1
|
Wood JA, Chaparala S, Bantang C, Chattopadhyay A, Wesesky MA, Kinchington PR, Nimgaonkar VL, Bloom DC, D'Aiuto L. RNA-Seq time-course analysis of neural precursor cell transcriptome in response to herpes simplex Virus-1 infection. J Neurovirol 2024; 30:131-145. [PMID: 38478163 PMCID: PMC11371869 DOI: 10.1007/s13365-024-01198-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 09/04/2024]
Abstract
The neurogenic niches within the central nervous system serve as essential reservoirs for neural precursor cells (NPCs), playing a crucial role in neurogenesis. However, these NPCs are particularly vulnerable to infection by the herpes simplex virus 1 (HSV-1). In the present study, we investigated the changes in the transcriptome of NPCs in response to HSV-1 infection using bulk RNA-Seq, compared to those of uninfected samples, at different time points post infection and in the presence or absence of antivirals. The results showed that NPCs upon HSV-1 infection undergo a significant dysregulation of genes playing a crucial role in aspects of neurogenesis, including genes affecting NPC proliferation, migration, and differentiation. Our analysis revealed that the CREB signaling, which plays a crucial role in the regulation of neurogenesis and memory consolidation, was the most consistantly downregulated pathway, even in the presence of antivirals. Additionally, cholesterol biosynthesis was significantly downregulated in HSV-1-infected NPCs. The findings from this study, for the first time, offer insights into the intricate molecular mechanisms that underlie the neurogenesis impairment associated with HSV-1 infection.
Collapse
Affiliation(s)
- Joel A Wood
- Western Psychiatric Institute and Clinic, Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 O'Hara Street, 15213, Pittsburgh, PA, USA
| | - Srilakshmi Chaparala
- Molecular Biology Information Service, Health Sciences Library System / Falk Library, University of Pittsburgh, M722 Alan Magee Scaife Hall / 3550 Terrace Street, 15261, Pittsburgh, PA, USA
| | - Cecilia Bantang
- Western Psychiatric Institute and Clinic, Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 O'Hara Street, 15213, Pittsburgh, PA, USA
| | - Ansuman Chattopadhyay
- Molecular Biology Information Service, Health Sciences Library System / Falk Library, University of Pittsburgh, M722 Alan Magee Scaife Hall / 3550 Terrace Street, 15261, Pittsburgh, PA, USA
| | - Maribeth A Wesesky
- Western Psychiatric Institute and Clinic, Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 O'Hara Street, 15213, Pittsburgh, PA, USA
| | - Paul R Kinchington
- Department of Ophthalmology, University of Pittsburgh, Suite 820, Eye & Ear Building, 203 Lothrop Street, 15213, Pittsburgh, PA, USA
| | - Vishwajit L Nimgaonkar
- Western Psychiatric Institute and Clinic, Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 O'Hara Street, 15213, Pittsburgh, PA, USA
- VA Pittsburgh Healthcare system at U.S. Department of Veterans Affairs, Pittsburgh, PA, USA
| | - David C Bloom
- Academic Research Building, Department of Molecular Genetics and Microbiology, University of Florida, 1200 Newell Drive, R2-231, 32610, Gainesville, FL, USA
| | - Leonardo D'Aiuto
- Western Psychiatric Institute and Clinic, Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 O'Hara Street, 15213, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Yao ZM, Sun XR, Huang J, Chen L, Dong SY. Astrocyte-Neuronal Communication and Its Role in Stroke. Neurochem Res 2023; 48:2996-3006. [PMID: 37329448 DOI: 10.1007/s11064-023-03966-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/19/2023]
Abstract
Astrocytes are the most abundant glial cells in the central nervous system. These cells are an important hub for intercellular communication. They participate in various pathophysiological processes, including synaptogenesis, metabolic transformation, scar production, and blood-brain barrier repair. The mechanisms and functional consequences of astrocyte-neuron signaling are more complex than previously thought. Stroke is a disease associated with neurons in which astrocytes also play an important role. Astrocytes respond to the alterations in the brain microenvironment after stroke, providing required substances to neurons. However, they can also have harmful effects. In this review, we have summarized the function of astrocytes, their association with neurons, and two paradigms of the inflammatory response, which suggest that targeting astrocytes may be an effective strategy for treating stroke.
Collapse
Affiliation(s)
- Zi-Meng Yao
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
| | - Xiao-Rong Sun
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
| | - Jie Huang
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
| | - Lei Chen
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
| | - Shu-Ying Dong
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China.
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu, Anhui, China.
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, Anhui, China.
| |
Collapse
|
3
|
Kong H, Song Q, Hu W, Guo S, Xiang D, Huang S, Xu X, He J, Pan L, Tao R, Yu H, Huang J. MicroRNA-29a-3p prevents Schistosoma japonicum-induced liver fibrosis by targeting Roundabout homolog 1 in hepatic stellate cells. Parasit Vectors 2023; 16:184. [PMID: 37280619 DOI: 10.1186/s13071-023-05791-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/27/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Schistosomiasis is a serious but neglected parasitic disease in humans that may lead to liver fibrosis and death. Activated hepatic stellate cells (HSCs) are the principal effectors that promote the accumulation of extracellular matrix (ECM) proteins during hepatic fibrosis. Aberrant microRNA-29 expression is involved in the development of fibrotic diseases. However, less is known about the role of miR-29 in Schistosoma japonicum (S. japonicum)-induced hepatic fibrosis. METHODS The levels of microRNA-29a-3p (miR-29a-3p) and Roundabout homolog 1 (Robo1) were examined in liver tissues during S. japonicum infection. The possible involvement of the miR-29a-3p-Robo1 signaling pathway was determined. We used MIR29A conditional knock-in mice and mice injected with an miR-29a-3p agomir to investigate the role of miR-29a-3p in schistosomiasis-induced hepatic fibrosis. The functional contributions of miR-29a-3p-Robo1 signaling in liver fibrosis and HSC activation were investigated using primary mouse HSCs and the human HSC cell line LX-2. RESULTS MiR-29a-3p was downregulated in humans and mice with schistosome-induced fibrosis, and Robo1 was upregulated in liver tissues. The miR-29a-3p targeted Robo1 and negatively regulated its expression. Additionally, the expression level of miR-29a-3p in schistosomiasis patients was highly correlated with the portal vein and spleen thickness diameter, which represent the severity of fibrosis. Furthermore, we demonstrated that efficient and sustained elevation of miR-29a-3p reversed schistosome-induced hepatic fibrosis. Notably, we showed that miR-29a-3p targeted Robo1 in HSCs to prevent the activation of HSCs during infection. CONCLUSIONS Our results provide experimental and clinical evidence that the miR-29a-3p-Robo1 signaling pathway in HSCs plays an important role in the development of hepatic fibrosis. Therefore, our study highlights the potential of miR-29a-3p as a therapeutic intervention for schistosomiasis and other fibrotic diseases.
Collapse
Affiliation(s)
- Hongyan Kong
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiqin Song
- Cancer Institute, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
| | - Wenjiang Hu
- Department of Gastroenterology, The People's Hospital of Jianshi, Enshi, China
| | - Shusen Guo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dandan Xiang
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuaiwen Huang
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Xu
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinan He
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lanyue Pan
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ran Tao
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haijing Yu
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaquan Huang
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Tabata H, Mori D, Matsuki T, Yoshizaki K, Asai M, Nakayama A, Ozaki N, Nagata KI. Histological Analysis of a Mouse Model of the 22q11.2 Microdeletion Syndrome. Biomolecules 2023; 13:biom13050763. [PMID: 37238632 DOI: 10.3390/biom13050763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
22q11.2 deletion syndrome (22q11.2DS) is associated with a high risk of developing various psychiatric and developmental disorders, including schizophrenia and early-onset Parkinson's disease. Recently, a mouse model of this disease, Del(3.0Mb)/+, mimicking the 3.0 Mb deletion which is most frequently found in patients with 22q11.2DS, was generated. The behavior of this mouse model was extensively studied and several abnormalities related to the symptoms of 22q11.2DS were found. However, the histological features of their brains have been little addressed. Here we describe the cytoarchitectures of the brains of Del(3.0Mb)/+ mice. First, we investigated the overall histology of the embryonic and adult cerebral cortices, but they were indistinguishable from the wild type. However, the morphologies of individual neurons were slightly but significantly changed from the wild type counterparts in a region-specific manner. The dendritic branches and/or dendritic spine densities of neurons in the medial prefrontal cortex, nucleus accumbens, and primary somatosensory cortex were reduced. We also observed reduced axon innervation of dopaminergic neurons into the prefrontal cortex. Given these affected neurons function together as the dopamine system to control animal behaviors, the impairment we observed may explain a part of the abnormal behaviors of Del(3.0Mb)/+ mice and the psychiatric symptoms of 22q11.2DS.
Collapse
Affiliation(s)
- Hidenori Tabata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
| | - Daisuke Mori
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Brain and Mind Research Center, Nagoya University, Nagoya 466-8550, Japan
| | - Tohru Matsuki
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
| | - Kaichi Yoshizaki
- Department of Disease Model, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
| | - Masato Asai
- Department of Disease Model, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
| | - Atsuo Nakayama
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
- Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Norio Ozaki
- Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Chikusa-ku, Nagoya 464-0814, Japan
| | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
- Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
5
|
Vascular and Neuronal Network Formation Regulated by Growth Factors and Guidance Cues. Life (Basel) 2023; 13:life13020283. [PMID: 36836641 PMCID: PMC9965086 DOI: 10.3390/life13020283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/15/2022] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Blood vessels and nerves are distributed throughout the body and show a high degree of anatomical parallelism and functional crosstalk. These networks transport oxygen, nutrients, and information to maintain homeostasis. Thus, disruption of network formation can cause diseases. Nervous system development requires the navigation of the axons of neurons to their correct destination. Blood vessel formation occurs via vasculogenesis and angiogenesis. Vasculogenesis is the process of de novo blood vessel formation, and angiogenesis is the process whereby endothelial cells sprout from pre-existing vessels. Both developmental processes require guidance molecules to establish precise branching patterns of these systems in the vertebrate body. These network formations are regulated by growth factors, such as vascular endothelial growth factor; and guidance cues, such as ephrin, netrin, semaphorin, and slit. Neuronal and vascular structures extend lamellipodia and filopodia, which sense guidance cues that are mediated by the Rho family and actin cytosol rearrangement, to migrate to the goal during development. Furthermore, endothelial cells regulate neuronal development and vice versa. In this review, we describe the guidance molecules that regulate neuronal and vascular network formation.
Collapse
|
6
|
Herring CA, Simmons RK, Freytag S, Poppe D, Moffet JJD, Pflueger J, Buckberry S, Vargas-Landin DB, Clément O, Echeverría EG, Sutton GJ, Alvarez-Franco A, Hou R, Pflueger C, McDonald K, Polo JM, Forrest ARR, Nowak AK, Voineagu I, Martelotto L, Lister R. Human prefrontal cortex gene regulatory dynamics from gestation to adulthood at single-cell resolution. Cell 2022; 185:4428-4447.e28. [PMID: 36318921 DOI: 10.1016/j.cell.2022.09.039] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 07/19/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Abstract
Human brain development is underpinned by cellular and molecular reconfigurations continuing into the third decade of life. To reveal cell dynamics orchestrating neural maturation, we profiled human prefrontal cortex gene expression and chromatin accessibility at single-cell resolution from gestation to adulthood. Integrative analyses define the dynamic trajectories of each cell type, revealing major gene expression reconfiguration at the prenatal-to-postnatal transition in all cell types followed by continuous reconfiguration into adulthood and identifying regulatory networks guiding cellular developmental programs, states, and functions. We uncover links between expression dynamics and developmental milestones, characterize the diverse timing of when cells acquire adult-like states, and identify molecular convergence from distinct developmental origins. We further reveal cellular dynamics and their regulators implicated in neurological disorders. Finally, using this reference, we benchmark cell identities and maturation states in organoid models. Together, this captures the dynamic regulatory landscape of human cortical development.
