental disability with shortening renal tubules occurred in irradiated PND3 kidneys with impaired urine concentration at 6 months. Hypertrophy of glomeruli developed, and occasional sclerotic glomeruli appeared in the juxtamedullary cortex with hypertension and albuminuria at 12 to 18 months. CONCLUSIONS The reduced number of nephrons with shortening renal tubules occurred with impaired renal functions in a postnatal adverse environment after cessation of UB branching, and glomerular hypertrophy with occasional glomerulosclerosis developed accompanied with hypertension and albuminuria in the adulthood. IMPACT The reduced number of nephrons with shortening renal tubules occurred with impaired renal functions in a postnatal adverse environment after cessation of ureteric bud branching. The reduced number of glomeruli were associated with not only the impaired formation of glomeruli but also involution of morphologically small incomplete glomeruli after an adverse environment. The insufficiently developed nephrons were characterized by the shortening renal tubules with impaired urine concentration. In addition, glomerular hypertrophy and occasional glomerulosclerosis developed with hypertension and albuminuria in adulthood. The present study can help to understand the risk of alternations of premature nephrons in preterm neonates.
Collapse
Affiliation(s)
- Masako Tagawa
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Mika Terasaki
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Akiko Mii
- Department of Nephrology, Nippon Medical School, Tokyo, Japan
| | - Etsuko Toda
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Yusuke Kajimoto
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Shinobu Kunugi
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Yasuhiro Terasaki
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan.,Division of Pathology, Nippon Medical School Hospital, Tokyo, Japan
| | - Akira Shimizu
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan.
| |
Collapse
|
24
|
Kwon HN, Kurtzeborn K, Iaroshenko V, Jin X, Loh A, Escande-Beillard N, Reversade B, Park S, Kuure S. Omics profiling identifies the regulatory functions of the MAPK/ERK pathway in nephron progenitor metabolism. Development 2022; 149:276992. [PMID: 36189831 PMCID: PMC9641663 DOI: 10.1242/dev.200986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/25/2022] [Indexed: 11/07/2022]
Abstract
Nephron endowment is defined by fetal kidney growth and crucially dictates renal health in adults. Defects in the molecular regulation of nephron progenitors contribute to only a fraction of reduced nephron mass cases, suggesting alternative causative mechanisms. The importance of MAPK/ERK activation in nephron progenitor maintenance has been previously demonstrated, and here, we characterized the metabolic consequences of MAPK/ERK deficiency. Liquid chromatography/mass spectrometry-based metabolomics profiling identified 42 reduced metabolites, of which 26 were supported by in vivo transcriptional changes in MAPK/ERK-deficient nephron progenitors. Among these, mitochondria, ribosome and amino acid metabolism, together with diminished pyruvate and proline metabolism, were the most affected pathways. In vitro cultures of mouse kidneys demonstrated a dosage-specific function for pyruvate in controlling the shape of the ureteric bud tip, a regulatory niche for nephron progenitors. In vivo disruption of proline metabolism caused premature nephron progenitor exhaustion through their accelerated differentiation in pyrroline-5-carboxylate reductases 1 (Pycr1) and 2 (Pycr2) double-knockout kidneys. Pycr1/Pycr2-deficient progenitors showed normal cell survival, indicating no changes in cellular stress. Our results suggest that MAPK/ERK-dependent metabolism functionally participates in nephron progenitor maintenance by monitoring pyruvate and proline biogenesis in developing kidneys.
Collapse
Affiliation(s)
- Hyuk Nam Kwon
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, FIN-00014, Finland,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, FIN-00014, Finland
| | - Kristen Kurtzeborn
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, FIN-00014, Finland,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, FIN-00014, Finland
| | - Vladislav Iaroshenko
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, FIN-00014, Finland,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, FIN-00014, Finland
| | - Xing Jin
- College of Pharmacy, Natural Product Research Institute, Seoul National University, Seoul 08826, Korea
| | - Abigail Loh
- Institute of Molecular and Cellular Biology (IMCB), A*STAR, Singapore 138648, Singapore
| | - Nathalie Escande-Beillard
- Institute of Molecular and Cellular Biology (IMCB), A*STAR, Singapore 138648, Singapore,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, FIN-00014, Finland
| | - Bruno Reversade
- Institute of Molecular and Cellular Biology (IMCB), A*STAR, Singapore 138648, Singapore,Medical Genetics Department, School of Medicine, Koç University, Istanbul 34010, Turkey
| | - Sunghyouk Park
- College of Pharmacy, Natural Product Research Institute, Seoul National University, Seoul 08826, Korea
| | - Satu Kuure
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, FIN-00014, Finland,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, FIN-00014, Finland,GM-unit, Laboratory Animal Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, FIN-00014, Finland,Author for correspondence ()
| |
Collapse
|
25
|
Tain YL, Hsu CN. Hypertension of Developmental Origins: Consideration of Gut Microbiome in Animal Models. Biomedicines 2022; 10:biomedicines10040875. [PMID: 35453625 PMCID: PMC9030804 DOI: 10.3390/biomedicines10040875] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/29/2022] [Accepted: 04/08/2022] [Indexed: 11/29/2022] Open
Abstract
Hypertension is the leading cause of global disease burden. Hypertension can arise from early life. Animal models are valuable for giving cogent evidence of a causal relationship between various environmental insults in early life and the hypertension of developmental origins in later life. These insults consist of maternal malnutrition, maternal medical conditions, medication use, and exposure to environmental chemicals/toxins. There is a burgeoning body of evidence on maternal insults can shift gut microbiota, resulting in adverse offspring outcomes later in life. Emerging evidence suggests that gut microbiota dysbiosis is involved in hypertension of developmental origins, while gut microbiota-targeted therapy, if applied early, is able to help prevent hypertension in later life. This review discusses the innovative use of animal models in addressing the mechanisms behind hypertension of developmental origins. We will also highlight the application of animal models to elucidate how the gut microbiota connects with other core mechanisms, and the potential of gut microbiota-targeted therapy as a novel preventive strategy to prevent hypertension of developmental origins. These animal models have certainly enhanced our understanding of hypertension of developmental origins, closing the knowledge gap between animal models and future clinical translation.
Collapse
Affiliation(s)
- You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-975-368-975; Fax: +886-7733-8009
| |
Collapse
|
26
|
Piezo2 expression and its alteration by mechanical forces in mouse mesangial cells and renin-producing cells. Sci Rep 2022; 12:4197. [PMID: 35273307 PMCID: PMC8913706 DOI: 10.1038/s41598-022-07987-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/01/2022] [Indexed: 11/10/2022] Open
Abstract
The kidney plays a central role in body fluid homeostasis. Cells in the glomeruli and juxtaglomerular apparatus sense mechanical forces and modulate glomerular filtration and renin release. However, details of mechanosensory systems in these cells are unclear. Piezo2 is a recently identified mechanically activated ion channel found in various tissues, especially sensory neurons. Herein, we examined Piezo2 expression and regulation in mouse kidneys. RNAscope in situ hybridization revealed that Piezo2 expression was highly localized in mesangial cells and juxtaglomerular renin-producing cells. Immunofluorescence assays detected GFP signals in mesangial cells and juxtaglomerular renin-producing cells of Piezo2GFP reporter mice. Piezo2 transcripts were observed in the Foxd1-positive stromal progenitor cells of the metanephric mesenchyme in the developing mouse kidney, which are precursors of mesangial cells and renin-producing cells. In a mouse model of dehydration, Piezo2 expression was downregulated in mesangial cells and upregulated in juxtaglomerular renin-producing cells, along with the overproduction of renin and enlargement of the area of renin-producing cells. Furthermore, the expression of the renin coding gene Ren1 was reduced by Piezo2 knockdown in cultured juxtaglomerular As4.1 cells under static and stretched conditions. These data suggest pivotal roles for Piezo2 in the regulation of glomerular filtration and body fluid balance.
