1
|
Pinales BE, Palomino CE, Rosas-Acosta G, Francia G, Quintana AM. Dissecting the role of vitamin B 12 metabolism in craniofacial development through analysis of clinical phenotypes and model organism discoveries. Differentiation 2025; 142:100831. [PMID: 39676000 DOI: 10.1016/j.diff.2024.100831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
Vitamin B12, otherwise known as cobalamin, is an essential water-soluble vitamin that is obtained from animal derived dietary sources. Mutations in the genes that encode proteins responsible for cobalamin uptake, transport, or processing cause inborn errors of cobalamin metabolism, a group of disorders characterized by accumulation of homocysteine and methylmalonic acid, neurodevelopmental defects, ocular dysfunction, anemia, and failure to thrive. Mild to moderate craniofacial phenotypes have been observed but these phenotypes are not completely penetrant and have not been consistently recognized in the literature. However, in the most recent decade, animal models of cblX and cblC, two cobalamin disorder complementation groups, have documented craniofacial phenotypes. These data indicate a function for cobalamin in facial development. In this review, we performed a literature review of all cobalamin complementation groups to identify which groups, and which human variants, are associated with dysmorphic features, microcephaly, or marfanoid phenotypes. We identified dysmorphic facial features in cblC, cblX, cblG, cblF, and cblJ, which are caused by mutations in MMACHC, HCFC1, MTR, LMBRD1, and ABCD4, respectively. Other complementation groups were associated primarily with microcephaly. Animal models (zebrafish and mouse) of cblC and cblX support these clinical phenotypes and have demonstrated neural crest cell deficits that include reduced expression of prdm1a, sox10, and sox9, key molecular markers of neural crest development. Characterization of a zebrafish mmachc germline mutant also suggests atypical chondrocyte development. Collectively, these data demonstrate an essential role for cobalamin in facial development and warrant future mechanistic inquiries that dissect the cellular and molecular mechanisms underlying human facial phenotypes in cobalamin disorders.
Collapse
Affiliation(s)
- Briana E Pinales
- Department of Biological Sciences, University of Texas El Paso, 500 W. University Ave 79968, El Paso, TX, USA
| | - Carlos E Palomino
- Department of Biological Sciences, University of Texas El Paso, 500 W. University Ave 79968, El Paso, TX, USA
| | - German Rosas-Acosta
- Department of Biological Sciences, University of Texas El Paso, 500 W. University Ave 79968, El Paso, TX, USA
| | - Giulio Francia
- Department of Biological Sciences, University of Texas El Paso, 500 W. University Ave 79968, El Paso, TX, USA
| | - Anita M Quintana
- Department of Biological Sciences, University of Texas El Paso, 500 W. University Ave 79968, El Paso, TX, USA.
| |
Collapse
|
2
|
Li D, Tian Y, Vona B, Yu X, Lin J, Ma L, Lou S, Li X, Zhu G, Wang Y, Du M, Wang L, Pan Y. A TAF11 variant contributes to non-syndromic cleft lip only through modulating neural crest cell migration. Hum Mol Genet 2025; 34:392-401. [PMID: 39727181 DOI: 10.1093/hmg/ddae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/30/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
The NC_000006.12: g.34887814C>G variant in TAF11 was identified as a potential functional variant in a Chinese pedigree including two non-syndromic cleft lip only (NSCLO) cases. Applying Chromatin Immunoprecipitation (ChIP), Electrophoretic mobility shift and super-shift assays, we found that the mutant G allele recruited more STAT1 and STAT3, and increased the expression of TAF11. RNA sequencing, GO and KEGG pathway enrichment, ChIP and dual-luciferase reporter assays revealed that TAF11 downregulated CDH1 and CTNND1 in the cell adhesion pathway by binding to their promoter regions and inhibiting transcriptional activities. Alcian blue staining, time-lapse photography, whole-mount in situ hybridization, phospho-Histone H3 immunofluorescence and TUNEL assays indicated that TAF11 and taf11 overexpression (TAF11OE and taf11OE, respectively) contributed to disturbed migration of cranial neural crest cells and abnormal craniofacial development, as well as increased death and deformity rates in zebrafish. In conclusion, a functionally relevant TAF11 variant, affecting cell migration via modulating CDH1 and CTNND1, was associated with etiology of NSCLO.
Collapse
Affiliation(s)
- Dandan Li
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, No. 1 Shanghai Road, Gulou District, Nanjing 210029, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, No. 136 Hanzhong Road, Gulou District, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, No. 136 Hanzhong Road, Gulou District, Nanjing 210029, China
| | - Yu Tian
- Department of Stomatology, Zhenjiang First People's Hospital, People's Hospital Affiliated to Jiangsu University, No. 8 Electric Road, Runzhou District, Zhenjiang 212000, China
| | - Barbara Vona
- Institute of Human Genetics, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen 37075, Germany
- Institute for Auditory Neuroscience and Inner Ear Lab, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen 37075, Germany
| | - Xin Yu
- Department of Orthodontics, Affiliated Nantong Stomatological Hospital of Nantong University, No. 36 Yuelong South Road, Chongchuan District, Nantong 226006, China
| | - Junyan Lin
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, No. 1 Shanghai Road, Gulou District, Nanjing 210029, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, No. 136 Hanzhong Road, Gulou District, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, No. 136 Hanzhong Road, Gulou District, Nanjing 210029, China
| | - Lan Ma
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, No. 136 Hanzhong Road, Gulou District, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, No. 136 Hanzhong Road, Gulou District, Nanjing 210029, China
| | - Shu Lou
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, No. 1 Shanghai Road, Gulou District, Nanjing 210029, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, No. 136 Hanzhong Road, Gulou District, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, No. 136 Hanzhong Road, Gulou District, Nanjing 210029, China
| | - Xiaofeng Li
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, No. 1 Shanghai Road, Gulou District, Nanjing 210029, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, No. 136 Hanzhong Road, Gulou District, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, No. 136 Hanzhong Road, Gulou District, Nanjing 210029, China
| | - Guirong Zhu
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, No. 136 Hanzhong Road, Gulou District, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, No. 136 Hanzhong Road, Gulou District, Nanjing 210029, China
| | - Yuting Wang
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, No. 136 Hanzhong Road, Gulou District, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, No. 136 Hanzhong Road, Gulou District, Nanjing 210029, China
| | - Mulong Du
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, No. 101 Longmian Avenue, Jiangning District, Nanjing 211166, China
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, No. 101 Longmian Avenue, Jiangning District, Nanjing 211166, China
| | - Lin Wang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, No. 1 Shanghai Road, Gulou District, Nanjing 210029, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, No. 136 Hanzhong Road, Gulou District, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, No. 136 Hanzhong Road, Gulou District, Nanjing 210029, China
| | - Yongchu Pan
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, No. 1 Shanghai Road, Gulou District, Nanjing 210029, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, No. 136 Hanzhong Road, Gulou District, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, No. 136 Hanzhong Road, Gulou District, Nanjing 210029, China
| |
Collapse
|
3
|
Tu M, Ge B, Li J, Pan Y, Zhao B, Han J, Wu J, Zhang K, Liu G, Hou M, Yue M, Han X, Sun T, An Y. Emerging biological functions of Twist1 in cell differentiation. Dev Dyn 2025; 254:8-25. [PMID: 39254141 DOI: 10.1002/dvdy.736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/03/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
Twist1 is required for embryonic development and expresses after birth in mesenchymal stem cells derived from mesoderm, where it governs mesenchymal cell development. As a well-known regulator of epithelial-mesenchymal transition or embryonic organogenesis, Twist1 is important in a variety of developmental systems, including mesoderm formation, neurogenesis, myogenesis, cranial neural crest cell migration, and differentiation. In this review, we first highlight the physiological significance of Twist1 in cell differentiation, including osteogenic, chondrogenic, and myogenic differentiation, and then detail its probable molecular processes and signaling pathways. On this premise, we summarize the significance of Twist1 in distinct developmental disorders and diseases to provide a reference for studies on cell differentiation/development-related diseases.
Collapse
Affiliation(s)
- Mengjie Tu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Bingqian Ge
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jiali Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yanbing Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Binbin Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jiayang Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jialin Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Kaifeng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Guangchao Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Mengwen Hou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Man Yue
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Xu Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Tiantian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| |
Collapse
|
4
|
Pan YK. Structure and function of the larval teleost fish gill. J Comp Physiol B 2024; 194:569-581. [PMID: 38584182 DOI: 10.1007/s00360-024-01550-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/05/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
The fish gill is a multifunctional organ that is important in multiple physiological processes such as gas transfer, ionoregulation, and chemoreception. This characteristic organ of fishes has received much attention, yet an often-overlooked point is that larval fishes in most cases do not have a fully developed gill, and thus larval gills do not function identically as adult gills. In addition, large changes associated with gas exchange and ionoregulation happen in gills during the larval phase, leading to the oxygen and ionoregulatory hypotheses examining the environmental constraint that resulted in the evolution of gills. This review thus focuses exclusively on the larval fish gill of teleosts, summarizing the development of teleost larval fish gills and its function in gas transfer, ionoregulation, and chemoreception, and comparing and contrasting it to adult gills where applicable, while providing some insight into the oxygen vs ionoregulatory hypotheses debate.
Collapse
Affiliation(s)
- Yihang Kevin Pan
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
5
|
Muscò A, Martini D, Digregorio M, Broccoli V, Andreazzoli M. Shedding a Light on Dark Genes: A Comparative Expression Study of PRR12 Orthologues during Zebrafish Development. Genes (Basel) 2024; 15:492. [PMID: 38674426 PMCID: PMC11050278 DOI: 10.3390/genes15040492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Haploinsufficiency of the PRR12 gene is implicated in a human neuro-ocular syndrome. Although identified as a nuclear protein highly expressed in the embryonic mouse brain, PRR12 molecular function remains elusive. This study explores the spatio-temporal expression of zebrafish PRR12 co-orthologs, prr12a and prr12b, as a first step to elucidate their function. In silico analysis reveals high evolutionary conservation in the DNA-interacting domains for both orthologs, with significant syntenic conservation observed for the prr12b locus. In situ hybridization and RT-qPCR analyses on zebrafish embryos and larvae reveal distinct expression patterns: prr12a is expressed early in zygotic development, mainly in the central nervous system, while prr12b expression initiates during gastrulation, localizing later to dopaminergic telencephalic and diencephalic cell clusters. Both transcripts are enriched in the ganglion cell and inner neural layers of the 72 hpf retina, with prr12b widely distributed in the ciliary marginal zone. In the adult brain, prr12a and prr12b are found in the cerebellum, amygdala and ventral telencephalon, which represent the main areas affected in autistic patients. Overall, this study suggests PRR12's potential involvement in eye and brain development, laying the groundwork for further investigations into PRR12-related neurobehavioral disorders.