Collapse
Affiliation(s)
- Charles A Herring
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Rebecca K Simmons
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Saskia Freytag
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Daniel Poppe
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Joel J D Moffet
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Jahnvi Pflueger
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Sam Buckberry
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Dulce B Vargas-Landin
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Olivier Clément
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Enrique Goñi Echeverría
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Gavin J Sutton
- School of Biotechnology and Biomolecular Sciences, Cellular Genomics Futures Institute, and the RNA Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Alba Alvarez-Franco
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | - Rui Hou
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Christian Pflueger
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Kerrie McDonald
- Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jose M Polo
- Adelaide Centre for Epigenetics and the South Australian Immunogenomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3000, Australia
| | - Alistair R R Forrest
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Anna K Nowak
- Medical School, University of Western Australia, Perth, WA 6009, Australia
| | - Irina Voineagu
- School of Biotechnology and Biomolecular Sciences, Cellular Genomics Futures Institute, and the RNA Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Luciano Martelotto
- Adelaide Centre for Epigenetics and the South Australian Immunogenomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia; University of Melbourne Centre for Cancer Research, Victoria Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
| | - Ryan Lister
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| |
Collapse
|
7
|
Buisan R, Moriano J, Andirkó A, Boeckx C. A Brain Region-Specific Expression Profile for Genes Within Large Introgression Deserts and Under Positive Selection in Homo sapiens. Front Cell Dev Biol 2022; 10:824740. [PMID: 35557944 PMCID: PMC9086289 DOI: 10.3389/fcell.2022.824740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Analyses of ancient DNA from extinct hominins have provided unique insights into the complex evolutionary history of Homo sapiens, intricately related to that of the Neanderthals and the Denisovans as revealed by several instances of admixture events. These analyses have also allowed the identification of introgression deserts: genomic regions in our species that are depleted of "archaic" haplotypes. The presence of genes like FOXP2 in these deserts has been taken to be suggestive of brain-related functional differences between Homo species. Here, we seek a deeper characterization of these regions and the specific expression trajectories of genes within them, taking into account signals of positive selection in our lineage. Analyzing publicly available transcriptomic data from the human brain at different developmental stages, we found that structures outside the cerebral neocortex, in particular the cerebellum, the striatum and the mediodorsal nucleus of the thalamus show the most divergent transcriptomic profiles when considering genes within large introgression deserts and under positive selection.
Collapse
Affiliation(s)
| | - Juan Moriano
- Universitat de Barcelona, Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems, Barcelona, Spain
| | - Alejandro Andirkó
- Universitat de Barcelona, Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems, Barcelona, Spain
| | - Cedric Boeckx
- Universitat de Barcelona, Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems, Barcelona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
8
|
de Torres-Jurado A, Manzanero-Ortiz S, Carmena A. Glial-secreted Netrins regulate Robo1/Rac1-Cdc42 signaling threshold levels during Drosophila asymmetric neural stem/progenitor cell division. Curr Biol 2022; 32:2174-2188.e3. [DOI: 10.1016/j.cub.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 02/21/2022] [Accepted: 04/01/2022] [Indexed: 01/14/2023]
|
9
|
Nian FS, Hou PS. Evolving Roles of Notch Signaling in Cortical Development. Front Neurosci 2022; 16:844410. [PMID: 35422684 PMCID: PMC9001970 DOI: 10.3389/fnins.2022.844410] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/15/2022] [Indexed: 01/09/2023] Open
Abstract
Expansion of the neocortex is thought to pave the way toward acquisition of higher cognitive functions in mammals. The highly conserved Notch signaling pathway plays a crucial role in this process by regulating the size of the cortical progenitor pool, in part by controlling the balance between self-renewal and differentiation. In this review, we introduce the components of Notch signaling pathway as well as the different mode of molecular mechanisms, including trans- and cis-regulatory processes. We focused on the recent findings with regard to the expression pattern and levels in regulating neocortical formation in mammals and its interactions with other known signaling pathways, including Slit–Robo signaling and Shh signaling. Finally, we review the functions of Notch signaling pathway in different species as well as other developmental process, mainly somitogenesis, to discuss how modifications to the Notch signaling pathway can drive the evolution of the neocortex.
Collapse
Affiliation(s)
- Fang-Shin Nian
- Institute of Anatomy and Cell Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pei-Shan Hou
- Institute of Anatomy and Cell Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- *Correspondence: Pei-Shan Hou,
| |
Collapse
|
10
|
Coll M, Ariño S, Mártinez-Sánchez C, Garcia-Pras E, Gallego J, Moles A, Aguilar-Bravo B, Blaya D, Vallverdú J, Rubio-Tomás T, Lozano JJ, Pose E, Graupera I, Fernández-Vidal A, Pol A, Bataller R, Geng JG, Ginès P, Fernandez M, Sancho-Bru P. Ductular reaction promotes intrahepatic angiogenesis through Slit2-Roundabout 1 signaling. Hepatology 2022; 75:353-368. [PMID: 34490644 PMCID: PMC8766889 DOI: 10.1002/hep.32140] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 07/08/2021] [Accepted: 08/06/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND AIMS Ductular reaction (DR) expands in chronic liver diseases and correlates with disease severity. Besides its potential role in liver regeneration, DR plays a role in the wound-healing response of the liver, promoting periductular fibrosis and inflammatory cell recruitment. However, there is no information regarding its role in intrahepatic angiogenesis. In the current study we investigated the potential contribution of DR cells to hepatic vascular remodeling during chronic liver disease. APPROACH AND RESULTS In mouse models of liver injury, DR cells express genes involved in angiogenesis. Among angiogenesis-related genes, the expression of Slit2 and its receptor Roundabout 1 (Robo1) was localized in DR cells and neoangiogenic vessels, respectively. The angiogenic role of the Slit2-Robo1 pathway in chronic liver disease was confirmed in ROBO1/2-/+ mice treated with 3,5-diethoxycarbonyl-1,4-dihydrocollidine, which displayed reduced intrahepatic neovascular density compared to wild-type mice. However, ROBO1/2 deficiency did not affect angiogenesis in partial hepatectomy. In patients with advanced alcohol-associated disease, angiogenesis was associated with DR, and up-regulation of SLIT2-ROBO1 correlated with DR and disease severity. In vitro, human liver-derived organoids produced SLIT2 and induced tube formation of endothelial cells. CONCLUSIONS Overall, our data indicate that DR expansion promotes angiogenesis through the Slit2-Robo1 pathway and recognize DR cells as key players in the liver wound-healing response.
Collapse
MESH Headings
- Animals
- Blood Vessels/metabolism
- Chronic Disease
- Disease Progression
- Gene Expression
- Gene Ontology
- Hepatitis, Alcoholic/pathology
- Hepatitis, Alcoholic/physiopathology
- Humans
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/metabolism
- Liver/metabolism
- Liver/physiopathology
- Liver Diseases, Alcoholic/genetics
- Liver Diseases, Alcoholic/metabolism
- Liver Diseases, Alcoholic/pathology
- Liver Diseases, Alcoholic/physiopathology
- Mice
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/pathology
- Neovascularization, Physiologic/genetics
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Organoids
- Patient Acuity
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Signal Transduction/genetics
- Stem Cells
- Up-Regulation
- Vascular Remodeling
- Wound Healing
- Roundabout Proteins
Collapse
Affiliation(s)
- Mar Coll
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Medicine department, Faculty of Medicine, University of Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Catalonia, Spain
| | - Silvia Ariño
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Celia Mártinez-Sánchez
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Ester Garcia-Pras
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Catalonia, Spain
| | - Javier Gallego
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Catalonia, Spain
| | - Anna Moles
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona, Spanish National Research Council, Barcelona, Catalonia, Spain
- Liver Unit, Hospital Clínic, Barcelona, Catalonia, Spain
| | - Beatriz Aguilar-Bravo
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Delia Blaya
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Julia Vallverdú
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Teresa Rubio-Tomás
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Juan Jose Lozano
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Catalonia, Spain
| | - Elisa Pose
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Catalonia, Spain
- Liver Unit, Hospital Clínic, Barcelona, Catalonia, Spain
| | - Isabel Graupera
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Medicine department, Faculty of Medicine, University of Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Catalonia, Spain
- Liver Unit, Hospital Clínic, Barcelona, Catalonia, Spain
| | - Andrea Fernández-Vidal
- Cell compartments and Signaling Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Albert Pol
- Cell compartments and Signaling Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Department of Biomedical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - Ramón Bataller
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Jian-Guo Geng
- Department of Biologic and Material Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Pere Ginès
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Medicine department, Faculty of Medicine, University of Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Catalonia, Spain
- Liver Unit, Hospital Clínic, Barcelona, Catalonia, Spain
| | - Mercedes Fernandez
- Medicine department, Faculty of Medicine, University of Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Catalonia, Spain
| | - Pau Sancho-Bru
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Medicine department, Faculty of Medicine, University of Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Catalonia, Spain
| |
Collapse
|
11
|
Mahadevan V, Mitra A, Zhang Y, Yuan X, Peltekian A, Chittajallu R, Esnault C, Maric D, Rhodes C, Pelkey KA, Dale R, Petros TJ, McBain CJ. NMDARs Drive the Expression of Neuropsychiatric Disorder Risk Genes Within GABAergic Interneuron Subtypes in the Juvenile Brain. Front Mol Neurosci 2021; 14:712609. [PMID: 34630033 PMCID: PMC8500094 DOI: 10.3389/fnmol.2021.712609] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Medial ganglionic eminence (MGE)-derived parvalbumin (PV)+, somatostatin (SST)+and Neurogliaform (NGFC)-type cortical and hippocampal interneurons, have distinct molecular, anatomical, and physiological properties. However, the molecular mechanisms regulating their maturation remain poorly understood. Here, via single-cell transcriptomics, we show that the obligate NMDA-type glutamate receptor (NMDAR) subunit gene Grin1 mediates transcriptional regulation of gene expression in specific subtypes of MGE-derived interneurons, leading to altered subtype abundances. Notably, MGE-specific early developmental Grin1 loss results in a broad downregulation of diverse transcriptional, synaptogenic and membrane excitability regulatory programs in the juvenile brain. These widespread gene expression abnormalities mirror aberrations that are typically associated with neurodevelopmental disorders. Our study hence provides a road map for the systematic examination of NMDAR signaling in interneuron subtypes, revealing potential MGE-specific genetic targets that could instruct future therapies of psychiatric disorders.
Collapse
Affiliation(s)
- Vivek Mahadevan
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| | - Apratim Mitra
- Bioinformatics and Scientific Programming Core, NICHD, Bethesda, MD, United States
| | - Yajun Zhang
- Unit on Cellular and Molecular Neurodevelopment, NICHD, Bethesda, MD, United States
| | - Xiaoqing Yuan
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| | - Areg Peltekian
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| | - Ramesh Chittajallu
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| | - Caroline Esnault
- Bioinformatics and Scientific Programming Core, NICHD, Bethesda, MD, United States
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, United States
| | - Christopher Rhodes
- Unit on Cellular and Molecular Neurodevelopment, NICHD, Bethesda, MD, United States
| | - Kenneth A Pelkey
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| | - Ryan Dale
- Bioinformatics and Scientific Programming Core, NICHD, Bethesda, MD, United States
| | - Timothy J Petros
- Unit on Cellular and Molecular Neurodevelopment, NICHD, Bethesda, MD, United States
| | - Chris J McBain
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| |
Collapse
|
12
|
Melrose J, Hayes AJ, Bix G. The CNS/PNS Extracellular Matrix Provides Instructive Guidance Cues to Neural Cells and Neuroregulatory Proteins in Neural Development and Repair. Int J Mol Sci 2021; 22:5583. [PMID: 34070424 PMCID: PMC8197505 DOI: 10.3390/ijms22115583] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The extracellular matrix of the PNS/CNS is unusual in that it is dominated by glycosaminoglycans, especially hyaluronan, whose space filling and hydrating properties make essential contributions to the functional properties of this tissue. Hyaluronan has a relatively simple structure but its space-filling properties ensure micro-compartments are maintained in the brain ultrastructure, ensuring ionic niches and gradients are maintained for optimal cellular function. Hyaluronan has cell-instructive, anti-inflammatory properties and forms macro-molecular aggregates with the lectican CS-proteoglycans, forming dense protective perineuronal net structures that provide neural and synaptic plasticity and support cognitive learning. AIMS To highlight the central nervous system/peripheral nervous system (CNS/PNS) and its diverse extracellular and cell-associated proteoglycans that have cell-instructive properties regulating neural repair processes and functional recovery through interactions with cell adhesive molecules, receptors and neuroregulatory proteins. Despite a general lack of stabilising fibrillar collagenous and elastic structures in the CNS/PNS, a sophisticated dynamic extracellular matrix is nevertheless important in tissue form and function. CONCLUSIONS This review provides examples of the sophistication of the CNS/PNS extracellular matrix, showing how it maintains homeostasis and regulates neural repair and regeneration.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Sydney Medical School, Northern, The University of Sydney, Sydney, NSW 2052, Australia
- Faculty of Medicine and Health, The University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| | - Anthony J. Hayes
- Bioimaging Research Hub, Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK;
| | - Gregory Bix
- Clinical Neuroscience Research Center, Departments of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| |
Collapse
|
13
|
Rafipay A, Dun X, Parkinson DB, Erskine L, Vargesson N. Knockdown of slit signaling during limb development leads to a reduction in humerus length. Dev Dyn 2021; 250:1340-1357. [DOI: 10.1002/dvdy.284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022] Open
Affiliation(s)
- Alexandra Rafipay
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition University of Aberdeen Aberdeen UK
| | - Xin‐Peng Dun
- Peninsula Medical School, Faculty of Health University of Plymouth Plymouth UK
| | - David B Parkinson
- Peninsula Medical School, Faculty of Health University of Plymouth Plymouth UK
| | - Lynda Erskine
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition University of Aberdeen Aberdeen UK
| | - Neil Vargesson
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition University of Aberdeen Aberdeen UK
| |
Collapse
|
14
|
Abstract
The mammalian cerebral cortex is the pinnacle of brain evolution, reaching its maximum complexity in terms of neuron number, diversity and functional circuitry. The emergence of this outstanding complexity begins during embryonic development, when a limited number of neural stem and progenitor cells manage to generate myriads of neurons in the appropriate numbers, types and proportions, in a process called neurogenesis. Here we review the current knowledge on the regulation of cortical neurogenesis, beginning with a description of the types of progenitor cells and their lineage relationships. This is followed by a review of the determinants of neuron fate, the molecular and genetic regulatory mechanisms, and considerations on the evolution of cortical neurogenesis in vertebrates leading to humans. We finish with an overview on how dysregulation of neurogenesis is a leading cause of human brain malformations and functional disabilities.