Collapse
|
27
|
Namestnikov M, Dekel B. Moving To A New Dimension: 3D Kidney Cultures For Kidney Regeneration. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Tajima K, Yagi H, Morisaku T, Nishi K, Kushige H, Kojima H, Higashi H, Kuroda K, Kitago M, Adachi S, Natsume T, Nishimura K, Oya M, Kitagawa Y. An organ-derived extracellular matrix triggers in situ kidney regeneration in a preclinical model. NPJ Regen Med 2022; 7:18. [PMID: 35228532 PMCID: PMC8885654 DOI: 10.1038/s41536-022-00213-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/07/2022] [Indexed: 01/20/2023] Open
Abstract
It has not been considered that nephrons regenerate in adult mammals. We present that an organ-derived extracellular matrix in situ induces nephron regeneration in a preclinical model. A porcine kidney-derived extracellular matrix was sutured onto the surface of partial nephrectomy (PN)-treated kidney. Twenty-eight days after implantation, glomeruli, vessels, and renal tubules, characteristic of nephrons, were histologically observed within the matrix. No fibrillogenesis was observed in the matrix nor the matrix-sutured kidney, although this occurred in a PN kidney without the matrix, indicating the structures were newly induced by the matrix. The expression of renal progenitor markers, including Sall1, Six2, and WT-1, within the matrix supported the induction of nephron regeneration by the matrix. Furthermore, active blood flow was observed inside the matrix using computed tomography. The matrix provides structural and functional foundations for the development of cell-free scaffolds with a remarkably low risk of immune rejection and cancerization.
Collapse
|
29
|
Liu G, Liu X, Yang Y. Comparative transcriptome analysis of miRNA in hydronephrosis male children caused by ureteropelvic junction obstruction with or without renal functional injury. PeerJ 2022; 10:e12962. [PMID: 35237468 PMCID: PMC8884061 DOI: 10.7717/peerj.12962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 01/27/2022] [Indexed: 01/11/2023] Open
Abstract
MicroRNAs (miRNAs or miRs) are non-coding RNAs that contribute to pathological processes of various kidney diseases. Renal function injury represents a final common outcome of congenital obstructive nephropathy and has attracted a great deal of attention. However the molecular mechanisms are still not fully established. In this study, we compared transcriptome sequencing data of miRNAs of renal tissues from congenital hydronephrosis children with or without renal functional injury, in order to better understand whether microRNAs could play important roles in renal functional injury after ureteropelvic junction obstruction. A total of 22 microRNAs with significant changes in their expression were identified. Five microRNAs were up-regulated and 17 microRNAs were down-regulated in the renal tissues of the hydronephrosis patients with renal function injury compared with those without renal function injury. MicroRNA target genes were predicted by three major online miRNA target prediction algorithms, and all these mRNAs were used to perform the gene ontology analysis and Kyoto Encyclopedia of Gene and Genomes pathway analysis. Then, twelve candidate human and rat homologous miRNAs were selected for validation using RT-qPCR in vitro and in vivo; only miR-187-3p had a trend identical to that detected by the sequencing results among the human tissues, in vivo and in vitro experimental models. In addition, we found that the change of miR-187-3p in vivo was consistent with results in vitro models and showed a decrease trend in time dependence. These results provided a detailed catalog of candidate miRNAs to investigate their regulatory role in renal injury of congenital hydronephrosis, indicating that they may serve as candidate biomarkers or therapeutic targets in the future.
Collapse
Affiliation(s)
- Ge Liu
- Urology Division, Pediatric Surgery Department, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Xin Liu
- Urology Division, Pediatric Surgery Department, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Yi Yang
- Urology Division, Pediatric Surgery Department, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| |
Collapse
|
30
|
Wilson SB, Howden SE, Vanslambrouck JM, Dorison A, Alquicira-Hernandez J, Powell JE, Little MH. DevKidCC allows for robust classification and direct comparisons of kidney organoid datasets. Genome Med 2022. [PMID: 35189942 DOI: 10.1101/2021.01.20.427346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
BACKGROUND While single-cell transcriptional profiling has greatly increased our capacity to interrogate biology, accurate cell classification within and between datasets is a key challenge. This is particularly so in pluripotent stem cell-derived organoids which represent a model of a developmental system. Here, clustering algorithms and selected marker genes can fail to accurately classify cellular identity while variation in analyses makes it difficult to meaningfully compare datasets. Kidney organoids provide a valuable resource to understand kidney development and disease. However, direct comparison of relative cellular composition between protocols has proved challenging. Hence, an unbiased approach for classifying cell identity is required. METHODS The R package, scPred, was trained on multiple single cell RNA-seq datasets of human fetal kidney. A hierarchical model classified cellular subtypes into nephron, stroma and ureteric epithelial elements. This model, provided in the R package DevKidCC ( github.com/KidneyRegeneration/DevKidCC ), was then used to predict relative cell identity within published kidney organoid datasets generated using distinct cell lines and differentiation protocols, interrogating the impact of such variations. The package contains custom functions for the display of differential gene expression within cellular subtypes. RESULTS DevKidCC was used to directly compare between distinct kidney organoid protocols, identifying differences in relative proportions of cell types at all hierarchical levels of the model and highlighting variations in stromal and unassigned cell types, nephron progenitor prevalence and relative maturation of individual epithelial segments. Of note, DevKidCC was able to distinguish distal nephron from ureteric epithelium, cell types with overlapping profiles that have previously confounded analyses. When applied to a variation in protocol via the addition of retinoic acid, DevKidCC identified a consequential depletion of nephron progenitors. CONCLUSIONS The application of DevKidCC to kidney organoids reproducibly classifies component cellular identity within distinct single-cell datasets. The application of the tool is summarised in an interactive Shiny application, as are examples of the utility of in-built functions for data presentation. This tool will enable the consistent and rapid comparison of kidney organoid protocols, driving improvements in patterning to kidney endpoints and validating new approaches.
Collapse
Affiliation(s)
- Sean B Wilson
- Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Victoria, Parkville, Australia
| | - Sara E Howden
- Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Victoria, Parkville, Australia
| | | | - Aude Dorison
- Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria, Australia
| | - Jose Alquicira-Hernandez
- Garvan-Weizmann Centre for Cellular Genomics, The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Joseph E Powell
- Garvan-Weizmann Centre for Cellular Genomics, The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- UNSW Cellular Genomics Futures Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Melissa H Little
- Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria, Australia.