Collapse
Affiliation(s)
- Alessia Muscò
- Cell and Developmental Biology Unit, University of Pisa, 56126 Pisa, Italy (D.M.)
| | - Davide Martini
- Cell and Developmental Biology Unit, University of Pisa, 56126 Pisa, Italy (D.M.)
| | - Matteo Digregorio
- Cell and Developmental Biology Unit, University of Pisa, 56126 Pisa, Italy (D.M.)
| | - Vania Broccoli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
- CNR Institute of Neuroscience, 20132 Milan, Italy
| | | |
Collapse
|
6
|
Truong BT, Shull LC, Zepeda BJ, Lencer E, Artinger KB. Human split hand/foot variants are not as functional as wildtype human PRDM1 in the rescue of craniofacial defects. Birth Defects Res 2024; 116:e2327. [PMID: 38456586 PMCID: PMC10949536 DOI: 10.1002/bdr2.2327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Split hand/foot malformation (SHFM) is a congenital limb disorder presenting with limb anomalies, such as missing, hypoplastic, or fused digits, and often craniofacial defects, including a cleft lip/palate, microdontia, micrognathia, or maxillary hypoplasia. We previously identified three novel variants in the transcription factor, PRDM1, that are associated with SHFM phenotypes. One individual also presented with a high arch palate. Studies in vertebrates indicate that PRDM1 is important for development of the skull; however, prior to our study, human variants in PRDM1 had not been associated with craniofacial anomalies. METHODS Using transient mRNA overexpression assays in prdm1a-/- mutant zebrafish, we tested whether the PRDM1 SHFM variants were functional and could lead to a rescue of the craniofacial defects observed in prdm1a-/- mutants. We also mined previously published CUT&RUN and RNA-seq datasets that sorted EGFP-positive cells from a Tg(Mmu:Prx1-EGFP) transgenic line that labels the pectoral fin, pharyngeal arches, and dorsal part of the head to examine Prdm1a binding and the effect of Prdm1a loss on craniofacial genes. RESULTS The prdm1a-/- mutants exhibit craniofacial defects including a hypoplastic neurocranium, a loss of posterior ceratobranchial arches, a shorter palatoquadrate, and an inverted ceratohyal. Injection of wildtype (WT) hPRDM1 in prdm1a-/- mutants partially rescues the palatoquadrate phenotype. However, injection of each of the three SHFM variants fails to rescue this skeletal defect. Loss of prdm1a leads to a decreased expression of important craniofacial genes by RNA-seq, including emilin3a, confirmed by hybridization chain reaction expression. Other genes including dlx5a/dlx6a, hand2, sox9b, col2a1a, and hoxb genes are also reduced. Validation by real-time quantitative PCR in the anterior half of zebrafish embryos failed to confirm the expression changes suggesting that the differences are enriched in prx1 expressing cells. CONCLUSION These data suggest that the three SHFM variants are likely not functional and may be associated with the craniofacial defects observed in the humans. Finally, they demonstrate how Prdm1a can directly bind and regulate genes involved in craniofacial development.
Collapse
Affiliation(s)
- Brittany T Truong
- Human Medical Genetics & Genomics Graduate Program, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Craniofacial Development, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lomeli C Shull
- Department of Craniofacial Development, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA
| | - Bryan J Zepeda
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota, USA
| | - Ezra Lencer
- Biology Department, Lafayette College, Easton, Pennsylvania, USA
| | - Kristin B Artinger
- Department of Craniofacial Development, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota, USA
| |
Collapse
|
7
|
DeLorenzo L, Powder KE. Epigenetics and the evolution of form: Experimental manipulation of a chromatin modification causes species-specific changes to the craniofacial skeleton. Evol Dev 2024; 26:e12461. [PMID: 37850843 PMCID: PMC10842503 DOI: 10.1111/ede.12461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/18/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023]
Abstract
A central question in biology is the molecular origins of phenotypic diversity. While genetic changes are key to the genotype-phenotype relationship, alterations to chromatin structure and the physical packaging of histone proteins may also be important drivers of vertebrate divergence. We investigate the impact of such an epigenetic mechanism, histone acetylation, within a textbook example of an adaptive radiation. Cichlids of Lake Malawi have adapted diverse craniofacial structures, and here we investigate how histone acetylation influences morphological variation in these fishes. Specifically, we assessed the effect of inhibiting histone deacetylation using the drug trichostatin A (TSA) on developing facial structures. We examined this during three critical developmental windows in two cichlid species with alternate adult morphologies. Exposure to TSA during neural crest cell (NCC) migration and as postmigratory NCCs proliferate in the pharyngeal arches resulted in significant changes in lateral and ventral shape in Maylandia, but not in Tropheops. This included an overall shortening of the head, widening of the lower jaw, and steeper craniofacial profile, all of which are paedomorphic morphologies. In contrast, treatment with TSA during early chondrogenesis did not result in significant morphological changes in either species. Together, these data suggest a sensitivity to epigenetic alterations that are both time- and species-dependent. We find that morphologies are due to nonautonomous or potentially indirect effects on NCC development, including in part a global developmental delay. Our research bolsters the understanding that proper histone acetylation is essential for early craniofacial development and identifies a species-specific robustness to developmental change. Overall, this study demonstrates how epigenetic regulation may play an important role in both generating and buffering morphological variation.
Collapse
Affiliation(s)
- Leah DeLorenzo
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Kara E. Powder
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
8
|
Yu EPY, Saxena V, Perin S, Ekker M. Loss of dlx5a/ dlx6a Locus Alters Non-Canonical Wnt Signaling and Meckel's Cartilage Morphology. Biomolecules 2023; 13:1347. [PMID: 37759750 PMCID: PMC10526740 DOI: 10.3390/biom13091347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
The dlx genes encode transcription factors that establish a proximal-distal polarity within neural crest cells to bestow a regional identity during craniofacial development. The expression regions of dlx paralogs are overlapping yet distinct within the zebrafish pharyngeal arches and may also be involved in progressive morphologic changes and organization of chondrocytes of the face. However, how each dlx paralog of dlx1a, dlx2a, dlx5a and dlx6a affects craniofacial development is still largely unknown. We report here that the average lengths of the Meckel's, palatoquadrate and ceratohyal cartilages in different dlx mutants were altered. Mutants for dlx5a-/- and dlx5i6-/-, where the entire dlx5a/dlx6a locus was deleted, have the shortest lengths for all three structures at 5 days post fertilization (dpf). This phenotype was also observed in 14 dpf larvae. Loss of dlx5i6 also resulted in increased proliferation of neural crest cells and expression of chondrogenic markers. Additionally, altered expression and function of non-canonical Wnt signaling were observed in these mutants suggesting a novel interaction between dlx5i6 locus and non-canonical Wnt pathway regulating ventral cartilage morphogenesis.
Collapse
Affiliation(s)
| | | | | | - Marc Ekker
- Department of Biology, University of Ottawa, Marie-Curie Private, Ottawa, ON K1N 94A, Canada (S.P.)
| |
Collapse
|
9
|
Jackson A, Lin SJ, Jones EA, Chandler KE, Orr D, Moss C, Haider Z, Ryan G, Holden S, Harrison M, Burrows N, Jones WD, Loveless M, Petree C, Stewart H, Low K, Donnelly D, Lovell S, Drosou K, Varshney GK, Banka S. Clinical, genetic, epidemiologic, evolutionary, and functional delineation of TSPEAR-related autosomal recessive ectodermal dysplasia 14. HGG ADVANCES 2023; 4:100186. [PMID: 37009414 PMCID: PMC10064225 DOI: 10.1016/j.xhgg.2023.100186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/27/2023] [Indexed: 06/11/2023] Open
Abstract
TSPEAR variants cause autosomal recessive ectodermal dysplasia (ARED) 14. The function of TSPEAR is unknown. The clinical features, the mutation spectrum, and the underlying mechanisms of ARED14 are poorly understood. Combining data from new and previously published individuals established that ARED14 is primarily characterized by dental anomalies such as conical tooth cusps and hypodontia, like those seen in individuals with WNT10A-related odontoonychodermal dysplasia. AlphaFold-predicted structure-based analysis showed that most of the pathogenic TSPEAR missense variants likely destabilize the β-propeller of the protein. Analysis of 100000 Genomes Project (100KGP) data revealed multiple founder TSPEAR variants across different populations. Mutational and recombination clock analyses demonstrated that non-Finnish European founder variants likely originated around the end of the last ice age, a period of major climatic transition. Analysis of gnomAD data showed that the non-Finnish European population TSPEAR gene-carrier rate is ∼1/140, making it one of the commonest AREDs. Phylogenetic and AlphaFold structural analyses showed that TSPEAR is an ortholog of drosophila Closca, an extracellular matrix-dependent signaling regulator. We, therefore, hypothesized that TSPEAR could have a role in enamel knot, a structure that coordinates patterning of developing tooth cusps. Analysis of mouse single-cell RNA sequencing (scRNA-seq) data revealed highly restricted expression of Tspear in clusters representing enamel knots. A tspeara -/-;tspearb -/- double-knockout zebrafish model recapitulated the clinical features of ARED14 and fin regeneration abnormalities of wnt10a knockout fish, thus suggesting interaction between tspear and wnt10a. In summary, we provide insights into the role of TSPEAR in ectodermal development and the evolutionary history, epidemiology, mechanisms, and consequences of its loss of function variants.
Collapse
Affiliation(s)
- Adam Jackson
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Sheng-Jia Lin
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Elizabeth A. Jones
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Kate E. Chandler
- Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - David Orr
- Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Celia Moss
- Department of Dermatology, Birmingham Children’s Hospital, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, UK
| | - Zahra Haider
- Department of Dermatology, Birmingham Children’s Hospital, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, UK
| | - Gavin Ryan
- West Midlands Regional Genetics Laboratory, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, UK
| | - Simon Holden
- Clinical Genetics, Addenbrooke’s Hospital, Cambridge, UK
| | - Mike Harrison
- Department of Pediatric Dentistry, Guy’s and St Thomas' Dental Institute, London, UK
| | - Nigel Burrows
- Department of Dermatology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Wendy D. Jones
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children, Great Ormond Street NHS Foundation Trust, London, UK
| | - Mary Loveless
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Cassidy Petree
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Helen Stewart
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Karen Low
- Department of Clinical Genetics, St Michael’s Hospital, Bristol, UK
| | - Deirdre Donnelly
- Department of Genetic Medicine, Belfast HSC Trust, Lisburn Road, Belfast, UK
| | - Simon Lovell
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Konstantina Drosou
- Department of Earth and Environmental Sciences, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 99 Oxford Road, Manchester, UK
| | - Gaurav K. Varshney
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Siddharth Banka
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| |
Collapse
|
10
|
Raterman ST, Von Den Hoff JW, Dijkstra S, De Vriend C, Te Morsche T, Broekman S, Zethof J, De Vrieze E, Wagener FADTG, Metz JR. Disruption of the foxe1 gene in zebrafish reveals conserved functions in development of the craniofacial skeleton and the thyroid. Front Cell Dev Biol 2023; 11:1143844. [PMID: 36994096 PMCID: PMC10040582 DOI: 10.3389/fcell.2023.1143844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/28/2023] [Indexed: 03/14/2023] Open
Abstract
Introduction: Mutations in the FOXE1 gene are implicated in cleft palate and thyroid dysgenesis in humans.Methods: To investigate whether zebrafish could provide meaningful insights into the etiology of developmental defects in humans related to FOXE1, we generated a zebrafish mutant that has a disruption in the nuclear localization signal in the foxe1 gene, thereby restraining nuclear access of the transcription factor. We characterized skeletal development and thyroidogenesis in these mutants, focusing on embryonic and larval stages.Results: Mutant larvae showed aberrant skeletal phenotypes in the ceratohyal cartilage and had reduced whole body levels of Ca, Mg and P, indicating a critical role for foxe1 in early skeletal development. Markers of bone and cartilage (precursor) cells were differentially expressed in mutants in post-migratory cranial neural crest cells in the pharyngeal arch at 1 dpf, at induction of chondrogenesis at 3 dpf and at the start of endochondral bone formation at 6 dpf. Foxe1 protein was detected in differentiated thyroid follicles, suggesting a role for the transcription factor in thyroidogenesis, but thyroid follicle morphology or differentiation were unaffected in mutants.Discussion: Taken together, our findings highlight the conserved role of Foxe1 in skeletal development and thyroidogenesis, and show differential signaling of osteogenic and chondrogenic genes related to foxe1 mutation.