Collapse
Affiliation(s)
- Ana Villalba
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Magdalena Götz
- Institute for Stem Cell Research, Helmholtz Zentrum München & Biomedical Center, Ludwig-Maximilians Universitaet, Planegg-Martinsried, Germany
| | - Víctor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain.
| |
Collapse
|
15
|
Gonda Y, Namba T, Hanashima C. Beyond Axon Guidance: Roles of Slit-Robo Signaling in Neocortical Formation. Front Cell Dev Biol 2020; 8:607415. [PMID: 33425915 PMCID: PMC7785817 DOI: 10.3389/fcell.2020.607415] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
The formation of the neocortex relies on intracellular and extracellular signaling molecules that are involved in the sequential steps of corticogenesis, ranging from the proliferation and differentiation of neural progenitor cells to the migration and dendrite formation of neocortical neurons. Abnormalities in these steps lead to disruption of the cortical structure and circuit, and underly various neurodevelopmental diseases, including dyslexia and autism spectrum disorder (ASD). In this review, we focus on the axon guidance signaling Slit-Robo, and address the multifaceted roles of Slit-Robo signaling in neocortical development. Recent studies have clarified the roles of Slit-Robo signaling not only in axon guidance but also in progenitor cell proliferation and migration, and the maturation of neocortical neurons. We further discuss the etiology of neurodevelopmental diseases, which are caused by defects in Slit-Robo signaling during neocortical formation.
Collapse
Affiliation(s)
- Yuko Gonda
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| | - Takashi Namba
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Neuroscience Center, HiLIFE – Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Carina Hanashima
- Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
16
|
Mascheretti S, Riva V, Feng B, Trezzi V, Andreola C, Giorda R, Villa M, Dionne G, Gori S, Marino C, Facoetti A. The Mediation Role of Dynamic Multisensory Processing Using Molecular Genetic Data in Dyslexia. Brain Sci 2020; 10:brainsci10120993. [PMID: 33339203 PMCID: PMC7765588 DOI: 10.3390/brainsci10120993] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 12/21/2022] Open
Abstract
Although substantial heritability has been reported and candidate genes have been identified, we are far from understanding the etiopathogenetic pathways underlying developmental dyslexia (DD). Reading-related endophenotypes (EPs) have been established. Until now it was unknown whether they mediated the pathway from gene to reading (dis)ability. Thus, in a sample of 223 siblings from nuclear families with DD and 79 unrelated typical readers, we tested four EPs (i.e., rapid auditory processing, rapid automatized naming, multisensory nonspatial attention and visual motion processing) and 20 markers spanning five DD-candidate genes (i.e., DYX1C1, DCDC2, KIAA0319, ROBO1 and GRIN2B) using a multiple-predictor/multiple-mediator framework. Our results show that rapid auditory and visual motion processing are mediators in the pathway from ROBO1-rs9853895 to reading. Specifically, the T/T genotype group predicts impairments in rapid auditory and visual motion processing which, in turn, predict poorer reading skills. Our results suggest that ROBO1 is related to reading via multisensory temporal processing. These findings support the use of EPs as an effective approach to disentangling the complex pathways between candidate genes and behavior.
Collapse
Affiliation(s)
- Sara Mascheretti
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (S.M.); (V.R.); (V.T.); (C.A.)
| | - Valentina Riva
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (S.M.); (V.R.); (V.T.); (C.A.)
| | - Bei Feng
- École de Psychologie, Laval University, Québec, QC G1V 0A6, Canada; (B.F.); (G.D.)
| | - Vittoria Trezzi
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (S.M.); (V.R.); (V.T.); (C.A.)
| | - Chiara Andreola
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (S.M.); (V.R.); (V.T.); (C.A.)
- Laboratoire de Psychologie du Développement et de l’Éducation de l’Enfant (LaPsyDÉ), Universitè de Paris, 75005 Paris, France
| | - Roberto Giorda
- Molecular Biology Laboratory, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (R.G.); (M.V.)
| | - Marco Villa
- Molecular Biology Laboratory, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (R.G.); (M.V.)
| | - Ginette Dionne
- École de Psychologie, Laval University, Québec, QC G1V 0A6, Canada; (B.F.); (G.D.)
| | - Simone Gori
- Department of Human and Social Sciences, University of Bergamo, 24100 Bergamo, Italy;
| | - Cecilia Marino
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (S.M.); (V.R.); (V.T.); (C.A.)
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- The Division of Child and Youth Psychiatry, Centre for Addiction and Mental Health (CAMH), Toronto, ON M6J 1H4, Canada
- Correspondence: (C.M.); (A.F.)
| | - Andrea Facoetti
- Developmental Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, 35131 Padua, Italy
- Correspondence: (C.M.); (A.F.)
| |
Collapse
|
17
|
Ekins TG, Mahadevan V, Zhang Y, D'Amour JA, Akgül G, Petros TJ, McBain CJ. Emergence of non-canonical parvalbumin-containing interneurons in hippocampus of a murine model of type I lissencephaly. eLife 2020; 9:e62373. [PMID: 33150866 PMCID: PMC7673787 DOI: 10.7554/elife.62373] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022] Open
Abstract
Type I lissencephaly is a neuronal migration disorder caused by haploinsuffiency of the PAFAH1B1 (mouse: Pafah1b1) gene and is characterized by brain malformation, developmental delays, and epilepsy. Here, we investigate the impact of Pafah1b1 mutation on the cellular migration, morphophysiology, microcircuitry, and transcriptomics of mouse hippocampal CA1 parvalbumin-containing inhibitory interneurons (PV+INTs). We find that WT PV+INTs consist of two physiological subtypes (80% fast-spiking (FS), 20% non-fast-spiking (NFS)) and four morphological subtypes. We find that cell-autonomous mutations within interneurons disrupts morphophysiological development of PV+INTs and results in the emergence of a non-canonical 'intermediate spiking (IS)' subset of PV+INTs. We also find that now dominant IS/NFS cells are prone to entering depolarization block, causing them to temporarily lose the ability to initiate action potentials and control network excitation, potentially promoting seizures. Finally, single-cell nuclear RNAsequencing of PV+INTs revealed several misregulated genes related to morphogenesis, cellular excitability, and synapse formation.
Collapse
Affiliation(s)
- Tyler G Ekins
- Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
- NIH-Brown University Graduate Partnership ProgramProvidenceUnited States
| | - Vivek Mahadevan
- Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Yajun Zhang
- Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - James A D'Amour
- Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
- Postdoctoral Research Associate Training Program, National Institute of General Medical SciencesBethesdaUnited States
| | - Gülcan Akgül
- Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Timothy J Petros
- Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Chris J McBain
- Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
18
|
He XF, Li G, Li LL, Li MY, Liang FY, Chen X, Hu XQ. Overexpression of Slit2 decreases neuronal excitotoxicity, accelerates glymphatic clearance, and improves cognition in a multiple microinfarcts model. Mol Brain 2020; 13:135. [PMID: 33028376 PMCID: PMC7542754 DOI: 10.1186/s13041-020-00659-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/21/2020] [Indexed: 01/17/2023] Open
Abstract
Background Cerebral microinfarcts (MIs) lead to progressive cognitive impairments in the elderly, and there is currently no effective preventative strategy due to uncertainty about the underlying pathogenic mechanisms. One possibility is the dysfunction of GABAergic transmission and ensuing excitotoxicity. Dysfunction of GABAergic transmission induces excitotoxicity, which contributes to stroke pathology, but the mechanism has kept unknown. The secreted leucine-rich repeat (LRR) family protein slit homologue 2 (Slit2) upregulates GABAergic activity and protects against global cerebral ischemia, but the neuroprotective efficacy of Slit2 against MIs has not been examined. Methods Middle-aged Wild type (WT) and Slit2-Tg mice were divided into sham and MI treatment groups. MIs were induced in parietal cortex by laser-evoked arteriole occlusion. Spatial memory was then compared between sham and MI groups using the Morris water maze (MWM) task. In addition, neuronal activity, blood brain barrier (BBB) permeability, and glymphatic clearance in peri-infarct areas were compared using two-photon imaging, while GABAergic transmission, microglial activation, neuronal loss, and altered cortical connectivity were compared by immunofluorescent staining or western blotting. Results Microinfarcts increased the amplitude and frequency of spontaneous intracellular Ca2+ signals, reduced neuronal survival and connectivity within parietal cortex, decreased the number of GABAergic interneurons and expression of vesicular GABA transporter (VGAT), induced neuroinflammation, and impaired both glymphatic clearance and spatial memory. Alternatively, Slit2 overexpression attenuated dysfunctional neuronal Ca2+ signaling, protected against neuronal death in the peri-infarct area as well as loss of parietal cortex connectivity, increased GABAergic interneuron number and VGAT expression, attenuated neuroinflammation, and improved both glymphatic clearance and spatial memory. Conclusion Our results strongly suggest that overexpression of Slit2 protected against the dysfunction in MIs, which is a potential therapeutic target for cognition impairment in the elderly.
Collapse
Affiliation(s)
- Xiao-Fei He
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong, China
| | - Ge Li
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510663, Guangdong, China
| | - Li-Li Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong, China
| | - Ming-Yue Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong, China
| | - Feng-Yin Liang
- Department of Neurology, National Key clinical department and Key discipline of Neurology, Guangdong Key Laboratory for diagnosis and Treatment of Major Neurological diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Xi Chen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong, China.
| | - Xi-Quan Hu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong, China.
| |
Collapse
|
19
|
Romanov RA, Tretiakov EO, Kastriti ME, Zupancic M, Häring M, Korchynska S, Popadin K, Benevento M, Rebernik P, Lallemend F, Nishimori K, Clotman F, Andrews WD, Parnavelas JG, Farlik M, Bock C, Adameyko I, Hökfelt T, Keimpema E, Harkany T. Molecular design of hypothalamus development. Nature 2020; 582:246-252. [PMID: 32499648 PMCID: PMC7292733 DOI: 10.1038/s41586-020-2266-0] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 03/05/2020] [Indexed: 12/21/2022]
Abstract
A wealth of specialized neuroendocrine command systems intercalated within the hypothalamus control the most fundamental physiological needs in vertebrates1,2. Nevertheless, we lack a developmental blueprint that integrates the molecular determinants of neuronal and glial diversity along temporal and spatial scales of hypothalamus development3. Here we combine single-cell RNA sequencing of 51,199 mouse cells of ectodermal origin, gene regulatory network (GRN) screens in conjunction with genome-wide association study-based disease phenotyping, and genetic lineage reconstruction to show that nine glial and thirty-three neuronal subtypes are generated by mid-gestation under the control of distinct GRNs. Combinatorial molecular codes that arise from neurotransmitters, neuropeptides and transcription factors are minimally required to decode the taxonomical hierarchy of hypothalamic neurons. The differentiation of γ-aminobutyric acid (GABA) and dopamine neurons, but not glutamate neurons, relies on quasi-stable intermediate states, with a pool of GABA progenitors giving rise to dopamine cells4. We found an unexpected abundance of chemotropic proliferation and guidance cues that are commonly implicated in dorsal (cortical) patterning5 in the hypothalamus. In particular, loss of SLIT-ROBO signalling impaired both the production and positioning of periventricular dopamine neurons. Overall, we identify molecular principles that shape the developmental architecture of the hypothalamus and show how neuronal heterogeneity is transformed into a multimodal neural unit to provide virtually infinite adaptive potential throughout life.
