1
|
Medina-Jiménez BI, Budd GE, Janssen R. Single-cell RNA sequencing of mid-to-late stage spider embryos: new insights into spider development. BMC Genomics 2024; 25:150. [PMID: 38326752 PMCID: PMC10848406 DOI: 10.1186/s12864-023-09898-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/12/2023] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND The common house spider Parasteatoda tepidariorum represents an emerging new model organism of arthropod evolutionary and developmental (EvoDevo) studies. Recent technical advances have resulted in the first single-cell sequencing (SCS) data on this species allowing deeper insights to be gained into its early development, but mid-to-late stage embryos were not included in these pioneering studies. RESULTS Therefore, we performed SCS on mid-to-late stage embryos of Parasteatoda and characterized resulting cell clusters by means of in-silico analysis (comparison of key markers of each cluster with previously published information on these genes). In-silico prediction of the nature of each cluster was then tested/verified by means of additional in-situ hybridization experiments with additional markers of each cluster. CONCLUSIONS Our data show that SCS data reliably group cells with similar genetic fingerprints into more or less distinct clusters, and thus allows identification of developing cell types on a broader level, such as the distinction of ectodermal, mesodermal and endodermal cell lineages, as well as the identification of distinct developing tissues such as subtypes of nervous tissue cells, the developing heart, or the ventral sulcus (VS). In comparison with recent other SCS studies on the same species, our data represent later developmental stages, and thus provide insights into different stages of developing cell types and tissues such as differentiating neurons and the VS that are only present at these later stages.
Collapse
Affiliation(s)
- Brenda I Medina-Jiménez
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden.
| | - Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden
| | - Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden.
| |
Collapse
|
2
|
Klann M, Schacht MI, Benton MA, Stollewerk A. Functional analysis of sense organ specification in the Tribolium castaneum larva reveals divergent mechanisms in insects. BMC Biol 2021; 19:22. [PMID: 33546687 PMCID: PMC7866635 DOI: 10.1186/s12915-021-00948-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/04/2021] [Indexed: 12/27/2022] Open
Abstract
Abstract Insects and other arthropods utilise external sensory structures for mechanosensory, olfactory, and gustatory reception. These sense organs have characteristic shapes related to their function, and in many cases are distributed in a fixed pattern so that they are identifiable individually. In Drosophila melanogaster, the identity of sense organs is regulated by specific combinations of transcription factors. In other arthropods, however, sense organ subtypes cannot be linked to the same code of gene expression. This raises the questions of how sense organ diversity has evolved and whether the principles underlying subtype identity in D. melanogaster are representative of other insects. Here, we provide evidence that such principles cannot be generalised, and suggest that sensory organ diversification followed the recruitment of sensory genes to distinct sensory organ specification mechanism. Results We analysed sense organ development in a nondipteran insect, the flour beetle Tribolium castaneum, by gene expression and RNA interference studies. We show that in contrast to D. melanogaster, T. castaneum sense organs cannot be categorised based on the expression or their requirement for individual or combinations of conserved sense organ transcription factors such as cut and pox neuro, or members of the Achaete-Scute (Tc ASH, Tc asense), Atonal (Tc atonal, Tc cato, Tc amos), and neurogenin families (Tc tap). Rather, our observations support an evolutionary scenario whereby these sensory genes are required for the specification of sense organ precursors and the development and differentiation of sensory cell types in diverse external sensilla which do not fall into specific morphological and functional classes. Conclusions Based on our findings and past research, we present an evolutionary scenario suggesting that sense organ subtype identity has evolved by recruitment of a flexible sensory gene network to the different sense organ specification processes. A dominant role of these genes in subtype identity has evolved as a secondary effect of the function of these genes in individual or subsets of sense organs, probably modulated by positional cues. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-00948-y.