Collapse
Affiliation(s)
- Sophie T. Raterman
- Department of Dentistry—Orthodontics and Craniofacial Biology, Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, Netherlands
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, Netherlands
- *Correspondence: Sophie T. Raterman,
| | - Johannes W. Von Den Hoff
- Department of Dentistry—Orthodontics and Craniofacial Biology, Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, Netherlands
| | - Sietske Dijkstra
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, Netherlands
| | - Cheyenne De Vriend
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, Netherlands
| | - Tim Te Morsche
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, Netherlands
| | - Sanne Broekman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jan Zethof
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, Netherlands
| | - Erik De Vrieze
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Frank A. D. T. G. Wagener
- Department of Dentistry—Orthodontics and Craniofacial Biology, Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, Netherlands
| | - Juriaan R. Metz
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, Netherlands
| |
Collapse
|
11
|
Norcross RG, Abdelmoti L, Rouchka EC, Andreeva K, Tussey O, Landestoy D, Galperin E. Shoc2 controls ERK1/2-driven neural crest development by balancing components of the extracellular matrix. Dev Biol 2022; 492:156-171. [PMID: 36265687 PMCID: PMC10019579 DOI: 10.1016/j.ydbio.2022.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 02/02/2023]
Abstract
The extracellular signal-regulated kinase (ERK1/2) pathway is essential in embryonic development. The scaffold protein Shoc2 is a critical modulator of ERK1/2 signals, and mutations in the shoc2 gene lead to the human developmental disease known as Noonan-like syndrome with loose anagen hair (NSLH). The loss of Shoc2 and the shoc2 NSLH-causing mutations affect the tissues of neural crest (NC) origin. In this study, we utilized the zebrafish model to dissect the role of Shoc2-ERK1/2 signals in the development of NC. These studies established that the loss of Shoc2 significantly altered the expression of transcription factors regulating the specification and differentiation of NC cells. Using comparative transcriptome analysis of NC-derived cells from shoc2 CRISPR/Cas9 mutant larvae, we found that Shoc2-mediated signals regulate gene programs at several levels, including expression of genes coding for the proteins of extracellular matrix (ECM) and ECM regulators. Together, our results demonstrate that Shoc2 is an essential regulator of NC development. This study also indicates that disbalance in the turnover of the ECM may lead to the abnormalities found in NSLH patients.
Collapse
Affiliation(s)
- Rebecca G Norcross
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Lina Abdelmoti
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Eric C Rouchka
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, 40292, USA; KY INBRE Bioinformatics Core, University of Louisville, Louisville, KY, 40292, USA
| | - Kalina Andreeva
- KY INBRE Bioinformatics Core, University of Louisville, Louisville, KY, 40292, USA; Department of Neuroscience Training, University of Louisville, Louisville, KY, 40292, USA; Department of Genetics, Stanford University, Palo Alto, CA, 94304, USA
| | - Olivia Tussey
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Daileen Landestoy
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Emilia Galperin
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
12
|
Gebuijs L, Wagener FA, Zethof J, Carels CE, Von den Hoff JW, Metz JR. Targeting fibroblast growth factor receptors causes severe craniofacial malformations in zebrafish larvae. PeerJ 2022; 10:e14338. [PMID: 36444384 PMCID: PMC9700454 DOI: 10.7717/peerj.14338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/13/2022] [Indexed: 11/24/2022] Open
Abstract
Background and Objective A key pathway controlling skeletal development is fibroblast growth factor (FGF) and FGF receptor (FGFR) signaling. Major regulatory functions of FGF signaling are chondrogenesis, endochondral and intramembranous bone development. In this study we focus on fgfr2, as mutations in this gene are found in patients with craniofacial malformations. The high degree of conservation between FGF signaling of human and zebrafish (Danio rerio) tempted us to investigate effects of the mutated fgfr2 sa10729 allele in zebrafish on cartilage and bone formation. Methods We stained cartilage and bone in 5 days post fertilization (dpf) zebrafish larvae and compared mutants with wildtypes. We also determined the expression of genes related to these processes. We further investigated whether pharmacological blocking of all FGFRs with the inhibitor BGJ398, during 0-12 and 24-36 h post fertilization (hpf), affected craniofacial structure development at 5 dpf. Results We found only subtle differences in craniofacial morphology between wildtypes and mutants, likely because of receptor redundancy. After exposure to BGJ398, we found dose-dependent cartilage and bone malformations, with more severe defects in fish exposed during 0-12 hpf. These results suggest impairment of cranial neural crest cell survival and/or differentiation by FGFR inhibition. Compensatory reactions by upregulation of fgfr1a, fgfr1b, fgfr4, sp7 and dlx2a were found in the 0-12 hpf group, while in the 24-36 hpf group only upregulation of fgf3 was found together with downregulation of fgfr1a and fgfr2. Conclusions Pharmacological targeting of FGFR1-4 kinase signaling causes severe craniofacial malformations, whereas abrogation of FGFR2 kinase signaling alone does not induce craniofacial skeletal abnormalities. These findings enhance our understanding of the role of FGFRs in the etiology of craniofacial malformations.
Collapse
Affiliation(s)
- Liesbeth Gebuijs
- Department of Orthodontics and Craniofacial Biology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands,Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands,Department of Animal Ecology and Physiology, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Frank A. Wagener
- Department of Orthodontics and Craniofacial Biology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands,Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Jan Zethof
- Department of Animal Ecology and Physiology, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Carine E. Carels
- Department of Human Genetics and Department of Oral Health Sciences, KU Leuven, Leuven, Belgium
| | - Johannes W. Von den Hoff
- Department of Orthodontics and Craniofacial Biology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands,Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Juriaan R. Metz
- Department of Animal Ecology and Physiology, Radboud University Nijmegen, Nijmegen, Netherlands
| |
Collapse
|
13
|
Zhu Z, Wang J, Cao Q, Liu S, Wei W, Yang H, Zhang Y. Long-term BPA exposure leads to bone malformation and abnormal expression of MAPK/Wnt/FoxO signaling pathway genes in zebrafish offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114082. [PMID: 36126548 DOI: 10.1016/j.ecoenv.2022.114082] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/28/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol A (BPA) is one of the world's most widely used plasticizer, and its hazardous impacts have been well studied. However, few studies focused on the effects of parental long-term BPA exposure on the bone development of offspring. In the present study, the bone development of offspring was studied following long-term exposure of parental zebrafish to environmentally relevant 15 and 225 µg/L BPA. The results showed that BPA increased the mortality and deformity rate of offspring and caused craniofacial deformities characterized by changes in various cartilage angles and lengths. The alizarin red and calcein staining showed that BPA could delay bone mineralization and reduce bone mass accumulation. The results of acridine orange staining indicated that BPA induced apoptosis of the skull. The degree of harm of BPA presented a dose-dependent pattern. The results of the comparative transcriptome showed that there were 380 different expression genes (DEGs) in the 15 µg/L BPA group, and 645 DEGs in the 225 µg/L BPA group. MAPK/Wnt/FoxO signaling pathway-related genes were significantly down-regulated in the BPA-exposed groups. The present study demonstrates that long-term parental BPA exposure would severely affect cartilage development and bone mineralization of fish offspring, and MAPK/Wnt/FoxO signaling pathways may be involved in this process.
Collapse
Affiliation(s)
- Zhu Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jing Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qingsheng Cao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shaozhen Liu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Wenzhi Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
14
|
Etchegaray E, Baas D, Naville M, Haftek-Terreau Z, Volff JN. The neurodevelopmental gene MSANTD2 belongs to a gene family formed by recurrent molecular domestication of Harbinger transposons at the base of vertebrates. Mol Biol Evol 2022; 39:msac173. [PMID: 35980103 PMCID: PMC9392472 DOI: 10.1093/molbev/msac173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/06/2022] [Accepted: 08/02/2022] [Indexed: 11/18/2022] Open
Abstract
The formation of new genes is a major source of organism evolutionary innovation. Beyond their mutational effects, transposable elements can be co-opted by host genomes to form different types of sequences including novel genes, through a mechanism named molecular domestication.We report the formation of four genes through molecular domestication of Harbinger transposons, three in a common ancestor of jawed vertebrates about 500 million years ago and one in sarcopterygians approx. 430 million years ago. Additionally, one processed pseudogene arose approx. 60 million years ago in simians. In zebrafish, Harbinger-derived genes are expressed during early development but also in adult tissues, and predominantly co-expressed in male brain. In human, expression was detected in multiple organs, with major expression in the brain particularly during fetal development. We used CRISPR/Cas9 with direct gene knock-out in the F0 generation and the morpholino antisense oligonucleotide knock-down technique to study in zebrafish the function of one of these genes called MSANTD2, which has been suggested to be associated to neuro-developmental diseases such as autism spectrum disorders and schizophrenia in human. MSANTD2 inactivation led to developmental delays including tail and nervous system malformation at one day post fertilization. Affected embryos showed dead cell accumulation, major anatomical defects characterized by impaired brain ventricle formation and alterations in expression of some characteristic genes involved in vertebrate nervous system development. Hence, the characterization of MSANTD2 and other Harbinger-derived genes might contribute to a better understanding of the genetic innovations having driven the early evolution of the vertebrate nervous system.