- Department of Paediatrics, The University of Melbourne, Victoria, Parkville, Australia.
- Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, Parkville, Australia.
- Novo Nordisk Foundation Centre for Stem Cell Medicine, Copenhagen, Denmark.
| |
Collapse
|
31
|
Wilson SB, Howden SE, Vanslambrouck JM, Dorison A, Alquicira-Hernandez J, Powell JE, Little MH. DevKidCC allows for robust classification and direct comparisons of kidney organoid datasets. Genome Med 2022; 14:19. [PMID: 35189942 PMCID: PMC8862535 DOI: 10.1186/s13073-022-01023-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 02/08/2022] [Indexed: 12/20/2022] Open
Abstract
Background While single-cell transcriptional profiling has greatly increased our capacity to interrogate biology, accurate cell classification within and between datasets is a key challenge. This is particularly so in pluripotent stem cell-derived organoids which represent a model of a developmental system. Here, clustering algorithms and selected marker genes can fail to accurately classify cellular identity while variation in analyses makes it difficult to meaningfully compare datasets. Kidney organoids provide a valuable resource to understand kidney development and disease. However, direct comparison of relative cellular composition between protocols has proved challenging. Hence, an unbiased approach for classifying cell identity is required. Methods The R package, scPred, was trained on multiple single cell RNA-seq datasets of human fetal kidney. A hierarchical model classified cellular subtypes into nephron, stroma and ureteric epithelial elements. This model, provided in the R package DevKidCC (github.com/KidneyRegeneration/DevKidCC), was then used to predict relative cell identity within published kidney organoid datasets generated using distinct cell lines and differentiation protocols, interrogating the impact of such variations. The package contains custom functions for the display of differential gene expression within cellular subtypes. Results DevKidCC was used to directly compare between distinct kidney organoid protocols, identifying differences in relative proportions of cell types at all hierarchical levels of the model and highlighting variations in stromal and unassigned cell types, nephron progenitor prevalence and relative maturation of individual epithelial segments. Of note, DevKidCC was able to distinguish distal nephron from ureteric epithelium, cell types with overlapping profiles that have previously confounded analyses. When applied to a variation in protocol via the addition of retinoic acid, DevKidCC identified a consequential depletion of nephron progenitors. Conclusions The application of DevKidCC to kidney organoids reproducibly classifies component cellular identity within distinct single-cell datasets. The application of the tool is summarised in an interactive Shiny application, as are examples of the utility of in-built functions for data presentation. This tool will enable the consistent and rapid comparison of kidney organoid protocols, driving improvements in patterning to kidney endpoints and validating new approaches. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-022-01023-z.
Collapse
Affiliation(s)
- Sean B Wilson
- Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Victoria, Parkville, Australia
| | - Sara E Howden
- Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Victoria, Parkville, Australia
| | | | - Aude Dorison
- Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria, Australia
| | - Jose Alquicira-Hernandez
- Garvan-Weizmann Centre for Cellular Genomics, The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Joseph E Powell
- Garvan-Weizmann Centre for Cellular Genomics, The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia.,UNSW Cellular Genomics Futures Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Melissa H Little
- Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria, Australia. .,Department of Paediatrics, The University of Melbourne, Victoria, Parkville, Australia. .,Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, Parkville, Australia. .,Novo Nordisk Foundation Centre for Stem Cell Medicine, Copenhagen, Denmark.
| |
Collapse
|
32
|
Clugston A, Bodnar A, Cerqueira DM, Phua YL, Lawler A, Boggs K, Pfenning A, Ho J, Kostka D. Chromatin accessibility and microRNA expression in nephron progenitor cells during kidney development. Genomics 2022; 114:278-291. [PMID: 34942352 PMCID: PMC8792369 DOI: 10.1016/j.ygeno.2021.12.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 01/03/2023]
Abstract
Mammalian nephrons originate from a population of nephron progenitor cells, and changes in these cells' transcriptomes contribute to the cessation of nephrogenesis, an important determinant of nephron number. To characterize microRNA (miRNA) expression and identify putative cis-regulatory regions, we collected nephron progenitor cells from mouse kidneys at embryonic day 14.5 and postnatal day zero and assayed small RNA expression and transposase-accessible chromatin. We detect expression of 1104 miRNA (114 with expression changes), and 46,374 chromatin accessible regions (2103 with changes in accessibility). Genome-wide, our data highlight processes like cellular differentiation, cell migration, extracellular matrix interactions, and developmental signaling pathways. Furthermore, they identify new candidate cis-regulatory elements for Eya1 and Pax8, both genes with a role in nephron progenitor cell differentiation. Finally, we associate expression-changing miRNAs, including let-7-5p, miR-125b-5p, miR-181a-2-3p, and miR-9-3p, with candidate cis-regulatory elements and target genes. These analyses highlight new putative cis-regulatory loci for miRNA in nephron progenitors.
Collapse
Affiliation(s)
- Andrew Clugston
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Rangos Research Center, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA,Department of Pediatrics, Division of Nephrology, University of Pittsburgh School of Medicine, PA, USA
| | - Andrew Bodnar
- Rangos Research Center, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA,Department of Pediatrics, Division of Nephrology, University of Pittsburgh School of Medicine, PA, USA
| | - Débora Malta Cerqueira
- Rangos Research Center, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA,Department of Pediatrics, Division of Nephrology, University of Pittsburgh School of Medicine, PA, USA
| | - Yu Leng Phua
- Rangos Research Center, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA,Division of Genetic and Genomic Medicine, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA,Department of Pathology, Clinical Biochemical Genetics Laboratory, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Alyssa Lawler
- Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA,Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA,Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Kristy Boggs
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Andreas Pfenning
- Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA,Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jacqueline Ho
- Rangos Research Center, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA,Department of Pediatrics, Division of Nephrology, University of Pittsburgh School of Medicine, PA, USA,Co-Corresponding authors:Dr. Dennis Kostka, Rangos Research Center 8117, Department of Developmental Biology, 530 45th St., Pittsburgh, Pennsylvania 15224, USA, Phone: 412-692-9905, ; Dr. Jacqueline Ho, Rangos Research Center 5127, Department of Pediatrics, 530 45th St., Pittsburgh, Pennsylvania 15224, USA, Phone: 412-692-5303,
| | - Dennis Kostka
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Department of Computational & Systems Biology and Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Co-Corresponding authors:Dr. Dennis Kostka, Rangos Research Center 8117, Department of Developmental Biology, 530 45th St., Pittsburgh, Pennsylvania 15224, USA, Phone: 412-692-9905, ; Dr. Jacqueline Ho, Rangos Research Center 5127, Department of Pediatrics, 530 45th St., Pittsburgh, Pennsylvania 15224, USA, Phone: 412-692-5303,
| |
Collapse
|
33
|
Little MH, Humphreys BD. Regrow or Repair: An Update on Potential Regenerative Therapies for the Kidney. J Am Soc Nephrol 2022; 33:15-32. [PMID: 34789545 PMCID: PMC8763179 DOI: 10.1681/asn.2021081073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Fifteen years ago, this journal published a review outlining future options for regenerating the kidney. At that time, stem cell populations were being identified in multiple tissues, the concept of stem cell recruitment to a site of injury was of great interest, and the possibility of postnatal renal stem cells was growing in momentum. Since that time, we have seen the advent of human induced pluripotent stem cells, substantial advances in our capacity to both sequence and edit the genome, global and spatial transcriptional analysis down to the single-cell level, and a pandemic that has challenged our delivery of health care to all. This article will look back over this period of time to see how our view of kidney development, disease, repair, and regeneration has changed and envision a future for kidney regeneration and repair over the next 15 years.