Collapse
Affiliation(s)
- Marleen Klann
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.,Marine Eco-Evo-Devo Unit, Okinawa Institute for Science and Technology (OIST), 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Magdalena Ines Schacht
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Matthew Alan Benton
- Department of Zoology, University of Cambridge, Downing St, Cambridge, CB2 3EJ, UK
| | - Angelika Stollewerk
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| |
Collapse
|
3
|
Distribution and development of the external sense organ pattern on the appendages of postembryonic and adult stages of the spider Parasteatoda tepidariorum. Dev Genes Evol 2020; 230:121-136. [PMID: 32036445 PMCID: PMC7128012 DOI: 10.1007/s00427-020-00655-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 01/30/2020] [Indexed: 11/17/2022]
Abstract
Spiders are equipped with a large number of innervated cuticular specializations, which respond to various sensory stimuli. The physiological function of mechanosensory organs has been analysed in great detail in some model spider species (e.g. Cupiennius salei); however, much less is known about the distribution and function of chemosensory organs. Furthermore, our knowledge on how the sense organ pattern develops on the spider appendages is limited. Here we analyse the development of the pattern and distribution of six different external mechano- and chemosensory organs in all postembryonic stages and in adult male and female spiders of the species Parasteatoda tepidariorum. We show that except for small mechanosensory setae, external sense organs appear in fixed positions on the pedipalps and first walking legs, arranged in longitudinal rows along the proximal-distal axis or in invariable positions relative to morphological landmarks (joints, distal tarsal tip). A comparison to other Entelegynae spiders shows that these features are conserved. We hope that this study lays the foundation for future molecular analysis to address the question how this conserved pattern is generated.
Collapse
|
4
|
Evolutionary variation in neural gene expression in the developing sense organs of the crustacean Daphnia magna. Dev Biol 2017; 424:50-61. [PMID: 28238736 DOI: 10.1016/j.ydbio.2017.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/21/2016] [Accepted: 02/17/2017] [Indexed: 11/23/2022]
Abstract
Arthropods have numerous sense organs, which are adapted to their habitat. While some sense organs are similar in structure and function in all arthropod groups, structural differences in functionally related sense organs have been described, as well as the absence of particular sense organ subtypes in individual arthropod groups. Here we address the question of how the diverse structures of arthropod sense organs have evolved by analysing the underlying molecular developmental processes in a crustacean, an arthropod group that has been neglected so far. We have investigated the development of four types of chemo- and mechanosensory sense organs in the branchiopod Daphnia magna (Cladocera) that either cannot be found in arthropods other than crustaceans or represent adaptations to an aquatic environment. The formation of the sensory organ precursors shows greater similarity to the arthropod taxa Chelicerata and Myriapoda than to the more closely related insects. All analysed sense organ types co-express the proneural genes ASH and atonal regardless of their structure and function. In contrast, in Drosophila melanogaster, ASH and atonal expression does not overlap and the genes confer different sense organ subtype identities. We performed experimental co-expression studies in D. melanogaster and found that the combinatorial expression of ato and ASH can change the external structure of sense organs. Our results indicate a central role for ASH and Atonal family members in the emergence of structural variations in arthropod sense organs.
Collapse
|
5
|
Stollewerk A. A flexible genetic toolkit for arthropod neurogenesis. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150044. [PMID: 26598727 DOI: 10.1098/rstb.2015.0044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Arthropods show considerable variations in early neurogenesis. This includes the pattern of specification, division and movement of neural precursors and progenitors. In all metazoans with nervous systems, including arthropods, conserved genes regulate neurogenesis, which raises the question of how the various morphological mechanisms have emerged and how the same genetic toolkit might generate different morphological outcomes. Here I address this question by comparing neurogenesis across arthropods and show how variations in the regulation and function of the neural genes might explain this phenomenon and how they might have facilitated the evolution of the diverse morphological mechanisms of neurogenesis.