Collapse
Affiliation(s)
- Ema Etchegaray
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, UCBL1, CNRS UMR 5242, Lyon, France
| | - Dominique Baas
- Unité MeLiS, UCBL-CNRS UMR 5284, INSERM U1314, Lyon, France
| | - Magali Naville
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, UCBL1, CNRS UMR 5242, Lyon, France
| | - Zofia Haftek-Terreau
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, UCBL1, CNRS UMR 5242, Lyon, France
| | - Jean Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, UCBL1, CNRS UMR 5242, Lyon, France
| |
Collapse
|
15
|
Wan T, Au DWT, Mo J, Chen L, Cheung KM, Kong RYC, Seemann F. Assessment of parental benzo[a]pyrene exposure-induced cross-generational neurotoxicity and changes in offspring sperm DNA methylome in medaka fish. ENVIRONMENTAL EPIGENETICS 2022; 8:dvac013. [PMID: 35769199 PMCID: PMC9233418 DOI: 10.1093/eep/dvac013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 05/29/2023]
Abstract
Previous studies have revealed that DNA methylation changes could serve as potential genomic markers for environmental benzo[a]pyrene (BaP) exposure and intergenerational inheritance of various physiological impairments (e.g. obesity and reproductive pathologies). As a typical aromatic hydrocarbon pollutant, direct BaP exposure has been shown to induce neurotoxicity. To unravel the inheritance mechanisms of the BaP-induced bone phenotype in freshwater medaka, we conducted whole-genome bisulfite sequencing of F1 sperm and identified 776 differentially methylated genes (DMGs). Ingenuity pathway analysis revealed that DMGs were significantly enriched in pathways associated with neuronal development and function. Therefore, it was hypothesized that parental BaP exposure (1 μg/l, 21 days) causes offspring neurotoxicity. Furthermore, the possibility for sperm methylation as an indicator for a neurotoxic phenotype was investigated. The F0 adult brains and F1 larvae were analyzed for BaP-induced direct and inherited toxicity. Acetylcholinesterase activity was significantly reduced in the larvae, together with decreased swimming velocity. Molecular analysis revealed that the marker genes associated with neuron development and growth (alpha1-tubulin, mbp, syn2a, shh, and gap43) as well as brain development (dlx2, otx2, and krox-20) were universally downregulated in the F1 larvae (3 days post-hatching). While parental BaP exposure at an environmentally relevant concentration could induce neurotoxicity in the developing larvae, the brain function of the exposed F0 adults was unaffected. This indicates that developmental neurotoxicity in larvae may result from impaired neuronal development and differentiation, causing delayed brain growth. The present study demonstrates that the possible adverse health effects of BaP in the environment are more extensive than currently understood. Thus, the possibility of multigenerational BaP toxicity should be included in environmental risk assessments.
Collapse
Affiliation(s)
- Teng Wan
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Doris Wai-Ting Au
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Jiezhang Mo
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, No. 7 Donghu South Road, Wuchang District, Wuhan 430072, China
| | - Kwok-Ming Cheung
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Richard Yuen-Chong Kong
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- South Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Frauke Seemann
- *Correspondence address. Department of Life Sciences, College of Science and Engineering, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA. Tel: +1-361-825-2683; Fax: +1 (361) 825-2742;
| |
Collapse
|
16
|
Holland LZ, Holland ND. The invertebrate chordate amphioxus gives clues to vertebrate origins. Curr Top Dev Biol 2022; 147:563-594. [PMID: 35337463 DOI: 10.1016/bs.ctdb.2021.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Amphioxus (cepholochordates) have long been used to infer how the vertebrates evolved from their invertebrate ancestors. However, some of the body part homologies between amphioxus and vertebrates have been controversial. This is not surprising as the amphioxus and vertebrate lineages separated half a billion years ago-plenty of time for independent loss and independent gain of features. The development of new techniques in the late 20th and early 21st centuries including transmission electron microscopy and serial blockface scanning electron microscopy in combination with in situ hybridization and immunocytochemistry to reveal spatio-temporal patterns of gene expression and gene products have greatly strengthened inference of some homologies (like those between regions of the central nervous system), although others (like nephridia) still need further support. These major advances in establishing homologies between amphioxus and vertebrates, together with strong support from comparative genomics, have firmly established amphioxus as a stand-in or model for the ancestral vertebrate.
Collapse
Affiliation(s)
- Linda Z Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States.
| | - Nicholas D Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
17
|
Suzuki T, Hirai Y, Uehara T, Ohga R, Kosaki K, Kawahara A. Involvement of the zebrafish trrap gene in craniofacial development. Sci Rep 2021; 11:24166. [PMID: 34934055 PMCID: PMC8692476 DOI: 10.1038/s41598-021-03123-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/24/2021] [Indexed: 11/09/2022] Open
Abstract
Trrap (transformation/transcription domain-associated protein) is a component shared by several histone acetyltransferase (HAT) complexes and participates in transcriptional regulation and DNA repair; however, the developmental functions of Trrap in vertebrates are not fully understood. Recently, it has been reported that human patients with genetic mutations in the TRRAP gene show various symptoms, including facial dysmorphisms, microcephaly and global developmental delay. To investigate the physiological functions of Trrap, we established trrap gene-knockout zebrafish and examined loss-of-function phenotypes in the mutants. The trrap zebrafish mutants exhibited smaller eyes and heads than the wild-type zebrafish. The size of the ventral pharyngeal arches was reduced and the mineralization of teeth was impaired in the trrap mutants. Whole-mount in situ hybridization analysis revealed that dlx3 expression was narrowly restricted in the developing ventral pharyngeal arches, while dlx2b expression was diminished in the trrap mutants. These results suggest that trrap zebrafish mutants are useful model organisms for a human disorder associated with genetic mutations in the human TRRAP gene.
Collapse
Affiliation(s)
- Taichi Suzuki
- Laboratory for Developmental Biology, Graduate School of Medical Science, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Yo Hirai
- Laboratory for Developmental Biology, Graduate School of Medical Science, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Tomoko Uehara
- Center for Medical Genetics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Clinical Genetics, Central Hospital, Adachi Developmental Disability Center, Aichi, Japan
| | - Rie Ohga
- Laboratory for Developmental Biology, Graduate School of Medical Science, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Atsuo Kawahara
- Laboratory for Developmental Biology, Graduate School of Medical Science, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan.
| |
Collapse
|
18
|
Xia Z, Bi X, Yang S, Yang X, Song Z, Wei J, Xu P, Rink L, Min J, Wang F. Metal transporter Slc30a1 controls pharyngeal neural crest differentiation via the zinc-Snai2-Jag1 cascade. MedComm (Beijing) 2021; 2:778-797. [PMID: 34977877 PMCID: PMC8706747 DOI: 10.1002/mco2.91] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023] Open
Abstract
The pharyngeal arch (PA) is a neural crest (NC)-derived organ that is transiently developed during embryogenesis and is required for the subsequent development of various tissues. However, the role of zinc during PA differentiation from NC progenitor cells is unknown. Here, we found that the metal transporters Slc30a1a and Slc30a1b mediate zinc homeostasis during PA differentiation. Slc30a1-deficient zebrafish develop zinc accumulation in NC cells, with increased expression of stemness markers and PA dorsal genes, and SMART-seq analyses revealed that the genes snai2 and jag1b may serve as downstream targets. Furthermore, functional studies showed that knocking down either snai2 or jag1b rescues PA development in Slc30a1-deficient zebrafish. Notably, we identified the double zinc-finger domain in the transcription factor Snai2 as a zinc-responsive element that regulates jag1b expression. Our findings indicate that the Slc30a1/zinc-snai2-jag1b axis is an essential regulatory network controlling PA differentiation, shedding new light on the function of zinc homeostasis in maintaining NC cell stemness and multipotency in vertebrates.
Collapse
Affiliation(s)
- Zhidan Xia
- The First Affiliated HospitalSchool of Public HealthInstitute of Translational MedicineInstitute of GeneticsZhejiang University School of MedicineHangzhouChina
| | - Xinying Bi
- The First Affiliated HospitalSchool of Public HealthInstitute of Translational MedicineInstitute of GeneticsZhejiang University School of MedicineHangzhouChina
- The First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - Sisi Yang
- The First Affiliated HospitalSchool of Public HealthInstitute of Translational MedicineInstitute of GeneticsZhejiang University School of MedicineHangzhouChina
| | - Xiu Yang
- The First Affiliated HospitalSchool of Public HealthInstitute of Translational MedicineInstitute of GeneticsZhejiang University School of MedicineHangzhouChina
| | - Zijun Song
- The First Affiliated HospitalSchool of Public HealthInstitute of Translational MedicineInstitute of GeneticsZhejiang University School of MedicineHangzhouChina
| | - Jiayu Wei
- The First Affiliated HospitalSchool of Public HealthInstitute of Translational MedicineInstitute of GeneticsZhejiang University School of MedicineHangzhouChina
| | - Pengfei Xu
- The First Affiliated HospitalSchool of Public HealthInstitute of Translational MedicineInstitute of GeneticsZhejiang University School of MedicineHangzhouChina
| | - Lothar Rink
- Faculty of MedicineInstitute of ImmunologyRWTH Aachen UniversityAachenGermany
| | - Junxia Min
- The First Affiliated HospitalSchool of Public HealthInstitute of Translational MedicineInstitute of GeneticsZhejiang University School of MedicineHangzhouChina
| | - Fudi Wang
- The First Affiliated HospitalSchool of Public HealthInstitute of Translational MedicineInstitute of GeneticsZhejiang University School of MedicineHangzhouChina
- The First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangChina
| |
Collapse
|
19
|
Castellanos BS, Reyes-Nava NG, Quintana AM. Knockdown of hspg2 is associated with abnormal mandibular joint formation and neural crest cell dysfunction in zebrafish. BMC DEVELOPMENTAL BIOLOGY 2021; 21:7. [PMID: 33678174 PMCID: PMC7938484 DOI: 10.1186/s12861-021-00238-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 02/09/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Heparan sulfate proteoglycan 2 (HSPG2) encodes for perlecan, a large proteoglycan that plays an important role in cartilage formation, cell adhesion, and basement membrane stability. Mutations in HSPG2 have been associated with Schwartz-Jampel Syndrome (SJS) and Dyssegmental Dysplasia Silverman-Handmaker Type (DDSH), two disorders characterized by skeletal abnormalities. These data indicate a function for HSPG2 in cartilage development/maintenance. However, the mechanisms in which HSPG2 regulates cartilage development are not completely understood. Here, we explored the relationship between this gene and craniofacial development through morpholino-mediated knockdown of hspg2 using zebrafish. RESULTS Knockdown of hspg2 resulted in abnormal development of the mandibular jaw joint at 5 days post fertilization (DPF). We surmised that defects in mandible development were a consequence of neural crest cell (NCC) dysfunction, as these multipotent progenitors produce the cartilage of the head. Early NCC development was normal in morphant animals as measured by distal-less homeobox 2a (dlx2a) and SRY-box transcription factor 10 (sox10) expression at 1 DPF. However, subsequent analysis at later stages of development (4 DPF) revealed a decrease in the number of Sox10 + and Collagen, type II, alpha 1a (Col2a1a)+ cells within the mandibular jaw joint region of morphants relative to random control injected embryos. Concurrently, morphants showed a decreased expression of nkx3.2, a marker of jaw joint formation, at 4 DPF. CONCLUSIONS Collectively, these data suggest a complex role for hspg2 in jaw joint formation and late stage NCC differentiation.