Collapse
Affiliation(s)
- Roman A. Romanov
- Department of Molecular Neurosciences, Center for Brain Research,
Medical University of Vienna, Vienna, Austria
- Department of Neuroscience, Biomedicum D7, Karolinska Institutet,
Solna, Sweden
| | - Evgenii O. Tretiakov
- Department of Molecular Neurosciences, Center for Brain Research,
Medical University of Vienna, Vienna, Austria
| | - Maria Eleni Kastriti
- Department of Molecular Neurosciences, Center for Brain Research,
Medical University of Vienna, Vienna, Austria
- Department of Physiology and Pharmacology, Biomedicum D6, Karolinska
Institutet, Solna, Sweden
| | - Maja Zupancic
- Department of Molecular Neurosciences, Center for Brain Research,
Medical University of Vienna, Vienna, Austria
| | - Martin Häring
- Department of Molecular Neurosciences, Center for Brain Research,
Medical University of Vienna, Vienna, Austria
| | - Solomiia Korchynska
- Department of Molecular Neurosciences, Center for Brain Research,
Medical University of Vienna, Vienna, Austria
| | - Konstantin Popadin
- Human Genomics of Infection and Immunity, School of Life Sciences,
Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Marco Benevento
- Department of Molecular Neurosciences, Center for Brain Research,
Medical University of Vienna, Vienna, Austria
| | - Patrick Rebernik
- Department of Molecular Neurosciences, Center for Brain Research,
Medical University of Vienna, Vienna, Austria
| | - Francois Lallemend
- Department of Neuroscience, Biomedicum D7, Karolinska Institutet,
Solna, Sweden
| | - Katsuhiko Nishimori
- Deptartment of Obesity and Internal Inflammation, Fukushima Medical
University, Fukushima City, Japan
| | - Frédéric Clotman
- Laboratory of Neural Differentiation, Institute of Neuroscience,
Université Catholique de Louvain, Brussels, Belgium
| | - William D. Andrews
- Department of Cell and Developmental Biology, University College
London, London, United Kingdom
| | - John G. Parnavelas
- Department of Cell and Developmental Biology, University College
London, London, United Kingdom
| | - Matthias Farlik
- CeMM Research Center for Molecular Medicine of the Austrian Academy
of Sciences, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna,
Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy
of Sciences, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna,
Vienna, Austria
| | - Igor Adameyko
- Department of Molecular Neurosciences, Center for Brain Research,
Medical University of Vienna, Vienna, Austria
- Department of Physiology and Pharmacology, Biomedicum D6, Karolinska
Institutet, Solna, Sweden
| | - Tomas Hökfelt
- Department of Neuroscience, Biomedicum D7, Karolinska Institutet,
Solna, Sweden
| | - Erik Keimpema
- Department of Molecular Neurosciences, Center for Brain Research,
Medical University of Vienna, Vienna, Austria
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research,
Medical University of Vienna, Vienna, Austria
- Department of Neuroscience, Biomedicum D7, Karolinska Institutet,
Solna, Sweden
| |
Collapse
|
20
|
Cárdenas A, Borrell V. Molecular and cellular evolution of corticogenesis in amniotes. Cell Mol Life Sci 2020; 77:1435-1460. [PMID: 31563997 PMCID: PMC11104948 DOI: 10.1007/s00018-019-03315-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/03/2019] [Accepted: 09/19/2019] [Indexed: 02/07/2023]
Abstract
The cerebral cortex varies dramatically in size and complexity between amniotes due to differences in neuron number and composition. These differences emerge during embryonic development as a result of variations in neurogenesis, which are thought to recapitulate modifications occurred during evolution that culminated in the human neocortex. Here, we review work from the last few decades leading to our current understanding of the evolution of neurogenesis and size of the cerebral cortex. Focused on specific examples across vertebrate and amniote phylogeny, we discuss developmental mechanisms regulating the emergence, lineage, complexification and fate of cortical germinal layers and progenitor cell types. At the cellular level, we discuss the fundamental impact of basal progenitor cells and the advent of indirect neurogenesis on the increased number and diversity of cortical neurons and layers in mammals, and on cortex folding. Finally, we discuss recent work that unveils genetic and molecular mechanisms underlying this progressive expansion and increased complexity of the amniote cerebral cortex during evolution, with a particular focus on those leading to human-specific features. Whereas new genes important in human brain development emerged the recent hominid lineage, regulation of the patterns and levels of activity of highly conserved signaling pathways are beginning to emerge as mechanisms of central importance in the evolutionary increase in cortical size and complexity across amniotes.
Collapse
Affiliation(s)
- Adrián Cárdenas
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas y Universidad Miguel Hernández, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Víctor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas y Universidad Miguel Hernández, 03550, Sant Joan d'Alacant, Alicante, Spain.
| |
Collapse
|
21
|
Su J, Charalambakis NE, Sabbagh U, Somaiya RD, Monavarfeshani A, Guido W, Fox MA. Retinal inputs signal astrocytes to recruit interneurons into visual thalamus. Proc Natl Acad Sci U S A 2020; 117:2671-2682. [PMID: 31964831 PMCID: PMC7007527 DOI: 10.1073/pnas.1913053117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Inhibitory interneurons comprise a fraction of the total neurons in the visual thalamus but are essential for sharpening receptive field properties and improving contrast-gain of retinogeniculate transmission. During early development, these interneurons undergo long-range migration from germinal zones, a process regulated by the innervation of the visual thalamus by retinal ganglion cells. Here, using transcriptomic approaches, we identified a motogenic cue, fibroblast growth factor 15 (FGF15), whose expression in the visual thalamus is regulated by retinal input. Targeted deletion of functional FGF15 in mice led to a reduction in thalamic GABAergic interneurons similar to that observed in the absence of retinal input. This loss may be attributed, at least in part, to misrouting of interneurons into nonvisual thalamic nuclei. Unexpectedly, expression analysis revealed that FGF15 is generated by thalamic astrocytes and not retino-recipient neurons. Thus, these data show that retinal inputs signal through astrocytes to direct the long-range recruitment of interneurons into the visual thalamus.
Collapse
Affiliation(s)
- Jianmin Su
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
| | - Naomi E Charalambakis
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202
| | - Ubadah Sabbagh
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061
| | - Rachana D Somaiya
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061
| | - Aboozar Monavarfeshani
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061
| | - William Guido
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202;
| | - Michael A Fox
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016;
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061
- Department of Pediatrics, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016
| |
Collapse
|
22
|
Kaur H, Xu N, Doycheva DM, Malaguit J, Tang J, Zhang JH. Recombinant Slit2 attenuates neuronal apoptosis via the Robo1-srGAP1 pathway in a rat model of neonatal HIE. Neuropharmacology 2019; 158:107727. [PMID: 31356825 PMCID: PMC6745244 DOI: 10.1016/j.neuropharm.2019.107727] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/02/2019] [Accepted: 07/25/2019] [Indexed: 12/21/2022]
Abstract
Apoptosis following hypoxic-ischemic injury to the brain plays a major role in neuronal cell death. The neonatal brain is more susceptible to injury as the cortical neurons are immature and there are lower levels of antioxidants. Slit2, an extracellular matrix protein, has been shown to be neuroprotective in various models of neurological diseases. However, there is no information about the role of Slit2 in neonatal hypoxia-ischemia. In this study, we evaluated the effect of Slit2 and its receptor Robo1 in a rat model with neonatal HIE. 10-day old rat pups were used to create the neonatal HIE model. The right common carotid artery was ligated followed by 2.5 h of hypoxia. Recombinant Slit2 was administered intranasally 1 h post HI, recombinant Robo1 was used as a decoy receptor and administered intranasally 1h before HI and srGAP1-siRNA was administered intracerebroventricularly 24 h before HI. Brain infarct area measurement, short-term and long-term neurological function tests, Western blot, immunofluorescence staining, Fluoro-Jade C staining, Nissl staining and TUNEL staining were the assessments done following drug administration. Recombinant Slit2 administration reduced neuronal apoptosis and neurological deficits after neonatal HIE which were reversed by co-administration of recombinant Robo1 and srGAP1-siRNA administration. Recombinant Slit2 showed improved outcomes possibly via the robo1-srGAP1 pathway which mediated the inhibition of RhoA. In this study, the results suggest that Slit2 may help in attenuation of apoptosis and could be a therapeutic agent for treatment of neonatal hypoxic ischemic encephalopathy.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Ningbo Xu
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Desislava Met Doycheva
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Jay Malaguit
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA; Department of Anesthesiology, Neurosurgery and Neurology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA.
| |
Collapse
|
23
|
Barber M, Andrews WD, Memi F, Gardener P, Ciantar D, Tata M, Ruhrberg C, Parnavelas JG. Vascular-Derived Vegfa Promotes Cortical Interneuron Migration and Proximity to the Vasculature in the Developing Forebrain. Cereb Cortex 2019; 28:2577-2593. [PMID: 29901792 PMCID: PMC5998991 DOI: 10.1093/cercor/bhy082] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Indexed: 12/29/2022] Open
Abstract
Vascular endothelial growth factor (Vegfa) is essential for promoting the vascularization of the embryonic murine forebrain. In addition, it directly influences neural development, although its role in the forming forebrain is less well elucidated. It was recently suggested that Vegfa may influence the development of GABAergic interneurons, inhibitory cells with crucial signaling roles in cortical neuronal circuits. However, the mechanism by which it affects interneuron development remains unknown. Here we investigated the developmental processes by which Vegfa may influence cortical interneuron development by analyzing transgenic mice that ubiquitously express the Vegfa120 isoform to perturb its signaling gradient. We found that interneurons reach the dorsal cortex at mid phases of corticogenesis despite an aberrant vascular network. Instead, endothelial ablation of Vegfa alters cortical interneuron numbers, their intracortical distribution and spatial proximity to blood vessels. We show for the first time that vascular-secreted guidance factors promote early-migrating interneurons in the intact forebrain in vivo and identify a novel role for vascular-Vegfa in this process.
Collapse
Affiliation(s)
- Melissa Barber
- Department of Cell and Developmental Biology, University College London, London, UK
| | - William D Andrews
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Fani Memi
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Phillip Gardener
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Daniel Ciantar
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Mathew Tata
- Institute of Ophthalmology, University College London, London, UK
| | | | - John G Parnavelas
- Department of Cell and Developmental Biology, University College London, London, UK
| |
Collapse
|
24
|
Li Z, Jagadapillai R, Gozal E, Barnes G. Deletion of Semaphorin 3F in Interneurons Is Associated with Decreased GABAergic Neurons, Autism-like Behavior, and Increased Oxidative Stress Cascades. Mol Neurobiol 2019; 56:5520-5538. [PMID: 30635860 PMCID: PMC6614133 DOI: 10.1007/s12035-018-1450-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/07/2018] [Indexed: 12/11/2022]
Abstract
Autism and epilepsy are diseases which have complex genetic inheritance. Genome-wide association and other genetic studies have implicated at least 500+ genes associated with the occurrence of autism spectrum disorders (ASD) including the human semaphorin 3F (Sema 3F) and neuropilin 2 (NRP2) genes. However, the genetic basis of the comorbid occurrence of autism and epilepsy is unknown. The aberrant development of GABAergic circuitry is a possible risk factor in autism and epilepsy. Molecular biological approaches were used to test the hypothesis that cell-specific genetic variation in mouse homologs affects the formation and function of GABAergic circuitry. The empirical analysis with mice homozygous null for one of these genes, Sema 3F, in GABAergic neurons substantiated these predictions. Notably, deletion of Sema 3F in interneurons but not excitatory neurons during early development decreased the number of interneurons/neurites and mRNAs for cell-specific GABAergic markers and increased epileptogenesis and autistic behaviors. Studies of interneuron cell-specific knockout of Sema 3F signaling suggest that deficient Sema 3F signaling may lead to neuroinflammation and oxidative stress. Further studies of mouse KO models of ASD genes such as Sema 3F or NRP2 may be informative to clinical phenotypes contributing to the pathogenesis in autism and epilepsy patients.
Collapse
Affiliation(s)
- Zhu Li
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Rekha Jagadapillai
- Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Evelyne Gozal
- Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Gregory Barnes
- Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA.
- Department of Neurology, University of Louisville School of Medicine, Louisville, KY, USA.
- Pediatric Research Institute, University of Louisville Autism Center, 1405 East Burnett Ave, Louisville, KY, 40217, USA.
| |
Collapse
|
25
|
Xu Z, Chen Y, Chen Y. Spatiotemporal Regulation of Rho GTPases in Neuronal Migration. Cells 2019; 8:cells8060568. [PMID: 31185627 PMCID: PMC6627650 DOI: 10.3390/cells8060568] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/01/2019] [Accepted: 06/04/2019] [Indexed: 12/17/2022] Open
Abstract
Neuronal migration is essential for the orchestration of brain development and involves several contiguous steps: interkinetic nuclear movement (INM), multipolar–bipolar transition, locomotion, and translocation. Growing evidence suggests that Rho GTPases, including RhoA, Rac, Cdc42, and the atypical Rnd members, play critical roles in neuronal migration by regulating both actin and microtubule cytoskeletal components. This review focuses on the spatiotemporal-specific regulation of Rho GTPases as well as their regulators and effectors in distinct steps during the neuronal migration process. Their roles in bridging extracellular signals and cytoskeletal dynamics to provide optimal structural support to the migrating neurons will also be discussed.
Collapse
Affiliation(s)
- Zhenyan Xu
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, Guangdong, China.
| | - Yuewen Chen
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, Guangdong, China.
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen 518057, Guangdong, China.
| | - Yu Chen
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, Guangdong, China.