Collapse
Affiliation(s)
- Melissa H. Little
- Murdoch Children’s Research Institute, Parkville, Melbourne, Victoria, Australia,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Melbourne, Victoria, Australia,Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Melbourne, Victoria, Australia
| | - Benjamin D. Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, Missouri,Department of Developmental Biology, Washington University in St. Louis School of Medicine, Missouri
| |
Collapse
|
34
|
Generation of Induced Nephron Progenitor-like Cells from Human Urine-Derived Cells. Int J Mol Sci 2021; 22:ijms222413449. [PMID: 34948246 PMCID: PMC8708572 DOI: 10.3390/ijms222413449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 01/13/2023] Open
Abstract
Background: Regenerative medicine strategies employing nephron progenitor cells (NPCs) are a viable approach that is worthy of substantial consideration as a promising cell source for kidney diseases. However, the generation of induced nephron progenitor-like cells (iNPCs) from human somatic cells remains a major challenge. Here, we describe a novel method for generating NPCs from human urine-derived cells (UCs) that can undergo long-term expansion in a serum-free condition. Results: Here, we generated iNPCs from human urine-derived cells by forced expression of the transcription factors OCT4, SOX2, KLF4, c-MYC, and SLUG, followed by exposure to a cocktail of defined small molecules. These iNPCs resembled human embryonic stem cell-derived NPCs in terms of their morphology, biological characteristics, differentiation potential, and global gene expression and underwent a long-term expansion in serum-free conditions. Conclusion: This study demonstrates that human iNPCs can be readily generated and expanded, which will facilitate their broad applicability in a rapid, efficient, and patient-specific manner, particularly holding the potential as a transplantable cell source for patients with kidney disease.
Collapse
|
35
|
Perico L, Morigi M, Pezzotta A, Corna D, Brizi V, Conti S, Zanchi C, Sangalli F, Trionfini P, Buttò S, Xinaris C, Tomasoni S, Zoja C, Remuzzi G, Benigni A, Imberti B. Post-translational modifications by SIRT3 de-2-hydroxyisobutyrylase activity regulate glycolysis and enable nephrogenesis. Sci Rep 2021; 11:23580. [PMID: 34880332 PMCID: PMC8655075 DOI: 10.1038/s41598-021-03039-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/26/2021] [Indexed: 01/07/2023] Open
Abstract
Abnormal kidney development leads to lower nephron number, predisposing to renal diseases in adulthood. In embryonic kidneys, nephron endowment is dictated by the availability of nephron progenitors, whose self-renewal and differentiation require a relatively repressed chromatin state. More recently, NAD+-dependent deacetylase sirtuins (SIRTs) have emerged as possible regulators that link epigenetic processes to the metabolism. Here, we discovered a novel role for the NAD+-dependent deacylase SIRT3 in kidney development. In the embryonic kidney, SIRT3 was highly expressed only as a short isoform, with nuclear and extra-nuclear localisation. The nuclear SIRT3 did not act as deacetylase but exerted de-2-hydroxyisobutyrylase activity on lysine residues of histone proteins. Extra-nuclear SIRT3 regulated lysine 2-hydroxyisobutyrylation (Khib) levels of phosphofructokinase (PFK) and Sirt3 deficiency increased PFK Khib levels, inducing a glycolysis boost. This altered Khib landscape in Sirt3−/− metanephroi was associated with decreased nephron progenitors, impaired nephrogenesis and a reduced number of nephrons. These data describe an unprecedented role of SIRT3 in controlling early renal development through the regulation of epigenetics and metabolic processes.
Collapse
Affiliation(s)
- Luca Perico
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Marina Morigi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Anna Pezzotta
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Daniela Corna
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Valerio Brizi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Sara Conti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Cristina Zanchi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Fabio Sangalli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Piera Trionfini
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Sara Buttò
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Christodoulos Xinaris
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Susanna Tomasoni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Carlamaria Zoja
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Ariela Benigni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Barbara Imberti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy.
| |
Collapse
|
36
|
Bais AS, Cerqueira DM, Clugston A, Bodnar AJ, Ho J, Kostka D. Single-cell RNA sequencing reveals differential cell cycle activity in key cell populations during nephrogenesis. Sci Rep 2021; 11:22434. [PMID: 34789782 PMCID: PMC8599654 DOI: 10.1038/s41598-021-01790-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 10/27/2021] [Indexed: 02/08/2023] Open
Abstract
The kidney is a complex organ composed of more than 30 terminally differentiated cell types that all are required to perform its numerous homeostatic functions. Defects in kidney development are a significant cause of chronic kidney disease in children, which can lead to kidney failure that can only be treated by transplant or dialysis. A better understanding of molecular mechanisms that drive kidney development is important for designing strategies to enhance renal repair and regeneration. In this study, we profiled gene expression in the developing mouse kidney at embryonic day 14.5 at single-cell resolution. Consistent with previous studies, clusters with distinct transcriptional signatures clearly identify major compartments and cell types of the developing kidney. Cell cycle activity distinguishes between the "primed" and "self-renewing" sub-populations of nephron progenitors, with increased expression of the cell cycle-related genes Birc5, Cdca3, Smc2 and Smc4 in "primed" nephron progenitors. In addition, augmented expression of cell cycle related genes Birc5, Cks2, Ccnb1, Ccnd1 and Tuba1a/b was detected in immature distal tubules, suggesting cell cycle regulation may be required for early events of nephron patterning and tubular fusion between the distal nephron and collecting duct epithelia.
Collapse
Affiliation(s)
- Abha S Bais
- Department of Developmental Biology, Rangos Research Center 8117, University of Pittsburgh School of Medicine, 530 45th St, Pittsburgh, PA, 15224, USA
| | - Débora M Cerqueira
- Rangos Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
- Division of Nephrology, Department of Pediatrics, Rangos Research Center 5127, University of Pittsburgh School of Medicine, 530 45th St, Pittsburgh, PA, 15224, USA
| | - Andrew Clugston
- Department of Developmental Biology, Rangos Research Center 8117, University of Pittsburgh School of Medicine, 530 45th St, Pittsburgh, PA, 15224, USA
- Rangos Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
- Division of Nephrology, Department of Pediatrics, Rangos Research Center 5127, University of Pittsburgh School of Medicine, 530 45th St, Pittsburgh, PA, 15224, USA
| | - Andrew J Bodnar
- Rangos Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
- Division of Nephrology, Department of Pediatrics, Rangos Research Center 5127, University of Pittsburgh School of Medicine, 530 45th St, Pittsburgh, PA, 15224, USA
| | - Jacqueline Ho
- Rangos Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.