Collapse
Affiliation(s)
| | - Nayeli G. Reyes-Nava
- Department of Biological Sciences, University of Texas El Paso, El Paso, TX 79968 USA
| | - Anita M. Quintana
- Department of Biological Sciences, University of Texas El Paso, El Paso, TX 79968 USA
| |
Collapse
|
20
|
Howard AGA, Baker PA, Ibarra-García-Padilla R, Moore JA, Rivas LJ, Tallman JJ, Singleton EW, Westheimer JL, Corteguera JA, Uribe RA. An atlas of neural crest lineages along the posterior developing zebrafish at single-cell resolution. eLife 2021; 10:e60005. [PMID: 33591267 PMCID: PMC7886338 DOI: 10.7554/elife.60005] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 01/31/2021] [Indexed: 02/06/2023] Open
Abstract
Neural crest cells (NCCs) are vertebrate stem cells that give rise to various cell types throughout the developing body in early life. Here, we utilized single-cell transcriptomic analyses to delineate NCC-derivatives along the posterior developing vertebrate, zebrafish, during the late embryonic to early larval stage, a period when NCCs are actively differentiating into distinct cellular lineages. We identified several major NCC/NCC-derived cell-types including mesenchyme, neural crest, neural, neuronal, glial, and pigment, from which we resolved over three dozen cellular subtypes. We dissected gene expression signatures of pigment progenitors delineating into chromatophore lineages, mesenchyme cells, and enteric NCCs transforming into enteric neurons. Global analysis of NCC derivatives revealed they were demarcated by combinatorial hox gene codes, with distinct profiles within neuronal cells. From these analyses, we present a comprehensive cell-type atlas that can be utilized as a valuable resource for further mechanistic and evolutionary investigations of NCC differentiation.
Collapse
Affiliation(s)
| | - Phillip A Baker
- Department of BioSciences, Rice UniversityHoustonUnited States
| | | | - Joshua A Moore
- Department of BioSciences, Rice UniversityHoustonUnited States
| | - Lucia J Rivas
- Department of BioSciences, Rice UniversityHoustonUnited States
| | - James J Tallman
- Department of BioSciences, Rice UniversityHoustonUnited States
| | | | | | | | - Rosa A Uribe
- Department of BioSciences, Rice UniversityHoustonUnited States
| |
Collapse
|
21
|
Méndez-Maldonado K, Vega-López GA, Aybar MJ, Velasco I. Neurogenesis From Neural Crest Cells: Molecular Mechanisms in the Formation of Cranial Nerves and Ganglia. Front Cell Dev Biol 2020; 8:635. [PMID: 32850790 PMCID: PMC7427511 DOI: 10.3389/fcell.2020.00635] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/24/2020] [Indexed: 12/15/2022] Open
Abstract
The neural crest (NC) is a transient multipotent cell population that originates in the dorsal neural tube. Cells of the NC are highly migratory, as they travel considerable distances through the body to reach their final sites. Derivatives of the NC are neurons and glia of the peripheral nervous system (PNS) and the enteric nervous system as well as non-neural cells. Different signaling pathways triggered by Bone Morphogenetic Proteins (BMPs), Fibroblast Growth Factors (FGFs), Wnt proteins, Notch ligands, retinoic acid (RA), and Receptor Tyrosine Kinases (RTKs) participate in the processes of induction, specification, cell migration and neural differentiation of the NC. A specific set of signaling pathways and transcription factors are initially expressed in the neural plate border and then in the NC cell precursors to the formation of cranial nerves. The molecular mechanisms of control during embryonic development have been gradually elucidated, pointing to an important role of transcriptional regulators when neural differentiation occurs. However, some of these proteins have an important participation in malformations of the cranial portion and their mutation results in aberrant neurogenesis. This review aims to give an overview of the role of cell signaling and of the function of transcription factors involved in the specification of ganglia precursors and neurogenesis to form the NC-derived cranial nerves during organogenesis.
Collapse
Affiliation(s)
- Karla Méndez-Maldonado
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Guillermo A Vega-López
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), San Miguel de Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - Manuel J Aybar
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), San Miguel de Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - Iván Velasco
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Ciudad de México, Mexico
| |
Collapse
|
22
|
Liu YH, Lin TC, Hwang SPL. Zebrafish Pax1a and Pax1b are required for pharyngeal pouch morphogenesis and ceratobranchial cartilage development. Mech Dev 2020; 161:103598. [PMID: 32061871 DOI: 10.1016/j.mod.2020.103598] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 01/11/2023]
Abstract
Pharyngeal arches are derived from all three germ layers and molecular interactions among the tissue types are required for proper development of subsequent pharyngeal cartilages; however, the mechanisms underlying this process are not fully described. Here we report that in zebrafish, Pax1a and Pax1b have overlapping and essential functions in pharyngeal pouch morphogenesis and subsequent ceratobranchial cartilage development. Both pax1a and pax1b are co-expressed in pharyngeal pouches, and time-lapse imaging of a novel Tg(pax1b:eGFP) enhancer trap line further revealed the sequential segmental development of pharyngeal pouches. Zebrafish pax1a-/-; pax1b-/- double mutant embryos generated by CRISPR-Cas9 mutagenesis exhibit unsegmented pharyngeal pouches 2-5 with small outpocketings. Endodermal expression of fgf3, tbx1 and edn1 is also absent in pharyngeal pouches 2-5 at 36 h post fertilization (hpf). Loss of ceratobranchial cartilage 1-4 and reduced or absent expression of dlx2a and hand2 in the pharyngeal arches 3-6 are observed in CRISPR mutant and morphant embryos that are deficient in both zebrafish pax1a and pax1b at 96 or 36 hpf. These results suggest that zebrafish Pax1a and Pax1b both regulate pharyngeal pouch morphogenesis by modulating expression of fgf3 and tbx1. Furthermore, our data support a model wherein endodermal Pax1a and Pax1b act through Fgf3 and Tbx-Edn1 signaling to non-autonomously regulate the development of ceratobranchial cartilage via expression of dlx2a and hand2.
Collapse
Affiliation(s)
- Yu-Hsiu Liu
- Department of Life Science, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Tz-Chi Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan, Republic of China
| | - Sheng-Ping L Hwang
- Department of Life Science, National Taiwan University, Taipei, Taiwan, Republic of China; Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan, Republic of China; Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, Taipei, Taiwan, Republic of China.
| |
Collapse
|
23
|
James Cooper W, VanHall R, Sweet E, Milewski H, DeLeon Z, Verderber A, DeLeon A, Galindo D, Lazono O. Functional morphogenesis from embryos to adults: Late development shapes trophic niche in coral reef damselfishes. Evol Dev 2019; 22:221-240. [PMID: 31808993 DOI: 10.1111/ede.12321] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The damselfishes are one of the dominant coral reef fish lineages. Their ecological diversification has involved repeated transitions between pelagic feeding using fast bites and benthic feeding using forceful bites. A highly-integrative approach that combined gene expression assays, shape analyses, and high-speed video analyses was used to examine the development of trophic morphology in embryonic, larval, juvenile, and adult damselfishes. The anatomical characters that distinguish pelagic-feeding and benthic-feeding species do not appear until after larval development. Neither patterns of embryonic jaw morphogenesis, larval skull shapes nor larval bite mechanics significantly distinguished damselfishes from different adult trophic guilds. Analyses of skull shape and feeding performance identified two important transitions in the trophic development of a single species (the orange clownfish; Amphiprion percula): (a) a pronounced transformation in feeding mechanics during metamorphosis; and (b) more protracted cranial remodeling over the course of juvenile development. The results of this study indicate that changes in postlarval morphogenesis have played an important role in damselfish evolution. This is likely to be true for other fish lineages, particularly if they consist of marine species, the majority of which have planktonic larvae with different functional requirements for feeding in comparison to their adult forms.
Collapse
Affiliation(s)
- W James Cooper
- School of Biological Sciences, Washington State University, Pullman, Washington
| | - Rachel VanHall
- School of Biological Sciences, Washington State University, Pullman, Washington
| | - Elly Sweet
- School of Biological Sciences, Washington State University, Pullman, Washington
| | - Holly Milewski
- School of Biological Sciences, Washington State University, Pullman, Washington
| | - Zoey DeLeon
- School of Biological Sciences, Washington State University, Pullman, Washington
| | | | - Adrian DeLeon
- School of Biological Sciences, Washington State University, Pullman, Washington
| | - Demi Galindo
- School of Biological Sciences, Washington State University, Pullman, Washington
| | | |
Collapse
|
24
|
Gebuijs IGE, Raterman ST, Metz JR, Swanenberg L, Zethof J, Van den Bos R, Carels CEL, Wagener FADTG, Von den Hoff JW. Fgf8a mutation affects craniofacial development and skeletal gene expression in zebrafish larvae. Biol Open 2019; 8:bio.039834. [PMID: 31471293 PMCID: PMC6777363 DOI: 10.1242/bio.039834] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Craniofacial development is tightly regulated and therefore highly vulnerable to disturbance by genetic and environmental factors. Fibroblast growth factors (FGFs) direct migration, proliferation and survival of cranial neural crest cells (CNCCs) forming the human face. In this study, we analyzed bone and cartilage formation in the head of five dpf fgf8ati282 zebrafish larvae and assessed gene expression levels for 11 genes involved in these processes. In addition, in situ hybridization was performed on 8 and 24 hours post fertilization (hpf) larvae (fgf8a, dlx2a, runx2a, col2a1a). A significant size reduction of eight out of nine craniofacial cartilage structures was found in homozygous mutant (6–36%, P<0.01) and heterozygous (7–24%, P<0.01) larvae. Also, nine mineralized structures were not observed in all or part of the homozygous (0–71%, P<0.0001) and heterozygous (33–100%, P<0.0001) larvae. In homozygote mutants, runx2a and sp7 expression was upregulated compared to wild type, presumably to compensate for the reduced bone formation. Decreased col9a1b expression may compromise cartilage formation. Upregulated dlx2a in homozygotes indicates impaired CNCC function. Dlx2a expression was reduced in the first and second stream of CNCCs in homozygous mutants at 24 hpf, as shown by in situ hybridization. This indicates an impairment of CNCC migration and survival by fgf8 mutation. Summary: A function-blocking mutation in fgf8a causes craniofacial malformations in zebrafish larvae due to impaired cranial neural crest cell migration and survival.