Collapse
Affiliation(s)
- Angelika Stollewerk
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
6
|
Hilbrant M, Damen WGM. The embryonic origin of the ampullate silk glands of the spider Cupiennius salei. ARTHROPOD STRUCTURE & DEVELOPMENT 2015; 44:280-288. [PMID: 25882741 DOI: 10.1016/j.asd.2015.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 06/04/2023]
Abstract
Silk production in spiders is considered a key innovation, and to have been vital for the diversification of the clade. The evolutionary origin of the organs involved in spider silk production, however, and in particular of the silk glands, is poorly understood. Homologies have been proposed between these and other glands found in arachnids, but lacking knowledge of the embryonic development of spider silk glands hampers an evaluation of hypotheses. This study focuses on the embryonic origin of the largest silk glands of the spider Cupiennius salei, the major and minor ampullate glands. We show how the ampullate glands originate from ectodermal invaginations on the embryonic spinneret limb buds, in relation to morphogenesis of these buds. Moreover, we visualize the subsequent growth of the ampullate glands in sections of the early postembryonic stages. The invaginations are shown to correlate with expression of the proneural gene CsASH2, which is remarkable since it has been proposed that spider silk glands and their nozzles originate from sensory bristles. Hence, by confirming the ectodermal origin of spider silk glands, and by describing the (post-)embryonic morphogenesis of the ampullate glands, this work provides a starting point for further investigating into the genetic program that underlies their development.
Collapse
Affiliation(s)
- Maarten Hilbrant
- Institute for Genetics, University of Cologne, Zülpicher Straße 47a, 50674 Cologne, Germany; Institute for Developmental Biology, University of Cologne, Zülpicher Straße 47b, 50674 Cologne, Germany.
| | - Wim G M Damen
- Institute for Genetics, University of Cologne, Zülpicher Straße 47a, 50674 Cologne, Germany; Department of Genetics, Friedrich Schiller University, Jena, Philosophenweg 12, 07743 Jena, Germany.
| |
Collapse
|
7
|
Hilbrant M, Damen WGM, McGregor AP. Evolutionary crossroads in developmental biology: the spider Parasteatoda tepidariorum. Development 2012; 139:2655-62. [DOI: 10.1242/dev.078204] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Spiders belong to the chelicerates, which is an arthropod group that branches basally from myriapods, crustaceans and insects. Spiders are thus useful models with which to investigate whether aspects of development are ancestral or derived with respect to the arthropod common ancestor. Moreover, they serve as an important reference point for comparison with the development of other metazoans. Therefore, studies of spider development have made a major contribution to advancing our understanding of the evolution of development. Much of this knowledge has come from studies of the common house spider, Parasteatoda tepidariorum. Here, we describe how the growing number of experimental tools and resources available to study Parasteatoda development have provided novel insights into the evolution of developmental regulation and have furthered our understanding of metazoan body plan evolution.
Collapse
Affiliation(s)
- Maarten Hilbrant
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK
| | - Wim G. M. Damen
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, 07743 Jena, Germany
| | - Alistair P. McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK
| |
Collapse
|
8
|
Single-minded and the evolution of the ventral midline in arthropods. Dev Biol 2012; 364:66-76. [PMID: 22306923 DOI: 10.1016/j.ydbio.2012.01.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 01/12/2012] [Accepted: 01/20/2012] [Indexed: 11/22/2022]
Abstract
In insects and crustaceans, ventral midline cells are present that subdivide the CNS into bilateral symmetric halves. In both arthropod groups unpaired midline neurons and glial cells have been identified that contribute to the embryonic patterning mechanisms. In the fruitfly Drosophila melanogaster, for example, the midline cells are involved in neural cell fate specification along the dorso-ventral axis but also in axonal pathfinding and organisation of the axonal scaffold. Both in insects and malacostracan crustaceans, the bHLH-PAS transcription factor single-minded is the master regulator of ventral midline development and homology has been suggested for individual midline precursors in these groups. The conserved arrangement of the axonal scaffold as well as the regular pattern of neural precursors in all euarthropod groups raises the question whether the ventral midline system is conserved in this phylum. In the remaining euarthropod groups, the chelicerates and myriapods, a single-minded homologue has been identified in the spider Achaearanea tepidariorum (chelicerate), however, the gene is not expressed in the ventral midline but in the median area of the ventral neuroectoderm. Here we show that At-sim is not required for ventral midline development. Furthermore, we identify sim homologues in representatives of arthropods that have not yet been analysed: the myriapod Strigamia maritima and a representative of an outgroup to the euarthropods, the onychophoran Euperipatoides kanangrensis. We compare the expression patterns to the A. tepidariorum sim homologue expression and furthermore analyse the nature of the arthropod midline cells. Our data suggest that in arthropods unpaired midline precursors evolved from the bilateral median domain of the ventral neuroectoderm in the last common ancestor of Mandibulata (insects, crustaceans, myriapods). We hypothesize that sim was expressed in this domain and recruited to ventral midline development. Subsequently, sim function has evolved in parallel to the evolution of midline cell function in the individual Mandibulata lineages.