- Division of Nephrology, Department of Pediatrics, Rangos Research Center 5127, University of Pittsburgh School of Medicine, 530 45th St, Pittsburgh, PA, 15224, USA.
| | - Dennis Kostka
- Department of Developmental Biology, Rangos Research Center 8117, University of Pittsburgh School of Medicine, 530 45th St, Pittsburgh, PA, 15224, USA.
- Department of Computational and Systems Biology and Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
37
|
Cwiek A, Suzuki M, deRonde K, Conaway M, Bennett KM, El Dahr S, Reidy KJ, Charlton JR. Premature differentiation of nephron progenitor cell and dysregulation of gene pathways critical to kidney development in a model of preterm birth. Sci Rep 2021; 11:21667. [PMID: 34737344 PMCID: PMC8569166 DOI: 10.1038/s41598-021-00489-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/05/2021] [Indexed: 12/31/2022] Open
Abstract
Preterm birth is a leading cause of neonatal morbidity. Survivors have a greater risk for kidney dysfunction and hypertension. Little is known about the molecular changes that occur in the kidney of individuals born preterm. Here, we demonstrate that mice delivered two days prior to full term gestation undergo premature cessation of nephrogenesis, resulting in a lower glomerular density. Kidneys from preterm and term groups exhibited differences in gene expression profiles at 20- and 27-days post-conception, including significant differences in the expression of fat-soluble vitamin-related genes. Kidneys of the preterm mice exhibited decreased proportions of endothelial cells and a lower expression of genes promoting angiogenesis compared to the term group. Kidneys from the preterm mice also had altered nephron progenitor subpopulations, early Six2 depletion, and altered Jag1 expression in the nephrogenic zone, consistent with premature differentiation of nephron progenitor cells. In conclusion, preterm birth alone was sufficient to shorten the duration of nephrogenesis and cause premature differentiation of nephron progenitor cells. These candidate genes and pathways may provide targets to improve kidney health in preterm infants.
Collapse
Affiliation(s)
- Aleksandra Cwiek
- Division of Nephrology, Department of Pediatrics, University of Virginia, Box 800386, Charlottesville, VA, 22903, USA
- Cell & Developmental Biology Graduate Program, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Masako Suzuki
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Kimberly deRonde
- Division of Nephrology, Department of Pediatrics, University of Virginia, Box 800386, Charlottesville, VA, 22903, USA
| | - Mark Conaway
- University of Virginia Health System, Charlottesville, VA, USA
- Division of Translational Research and Applied Statistics, Department of Public Health Sciences, University of Virginia School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Kevin M Bennett
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Samir El Dahr
- Department of Pediatrics, Tulane University School of Medicine and Children's Hospital of New Orleans, New Orleans, LA, USA
| | - Kimberly J Reidy
- Division of Nephrology, Department of Pediatrics, Children's Hospital at Montefiore, New York, NY, USA
| | - Jennifer R Charlton
- Division of Nephrology, Department of Pediatrics, University of Virginia, Box 800386, Charlottesville, VA, 22903, USA.
| |
Collapse
|
38
|
Jarmas AE, Brunskill EW, Chaturvedi P, Salomonis N, Kopan R. Progenitor translatome changes coordinated by Tsc1 increase perception of Wnt signals to end nephrogenesis. Nat Commun 2021; 12:6332. [PMID: 34732708 PMCID: PMC8566581 DOI: 10.1038/s41467-021-26626-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/17/2021] [Indexed: 11/29/2022] Open
Abstract
Mammalian nephron endowment is determined by the coordinated cessation of nephrogenesis in independent niches. Here we report that translatome analysis in Tsc1+/- nephron progenitor cells from mice with elevated nephron numbers reveals how differential translation of Wnt antagonists over agonists tips the balance between self-renewal and differentiation. Wnt agonists are poorly translated in young niches, resulting in an environment with low R-spondin and high Fgf20 promoting self-renewal. In older niches we find increased translation of Wnt agonists, including R-spondin and the signalosome-promoting Tmem59, and low Fgf20, promoting differentiation. This suggests that the tipping point for nephron progenitor exit from the niche is controlled by the gradual increase in stability and possibly clustering of Wnt/Fzd complexes in individual cells, enhancing the response to ureteric bud-derived Wnt9b inputs and driving synchronized differentiation. As predicted by these findings, removing one Rspo3 allele in nephron progenitors delays cessation and increases nephron numbers in vivo.
Collapse
Affiliation(s)
- Alison E Jarmas
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Eric W Brunskill
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Praneet Chaturvedi
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Raphael Kopan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
39
|
Pou Casellas C, Jansen K, Rookmaaker MB, Clevers H, Verhaar MC, Masereeuw R. Regulation of Solute Carriers OCT2 and OAT1/3 in the Kidney: A Phylogenetic, Ontogenetic and Cell Dynamic Perspective. Physiol Rev 2021; 102:993-1024. [PMID: 34486394 DOI: 10.1152/physrev.00009.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Over the course of more than 500 million years, the kidneys have undergone a remarkable evolution from primitive nephric tubes to intricate filtration-reabsorption systems that maintain homeostasis and remove metabolic end products from the body. The evolutionarily conserved solute carriers Organic Cation Transporter 2 (OCT2), and Organic Anion Transporters 1 and 3 (OAT1/3) coordinate the active secretion of a broad range of endogenous and exogenous substances, many of which accumulate in the blood of patients with kidney failure despite dialysis. Harnessing OCT2 and OAT1/3 through functional preservation or regeneration could alleviate the progression of kidney disease. Additionally, it would improve current in vitro test models that lose their expression in culture. With this review, we explore OCT2 and OAT1/3 regulation using different perspectives: phylogenetic, ontogenetic and cell dynamic. Our aim is to identify possible molecular targets to both help prevent or compensate for the loss of transport activity in patients with kidney disease, and to enable endogenous OCT2 and OAT1/3 induction in vitro in order to develop better models for drug development.