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen 518057, Guangdong, China.
| |
Collapse
|
26
|
Dun XP, Carr L, Woodley PK, Barry RW, Drake LK, Mindos T, Roberts SL, Lloyd AC, Parkinson DB. Retracted: Macrophage-Derived Slit3 Controls Cell Migration and Axon Pathfinding in the Peripheral Nerve Bridge. Cell Rep 2019; 26:1458-1472.e4. [PMID: 30726731 PMCID: PMC6367597 DOI: 10.1016/j.celrep.2018.12.081] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 06/26/2018] [Accepted: 12/18/2018] [Indexed: 11/15/2022] Open
Abstract
Slit-Robo signaling has been characterized as a repulsive signal for precise axon pathfinding and cell migration during embryonic development. Here, we describe a role for Sox2 in the regulation of Robo1 in Schwann cells and for Slit3-Robo1 signaling in controlling axon guidance within the newly formed nerve bridge following peripheral nerve transection injury. In particular, we show that macrophages form the outermost layer of the nerve bridge and secrete high levels of Slit3, while migratory Schwann cells and fibroblasts inside the nerve bridge express the Robo1 receptor. In line with this pattern of Slit3 and Robo1 expression, we observed multiple axon regeneration and cell migration defects in the nerve bridge of Sox2-, Slit3-, and Robo1-mutant mice. Our findings have revealed important functions for macrophages in the peripheral nervous system, utilizing Slit3-Robo1 signaling to control correct peripheral nerve bridge formation and precise axon targeting to the distal nerve stump following injury.
Collapse
Affiliation(s)
- Xin-Peng Dun
- Faculty of Medicine and Dentistry, Plymouth University, Plymouth, Devon, UK; School of Pharmacy, Hubei University of Science and Technology, Xian-Ning City, Hubei, China; The Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu Province, China.
| | - Lauren Carr
- Faculty of Medicine and Dentistry, Plymouth University, Plymouth, Devon, UK
| | - Patricia K Woodley
- Faculty of Medicine and Dentistry, Plymouth University, Plymouth, Devon, UK
| | | | | | - Thomas Mindos
- Faculty of Medicine and Dentistry, Plymouth University, Plymouth, Devon, UK
| | - Sheridan L Roberts
- Faculty of Medicine and Dentistry, Plymouth University, Plymouth, Devon, UK
| | - Alison C Lloyd
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - David B Parkinson
- Faculty of Medicine and Dentistry, Plymouth University, Plymouth, Devon, UK
| |
Collapse
|
27
|
Melrose J. Keratan sulfate (KS)-proteoglycans and neuronal regulation in health and disease: the importance of KS-glycodynamics and interactive capability with neuroregulatory ligands. J Neurochem 2019; 149:170-194. [PMID: 30578672 DOI: 10.1111/jnc.14652] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 11/26/2018] [Accepted: 12/13/2018] [Indexed: 12/18/2022]
Abstract
Compared to the other classes of glycosaminoglycans (GAGs), that is, chondroitin/dermatan sulfate, heparin/heparan sulfate and hyaluronan, keratan sulfate (KS), have the least known of its interactive properties. In the human body, the cornea and the brain are the two most abundant tissue sources of KS. Embryonic KS is synthesized as a linear poly-N-acetyllactosamine chain of d-galactose-GlcNAc repeat disaccharides which become progressively sulfated with development, sulfation of GlcNAc is more predominant than galactose. KS contains multi-sulfated high-charge density, monosulfated and non-sulfated poly-N-acetyllactosamine regions and thus is a heterogeneous molecule in terms of chain length and charge distribution. A recent proteomics study on corneal KS demonstrated its interactivity with members of the Slit-Robbo and Ephrin-Ephrin receptor families and proteins which regulate Rho GTPase signaling and actin polymerization/depolymerization in neural development and differentiation. KS decorates a number of peripheral nervous system/CNS proteoglycan (PG) core proteins. The astrocyte KS-PG abakan defines functional margins of the brain and is up-regulated following trauma. The chondroitin sulfate/KS PG aggrecan forms perineuronal nets which are dynamic neuroprotective structures with anti-oxidant properties and roles in neural differentiation, development and synaptic plasticity. Brain phosphacan a chondroitin sulfate, KS, HNK-1 PG have roles in neural development and repair. The intracellular microtubule and synaptic vesicle KS-PGs MAP1B and SV2 have roles in metabolite transport, storage, and export of neurotransmitters and cytoskeletal assembly. MAP1B has binding sites for tubulin and actin through which it promotes cytoskeletal development in growth cones and is highly expressed during neurite extension. The interactive capability of KS with neuroregulatory ligands indicate varied roles for KS-PGs in development and regenerative neural processes.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, St. Leonards, New South Wales, Australia.,Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia.,Sydney Medical School, Northern Campus, Royal North Shore Hospital, The University of Sydney, New South Wales, Australia.,Faculty of Medicine and Health, Royal North Shore Hospital, The University of Sydney, St. Leonards, New South Wales, Australia
| |
Collapse
|
28
|
Cortical interneuron function in autism spectrum condition. Pediatr Res 2019; 85:146-154. [PMID: 30367159 DOI: 10.1038/s41390-018-0214-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 12/28/2022]
Abstract
Cortical interneurons (INs) are a diverse group of neurons that project locally and shape the function of neural networks throughout the brain. Multiple lines of evidence suggest that a proper balance of glutamate and GABA signaling is essential for both the proper function and development of the brain. Dysregulation of this system may lead to neurodevelopmental disorders, including autism spectrum condition (ASC). We evaluate the development and function of INs in rodent and human models and examine how neurodevelopmental dysfunction may produce core symptoms of ASC. Finding common physiological mechanisms that underlie neurodevelopmental disorders may lead to novel pharmacological targets and candidates that could improve the cognitive and emotional symptoms associated with ASC.
Collapse
|
29
|
Moure MJ, Eletsky A, Gao Q, Morris LC, Yang JY, Chapla D, Zhao Y, Zong C, Amster IJ, Moremen KW, Boons GJ, Prestegard JH. Paramagnetic Tag for Glycosylation Sites in Glycoproteins: Structural Constraints on Heparan Sulfate Binding to Robo1. ACS Chem Biol 2018; 13:2560-2567. [PMID: 30063822 PMCID: PMC6161356 DOI: 10.1021/acschembio.8b00511] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An enzyme- and click chemistry-mediated methodology for the site-specific nitroxide spin labeling of glycoproteins has been developed and applied. The procedure relies on the presence of single N-glycosylation sites that are present natively in proteins or that can be engineered into glycoproteins by mutational elimination of all but one glycosylation site. Recombinantly expressing glycoproteins in HEK293S (GnT1-) cells results in N-glycans with high-mannose structures that can be processed to leave a single GlcNAc residue. This can in turn be modified by enzymatic addition of a GalNAz residue that is subject to reaction with an alkyne-carrying TEMPO moiety using copper(I)-catalyzed click chemistry. To illustrate the procedure, we have made an application to a two-domain construct of Robo1, a protein that carries a single N-glycosylation site in its N-terminal domains. The construct has also been labeled with 15N at amide nitrogens of lysine residues to provide a set of sites that are used to derive an effective location of the paramagnetic nitroxide moiety of the TEMPO group. This, in turn, allowed measurements of paramagnetic perturbations to the spectra of a new high affinity heparan sulfate ligand. Calculation of distance constraints from these data facilitated determination of an atomic level model for the docked complex.
Collapse
Affiliation(s)
- Maria J. Moure
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Alexander Eletsky
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Qi Gao
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Laura C. Morris
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Jeong-Yeh Yang
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Digantkumar Chapla
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Yuejie Zhao
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Chengli Zong
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - I. Jonathan Amster
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Kelley W. Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - James H. Prestegard
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
30
|
Martinez D, Zuhdi N, Reyes M, Ortega B, Giovannone D, Lee VM, de Bellard ME. Screen for Slit/Robo signaling in trunk neural cells reveals new players. Gene Expr Patterns 2018; 28:22-33. [PMID: 29427758 PMCID: PMC5980643 DOI: 10.1016/j.gep.2018.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/19/2018] [Accepted: 01/20/2018] [Indexed: 01/15/2023]
Abstract
Slits ligands and their Robo receptors are involved in quite disparate cell signaling pathways that include axon guidance, cell proliferation, cell motility and angiogenesis. Neural crest cells emerge by delamination from neural cells in the dorsal neural tube, and give rise to various components of the peripheral nervous system in vertebrates. It is well established that these cells change from a non-migratory to a highly migratory state allowing them to reach distant regions before they differentiate. However, but the mechanism controlling this delamination and subsequent migration are still not fully understood. The repulsive Slit ligand family members, have been classified also as true tumor suppressor molecules. The present study explored in further detail what possible Slit/Robo signals are at play in the trunk neural cells and neural crest cells by carrying out a microarray after Slit2 gain of function in trunk neural tubes. We found that in addition to molecules known to be downstream of Slit/Robo signaling, there were a large set of molecules known to be important in maintaining cells in non-motile, epithelia phenotype. Furthermore, we found new molecules previously not associated with Slit/Robo signaling: cell proliferation markers, Ankyrins and RAB intracellular transporters. Our findings suggest that neural crest cells use and array of different Slit/Robo pathways during their transformation from non-motile to highly motile cells.
Collapse
Affiliation(s)
- Darwin Martinez
- California State University Northridge, Biology Dept., MC 8303, 18111 Nordhoff Street, Northridge, CA, 91330, United States
| | - Nora Zuhdi
- California State University Northridge, Biology Dept., MC 8303, 18111 Nordhoff Street, Northridge, CA, 91330, United States
| | - Michelle Reyes
- California State University Northridge, Biology Dept., MC 8303, 18111 Nordhoff Street, Northridge, CA, 91330, United States
| | - Blanca Ortega
- California State University Northridge, Biology Dept., MC 8303, 18111 Nordhoff Street, Northridge, CA, 91330, United States
| | - Dion Giovannone
- California State University Northridge, Biology Dept., MC 8303, 18111 Nordhoff Street, Northridge, CA, 91330, United States
| | - Vivian M Lee
- California State University Northridge, Biology Dept., MC 8303, 18111 Nordhoff Street, Northridge, CA, 91330, United States
| | - Maria Elena de Bellard
- California State University Northridge, Biology Dept., MC 8303, 18111 Nordhoff Street, Northridge, CA, 91330, United States.
| |
Collapse
|
31
|
Zhao Y, Yang JY, Thieker DF, Xu Y, Zong C, Boons GJ, Liu J, Woods RJ, Moremen KW, Amster IJ. A Traveling Wave Ion Mobility Spectrometry (TWIMS) Study of the Robo1-Heparan Sulfate Interaction. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1153-1165. [PMID: 29520710 PMCID: PMC6004239 DOI: 10.1007/s13361-018-1903-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/14/2018] [Accepted: 01/14/2018] [Indexed: 06/10/2023]
Abstract
Roundabout 1 (Robo1) interacts with its receptor Slit to regulate axon guidance, axon branching, and dendritic development in the nervous system and to regulate morphogenesis and many cell functions in the nonneuronal tissues. This interaction is known to be critically regulated by heparan sulfate (HS). Previous studies suggest that HS is required to promote the binding of Robo1 to Slit to form the minimal signaling complex, but the molecular details and the structural requirements of HS for this interaction are still unclear. Here, we describe the application of traveling wave ion mobility spectrometry (TWIMS) to study the conformational details of the Robo1-HS interaction. The results suggest that Robo1 exists in two conformations that differ by their compactness and capability to interact with HS. The results also suggest that the highly flexible interdomain hinge region connecting the Ig1 and Ig2 domains of Robo1 plays an important functional role in promoting the Robo1-Slit interaction. Moreover, variations in the sulfation pattern and size of HS were found to affect its binding affinity and selectivity to interact with different conformations of Robo1. Both MS measurements and CIU experiments show that the Robo1-HS interaction requires the presence of a specific size and pattern of modification of HS. Furthermore, the effect of N-glycosylation on the conformation of Robo1 and its binding modes with HS is reported. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Yuejie Zhao
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Jeong Yeh Yang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - David F Thieker
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Yongmei Xu
- Eshelman School of Pharmacy, Division of Chemical Biology & Medicinal Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Chengli Zong
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Jian Liu
- Eshelman School of Pharmacy, Division of Chemical Biology & Medicinal Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Robert J Woods
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - I Jonathan Amster
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
32
|
Abstract
During nervous system development, neurons extend axons to reach their targets and form functional circuits. The faulty assembly or disintegration of such circuits results in disorders of the nervous system. Thus, understanding the molecular mechanisms that guide axons and lead to neural circuit formation is of interest not only to developmental neuroscientists but also for a better comprehension of neural disorders. Recent studies have demonstrated how crosstalk between different families of guidance receptors can regulate axonal navigation at choice points, and how changes in growth cone behaviour at intermediate targets require changes in the surface expression of receptors. These changes can be achieved by a variety of mechanisms, including transcription, translation, protein-protein interactions, and the specific trafficking of proteins and mRNAs. Here, I review these axon guidance mechanisms, highlighting the most recent advances in the field that challenge the textbook model of axon guidance.