Collapse
|
9
|
Wolff C, Hilbrant M. The embryonic development of the central American wandering spider Cupiennius salei. Front Zool 2011; 8:15. [PMID: 21672209 PMCID: PMC3141654 DOI: 10.1186/1742-9994-8-15] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 06/14/2011] [Indexed: 12/04/2022] Open
Abstract
Background The spider Cupiennius salei (Keyserling 1877) has become an important study organism in evolutionary and developmental biology. However, the available staging system for its embryonic development is difficult to apply to modern studies, with strong bias towards the earliest developmental stages. Furthermore, important embryonic events are poorly understood. We address these problems, providing a new description of the embryonic development of C. salei. The paper also discusses various observations that will improve our understanding of spider development. Results Conspicuous developmental events were used to define numbered stages 1 to 21. Stages 1 to 9 follow the existing staging system for the spider Achaearanea tepidariorum, and stages 10 to 21 provide a high-resolution description of later development. Live-embryo imaging shows cell movements during the earliest formation of embryonic tissue in C. salei. The imaging procedure also elucidates the encircling border between the cell-dense embryo hemisphere and the hemisphere with much lower cell density (a structure termed 'equator' in earlier studies). This border results from subsurface migration of primordial mesendodermal cells from their invagination site at the blastopore. Furthermore, our detailed successive sequence shows: 1) early differentiation of the precheliceral neuroectoderm; 2) the morphogenetic process of inversion and 3) initial invaginations of the opisthosomal epithelium for the respiratory system. Conclusions Our improved staging system of development in C. salei development should be of considerable value to future comparative studies of animal development. A dense germ disc is not evident during development in C. salei, but we show that the gastrulation process is similar to that in spider species that do have a dense germ disc. In the opisthosoma, the order of appearance of precursor epithelial invaginations provides evidence for the non-homology of the tracheal and book lung respiratory systems.
Collapse
Affiliation(s)
- Carsten Wolff
- Humboldt-Universität zu Berlin Institut für Biologie/Vergleichende Zoologie Philippstraße 13, 10115 Berlin, Germany
| | - Maarten Hilbrant
- Universität zu Köln Institut für Genetik, Zülpicher Straße 47a, 50674 Köln, Germany.,Oxford Brookes University Headington Campus Gipsy Lane, Oxford OX3 0BP, UK
| |
Collapse
|
10
|
Loesel R, Seyfarth EA, Bräunig P, Agricola HJ. Neuroarchitecture of the arcuate body in the brain of the spider Cupiennius salei (Araneae, Chelicerata) revealed by allatostatin-, proctolin-, and CCAP-immunocytochemistry and its evolutionary implications. ARTHROPOD STRUCTURE & DEVELOPMENT 2011; 40:210-220. [PMID: 21256976 DOI: 10.1016/j.asd.2011.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 01/03/2011] [Accepted: 01/06/2011] [Indexed: 05/30/2023]
Abstract
Here we describe the neuronal organization of the arcuate body in the brain of the wandering spider Cupiennius salei. The internal anatomy of this major brain center is analyzed in detail based on allatostatin-, proctolin-, and crustacean cardioactive peptide (CCAP)-immunohistochemistry. Prominent neuronal features are demonstrated in graphic reconstructions. The stainings revealed that the neuroarchitecture of the arcuate body is characterized by several distinct layers some of which comprise nerve terminals that are organized in columnar, palisade-like arrays. The anatomy of the spider's arcuate body exhibits similarities as well as differences when compared to the central complex in the protocerebrum of the Tetraconata. Arguments for and against a possible homology of the arcuate body of the Chelicerata and the central complex of the Tetraconata and their consequences for the understanding of arthropod brain evolution are discussed.