Collapse
Affiliation(s)
- Carla Pou Casellas
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands.,Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
| | - Katja Jansen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Maarten B Rookmaaker
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Hans Clevers
- Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
40
|
Marciano DK. The Bloody Mystery of Glomerular Tuft Development. J Am Soc Nephrol 2021; 32:2104-2106. [PMID: 34465603 PMCID: PMC8729830 DOI: 10.1681/asn.2021070900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Denise K Marciano
- Department of Internal Medicine (Nephrology) and Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
41
|
Li J, Geraldo LH, Dubrac A, Zarkada G, Eichmann A. Slit2-Robo Signaling Promotes Glomerular Vascularization and Nephron Development. J Am Soc Nephrol 2021; 32:2255-2272. [PMID: 34341180 PMCID: PMC8729857 DOI: 10.1681/asn.2020111640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/22/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Kidney function requires continuous blood filtration by glomerular capillaries. Disruption of glomerular vascular development or maintenance contributes to the pathogenesis of kidney diseases, but the signaling events regulating renal endothelium development remain incompletely understood. Here, we discovered a novel role of Slit2-Robo signaling in glomerular vascularization. Slit2 is a secreted polypeptide that binds to transmembrane Robo receptors and regulates axon guidance as well as ureteric bud branching and angiogenesis. METHODS We performed Slit2-alkaline phosphatase binding to kidney cryosections from mice with or without tamoxifen-inducible Slit2 or Robo1 and -2 deletions, and we characterized the phenotypes using immunohistochemistry, electron microscopy, and functional intravenous dye perfusion analysis. RESULTS Only the glomerular endothelium, but no other renal endothelial compartment, responded to Slit2 in the developing kidney vasculature. Induced Slit2 gene deletion or Slit2 ligand trap at birth affected nephrogenesis and inhibited vascularization of developing glomeruli by reducing endothelial proliferation and migration, leading to defective cortical glomerular perfusion and abnormal podocyte differentiation. Global and endothelial-specific Robo deletion showed that both endothelial and epithelial Robo receptors contributed to glomerular vascularization. CONCLUSIONS Our study provides new insights into the signaling pathways involved in glomerular vascular development and identifies Slit2 as a potential tool to enhance glomerular angiogenesis.
Collapse
Affiliation(s)
- Jinyu Li
- Department of Cellular and Molecular Physiology, Yale University Medical School, New Haven, Connecticut
- Cardiovascular Research Center, Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Luiz Henrique Geraldo
- Cardiovascular Research Center, Department of Internal Medicine, Yale University, New Haven, Connecticut
- Université de Paris, Paris Cardiovascular Research Center, Institut National de la Santé et de la Recherche Médicale U907, Paris, France
| | - Alexandre Dubrac
- Cardiovascular Research Center, Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Georgia Zarkada
- Cardiovascular Research Center, Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Anne Eichmann
- Department of Cellular and Molecular Physiology, Yale University Medical School, New Haven, Connecticut
- Cardiovascular Research Center, Department of Internal Medicine, Yale University, New Haven, Connecticut
- Université de Paris, Paris Cardiovascular Research Center, Institut National de la Santé et de la Recherche Médicale U907, Paris, France
| |
Collapse
|
42
|
Allardyce H, Kuhn D, Hernandez-Gerez E, Hensel N, Huang YT, Faller K, Gillingwater TH, Quondamatteo F, Claus P, Parson SH. Renal pathology in a mouse model of severe Spinal Muscular Atrophy is associated with downregulation of Glial Cell-Line Derived Neurotrophic Factor (GDNF). Hum Mol Genet 2021; 29:2365-2378. [PMID: 32588893 DOI: 10.1093/hmg/ddaa126] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/16/2022] Open
Abstract
Spinal muscular atrophy (SMA) occurs as a result of cell-ubiquitous depletion of the essential survival motor neuron (SMN) protein. Characteristic disease pathology is driven by a particular vulnerability of the ventral motor neurons of the spinal cord to decreased SMN. Perhaps not surprisingly, many other organ systems are also impacted by SMN depletion. The normal kidney expresses very high levels of SMN protein, equivalent to those found in the nervous system and liver, and levels are dramatically lowered by ~90-95% in mouse models of SMA. Taken together, these data suggest that renal pathology may be present in SMA. We have addressed this using an established mouse model of severe SMA. Nephron number, as assessed by gold standard stereological techniques, was significantly reduced. In addition, morphological assessment showed decreased renal vasculature, particularly of the glomerular capillary knot, dysregulation of nephrin and collagen IV, and ultrastructural changes in the trilaminar filtration layers of the nephron. To explore the molecular drivers underpinning this process, we correlated these findings with quantitative PCR measurements and protein analyses of glial cell-line-derived neurotrophic factor, a crucial factor in ureteric bud branching and subsequent nephron development. Glial cell-line-derived neurotrophic factor levels were significantly reduced at early stages of disease in SMA mice. Collectively, these findings reveal significant renal pathology in a mouse model of severe SMA, further reinforcing the need to develop and administer systemic therapies for this neuromuscular disease.
Collapse
Affiliation(s)
- Hazel Allardyce
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK.,Euan Macdonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Daniela Kuhn
- Hannover Medical School, Institute of Neuroanatomy and Cell Biology, Hannover 30625, Germany
| | - Elena Hernandez-Gerez
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK.,Euan Macdonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Niko Hensel
- Hannover Medical School, Institute of Neuroanatomy and Cell Biology, Hannover 30625, Germany.,Center for Systems Neuroscience (ZSN) Hannover, University of Veterinary Medicine Hannover, Hannover 30559, Germany
| | - Yu-Ting Huang
- Euan Macdonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH16 4SB, UK.,Edinburgh Medical School: Biomedical Sciences, College of Medicine & Veterinary Medicine, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Kiterie Faller
- Euan Macdonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH16 4SB, UK.,Edinburgh Medical School: Biomedical Sciences, College of Medicine & Veterinary Medicine, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Thomas H Gillingwater
- Euan Macdonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH16 4SB, UK.,Edinburgh Medical School: Biomedical Sciences, College of Medicine & Veterinary Medicine, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Fabio Quondamatteo
- Anatomy Facility, School of Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Peter Claus
- Hannover Medical School, Institute of Neuroanatomy and Cell Biology, Hannover 30625, Germany.,Center for Systems Neuroscience (ZSN) Hannover, University of Veterinary Medicine Hannover, Hannover 30559, Germany
| | - Simon H Parson
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK.,Euan Macdonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH16 4SB, UK
| |
Collapse
|
43
|
Wilm TP, Tanton H, Mutter F, Foisor V, Middlehurst B, Ward K, Benameur T, Hastie N, Wilm B. Restricted differentiative capacity of Wt1-expressing peritoneal mesothelium in postnatal and adult mice. Sci Rep 2021; 11:15940. [PMID: 34354169 PMCID: PMC8342433 DOI: 10.1038/s41598-021-95380-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 07/23/2021] [Indexed: 01/13/2023] Open
Abstract
Previously, genetic lineage tracing based on the mesothelial marker Wt1, appeared to show that peritoneal mesothelial cells have a range of differentiative capacities and are the direct progenitors of vascular smooth muscle in the intestine. However, it was not clear whether this was a temporally limited process or continued throughout postnatal life. Here, using a conditional Wt1-based genetic lineage tracing approach, we demonstrate that the postnatal and adult peritoneum covering intestine, mesentery and body wall only maintained itself and failed to contribute to other visceral tissues. Pulse-chase experiments of up to 6 months revealed that Wt1-expressing cells remained confined to the peritoneum and failed to differentiate into cellular components of blood vessels or other tissues underlying the peritoneum. Our data confirmed that the Wt1-lineage system also labelled submesothelial cells. Ablation of Wt1 in adult mice did not result in changes to the intestinal wall architecture. In the heart, we observed that Wt1-expressing cells maintained the epicardium and contributed to coronary vessels in newborn and adult mice. Our results demonstrate that Wt1-expressing cells in the peritoneum have limited differentiation capacities, and that contribution of Wt1-expressing cells to cardiac vasculature is based on organ-specific mechanisms.