Collapse
Affiliation(s)
- Esther T Stoeckli
- University of Zurich, Institute of Molecular Life Sciences, Neuroscience Center Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
33
|
Yang Y, Shen W, Ni Y, Su Y, Yang Z, Zhao C. Impaired Interneuron Development after Foxg1 Disruption. Cereb Cortex 2018; 27:793-808. [PMID: 26620267 DOI: 10.1093/cercor/bhv297] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Interneurons play pivotal roles in the modulation of cortical function; however, the mechanisms that control interneuron development remain unclear. This study aimed to explore a new role for Foxg1 in interneuron development. By crossing Foxg1fl/fl mice with a Dlx5/6-Cre line, we determined that conditional disruption of Foxg1 in the subpallium results in defects in interneuron development. In developing interneurons, the expression levels of several receptors, including roundabout-1, Eph receptor A4, and C-X-C motif receptor 4/7, were strongly downregulated, which led to migration defects after Foxg1 ablation. The transcription factors Dlx1/2 and Mash1, which have been reported to be involved in interneuron development, were significantly upregulated at the mRNA levels. Foxg1 mutant cells developed shorter neurites and fewer branches and displayed severe migration defects in vitro. Notably, Prox1, which is a transcription factor that functions as a key regulator in the development of excitatory neurons, was also dramatically upregulated at both the mRNA and protein levels, suggesting that Prox1 is also important for interneuron development. Our work demonstrates that Foxg1 may act as a critical upstream regulator of Dlx1/2, Mash1, and Prox1 to control interneuron development. These findings will further our understanding of the molecular mechanisms of interneuron development.
Collapse
Affiliation(s)
- Ying Yang
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Anatomy and Neuroscience, School of Medicine, Southeast University, Nanjing 210009, China
| | - Wei Shen
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Anatomy and Neuroscience, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yang Ni
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Anatomy and Neuroscience, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yan Su
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Anatomy and Neuroscience, School of Medicine, Southeast University, Nanjing 210009, China
| | - Zhengang Yang
- Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Chunjie Zhao
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Anatomy and Neuroscience, School of Medicine, Southeast University, Nanjing 210009, China.,Center of Depression, Beijing Institute for Brain Disorders, Beijing 100069, China
| |
Collapse
|
34
|
Talebian A, Britton R, Ammanuel S, Bepari A, Sprouse F, Birnbaum SG, Szabó G, Tamamaki N, Gibson J, Henkemeyer M. Autonomous and non-autonomous roles for ephrin-B in interneuron migration. Dev Biol 2017; 431:179-193. [PMID: 28947178 DOI: 10.1016/j.ydbio.2017.09.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 09/05/2017] [Accepted: 09/18/2017] [Indexed: 11/28/2022]
Abstract
While several studies indicate the importance of ephrin-B/EphB bidirectional signaling in excitatory neurons, potential roles for these molecules in inhibitory neurons are largely unknown. We identify here an autonomous receptor-like role for ephrin-B reverse signaling in the tangential migration of interneurons into the neocortex using ephrin-B (EfnB1/B2/B3) conditional triple mutant (TMlz) mice and a forebrain inhibitory neuron specific Cre driver. Inhibitory neuron deletion of the three EfnB genes leads to reduced interneuron migration, abnormal cortical excitability, and lethal audiogenic seizures. Truncated and intracellular point mutations confirm the importance of ephrin-B reverse signaling in interneuron migration and cortical excitability. A non-autonomous ligand-like role was also identified for ephrin-B2 that is expressed in neocortical radial glial cells and required for proper tangential migration of GAD65-positive interneurons. Our studies thus define both receptor-like and ligand-like roles for the ephrin-B molecules in controlling the migration of interneurons as they populate the neocortex and help establish excitatory/inhibitory (E/I) homeostasis.
Collapse
Affiliation(s)
- Asghar Talebian
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Kent Waldrep Center for Basic Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rachel Britton
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Kent Waldrep Center for Basic Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Simon Ammanuel
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Asim Bepari
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Kent Waldrep Center for Basic Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Francis Sprouse
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Kent Waldrep Center for Basic Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shari G Birnbaum
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gábor Szabó
- Medical Gene Technology Division, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Nobuaki Tamamaki
- Department of Morphological Neural Science, Kumamoto University, Kumamoto 860-8556, Japan
| | - Jay Gibson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mark Henkemeyer
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Kent Waldrep Center for Basic Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
35
|
Turrero García M, Harwell CC. Radial glia in the ventral telencephalon. FEBS Lett 2017; 591:3942-3959. [PMID: 28862741 DOI: 10.1002/1873-3468.12829] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 12/31/2022]
Abstract
The ventral telencephalon is the developmental origin of the basal ganglia and the source of neuronal and glial cells that integrate into developing circuits in other areas of the brain. Radial glia in the embryonic subpallium give rise to an enormous diversity of mature cell types, either directly or through other transit-amplifying progenitors. Here, we review current knowledge about these subpallial neural stem cells and their progeny, focusing on the period of neurogenesis. We describe their cell biological features and the extrinsic and intrinsic molecular codes that guide their fate specification in defined temporal and spatial sequences. We also discuss the role of clonal lineage in the organization and specification of mature neurons.
Collapse
Affiliation(s)
| | - Corey C Harwell
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
36
|
Zhang X, Mi M, Hao W, Fan Q, Gao B. Progesterone down-regulates SLIT/ROBO expression in mouse corpus luteum. Acta Histochem 2017; 119:740-746. [PMID: 28947260 DOI: 10.1016/j.acthis.2017.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 09/15/2017] [Accepted: 09/15/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Progesterone produced by the corpus luteum (CL) is essential for preparation, implantation and maintenance of gestation. Furthermore, progesterone plays a protective role against luteolysis in rodents. It has been reported that Slit/Robo family members expressed in the CL and involved in prostaglandin F2α (PGF2α) induced luteolysis. However, the interactions between progesterone and Slits/Robos in CL are not clear. This study was designed to examine whether or not luteolysis is regulated by the interaction of progesterone and Slits/Robos in mouse CL. METHODS In the current study, we used Real-time PCR to identify the effect of progesterone on Slit2/Robo1 expression in cultured luteal cells in vitro, and the exogenous progesterone injection on mouse luteolysis and Slit/Robo expression in vivo was studied via Real-time PCR and Western bolt. RESULTS Our in vitro experiment revealed that 1μM progesterone significantly decreased Slit2/Robo1 mRNA levels at 6h, 12h and 24h. Our in vivo experiment showed that the mRNA and protein levels of Slit2 and Robo1 decreased significantly 7days after progesterone supplement. CONCLUSION These findings indicate that progesterone maintains CL function and resists luteolysis possibly through down-regulating Slit/Robo signaling pathway in the CL.
Collapse
|
37
|
Amodeo V, A D, Betts J, Bartesaghi S, Zhang Y, Richard-Londt A, Ellis M, Roshani R, Vouri M, Galavotti S, Oberndorfer S, Leite AP, Mackay A, Lampada A, Stratford EW, Li N, Dinsdale D, Grimwade D, Jones C, Nicotera P, Michod D, Brandner S, Salomoni P. A PML/Slit Axis Controls Physiological Cell Migration and Cancer Invasion in the CNS. Cell Rep 2017; 20:411-426. [PMID: 28700942 DOI: 10.1016/j.celrep.2017.06.047] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 05/02/2017] [Accepted: 06/19/2017] [Indexed: 11/17/2022] Open
Abstract
Cell migration through the brain parenchyma underpins neurogenesis and glioblastoma (GBM) development. Since GBM cells and neuroblasts use the same migratory routes, mechanisms underlying migration during neurogenesis and brain cancer pathogenesis may be similar. Here, we identify a common pathway controlling cell migration in normal and neoplastic cells in the CNS. The nuclear scaffold protein promyelocytic leukemia (PML), a regulator of forebrain development, promotes neural progenitor/stem cell (NPC) and neuroblast migration in the adult mouse brain. The PML pro-migratory role is active also in transformed mouse NPCs and in human primary GBM cells. In both normal and neoplastic settings, PML controls cell migration via Polycomb repressive complex 2 (PRC2)-mediated repression of Slits, key regulators of axon guidance. Finally, a PML/SLIT1 axis regulates sensitivity to the PML-targeting drug arsenic trioxide in primary GBM cells. Taken together, these findings uncover a drug-targetable molecular axis controlling cell migration in both normal and neoplastic cells.
Collapse
Affiliation(s)
- Valeria Amodeo
- UCL Cancer Institute, London, WC1E 6DD, UK; Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London, WC1E 6DD, UK
| | - Deli A
- UCL Cancer Institute, London, WC1E 6DD, UK; Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London, WC1E 6DD, UK
| | - Joanne Betts
- UCL Cancer Institute, London, WC1E 6DD, UK; Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London, WC1E 6DD, UK
| | - Stefano Bartesaghi
- UCL Cancer Institute, London, WC1E 6DD, UK; Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London, WC1E 6DD, UK
| | - Ying Zhang
- UCL Institute of Neurology, London, WC1N 3BG, UK
| | | | | | - Rozita Roshani
- UCL Cancer Institute, London, WC1E 6DD, UK; Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London, WC1E 6DD, UK
| | - Mikaella Vouri
- UCL Cancer Institute, London, WC1E 6DD, UK; Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London, WC1E 6DD, UK
| | - Sara Galavotti
- UCL Cancer Institute, London, WC1E 6DD, UK; Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London, WC1E 6DD, UK
| | - Sarah Oberndorfer
- UCL Cancer Institute, London, WC1E 6DD, UK; Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London, WC1E 6DD, UK
| | - Ana Paula Leite
- UCL Cancer Institute, London, WC1E 6DD, UK; Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London, WC1E 6DD, UK
| | - Alan Mackay
- Institute of Cancer Research, Sutton, London SM2 5NG, UK
| | - Aikaterini Lampada
- UCL Cancer Institute, London, WC1E 6DD, UK; Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London, WC1E 6DD, UK
| | | | - Ningning Li
- UCL Institute of Neurology, London, WC1N 3BG, UK
| | | | - David Grimwade
- Guy's Hospital, King's College London, London SE1 9RT, UK
| | - Chris Jones
- Institute of Cancer Research, Sutton, London SM2 5NG, UK
| | - Pierluigi Nicotera
- German Centre for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany
| | - David Michod
- UCL Cancer Institute, London, WC1E 6DD, UK; Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London, WC1E 6DD, UK; UCL Institute of Child Health, London WC1N 1EH, UK
| | | | - Paolo Salomoni
- UCL Cancer Institute, London, WC1E 6DD, UK; Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London, WC1E 6DD, UK.
| |
Collapse
|
38
|
Guerrero-Cazares H, Lavell E, Chen L, Schiapparelli P, Lara-Velazquez M, Capilla-Gonzalez V, Drummond G, Clements AC, Noiman L, Thaler K, Burke A, Quiñones-Hinojosa A. Brief Report: Robo1 Regulates the Migration of Human Subventricular Zone Neural Progenitor Cells During Development. Stem Cells 2017; 35:1860-1865. [PMID: 28406573 PMCID: PMC5484745 DOI: 10.1002/stem.2628] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/08/2017] [Accepted: 03/28/2017] [Indexed: 01/19/2023]
Abstract
Human neural progenitor cell (NPC) migration within the subventricular zone (SVZ) of the lateral ganglionic eminence is an active process throughout early brain development. The migration of human NPCs from the SVZ to the olfactory bulb during fetal stages resembles what occurs in adult rodents. As the human brain develops during infancy, this migratory stream is drastically reduced in cell number and becomes barely evident in adults. The mechanisms regulating human NPC migration are unknown. The Slit-Robo signaling pathway has been defined as a chemorepulsive cue involved in axon guidance and neuroblast migration in rodents. Slit and Robo proteins expressed in the rodent brain help guide neuroblast migration from the SVZ through the rostral migratory stream to the olfactory bulb. Here, we present the first study on the role that Slit and Robo proteins play in human-derived fetal neural progenitor cell migration (hfNPC). We describe that Robo1 and Robo2 isoforms are expressed in the human fetal SVZ. Furthermore, we demonstrate that Slit2 is able to induce a chemorepellent effect on the migration of hfNPCs derived from the human fetal SVZ. In addition, when Robo1 expression is inhibited, hfNPCs are unable to migrate to the olfactory bulb of mice when injected in the anterior SVZ. Our findings indicate that the migration of human NPCs from the SVZ is partially regulated by the Slit-Robo axis. This pathway could be regulated to direct the migration of NPCs in human endogenous neural cell therapy. Stem Cells 2017;35:1860-1865.