Collapse
Affiliation(s)
- I G E Gebuijs
- Department of Orthodontics and Craniofacial Biology, Radboudumc, Nijmegen, The Netherlands.,Department of Orthodontics and Craniofacial Biology, Radboud Institute of Molecular Life Sciences, Nijmegen, The Netherlands.,Department of Animal Ecology and Physiology, Radboud University, Nijmegen, The Netherlands
| | - S T Raterman
- Department of Orthodontics and Craniofacial Biology, Radboudumc, Nijmegen, The Netherlands.,Department of Orthodontics and Craniofacial Biology, Radboud Institute of Molecular Life Sciences, Nijmegen, The Netherlands.,Department of Animal Ecology and Physiology, Radboud University, Nijmegen, The Netherlands
| | - J R Metz
- Department of Animal Ecology and Physiology, Radboud University, Nijmegen, The Netherlands
| | - L Swanenberg
- Department of Orthodontics and Craniofacial Biology, Radboudumc, Nijmegen, The Netherlands.,Department of Animal Ecology and Physiology, Radboud University, Nijmegen, The Netherlands
| | - J Zethof
- Department of Animal Ecology and Physiology, Radboud University, Nijmegen, The Netherlands
| | - R Van den Bos
- Department of Animal Ecology and Physiology, Radboud University, Nijmegen, The Netherlands
| | - C E L Carels
- Department of Orthodontics and Craniofacial Biology, Radboud Institute of Molecular Life Sciences, Nijmegen, The Netherlands.,Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands.,Department of Oral Health Sciences and Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - F A D T G Wagener
- Department of Orthodontics and Craniofacial Biology, Radboudumc, Nijmegen, The Netherlands.,Department of Orthodontics and Craniofacial Biology, Radboud Institute of Molecular Life Sciences, Nijmegen, The Netherlands
| | - J W Von den Hoff
- Department of Orthodontics and Craniofacial Biology, Radboudumc, Nijmegen, The Netherlands .,Department of Orthodontics and Craniofacial Biology, Radboud Institute of Molecular Life Sciences, Nijmegen, The Netherlands
| |
Collapse
|
25
|
Guerrero-Castilla A, Olivero-Verbel J, Sandoval IT, Jones DA. Toxic effects of a methanolic coal dust extract on fish early life stage. CHEMOSPHERE 2019; 227:100-108. [PMID: 30986591 DOI: 10.1016/j.chemosphere.2019.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
Coal dust is a contaminant that impacts the terrestrial and aquatic environment with a complex mixture of chemicals, including PAHs and metals. This study aims to evaluate the toxic effect of a methanolic coal dust extract on a fish early life stage by analyzing phenotypic alterations, transcriptome changes, and mortality in zebrafish (ZF) embryos. ZF embryos were exposed to methanolic coal dust extract at 1-5000 mg·L-1 and monitored using bright field microscopy 24 and 48 hpf to determine malformations and mortality. In situ hybridization, RNA sequencing, and qRT-PCR were employed to identify transcriptome changes in malformed embryos. Three malformed phenotypes were generated in a dose-dependent manner. In situ hybridization analysis revealed brain, somite, dorsal cord, and heart tube development biomarker alterations. Gene expression profile analysis identified changes in genes related to structural constituent of muscle, calcium ion binding, actin binding, melanin metabolic process, muscle contraction, sarcomere organization, cardiac myofibril assembly, oxidation-reduction process, pore complex, supramolecular fiber, striated muscle thin filament, Z disc, and intermediate filament. This study shows, for the first time, the malformations generated by a mixture of pollutants from a methanolic coal dust extract on a fish early life stage, constituting a potential risk for normal embryonic development of other aquatic vertebrate organisms. Furthermore, we establish that phenotypes and changes in gene expression induced by the extract constitute a target for future studies about mechanical toxicity and their utility as sensitive tools in environmental risk assessments for biota and humans exposed to coal mining activities.
Collapse
Affiliation(s)
- Angélica Guerrero-Castilla
- Facultad de Ciencias de la Salud, Química y Farmacia, Universidad Arturo Prat, Casilla 121, Iquique, 1100000, Chile; Faculty of Pharmaceutical Sciences, Environmental and Computational Chemistry Group, University of Cartagena, Cartagena, 130015, Colombia.
| | - Jesús Olivero-Verbel
- Faculty of Pharmaceutical Sciences, Environmental and Computational Chemistry Group, University of Cartagena, Cartagena, 130015, Colombia
| | - Imelda T Sandoval
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - David A Jones
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
26
|
Manocha S, Farokhnia N, Khosropanah S, Bertol JW, Santiago J, Fakhouri WD. Systematic review of hormonal and genetic factors involved in the nonsyndromic disorders of the lower jaw. Dev Dyn 2019; 248:162-172. [PMID: 30576023 DOI: 10.1002/dvdy.8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 11/30/2018] [Accepted: 12/14/2018] [Indexed: 12/14/2022] Open
Abstract
Mandibular disorders are among the most common birth defects in humans, yet the etiological factors are largely unknown. Most of the neonates affected by mandibular abnormalities have a sequence of secondary anomalies, including airway obstruction and feeding problems, that reduce the quality of life. In the event of lacking corrective surgeries, patients with mandibular congenital disorders suffer from additional lifelong problems such as sleep apnea and temporomandibular disorders, among others. The goal of this systematic review is to gather evidence on hormonal and genetic factors that are involved in signaling pathways and interactions that are potentially associated with the nonsyndromic mandibular disorders. We found that members of FGF and BMP pathways, including FGF8/10, FGFR2/3, BMP2/4/7, BMPR1A, ACVR1, and ACVR2A/B, have a prominent number of gene-gene interactions among all identified genes in this review. Gene ontology of the 154 genes showed that the functional gene sets are involved in all aspects of cellular processes and organogenesis. Some of the genes identified by the genome-wide association studies of common mandibular disorders are involved in skeletal formation and growth retardation based on animal models, suggesting a potential direct role as genetic risk factors in the common complex jaw disorders. Developmental Dynamics 248:162-172, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Srishti Manocha
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas
| | - Nadia Farokhnia
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas
| | - Sepideh Khosropanah
- Ostrow School of Dentistry, University of Southern California, California, Los Angeles
| | - Jessica W Bertol
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas
| | - Joel Santiago
- Pró-Reitoria de Pesquisa e Pós-graduação (PRPPG), Universidade do Sagrado Coração, Jardim Brasil, Bauru, Sao Paulo, Brazil
| | - Walid D Fakhouri
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas.,Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas
| |
Collapse
|
27
|
Chen J, Tan X, Wang Z, Liu Y, Zhou J, Rong X, Lu L, Li Y. The ribosome biogenesis protein Esf1 is essential for pharyngeal cartilage formation in zebrafish. FEBS J 2018; 285:3464-3484. [DOI: 10.1111/febs.14622] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 06/10/2018] [Accepted: 08/01/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Jian‐Yang Chen
- Key Laboratory of Marine Drugs (Ocean University of China) Chinese Ministry of Education Qingdao China
- School of Medicine and Pharmacy Ocean University of China Qingdao China
- Laboratory for Marine Drugs and Biological Products Qingdao National Laboratory for Marine Science and Technology China
| | - Xungang Tan
- CAS Key Laboratory of Experimental Marine Biology Institute of Oceanology Chinese Academy of Sciences Qingdao China
| | - Zheng‐Hua Wang
- Key Laboratory of Marine Drugs (Ocean University of China) Chinese Ministry of Education Qingdao China
- School of Medicine and Pharmacy Ocean University of China Qingdao China
- Laboratory for Marine Drugs and Biological Products Qingdao National Laboratory for Marine Science and Technology China
- CAS Key Laboratory of Experimental Marine Biology Institute of Oceanology Chinese Academy of Sciences Qingdao China
| | - Yun‐Zhang Liu
- Key Laboratory of Marine Drugs (Ocean University of China) Chinese Ministry of Education Qingdao China
- School of Medicine and Pharmacy Ocean University of China Qingdao China
- Laboratory for Marine Drugs and Biological Products Qingdao National Laboratory for Marine Science and Technology China
| | - Jian‐Feng Zhou
- Key Laboratory of Marine Drugs (Ocean University of China) Chinese Ministry of Education Qingdao China
- School of Medicine and Pharmacy Ocean University of China Qingdao China
- Laboratory for Marine Drugs and Biological Products Qingdao National Laboratory for Marine Science and Technology China
| | - Xiao‐Zhi Rong
- Key Laboratory of Marine Drugs (Ocean University of China) Chinese Ministry of Education Qingdao China
- School of Medicine and Pharmacy Ocean University of China Qingdao China
- Laboratory for Marine Drugs and Biological Products Qingdao National Laboratory for Marine Science and Technology China
| | - Ling Lu
- Key Laboratory of Marine Drugs (Ocean University of China) Chinese Ministry of Education Qingdao China
- School of Medicine and Pharmacy Ocean University of China Qingdao China
- Laboratory for Marine Drugs and Biological Products Qingdao National Laboratory for Marine Science and Technology China
| | - Yun Li
- Key Laboratory of Marine Drugs (Ocean University of China) Chinese Ministry of Education Qingdao China
- School of Medicine and Pharmacy Ocean University of China Qingdao China
- Laboratory for Marine Drugs and Biological Products Qingdao National Laboratory for Marine Science and Technology China
| |
Collapse
|
28
|
Yoganantharajah P, Ray AP, Eyckens DJ, Henderson LC, Gibert Y. Comparison of solvate ionic liquids and DMSO as an in vivo delivery and storage media for small molecular therapeutics. BMC Biotechnol 2018; 18:32. [PMID: 29843701 PMCID: PMC5975478 DOI: 10.1186/s12896-018-0442-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/02/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Solvate ionic liquids (SILs) are a new class of ionic liquids that are equimolar solutions of lithium bistrifluoromethanesulfonimide in either triglyme or tetraglyme, referred to as G3LiTFSA and G4LiTFSA, respectively. SILs play a role in energy storage lithium batteries, and have been proposed as potential alternatives to traditional organic solvents such as DMSO. G3TFSA and G4TFSA have been shown to exhibit no toxicity in vivo up to 0.5% (v/v), and solubilize small compounds (N,N-diethylaminobenzaldehyde) with full penetrance, similar to DMSO delivered DEAB. Herein, we compare the effects of storage (either at room temperature or - 20 °C) on DEAB solubilized in either DMSO, G3TFSA or G4TFSA to investigate compound degradation and efficacy. RESULTS The findings show that DEAB stored at room temperature (RT) for 4 months solubilized in either G3TFSA, G4TFSA or DMSO displayed no loss of penetrance. The same was observed with stock solutions stored at - 20 °C for 4 months; however G4TFSA remained in a liquid state compared to both G3TFSA and DMSO. Moreover, we examined the ability of G3TFSA and G4TFSA to solubilize another small molecular therapeutic, the FGFR antagonist SU5402. G4TFSA, unlike G3TFSA solubilized SU5402 and displayed similar phenotypic characteristics and reduced dlx2a expression as reported and shown with SU5402 in DMSO; albeit more penetrative. CONCLUSION This study validates the use of these ionic liquids as a potential replacement for DMSO in vivo as organic solubilizing agents.
Collapse
Affiliation(s)
- Prusothman Yoganantharajah
- Metabolic Genetic Diseases Laboratory, Metabolic Research Unit, Deakin University School of Medicine, 75 Pigdons Road, Geelong, VIC, 3216, Australia
| | - Alexander P Ray
- Metabolic Genetic Diseases Laboratory, Metabolic Research Unit, Deakin University School of Medicine, 75 Pigdons Road, Geelong, VIC, 3216, Australia
| | - Daniel J Eyckens
- Institute for Frontier Materials, Deakin University, 75 Pigdons Road, Geelong, VIC, 3216, Australia
| | - Luke C Henderson
- Institute for Frontier Materials, Deakin University, 75 Pigdons Road, Geelong, VIC, 3216, Australia
| | - Yann Gibert
- Metabolic Genetic Diseases Laboratory, Metabolic Research Unit, Deakin University School of Medicine, 75 Pigdons Road, Geelong, VIC, 3216, Australia.
| |
Collapse
|
29
|
Kamei H, Yoneyama Y, Hakuno F, Sawada R, Shimizu T, Duan C, Takahashi SI. Catch-Up Growth in Zebrafish Embryo Requires Neural Crest Cells Sustained by Irs1 Signaling. Endocrinology 2018; 159:1547-1560. [PMID: 29390112 DOI: 10.1210/en.2017-00847] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/22/2018] [Indexed: 11/19/2022]
Abstract
Most animals display retarded growth in adverse conditions; however, upon the removal of unfavorable factors, they often show quick growth restoration, which is known as "catch-up" growth. In zebrafish embryos, hypoxia causes growth arrest, but subsequent reoxygenation induces catch-up growth. Here, we report the role of insulin receptor substrate (Irs)1-mediated insulin/insulinlike growth factor signaling (IIS) and the involvement of stem cells in catch-up growth in reoxygenated zebrafish embryos. Disturbed irs1 expression attenuated IIS, resulting in greater inhibition in catch-up growth than in normal growth and forced IIS activation‒restored catch-up growth. The irs1 knockdown induced noticeable cell death in neural crest cells (NCCs; multipotent stem cells) under hypoxia, and the pharmacological/genetic ablation of NCCs hindered catch-up growth. Furthermore, inhibition of the apoptotic pathway by pan-caspase inhibition or forced activation of Akt signaling in irs1 knocked-down embryos blocked NCC cell death and rescued catch-up growth. Our data indicate that this multipotent stem cell is indispensable for embryonic catch-up growth and that Irs1-mediated IIS is a prerequisite for its survival under severe adverse environments such as prolonged hypoxia.