Collapse
Affiliation(s)
- Thomas P Wilm
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Helen Tanton
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.,Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Fiona Mutter
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.,ZIK Plasmatis "Plasma Redox Effects", Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Veronica Foisor
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.,Department of Chemistry, University of Warwick, Coventry, UK
| | - Ben Middlehurst
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Kelly Ward
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Tarek Benameur
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.,Department of Biomedical Sciences, College of Medicine, King Faisal University, Al Ahsa, Kingdom of Saudi Arabia
| | - Nicholas Hastie
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh, UK
| | - Bettina Wilm
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
44
|
Kessel F, Steglich A, Hickmann L, Lira-Martinez R, Gerlach M, Sequeira-Lopez ML, Gomez RA, Hugo C, Todorov VT. Patterns of differentiation of renin lineage cells during nephrogenesis. Am J Physiol Renal Physiol 2021; 321:F378-F388. [PMID: 34338032 DOI: 10.1152/ajprenal.00151.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Developmentally heterogeneous renin expressing cells serve as progenitors for mural, glomerular and tubular cells during nephrogenesis and are collectively termed renin lineage cells (RLCs). In this study, we quantified different renal vascular and tubular cell types based on specific markers, assessed proliferation, and de-novo differentiation in the RLC population. We used kidney sections of mRenCre-mT/mG mice throughout nephrogenesis. Marker positivity was evaluated in whole digitalized sections. At embryonic day 16, RLCs appeared in the developing kidney, and expression of all stained markers in RLCs was observed. The proliferation rate of RLCs did not differ from the proliferation rate of non-RLCs. The RLCs expanded mainly by de-novo differentiation (neogenesis). The fractions of RLCs originating from the stromal progenitors of the metanephric mesenchyme (renin producing cells, vascular smooth muscle cells, mesangial cells) decreased during nephrogenesis. In contrast, aquaporin 2 positive RLCs in the collecting duct system that embryonically emerges almost exclusively from the ureteric bud, expanded postpartum. The cubilin positive RLC fraction in the proximal tubule, deriving from the cap mesenchyme, remained constant. During nephrogenesis, RLCs were continuously detectable in the vascular and tubular compartments of the kidney. Therein, various patterns of RLC differentiation that depend on the embryonic origin of the cells were identified.
Collapse
Affiliation(s)
- Friederike Kessel
- Department of Internal Medicine III, Division of Nephrology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Anne Steglich
- Department of Internal Medicine III, Division of Nephrology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Linda Hickmann
- Department of Internal Medicine III, Division of Nephrology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany.,Institute of Physiology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Ricardo Lira-Martinez
- Department of Internal Medicine III, Division of Nephrology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Michael Gerlach
- Department of Internal Medicine III, Division of Nephrology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany.,Core Facility Cellular Imaging (CFCI), University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Maria Luisa Sequeira-Lopez
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - R Ariel Gomez
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Christian Hugo
- Department of Internal Medicine III, Division of Nephrology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Vladimir T Todorov
- Department of Internal Medicine III, Division of Nephrology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| |
Collapse
|
45
|
Makayes Y, Resnick E, Hinden L, Aizenshtein E, Shlomi T, Kopan R, Nechama M, Volovelsky O. Increasing mTORC1 Pathway Activity or Methionine Supplementation during Pregnancy Reverses the Negative Effect of Maternal Malnutrition on the Developing Kidney. J Am Soc Nephrol 2021; 32:1898-1912. [PMID: 33958489 PMCID: PMC8455268 DOI: 10.1681/asn.2020091321] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/01/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Low nephron number at birth is associated with a high risk of CKD in adulthood because nephrogenesis is completed in utero. Poor intrauterine environment impairs nephron endowment via an undefined molecular mechanism. A calorie-restricted diet (CRD) mouse model examined the effect of malnutrition during pregnancy on nephron progenitor cells (NPCs). METHODS Daily caloric intake was reduced by 30% during pregnancy. mRNA expression, the cell cycle, and metabolic activity were evaluated in sorted Six2 NPCs. The results were validated using transgenic mice, oral nutrient supplementation, and organ cultures. RESULTS Maternal CRD is associated with low nephron number in offspring, compromising kidney function at an older age. RNA-seq identified cell cycle regulators and the mTORC1 pathway, among other pathways, that maternal malnutrition in NPCs modifies. Metabolomics analysis of NPCs singled out the methionine pathway as crucial for NPC proliferation and maintenance. Methionine deprivation reduced NPC proliferation and lowered NPC number per tip in embryonic kidney cultures, with rescue from methionine metabolite supplementation. Importantly, in vivo, the negative effect of caloric restriction on nephrogenesis was prevented by adding methionine to the otherwise restricted diet during pregnancy or by removing one Tsc1 allele in NPCs. CONCLUSIONS These findings show that mTORC1 signaling and methionine metabolism are central to the cellular and metabolic effects of malnutrition during pregnancy on NPCs, contributing to nephrogenesis and later, to kidney health in adulthood.
Collapse
Affiliation(s)
- Yaniv Makayes
- Pediatric Nephrology Unit and Research Lab, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Elad Resnick
- Pediatric Nephrology Unit and Research Lab, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Liad Hinden
- Faculty of Medicine, School of Pharmacy, Institute for Drug Research, The Hebrew University, Jerusalem, Israel
| | | | | | - Raphael Kopan
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Morris Nechama
- Pediatric Nephrology Unit and Research Lab, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Israel
- Wohl’s Translation Research Institute at Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Oded Volovelsky
- Pediatric Nephrology Unit and Research Lab, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Israel
- Wohl’s Translation Research Institute at Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
46
|
Enhancer decommissioning imposes an epigenetic barrier to sensory hair cell regeneration. Dev Cell 2021; 56:2471-2485.e5. [PMID: 34331868 DOI: 10.1016/j.devcel.2021.07.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/24/2021] [Accepted: 07/08/2021] [Indexed: 01/02/2023]
Abstract
Adult mammalian tissues such as heart, brain, retina, and the sensory structures of the inner ear do not effectively regenerate, although a latent capacity for regeneration exists at embryonic and perinatal times. We explored the epigenetic basis for this latent regenerative potential in the mouse inner ear and its rapid loss during maturation. In perinatal supporting cells, whose fate is maintained by Notch-mediated lateral inhibition, the hair cell enhancer network is epigenetically primed (H3K4me1) but silenced (active H3K27 de-acetylation and trimethylation). Blocking Notch signaling during the perinatal period of plasticity rapidly eliminates epigenetic silencing and allows supporting cells to transdifferentiate into hair cells. Importantly, H3K4me1 priming of the hair cell enhancers in supporting cells is removed during the first post-natal week, coinciding with the loss of transdifferentiation potential. We hypothesize that enhancer decommissioning during cochlear maturation contributes to the failure of hair cell regeneration in the mature organ of Corti.