Collapse
Affiliation(s)
- Rudi Loesel
- Institut für Biologie II (Zoologie) der Rheinisch-Westfaelischen Technischen Hochschule, D-52074 Aachen, Germany.
| | | | | | | |
Collapse
|
11
|
Pechmann M, Khadjeh S, Sprenger F, Prpic NM. Patterning mechanisms and morphological diversity of spider appendages and their importance for spider evolution. ARTHROPOD STRUCTURE & DEVELOPMENT 2010; 39:453-467. [PMID: 20696272 DOI: 10.1016/j.asd.2010.07.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 07/07/2010] [Accepted: 07/27/2010] [Indexed: 05/29/2023]
Abstract
The prosoma of spiders bears different gnathal (labrum, chelicerae, pedipalps) and locomotory appendages (legs). In most species these appendages are also used for additional functions, e.g. sensing, mating, and courtship. The opisthosoma is equipped with four pairs of highly specialized appendages. Two pairs of spinnerets are used for silk production and manipulation. The other two pairs of appendages are internalized during development and give rise to a complex respiratory system of book lungs and tracheae. Thus spiders have a number of different appendage types with radically different adult morphologies. Furthermore, all these appendage types display significant additional species specific diversity correlating with a large spectrum of functions of the appendages. Despite this importance of appendage diversity for the evolution of the spiders we know relatively little about the genetic patterning mechanisms producing this diversity of morphology. We review recent advances concerning the developmental genetics of spider appendage diversification, mainly concentrating on open questions and future directions of research. We conclude that the deeper understanding of appendage development and diversity in spiders can contribute significantly not only to evolutionary developmental biology, but also to behavioral biology, speciation research and population genetics, and the study of sexually dimorphic traits.
Collapse
Affiliation(s)
- Matthias Pechmann
- Georg-August-Universität Göttingen, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Abteilung für Entwicklungsbiologie, GZMB Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, Göttingen, Germany
| | | | | | | |
Collapse
|
12
|
Mayer G, Whitington PM. Velvet worm development links myriapods with chelicerates. Proc Biol Sci 2009; 276:3571-9. [PMID: 19640885 PMCID: PMC2817307 DOI: 10.1098/rspb.2009.0950] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 07/06/2009] [Indexed: 12/21/2022] Open
Abstract
Despite the advent of modern molecular and computational methods, the phylogeny of the four major arthropod groups (Chelicerata, Myriapoda, Crustacea and Hexapoda, including the insects) remains enigmatic. One particular challenge is the position of myriapods as either the closest relatives to chelicerates (Paradoxopoda/Myriochelata hypothesis), or to crustaceans and hexapods (Mandibulata hypothesis). While neither hypothesis receives conclusive support from molecular analyses, most morphological studies favour the Mandibulata concept, with the mandible being the most prominent feature of this group. Although no morphological evidence was initially available to support the Paradoxopoda hypothesis, a putative synapomorphy of chelicerates and myriapods has recently been put forward based on studies of neurogenesis. However, this and other morphological characters remain of limited use for phylogenetic systematics owing to the lack of data from an appropriate outgroup. Here, we show that several embryonic characters are synapomorphies uniting the chelicerates and myriapods, as revealed by an outgroup comparison with the Onychophora or velvet worms. Our findings, thus provide, to our knowledge, first morphological/embryological support for the monophyly of the Paradoxopoda and suggest that the mandible might have evolved twice within the arthropods.