Collapse
Affiliation(s)
- Hugo Guerrero-Cazares
- Department of Neurosurgery, Mayo Clinic, Jacksonville, Fl, USA (current)
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD. USA (former)
| | - Emily Lavell
- Department of Neurosurgery, Mayo Clinic, Jacksonville, Fl, USA (current)
| | - Linda Chen
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Paula Schiapparelli
- Department of Neurosurgery, Mayo Clinic, Jacksonville, Fl, USA (current)
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD. USA (former)
| | | | - Vivian Capilla-Gonzalez
- Department of Stem Cells, Andalusian Molecular Biology and Regenerative Medicine Centre, Seville, Spain
| | | | | | - Liron Noiman
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Katrina Thaler
- Department of Gynecology and Obstetrics, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Anne Burke
- Department of Gynecology and Obstetrics, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Alfredo Quiñones-Hinojosa
- Department of Neurosurgery, Mayo Clinic, Jacksonville, Fl, USA (current)
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD. USA (former)
| |
Collapse
|
39
|
Kos A, Klein-Gunnewiek T, Meinhardt J, Loohuis NFMO, van Bokhoven H, Kaplan BB, Martens GJ, Kolk SM, Aschrafi A. MicroRNA-338 Attenuates Cortical Neuronal Outgrowth by Modulating the Expression of Axon Guidance Genes. Mol Neurobiol 2017; 54:3439-3452. [PMID: 27180071 PMCID: PMC5658782 DOI: 10.1007/s12035-016-9925-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/03/2016] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRs) are small non-coding RNAs that confer robustness to gene networks through post-transcriptional gene regulation. Previously, we identified miR-338 as a modulator of axonal outgrowth in sympathetic neurons. In the current study, we examined the role of miR-338 in the development of cortical neurons and uncovered its downstream mRNA targets. Long-term inhibition of miR-338 during neuronal differentiation resulted in reduced dendritic complexity and altered dendritic spine morphology. Furthermore, monitoring axon outgrowth in cortical cells revealed that miR-338 overexpression decreased, whereas inhibition of miR-338 increased axonal length. To identify gene targets mediating the observed phenotype, we inhibited miR-338 in cortical neurons and performed whole-transcriptome analysis. Pathway analysis revealed that miR-338 modulates a subset of transcripts involved in the axonal guidance machinery by means of direct and indirect gene targeting. Collectively, our results implicate miR-338 as a novel regulator of cortical neuronal maturation by fine-tuning the expression of gene networks governing cortical outgrowth.
Collapse
Affiliation(s)
- Aron Kos
- Department of Cognitive Neuroscience, Radboud university medical center, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ, Nijmegen, The Netherlands
| | - Teun Klein-Gunnewiek
- Department of Cognitive Neuroscience, Radboud university medical center, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ, Nijmegen, The Netherlands
| | - Julia Meinhardt
- Department of Cognitive Neuroscience, Radboud university medical center, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ, Nijmegen, The Netherlands
| | - Nikkie F M Olde Loohuis
- Department of Cognitive Neuroscience, Radboud university medical center, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ, Nijmegen, The Netherlands
| | - Hans van Bokhoven
- Department of Cognitive Neuroscience, Radboud university medical center, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud university medical center, 6500 HB, Nijmegen, The Netherlands
| | - Barry B Kaplan
- Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Gerard J Martens
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ, Nijmegen, The Netherlands
- Department of Molecular Animal Physiology, Radboud University, Nijmegen, The Netherlands
| | - Sharon M Kolk
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ, Nijmegen, The Netherlands
- Department of Molecular Animal Physiology, Radboud University, Nijmegen, The Netherlands
| | - Armaz Aschrafi
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ, Nijmegen, The Netherlands.
- Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, 20892, USA.
| |
Collapse
|
40
|
Killen AC, Barber M, Paulin JJW, Ranscht B, Parnavelas JG, Andrews WD. Protective role of Cadherin 13 in interneuron development. Brain Struct Funct 2017; 222:3567-3585. [PMID: 28386779 PMCID: PMC5676827 DOI: 10.1007/s00429-017-1418-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/30/2017] [Indexed: 12/21/2022]
Abstract
Cortical interneurons are generated in the ganglionic eminences and migrate through the ventral and dorsal telencephalon before finding their final positions within the cortical plate. During early stages of migration, these cells are present in two well-defined streams within the developing cortex. In an attempt to identify candidate genes which may play a role in interneuron stream specification, we previously carried out a microarray analysis which identified a number of cadherin receptors that were differentially expressed in these streams, including Cadherin-13 (Cdh13). Expression analysis confirmed Cdh13 to be present in the preplate layer at E13.5 and, later in development, in some cortical interneurons and pyramidal cells. Analysis of Cdh13 knockout mice at E18.5, but not at E15.5, showed a reduction in the number of interneurons and late born pyramidal neurons and a concomitant increase in apoptotic cells in the cortex. These observations were confirmed in dissociated cell cultures using overexpression and short interfering RNAs (siRNAs) constructs and dominant negative inhibitory proteins. Our findings identified a novel protective role for Cdh13 in cortical neuron development.
Collapse
Affiliation(s)
- Abigail C Killen
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Melissa Barber
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Joshua J W Paulin
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Barbara Ranscht
- Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - John G Parnavelas
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| | - William D Andrews
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
41
|
Abdelsaid M, Coucha M, Hafez S, Yasir A, Johnson MH, Ergul A. Enhanced VEGF signalling mediates cerebral neovascularisation via downregulation of guidance protein ROBO4 in a rat model of diabetes. Diabetologia 2017; 60:740-750. [PMID: 28116460 PMCID: PMC5342922 DOI: 10.1007/s00125-017-4214-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/31/2016] [Indexed: 01/06/2023]
Abstract
AIMS/HYPOTHESIS Diabetes promotes cerebral neovascularisation via increased vascular endothelial growth factor (VEGF) angiogenic signalling. Roundabout-4 (ROBO4) protein is an endogenous inhibitor of VEGF signalling that stabilises the vasculature. Yet, how diabetes affects ROBO4 function remains unknown. We hypothesised that increased VEGF signalling in diabetes decreases ROBO4 expression and function via binding of ROBO4 with VEGF-activated β3 integrin and that restoration of ROBO4 expression prevents/repairs cerebral neovascularisation in diabetes. METHODS ROBO4 protein expression in a rat model of type 2 diabetes (Goto-Kakizaki [GK] rats) was examined by western blotting and immunohistochemistry. ROBO4 was locally overexpressed in the brain and in primary brain microvascular endothelial cells (BMVECs). GK rats were treated with SKLB1002, a selective VEGF receptor-2 (VEGFR-2) antagonist. Cerebrovascular neovascularisation indices were determined using a FITC vascular space-filling model. Immunoprecipitation was used to determine ROBO4-β3 integrin interaction. RESULTS ROBO4 expression was significantly decreased in the cerebral vasculature as well as in BMVECs in diabetes (p < 0.05). Silencing Robo4 increased the angiogenic properties of control BMVECs (p < 0.05). In vivo and in vitro overexpression of ROBO4 inhibited VEGF-induced angiogenic signalling and increased vessel maturation. Inhibition of VEGF signalling using SKLB1002 increased ROBO4 expression (p < 0.05) and reduced neovascularisation indices (p < 0.05). Furthermore, SKLB1002 significantly decreased ROBO4-β3 integrin interaction in diabetes (p < 0.05). CONCLUSIONS/INTERPRETATION Our study identifies the restoration of ROBO4 and inhibition of VEGF signalling as treatment strategies for diabetes-induced cerebral neovascularisation.
Collapse
Affiliation(s)
- Mohammed Abdelsaid
- Charlie Norwood Veterans Administration Medical Center, Augusta, GA, USA.
- Department of Physiology, Augusta University, 1120 15th Street CA-3135, Augusta, GA, 30912, USA.
| | - Maha Coucha
- Charlie Norwood Veterans Administration Medical Center, Augusta, GA, USA
- Department of Physiology, Augusta University, 1120 15th Street CA-3135, Augusta, GA, 30912, USA
| | - Sherif Hafez
- Charlie Norwood Veterans Administration Medical Center, Augusta, GA, USA
- Department of Physiology, Augusta University, 1120 15th Street CA-3135, Augusta, GA, 30912, USA
| | - Abdul Yasir
- Charlie Norwood Veterans Administration Medical Center, Augusta, GA, USA
- Department of Physiology, Augusta University, 1120 15th Street CA-3135, Augusta, GA, 30912, USA
| | | | - Adviye Ergul
- Charlie Norwood Veterans Administration Medical Center, Augusta, GA, USA
- Department of Physiology, Augusta University, 1120 15th Street CA-3135, Augusta, GA, 30912, USA
| |
Collapse
|
42
|
Darki F, Massinen S, Salmela E, Matsson H, Peyrard-Janvid M, Klingberg T, Kere J. Human ROBO1 regulates white matter structure in corpus callosum. Brain Struct Funct 2017; 222:707-716. [PMID: 27240594 PMCID: PMC5334444 DOI: 10.1007/s00429-016-1240-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 05/20/2016] [Indexed: 12/17/2022]
Abstract
The axon guidance receptor, Robo1, controls the pathfinding of callosal axons in mice. To determine whether the orthologous ROBO1 gene is involved in callosal development also in humans, we studied polymorphisms in the ROBO1 gene and variation in the white matter structure in the corpus callosum using both structural magnetic resonance imaging and diffusion tensor magnetic resonance imaging. We found that five polymorphisms in the regulatory region of ROBO1 were associated with white matter density in the posterior part of the corpus callosum pathways. One of the polymorphisms, rs7631357, was also significantly associated with the probability of connections to the parietal cortical regions. Our results demonstrate that human ROBO1 may be involved in the regulation of the structure and connectivity of posterior part of corpus callosum.
Collapse
Affiliation(s)
- Fahimeh Darki
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Satu Massinen
- Research Programs Unit, Haartman Institute, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Elina Salmela
- Research Programs Unit, Haartman Institute, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Hans Matsson
- Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 7, 14183, Huddinge, Sweden
| | - Myriam Peyrard-Janvid
- Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 7, 14183, Huddinge, Sweden
| | - Torkel Klingberg
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Juha Kere
- Research Programs Unit, Haartman Institute, University of Helsinki, Helsinki, Finland.
- Folkhälsan Institute of Genetics, Helsinki, Finland.
- Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 7, 14183, Huddinge, Sweden.
- Science for Life Laboratory, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
43
|
Carr L, Parkinson DB, Dun XP. Expression patterns of Slit and Robo family members in adult mouse spinal cord and peripheral nervous system. PLoS One 2017; 12:e0172736. [PMID: 28234971 PMCID: PMC5325304 DOI: 10.1371/journal.pone.0172736] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/08/2017] [Indexed: 11/19/2022] Open
Abstract
The secreted glycoproteins, Slit1-3, are classic axon guidance molecules that act as repulsive cues through their well characterised receptors Robo1-2 to allow precise axon pathfinding and neuronal migration. The expression patterns of Slit1-3 and Robo1-2 have been most characterized in the rodent developing nervous system and the adult brain, but little is known about their expression patterns in the adult rodent peripheral nervous system. Here, we report a detailed expression analysis of Slit1-3 and Robo1-2 in the adult mouse sciatic nerve as well as their expression in the nerve cell bodies within the ventral spinal cord (motor neurons) and dorsal root ganglion (sensory neurons). Our results show that, in the adult mouse peripheral nervous system, Slit1-3 and Robo1-2 are expressed in the cell bodies and axons of both motor and sensory neurons. While Slit1 and Robo2 are only expressed in peripheral axons and their cell bodies, Slit2, Slit3 and Robo1 are also expressed in satellite cells of the dorsal root ganglion, Schwann cells and fibroblasts of peripheral nerves. In addition to these expression patterns, we also demonstrate the expression of Robo1 in blood vessels of the peripheral nerves. Our work gives important new data on the expression patterns of Slit and Robo family members within the peripheral nervous system that may relate both to nerve homeostasis and the reaction of the peripheral nerves to injury.
Collapse
Affiliation(s)
- Lauren Carr
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, Devon, United Kingdom
| | - David B. Parkinson
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, Devon, United Kingdom
| | - Xin-peng Dun
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, Devon, United Kingdom
- Hubei University of Science and Technology, Xian-Ning City, Hubei, China
| |
Collapse
|
44
|
Jin X, Shin YJ, Riew TR, Choi JH, Lee MY. Increased Expression of Slit2 and its Robo Receptors During Astroglial Scar Formation After Transient Focal Cerebral Ischemia in Rats. Neurochem Res 2016; 41:3373-3385. [PMID: 27686659 DOI: 10.1007/s11064-016-2072-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/13/2016] [Accepted: 09/23/2016] [Indexed: 01/30/2023]
Abstract
Slit2, a secreted glycoprotein, has recently been implicated in the post-ischemic astroglial reaction. The objective of this study was to investigate the temporal changes and cellular localization of Slit2 and its receptors, Robo1, Robo2, and Robo4, in a rat transient focal ischemia model induced by middle cerebral artery occlusion. We used double- and triple-immunolabeling to determine the cell-specific changes in Slit2 and its receptors during a 10-week post-ischemia period. The expression profiles of Slit2 and the Robo receptors shared overlapping expression patterns in sham-operated and ischemic striatum. Constitutive expression of Slit2 and Robo receptors was observed in striatal neurons with weak intensity, whereas in rats reperfused after ischemic insults, these immunoreactivities were increased in reactive astrocytes. Astroglial induction of Slit2 and Robo in the peri-infarct region was distinct on days 7-14 after reperfusion and thereafter increased progressively throughout the 10-week experimental period. Slit2 and Robo were prominently expressed in the perinuclear cytoplasm and main processes of reactive astrocytes forming the astroglial scar. This observation was confirmed by quantification of the mean fluorescence intensity of Slit2 and Robo receptors over reactive astrocytes localized at the edge of the infarct area. However, activated microglia/macrophages in the peri-infarct area were devoid of any specific labeling for Slit2 and Robo. Thus, our data revealed a selective and sustained induction of Slit2 and Robo in astrocytes localized throughout the astroglial scar after ischemic stroke, suggesting that Slit2/Robo signaling participates in glial scar formation and brain remodeling following ischemic injury.