Collapse
|
47
|
Leverrier-Penna S, Michel A, Lecante LL, Costet N, Suglia A, Desdoits-Lethimonier C, Boulay H, Viel R, Chemouny JM, Becker E, Lavoué V, Rolland AD, Dejucq-Rainsford N, Vigneau C, Mazaud-Guittot S. Exposure of human fetal kidneys to mild analgesics interferes with early nephrogenesis. FASEB J 2021; 35:e21718. [PMID: 34105801 DOI: 10.1096/fj.202100050r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 11/11/2022]
Abstract
Acetaminophen, aspirin, and ibuprofen are mild analgesics commonly used by pregnant women, the sole current recommendation being to avoid ibuprofen from the fifth month of gestation. The nephrotoxicity of these three analgesics is well documented in adults, as is their interference with prostaglandins biosynthesis. Here we investigated the effect of these analgesics on human first trimester kidneys ex vivo. We first evaluated prostaglandins biosynthesis functionality by performing a wide screening of prostaglandin expression patterns in first trimester human kidneys. We demonstrated that prostaglandins biosynthesis machinery is functional during early nephrogenesis. Human fetal kidney explants aged 7-12 developmental weeks were exposed ex vivo to ibuprofen, aspirin or acetaminophen for 7 days, and analyzed by histology, immunohistochemistry, and flow cytometry. This study has revealed that these analgesics induced a spectrum of abnormalities within early developing structures, ranging from cell death to a decline in differentiating glomeruli density. These results warrant caution for the use of these medicines during the first trimester of pregnancy.
Collapse
Affiliation(s)
- Sabrina Leverrier-Penna
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France.,Univ Poitiers, STIM, CNRS ERL7003, Poitiers, France
| | - Alain Michel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Laetitia L Lecante
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Nathalie Costet
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Antonio Suglia
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Christèle Desdoits-Lethimonier
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Hugoline Boulay
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Roselyne Viel
- University Rennes 1, CNRS, Inserm UMS Biosit, Core Facility H2P2, Rennes, France
| | - Jonathan M Chemouny
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Emmanuelle Becker
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Vincent Lavoué
- CHU Rennes, Service Gynécologie et Obstétrique, Rennes, France
| | - Antoine D Rolland
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Nathalie Dejucq-Rainsford
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Cécile Vigneau
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France.,Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Séverine Mazaud-Guittot
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| |
Collapse
|
48
|
Little MH. Returning to kidney development to deliver synthetic kidneys. Dev Biol 2021; 474:22-36. [PMID: 33333068 PMCID: PMC8052282 DOI: 10.1016/j.ydbio.2020.12.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/09/2020] [Indexed: 12/27/2022]
Abstract
There is no doubt that the development of transplantable synthetic kidneys could improve the outcome for the many millions of people worldwide suffering from chronic kidney disease. Substantial progress has been made in the last 6 years in the generation of kidney tissue from stem cells. However, the limited scale, incomplete cellular complexity and functional immaturity of such structures suggests we are some way from this goal. While developmental biology has successfully guided advances to date, these human kidney models are limited in their capacity for ongoing nephrogenesis and lack corticomedullary definition, a unified vasculature and a coordinated exit path for urinary filtrate. This review will reassess our developmental understanding of how the mammalian embryo manages to create kidneys, how this has informed our progress to date and how both engineering and developmental biology can continue to guide us towards a synthetic kidney.
Collapse
Affiliation(s)
- Melissa H Little
- Murdoch Children's Research Institute, Flemington Rd, Parkville, VIC, Australia; Department of Paediatrics, The University of Melbourne, VIC, Australia; Department of Anatomy and Neuroscience, The University of Melbourne, VIC, Australia.
| |
Collapse
|
49
|
Animal Models for DOHaD Research: Focus on Hypertension of Developmental Origins. Biomedicines 2021; 9:biomedicines9060623. [PMID: 34072634 PMCID: PMC8227380 DOI: 10.3390/biomedicines9060623] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence suggests that fetal programming through environmental exposure during a critical window of early life leads to long-term detrimental outcomes, by so-called developmental origins of health and disease (DOHaD). Hypertension can originate in early life. Animal models are essential for providing convincing evidence of a causal relationship between diverse early-life insults and the developmental programming of hypertension in later life. These insults include nutritional imbalances, maternal illnesses, exposure to environmental chemicals, and medication use. In addition to reviewing the various insults that contribute to hypertension of developmental origins, this review focuses on the benefits of animal models in addressing the underlying mechanisms by which early-life interventions can reprogram disease processes and prevent the development of hypertension. Our understanding of hypertension of developmental origins has been enhanced by each of these animal models, narrowing the knowledge gap between animal models and future clinical translation.
Collapse
|
50
|
Li H, Kurtzeborn K, Kupari J, Gui Y, Siefker E, Lu B, Mätlik K, Olfat S, Montaño-Rodríguez AR, Huh SH, Costantini F, Andressoo JO, Kuure S. Postnatal prolongation of mammalian nephrogenesis by excess fetal GDNF. Development 2021; 148:268366. [PMID: 34032268 PMCID: PMC8180252 DOI: 10.1242/dev.197475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 04/26/2021] [Indexed: 01/21/2023]
Abstract
Nephron endowment, defined during the fetal period, dictates renal and related cardiovascular health throughout life. We show here that, despite its negative effects on kidney growth, genetic increase of GDNF prolongs the nephrogenic program beyond its normal cessation. Multi-stage mechanistic analysis revealed that excess GDNF maintains nephron progenitors and nephrogenesis through increased expression of its secreted targets and augmented WNT signaling, leading to a two-part effect on nephron progenitor maintenance. Abnormally high GDNF in embryonic kidneys upregulates its known targets but also Wnt9b and Axin2, with concomitant deceleration of nephron progenitor proliferation. Decline of GDNF levels in postnatal kidneys normalizes the ureteric bud and creates a permissive environment for continuation of the nephrogenic program, as demonstrated by morphologically and molecularly normal postnatal nephron progenitor self-renewal and differentiation. These results establish that excess GDNF has a bi-phasic effect on nephron progenitors in mice, which can faithfully respond to GDNF dosage manipulation during the fetal and postnatal period. Our results suggest that sensing the signaling activity level is an important mechanism through which GDNF and other molecules contribute to nephron progenitor lifespan specification. Summary: Dosage of neurotropic factor GDNF regulates nephron progenitors and in utero growth factor augmentation can extend postnatal lifespan and differentiation of nephron progenitors.
Collapse
Affiliation(s)
- Hao Li
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland.,Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Kristen Kurtzeborn
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland.,Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Jussi Kupari
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Yujuan Gui
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Edward Siefker
- Department of Developmental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Benson Lu
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Kärt Mätlik
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland.,Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Soophie Olfat
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland.,Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Ana R Montaño-Rodríguez
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland.,Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Sung-Ho Huh
- Department of Developmental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Franklin Costantini
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Jaan-Olle Andressoo
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland.,Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland.,Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Satu Kuure
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland.,GM-unit, Laboratory Animal Centre, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|