Collapse
Affiliation(s)
- Georg Mayer
- Department of Anatomy and Cell Biology, University of Melbourne, Melbourne, Victoria 3010, Australia.
| | | |
Collapse
|
13
|
Liu Y, Maas A, Waloszek D. Early development of the anterior body region of the grey widow spider Latrodectus geometricus Koch, 1841 (Theridiidae, Araneae). ARTHROPOD STRUCTURE & DEVELOPMENT 2009; 38:401-16. [PMID: 19374954 DOI: 10.1016/j.asd.2009.04.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 03/26/2009] [Accepted: 04/01/2009] [Indexed: 05/14/2023]
Abstract
We document the early morphogenesis of Latrodectus geometricus, particularly of the anterior body region. Significant changes in the development of the external prosomal structures revealed with scanning electron microscopy (SEM) images include: (1) reorganisation of each pre-cheliceral lobe by subdivision and internalisation of its central area; (2) shortening of the ventro-median bridge connecting the pre-cheliceral lobes and its eventual disappearance; (3) appearance and expansion of a prospective mouth region between the pre-cheliceral lobes with a recessed median area surrounded by lip-like borders, the anterior lip-part developing into the hypostome; (4) reduction of the mouth region to an area around the hypostome and the lip-like latero-posterior border of the mouth opening; (5) change of the position of the mouth region from anterior to the insertions of the chelicerae to posterior to them; (6) eventual shortening of the mouth opening to a slit overhung by the hypostome; (7) origination of the prosomal shield from the anterior margin of the pre-cheliceral lobes and the tergal portions of the four posterior-most prosomal segments; and (8) expansion of a 'ventral sulcus' from the cheliceral to the fifth opisthosomal segment separating the sides of these segments. Embryonic features are compared across the Chelicerata and discussed briefly in a phylogenetic context.
Collapse
Affiliation(s)
- Yu Liu
- University of Ulm, Germany.
| | | | | |
Collapse
|
14
|
Gold K, Cotton JA, Stollewerk A. The role of Notch signalling and numb function in mechanosensory organ formation in the spider Cupiennius salei. Dev Biol 2008; 327:121-31. [PMID: 19121304 DOI: 10.1016/j.ydbio.2008.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 12/02/2008] [Accepted: 12/03/2008] [Indexed: 01/09/2023]
Abstract
In the spider Cupiennius salei the mechanosensory organs of the legs are generated from epithelial sensory precursor groups which are specified by elevated levels of the achaete-scute homologues CsASH1 and CsASH2. Neural precursors delaminate from the groups and occupy positions basal and proximal to the accessory cells which remain in the epithelium. Here we analyse the role of Notch signalling and numb function in the development of the mechanosensory organs of the spider. We show that Notch signalling is required for several processes: the selection of the sensory precursor groups, the maintenance of undifferentiated sensory precursors, the binary cell fate decision between accessory and neural fate and the differentiation of sensory neurons. Our data suggest that Numb antagonises Notch signalling in the neural precursors, which results in activation of the neural cell fate determinant Prospero and delamination of the neural precursors from the epithelium. Prospero is expressed de novo in sensory neural precursors and we assume that the expression of the gene is regulated by the Notch to Numb ratio within the sensory precursors. Interestingly, the spider numb RNAi phenotype resembles the numb/numblike loss of function phenotypes in the mammalian nervous system, indicating that the interaction between Notch signalling and Numb might play a similar role in both systems.
Collapse
Affiliation(s)
- Katrina Gold
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | | | | |
Collapse
|