Collapse
Affiliation(s)
- Hiroyasu Kamei
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Faculty of Natural System, Institute of Science and Engineering, Kanazawa University, Noto Marine Laboratory, Noto, Japan
| | - Yosuke Yoneyama
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Fumihiko Hakuno
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Rie Sawada
- Juntendo University Graduate School of Medicine, Tokyo, Japan
| | | | - Cunming Duan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Shin-Ichiro Takahashi
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
30
|
Askary A, Xu P, Barske L, Bay M, Bump P, Balczerski B, Bonaguidi MA, Crump JG. Genome-wide analysis of facial skeletal regionalization in zebrafish. Development 2017; 144:2994-3005. [PMID: 28705894 DOI: 10.1242/dev.151712] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/10/2017] [Indexed: 12/16/2022]
Abstract
Patterning of the facial skeleton involves the precise deployment of thousands of genes in distinct regions of the pharyngeal arches. Despite the significance for craniofacial development, how genetic programs drive this regionalization remains incompletely understood. Here we use combinatorial labeling of zebrafish cranial neural crest-derived cells (CNCCs) to define global gene expression along the dorsoventral axis of the developing arches. Intersection of region-specific transcriptomes with expression changes in response to signaling perturbations demonstrates complex roles for Endothelin 1 (Edn1) signaling in the intermediate joint-forming region, yet a surprisingly minor role in ventralmost regions. Analysis of co-variance across multiple sequencing experiments further reveals clusters of co-regulated genes, with in situ hybridization confirming the domain-specific expression of novel genes. We then created loss-of-function alleles for 12 genes and uncovered antagonistic functions of two new Edn1 targets, follistatin a (fsta) and emx2, in regulating cartilaginous joints in the hyoid arch. Our unbiased discovery and functional analysis of genes with regional expression in zebrafish arch CNCCs reveals complex regulation by Edn1 and points to novel candidates for craniofacial disorders.
Collapse
Affiliation(s)
- Amjad Askary
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA
| | - Pengfei Xu
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA
| | - Lindsey Barske
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA
| | - Maxwell Bay
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA
| | - Paul Bump
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA
| | - Bartosz Balczerski
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA
| | - Michael A Bonaguidi
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA
| | - J Gage Crump
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
31
|
Yokokura T, Kamei H, Shibano T, Yamanaka D, Sawada-Yamaguchi R, Hakuno F, Takahashi SI, Shimizu T. The Short-Stature Homeobox-Containing Gene ( shox/ SHOX) Is Required for the Regulation of Cell Proliferation and Bone Differentiation in Zebrafish Embryo and Human Mesenchymal Stem Cells. Front Endocrinol (Lausanne) 2017; 8:125. [PMID: 28642734 PMCID: PMC5462919 DOI: 10.3389/fendo.2017.00125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The short-stature homeobox-containing gene (SHOX) was originally discovered as one of genes responsible for idiopathic short-stature syndromes in humans. Previous studies in animal models have shown the evolutionarily conserved link between this gene and skeletal formation in early embryogenesis. Here, we characterized developmental roles of shox/SHOX in zebrafish embryos and human mesenchymal stem cells (hMSCs) using loss-of-function approaches. Morpholino oligo-mediated knockdown of zebrafish shox markedly hindered cell proliferation in the anterior region of the pharyngula embryos, which was accompanied by reduction in the dlx2 expression at mesenchymal core sites for future pharyngeal bones. In addition, the impaired shox expression transiently increased expression levels of skeletal differentiation genes in early larval stage. In cell culture studies, we found that hMSCs expressed SHOX; the siRNA-mediated blockade of SHOX expression significantly blunted cell proliferation in undifferentiated hMSCs but the loss of SHOX expression did augment the expressions of subsets of early osteogenic genes during early osteoblast differentiation. These data suggest that shox/SHOX maintains the population of embryonic bone progenitor cells by keeping its proliferative status and by repressing the onset of early osteogenic gene expression. The current study for the first time shows cellular and developmental responses caused by shox/SHOX deficiency in zebrafish embryos and hMSCs, and it expands our understanding of the role of this gene in early stages of skeletal growth.
Collapse
Affiliation(s)
- Tomoaki Yokokura
- Juntendo University Graduate School of Medicine, Bunkyo, Japan
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo, Japan
| | - Hiroyasu Kamei
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo, Japan
- Faculty of Natural System, Institute of Science and Engineering, Kanazawa University, Kanazawa, Japan
- *Correspondence: Hiroyasu Kamei, ; Shin-Ichiro Takahashi,
| | - Takashi Shibano
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo, Japan
- Department of Oncology and Pathology, Cancer Centre Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Daisuke Yamanaka
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo, Japan
- Department of Veterinary Medical Sciences, Graduate School of Agriculture and Life Science, The University of Tokyo, Bunkyo, Japan
| | - Rie Sawada-Yamaguchi
- Juntendo University Graduate School of Medicine, Bunkyo, Japan
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo, Japan
| | - Fumihiko Hakuno
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo, Japan
| | - Shin-Ichiro Takahashi
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo, Japan
- *Correspondence: Hiroyasu Kamei, ; Shin-Ichiro Takahashi,
| | | |
Collapse
|
32
|
The genome of the Gulf pipefish enables understanding of evolutionary innovations. Genome Biol 2016; 17:258. [PMID: 27993155 PMCID: PMC5168715 DOI: 10.1186/s13059-016-1126-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/05/2016] [Indexed: 11/10/2022] Open
Abstract
Background Evolutionary origins of derived morphologies ultimately stem from changes in protein structure, gene regulation, and gene content. A well-assembled, annotated reference genome is a central resource for pursuing these molecular phenomena underlying phenotypic evolution. We explored the genome of the Gulf pipefish (Syngnathus scovelli), which belongs to family Syngnathidae (pipefishes, seahorses, and seadragons). These fishes have dramatically derived bodies and a remarkable novelty among vertebrates, the male brood pouch. Results We produce a reference genome, condensed into chromosomes, for the Gulf pipefish. Gene losses and other changes have occurred in pipefish hox and dlx clusters and in the tbx and pitx gene families, candidate mechanisms for the evolution of syngnathid traits, including an elongated axis and the loss of ribs, pelvic fins, and teeth. We measure gene expression changes in pregnant versus non-pregnant brood pouch tissue and characterize the genomic organization of duplicated metalloprotease genes (patristacins) recruited into the function of this novel structure. Phylogenetic inference using ultraconserved sequences provides an alternative hypothesis for the relationship between orders Syngnathiformes and Scombriformes. Comparisons of chromosome structure among percomorphs show that chromosome number in a pipefish ancestor became reduced via chromosomal fusions. Conclusions The collected findings from this first syngnathid reference genome open a window into the genomic underpinnings of highly derived morphologies, demonstrating that de novo production of high quality and useful reference genomes is within reach of even small research groups. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-1126-6) contains supplementary material, which is available to authorized users.
Collapse
|
33
|
Benítez-Burraco A, Lattanzi W, Murphy E. Language Impairments in ASD Resulting from a Failed Domestication of the Human Brain. Front Neurosci 2016; 10:373. [PMID: 27621700 PMCID: PMC5002430 DOI: 10.3389/fnins.2016.00373] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/02/2016] [Indexed: 11/16/2022] Open
Abstract
Autism spectrum disorders (ASD) are pervasive neurodevelopmental disorders entailing social and cognitive deficits, including marked problems with language. Numerous genes have been associated with ASD, but it is unclear how language deficits arise from gene mutation or dysregulation. It is also unclear why ASD shows such high prevalence within human populations. Interestingly, the emergence of a modern faculty of language has been hypothesized to be linked to changes in the human brain/skull, but also to the process of self-domestication of the human species. It is our intention to show that people with ASD exhibit less marked domesticated traits at the morphological, physiological, and behavioral levels. We also discuss many ASD candidates represented among the genes known to be involved in the “domestication syndrome” (the constellation of traits exhibited by domesticated mammals, which seemingly results from the hypofunction of the neural crest) and among the set of genes involved in language function closely connected to them. Moreover, many of these genes show altered expression profiles in the brain of autists. In addition, some candidates for domestication and language-readiness show the same expression profile in people with ASD and chimps in different brain areas involved in language processing. Similarities regarding the brain oscillatory behavior of these areas can be expected too. We conclude that ASD may represent an abnormal ontogenetic itinerary for the human faculty of language resulting in part from changes in genes important for the “domestication syndrome” and, ultimately, from the normal functioning of the neural crest.
Collapse
Affiliation(s)
| | - Wanda Lattanzi
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Elliot Murphy
- Division of Psychology and Language Sciences, University College London London, UK
| |
Collapse
|
34
|
Signore IA, Jerez C, Figueroa D, Suazo J, Marcelain K, Cerda O, Colombo Flores A. Inhibition of the 3-hydroxy-3-methyl-glutaryl-CoA reductase induces orofacial defects in zebrafish. ACTA ACUST UNITED AC 2016; 106:814-830. [PMID: 27488927 DOI: 10.1002/bdra.23546] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/13/2016] [Accepted: 06/22/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Orofacial clefts (OFCs) are common birth defects, which include a range of disorders with a complex etiology affecting formation of craniofacial structures. Some forms of syndromic OFCs are produced by defects in the cholesterol pathway. The principal enzyme of the cholesterol pathway is the 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR). Our aim is to study whether defects of HMGCR function would produce orofacial malformation similar to those found in disorders of cholesterol synthesis. METHODS We used zebrafish hmgcrb mutants and HMGCR inhibition assay using atorvastatin during early and late stages of orofacial morphogenesis in zebrafish. To describe craniofacial phenotypes, we stained cartilage and bone and performed in situ hybridization using known craniofacial markers. Also, we visualized neural crest cell migration in a transgenic fish. RESULTS Our results showed that mutants displayed loss of cartilage and diminished orofacial outgrowth, and in some cases palatal cleft. Late treatments with statin show a similar phenotype. Affected-siblings displayed a moderate phenotype, whereas early-treated embryos had a minor cleft. We found reduced expression of the downstream component of Sonic Hedgehog-signaling gli1 in ventral brain, oral ectoderm, and pharyngeal endoderm in mutants and in late atorvastatin-treated embryos. CONCLUSION Our results suggest that HMGCR loss-of-function primarily affects postmigratory cranial neural crest cells through abnormal Sonic Hedgehog signaling, probably induced by reduction in metabolites of the cholesterol pathway. Malformation severity correlates with the grade of HMGCR inhibition, developmental stage of its disruption, and probably with availability of maternal lipids. Together, our results might help to understand the spectrum of orofacial phenotypes found in cholesterol synthesis disorders. Birth Defects Research (Part A) 106:814-830, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Iskra A Signore
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Instituto de Filosofía y Ciencias de la Complejidad (IFICC), Santiago, Chile
| | - Carolina Jerez
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Diego Figueroa
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - José Suazo
- Institute for Research in Dental Sciences, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Katherine Marcelain
- Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Oscar Cerda
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alicia Colombo Flores
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile. .,Servicio de Anatomía Patológica, Hospital Clínico de la Universidad de Chile, Santiago, Chile.