Collapse
Affiliation(s)
- Xuyan Jin
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Socho-gu, Seoul, 137-701, South Korea
| | - Yoo-Jin Shin
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Socho-gu, Seoul, 137-701, South Korea
| | - Tae-Ryong Riew
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Socho-gu, Seoul, 137-701, South Korea
| | - Jeong-Heon Choi
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Socho-gu, Seoul, 137-701, South Korea
| | - Mun-Yong Lee
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Socho-gu, Seoul, 137-701, South Korea.
| |
Collapse
|
45
|
Andrews WD, Barber M, Nemitz M, Memi F, Parnavelas JG. Semaphorin3A-neuropilin1 signalling is involved in the generation of cortical interneurons. Brain Struct Funct 2016; 222:2217-2233. [PMID: 27858201 PMCID: PMC5504245 DOI: 10.1007/s00429-016-1337-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/11/2016] [Indexed: 01/25/2023]
Abstract
Cortical interneurons are generated predominantly in the medial ganglionic eminence of the ventral telencephalon and migrate to the cortex during embryonic development. These cells express neuropilin (Nrp1 and Nrp2) receptors which mediate their response to the chemorepulsive class 3 semaphorin (Sema) ligands. We show here that semaphorins Sema3A and Sema3F are expressed in layers adjacent to cortical interneuron migratory streams as well as in the striatum, suggesting they may have a role in guiding these cells throughout their journey. Analysis of Sema3A -/- and Sema3F -/- mice during corticogenesis showed that absence of Sema3A, but not Sema3F, leads to aberrant migration of cortical interneurons through the striatum. Reduced number of cortical interneurons was found in the cortex of Sema3A -/-, Nrp1 -/- and Nrp2 -/- mice, as well as altered distribution in Sema3F -/-, Nrp1 -/-, Nrp2 -/- animals and especially in neuropilin double mutants. The observed decrease in interneurons in Sema3A -/- and Nrp1 -/- mice was due to altered proliferative activity of their progenitors highlighted by changes in their mitotic spindle positioning and angle of cleavage plane during cell division. These findings point to a novel role for Sema3A-Nrp1 signalling in progenitor cell dynamics and in the generation of interneurons in the ventral telencephalon.
Collapse
Affiliation(s)
- William D Andrews
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Melissa Barber
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Marion Nemitz
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Fani Memi
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - John G Parnavelas
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
46
|
Abstract
Stem cells hold great promise in treating many diseases either through promoting endogenous cell repair or through direct cell transplants. In order to maximize their potential, understanding the fundamental signals and mechanisms that regulate their behavior is essential. The extracellular matrix (ECM) is one such component involved in mediating stem cell fate. Recent studies have made significant progress in understanding stem cell-ECM interactions. Technological developments have provided greater clarity in how cells may sense and respond to the ECM, in particular the physical properties of the matrix. This review summarizes recent developments, providing illustrative examples of the different modes with which the ECM controls both embryonic and adult stem cell behavior.
Collapse
|
47
|
Marsh ED, Nasrallah MP, Walsh C, Murray KA, Nicole Sunnen C, McCoy A, Golden JA. Developmental interneuron subtype deficits after targeted loss of Arx. BMC Neurosci 2016; 17:35. [PMID: 27287386 PMCID: PMC4902966 DOI: 10.1186/s12868-016-0265-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 06/03/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aristaless-related homeobox (ARX) is a paired-like homeodomain transcription factor that functions primarily as a transcriptional repressor and has been implicated in neocortical interneuron specification and migration. Given the role interneurons appear to play in numerous human conditions including those associated with ARX mutations, it is essential to understand the consequences of mutations in this gene on neocortical interneurons. Previous studies have examined the effect of germline loss of Arx, or targeted mutations in Arx, on interneuron development. We now present the effect of conditional loss of Arx on interneuron development. RESULTS To further elucidate the role of Arx in forebrain development we performed a series of anatomical and developmental studies to determine the effect of conditional loss of Arx specifically from developing interneurons in the neocortex and hippocampus. Analysis and cell counts were performed from mouse brains using immunohistochemical and in situ hybridization assays at 4 times points across development. Our data indicate that early in development, instead of a loss of ventral precursors, there is a shift of these precursors to more ventral locations, a deficit that persists in the adult nervous system. The result of this developmental shift is a reduced number of interneurons (all subtypes) at early postnatal and later time periods. In addition, we find that X inactivation is stochastic, and occurs at the level of the neural progenitors. CONCLUSION These data provide further support that the role of Arx in interneuron development is to direct appropriate migration of ventral neuronal precursors into the dorsal cortex and that the loss of Arx results in a failure of interneurons to reach the cortex and thus a deficiency in interneurons.
Collapse
Affiliation(s)
- Eric D Marsh
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA. .,Division of Child Neurology, Children's Hospital of Philadelphia, Room 502E, Abramson Research Building, 3615 Civic Center Boulevard, Philadelphia, PA, 19014, USA. .,Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - MacLean Pancoast Nasrallah
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pathology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Caroline Walsh
- Division of Child Neurology, Children's Hospital of Philadelphia, Room 502E, Abramson Research Building, 3615 Civic Center Boulevard, Philadelphia, PA, 19014, USA
| | - Kaitlin A Murray
- Division of Child Neurology, Children's Hospital of Philadelphia, Room 502E, Abramson Research Building, 3615 Civic Center Boulevard, Philadelphia, PA, 19014, USA
| | - C Nicole Sunnen
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Almedia McCoy
- Division of Child Neurology, Children's Hospital of Philadelphia, Room 502E, Abramson Research Building, 3615 Civic Center Boulevard, Philadelphia, PA, 19014, USA
| | - Jeffrey A Golden
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA, USA. .,Department of Pathology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA. .,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA, 02115, USA.
| |
Collapse
|
48
|
Park JH, Pak HJ, Riew TR, Shin YJ, Lee MY. Increased expression of Slit2 and its receptors Robo1 and Robo4 in reactive astrocytes of the rat hippocampus after transient forebrain ischemia. Brain Res 2016; 1634:45-56. [PMID: 26764532 DOI: 10.1016/j.brainres.2015.12.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/26/2015] [Accepted: 12/28/2015] [Indexed: 12/16/2022]
Abstract
Slit2 is a secreted glycoprotein that was originally identified as a chemorepulsive factor in the developing brain; however, it was recently reported that Slit2 is associated with adult neuronal function including a variety of pathophysiological processes. To elucidate whether Slit2 is implicated in the pathophysiology of ischemic injury, we investigated the temporal changes and cellular localization of Slit2 and its predominant receptors, Robo1 and Robo4, for 28 days after transient forebrain ischemia. Slit2 and its receptors had similar overall expression patterns in the control and ischemic hippocampi. The ligand and receptors were constitutively expressed in hippocampal neurons in control animals; however, in animals with ischemic injury, their upregulation was detected in reactive astrocytes, but not in neurons or activated microglia, in the CA1 region. Astroglial induction of Slit2 and its receptors occurred by day 3 after reperfusion, and appeared to increase progressively until the final time point on day 28. Their temporal expression patterns overlapped with the time period in which reactive astrocytes undergo dynamic structural changes and appear hypertrophic in the ischemic hippocampus. The immunohistochemical data were consistent with the results of the immunoblot analyses, indicating that the expression of Slit2 and Robo increased progressively over the relatively long period of 28 days examined here. Collectively, these results suggest that Slit2/Robo signaling may be involved in regulating the astroglial reaction via autocrine or paracrine mechanisms in post-ischemic processes. Moreover, this may contribute to the dynamic morphological changes that occur in astrocytes in response to ischemic injury.
Collapse
Affiliation(s)
- Joo-Hee Park
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 137-701 Seoul, Republic of Korea
| | - Ha-Jin Pak
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 137-701 Seoul, Republic of Korea
| | - Tae-Ryong Riew
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 137-701 Seoul, Republic of Korea
| | - Yoo-Jin Shin
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 137-701 Seoul, Republic of Korea
| | - Mun-Yong Lee
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 137-701 Seoul, Republic of Korea.
| |
Collapse
|
49
|
Leong WY, Lim ZH, Korzh V, Pietri T, Goh ELK. Methyl-CpG Binding Protein 2 (Mecp2) Regulates Sensory Function Through Sema5b and Robo2. Front Cell Neurosci 2015; 9:481. [PMID: 26733807 PMCID: PMC4685056 DOI: 10.3389/fncel.2015.00481] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/30/2015] [Indexed: 12/31/2022] Open
Abstract
Mutations in the gene encoding the MECP2 underlies Rett syndrome, a neurodevelopmental disorder in young females. Although reduced pain sensitivity in Rett syndrome patients and in partial MeCP2 deficient mice had been reported, these previous studies focused predominantly on motor impairments. Therefore, it is still unknown how MeCP2 is involved in these sensory defects. In addition, the human disease manifestations where males with mutations in MECP2 gene normally do not survive and females show typical neurological symptoms only after 18 months of age, is profoundly different in MeCP2-deficient mouse where all animals survived, and males but not females displayed Rett syndrome phenotypes at an early age. Thus, the mecp2-deficient zebrafish serves as an additional animal model to aid in deciphering the role and mechanisms of Mecp2 in neurodevelopment. Here, we used two independent methods of silencing expression of Mecp2 in zebrafish to uncover a novel role of Mecp2 in trigeminal ganglion sensory neurons during the embryonic development. mecp2-null mutation and morpholino-mediated silencing of Mecp2 in the zebrafish embryos resulted in defects in peripheral innervation of trigeminal sensory neurons and consequently affecting the sensory function. These defects were demonstrated to be dependent on the expression of Sema5b and Robo2. The expression of both proteins together could better overcome the defects caused by Mecp2 deficiency as compared to the expression of either Sema5b or Robo2 alone. Sema5b and Robo2 were downregulated upon Mecp2 silencing or in mecp2-null embryos, and Chromatin immunoprecipitation (ChIP) assay using antibody against Mecp2 was able to pull down specific regions of both Sema5b and Robo2 promoters, showing interaction between Mecp2 and the promoters of both genes. In addition, cell-specific expression of Mecp2 can overcome the innervation and sensory response defects in Mecp2 morphants indicating that these MeCP2-mediated defects are cell-autonomous. The sensory deficits caused by Mecp2 deficiency mirror the diminished sensory response observed in Rett syndrome patients. This suggests that zebrafish could be an unconventional but useful model for this disorder manifesting defects that are not easily studied in full using rodent models.
Collapse
Affiliation(s)
- Wan Y Leong
- Program in Neuroscience and Behavioral Disorder, Duke-NUS Graduate Medical School, Singapore Singapore
| | - Zhi H Lim
- Program in Neuroscience and Behavioral Disorder, Duke-NUS Graduate Medical School, Singapore Singapore
| | - Vladimir Korzh
- Institute of Molecular and Cell Biology, SingaporeSingapore; Department of Biological Sciences, National University of Singapore, SingaporeSingapore
| | - Thomas Pietri
- Institut de Biologie de l'École Normale Supérieure, Institut National de la Santé et de la Recherche Médicale U1024, Centre National de la Recherche Scientifique UMR 8197 Paris, France
| | - Eyleen L K Goh
- Program in Neuroscience and Behavioral Disorder, Duke-NUS Graduate Medical School, SingaporeSingapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, SingaporeSingapore; KK Research Centre, KK Women's and Children's Hospital, SingaporeSingapore
| |
Collapse
|
50
|
Zhang Y, Zhou S. MicroRNA-29a inhibits mesenchymal stem cell viability and proliferation by targeting Roundabout 1. Mol Med Rep 2015; 12:6178-84. [PMID: 26252416 DOI: 10.3892/mmr.2015.4183] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 11/20/2014] [Indexed: 11/06/2022] Open
Abstract
Secreted Slit glycoproteins and their Roundabout (Robo) receptors have been identified as important axon guidance molecules. The pivotal role of Slit‑Robo signaling is in regulating cell proliferation. MicroRNAs (miRNAs), a class of small non‑coding RNAs, function as critical regulators of gene expression by binding to the 3'‑untranslated region of mRNAs and causing mRNA degradation or translational repression. The present study demonstrated that downregulation of Robo1 using small interfering RNA inhibited mesenchymal stem cell (MSC) proliferation. Additionally, four miRNAs (miR), including miR‑218, miR‑29a, miR‑146 and miR‑148, inhibited the protein expression of Robo1 in the MSCs, with miR‑29 having the most marked effect. A luciferase reporter assay identified Robo1 as a novel target of miR‑29a. Overexpression of miR‑29a suppressed the protein expression levels of Robo1 and Slit2 and inhibited the viability and proliferation of the MSCs. By contrast, overexpression of Robo1 partly rescued these inhibitory effects of miR‑29a on the MSCs confirming that miR‑29a inhibited MSC viability and proliferation, at least partially, by directly targeting Robo1. These results indicated that the miR‑29a/Robo1 axis is crucial for the regulation of MSC viability and proliferation, suggesting that miR‑29a may serve as a potential clinical target for MSC expansion and stem cell transplantation.
Collapse
Affiliation(s)
- Yudong Zhang
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Shenghua Zhou
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|