| |
Collapse
|
35
|
Hung FC, Shih HY, Cheng YC, Chao CCK. Growth-Arrest-Specific 7 Gene Regulates Neural Crest Formation and Craniofacial Development in Zebrafish. Stem Cells Dev 2015; 24:2943-51. [PMID: 26414806 DOI: 10.1089/scd.2015.0146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Growth-arrest-specific 7 (Gas7) is preferentially expressed in the nervous system and plays an important role during neuritogenesis in vertebrates. We recently demonstrated that gas7 is highly expressed in zebrafish neurons, where it regulates neural development. The possibility that gas7 may also regulate the development of other tissues remains to be examined. In this study, we investigate the role of Gas7 in the development of craniofacial tissues. Knockdown of gas7 using morpholino oligomers produced abnormal phenotypes in neural crest (NC) cells and their derivatives. NC-derived cartilage maturation was altered in Gas7 morphants as revealed by aberrant sox9b and dlx2 expression, a phenotype that could be rescued by coinjection of gas7 mRNA. While rhombomere morphology remained normal in Gas7 morphants, we observed reduced expression of the prechondrogenic genes sox9b and dlx2 in cells populating the posterior pharyngeal arches, but the fundamental structure of pharyngeal arches was preserved. In addition, NC cell sublineages that migrate to form neurons, glial cells, and melanocytes were altered in Gas7 morphants as revealed by aberrant expression of neurod, foxd3, and mitfa, respectively. Development of NC progenitors was also examined in Gas7 morphants at 12 hpf, and we observed that the reduction of cell precursors in Gas7 morphants was due to increased apoptosis level. These results indicate that the formation of NC progenitors and derivatives depends on Gas7 expression. Our observations also suggest that Gas7 regulates the formation of NC derivatives constituting the internal tissues of pharyngeal arches, without affecting the fundamental structure of mesodermal-derived pharyngeal arches.
Collapse
Affiliation(s)
- Feng-Chun Hung
- 1 Department of Biochemistry and Molecular Biology, Chang Gung University , Taiwan, Republic of China
| | - Hung-Yu Shih
- 1 Department of Biochemistry and Molecular Biology, Chang Gung University , Taiwan, Republic of China .,2 Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University , Taiwan, Republic of China
| | - Yi-Chuan Cheng
- 1 Department of Biochemistry and Molecular Biology, Chang Gung University , Taiwan, Republic of China .,2 Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University , Taiwan, Republic of China .,3 Chang Gung Memorial Hospital , Taiwan, Republic of China
| | - Chuck C-K Chao
- 1 Department of Biochemistry and Molecular Biology, Chang Gung University , Taiwan, Republic of China .,2 Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University , Taiwan, Republic of China .,3 Chang Gung Memorial Hospital , Taiwan, Republic of China
| |
Collapse
|
36
|
Wu D, Mandal S, Choi A, Anderson A, Prochazkova M, Perry H, Gil-Da-Silva-Lopes VL, Lao R, Wan E, Tang PLF, Kwok PY, Klein O, Zhuan B, Slavotinek AM. DLX4 is associated with orofacial clefting and abnormal jaw development. Hum Mol Genet 2015; 24:4340-52. [PMID: 25954033 DOI: 10.1093/hmg/ddv167] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/05/2015] [Indexed: 01/10/2023] Open
Abstract
Cleft lip and/or palate (CL/P) are common structural birth defects in humans. We used exome sequencing to study a patient with bilateral CL/P and identified a single nucleotide deletion in the patient and her similarly affected son—c.546_546delG, predicting p.Gln183Argfs*57 in the Distal-less 4 (DLX4) gene. The sequence variant was absent from databases, predicted to be deleterious and was verified by Sanger sequencing. In mammals, there are three Dlx homeobox clusters with closely located gene pairs (Dlx1/Dlx2, Dlx3/Dlx4, Dlx5/Dlx6). In situ hybridization showed that Dlx4 was expressed in the mesenchyme of the murine palatal shelves at E12.5, prior to palate closure. Wild-type human DLX4, but not mutant DLX4_c.546delG, could activate two murine Dlx conserved regulatory elements, implying that the mutation caused haploinsufficiency. We showed that reduced DLX4 expression after short interfering RNA treatment in a human cell line resulted in significant up-regulation of DLX3, DLX5 and DLX6, with reduced expression of DLX2 and significant up-regulation of BMP4, although the increased BMP4 expression was demonstrated only in HeLa cells. We used antisense morpholino oligonucleotides to target the orthologous Danio rerio gene, dlx4b, and found reduced cranial size and abnormal cartilaginous elements. We sequenced DLX4 in 155 patients with non-syndromic CL/P and CP, but observed no sequence variants. From the published literature, Dlx1/Dlx2 double homozygous null mice and Dlx5 homozygous null mice both have clefts of the secondary palate. This first finding of a DLX4 mutation in a family with CL/P establishes DLX4 as a potential cause of human clefts.
Collapse
Affiliation(s)
- Di Wu
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Shyamali Mandal
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alex Choi
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - August Anderson
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michaela Prochazkova
- Division of Craniofacial Anomalies, Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA, Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the ASCR, v. v.i., Prague, Czech Republic, Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94114, USA
| | - Hazel Perry
- Division of Craniofacial Anomalies, Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA
| | | | - Richard Lao
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, USA and
| | - Eunice Wan
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, USA and
| | - Paul Ling-Fung Tang
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, USA and
| | - Pui-yan Kwok
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, USA and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Ophir Klein
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA, Division of Craniofacial Anomalies, Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA, Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94114, USA
| | - Bian Zhuan
- Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, China
| | - Anne M Slavotinek
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA,
| |
Collapse
|
37
|
Jackson HW, Prakash D, Litaker M, Ferreira T, Jezewski PA. Zebrafish Wnt9b Patterns the First Pharyngeal Arch into D-I-V Domains and Promotes Anterior-Medial Outgrowth. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ajmb.2015.53006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Klarić T, Lardelli M, Key B, Koblar S, Lewis M. Activity-dependent expression of neuronal PAS domain-containing protein 4 (npas4a) in the developing zebrafish brain. Front Neuroanat 2014; 8:148. [PMID: 25538572 PMCID: PMC4255624 DOI: 10.3389/fnana.2014.00148] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/18/2014] [Indexed: 11/26/2022] Open
Abstract
In rodents, the Npas4 gene has recently been identified as being an important regulator of synaptic plasticity and memory. Homologs of Npas4 have been found in invertebrate species though their functions appear to be too divergent for them to be studied as a proxy for the mammalian proteins. The aim of this study, therefore, was to ascertain the suitability of the zebrafish as a model organism for investigating the function of Npas4 genes. We show here that the expression and regulation of the zebrafish Npas4 homolog, npas4a, is remarkably similar to that of the rodent Npas4 genes. As in mammals, expression of the zebrafish npas4a gene is restricted to the brain where it is up-regulated in response to neuronal activity. Furthermore, we also show that knockdown of npas4a during embryonic development results in a number of forebrain-specific defects including increased apoptosis and misexpression of the forebrain marker genes dlx1a and shha. Our work demonstrates that the zebrafish is a suitable model organism for investigating the role of the npas4a gene and one that is likely to provide valuable insights into the function of the mammalian homologs. Furthermore, our findings highlight a potential role for npas4a in forebrain development.
Collapse
Affiliation(s)
- Thomas Klarić
- School of Molecular and Biomedical Sciences, The University of Adelaide Adelaide, SA, Australia
| | - Michael Lardelli
- School of Molecular and Biomedical Sciences, The University of Adelaide Adelaide, SA, Australia
| | - Brian Key
- School of Biomedical Sciences, The University of Queensland Brisbane, QLD, Australia
| | - Simon Koblar
- School of Medicine, The University of Adelaide Adelaide, SA, Australia
| | - Martin Lewis
- School of Molecular and Biomedical Sciences, The University of Adelaide Adelaide, SA, Australia
| |
Collapse
|
39
|
Square T, Jandzik D, Cattell M, Coe A, Doherty J, Medeiros DM. A gene expression map of the larval Xenopus laevis head reveals developmental changes underlying the evolution of new skeletal elements. Dev Biol 2014; 397:293-304. [PMID: 25446275 DOI: 10.1016/j.ydbio.2014.10.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 10/02/2014] [Accepted: 10/20/2014] [Indexed: 11/29/2022]
Abstract
The morphology of the vertebrate head skeleton is highly plastic, with the number, size, shape, and position of its components varying dramatically between groups. While this evolutionary flexibility has been key to vertebrate success, its developmental and genetic bases are poorly understood. The larval head skeleton of the frog Xenopus laevis possesses a unique combination of ancestral tetrapod features and anuran-specific novelties. We built a detailed gene expression map of the head mesenchyme in X. laevis during early larval development, focusing on transcription factor families with known functions in vertebrate head skeleton development. This map was then compared to homologous gene expression in zebrafish, mouse, and shark embryos to identify conserved and evolutionarily flexible aspects of vertebrate head skeleton development. While we observed broad conservation of gene expression between X. laevis and other gnathostomes, we also identified several divergent features that correlate to lineage-specific novelties. We noted a conspicuous change in dlx1/2 and emx2 expression in the second pharyngeal arch, presaging the differentiation of the reduced dorsal hyoid arch skeletal element typical of modern anamniote tetrapods. In the first pharyngeal arch we observed a shift in the expression of the joint inhibitor barx1, and new expression of the joint marker gdf5, shortly before skeletal differentiation. This suggests that the anuran-specific infrarostral cartilage evolved by partitioning of Meckel's cartilage with a new paired joint. Taken together, these comparisons support a model in which early patterning mechanisms divide the vertebrate head mesenchyme into a highly conserved set of skeletal precursor populations. While subtle changes in this early patterning system can affect skeletal element size, they do not appear to underlie the evolution of new joints or cartilages. In contrast, later expression of the genes that regulate skeletal element differentiation can be clearly linked to the evolution of novel skeletal elements. We posit that changes in the expression of downstream regulators of skeletal differentiation, like barx1 and gdf5, is one mechanism by which head skeletal element number and articulation are altered during evolution.
Collapse
Affiliation(s)
- Tyler Square
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA.
| | - David Jandzik
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA; Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, 84215, Slovakia
| | - Maria Cattell
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - Alex Coe
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - Jacob Doherty
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | | |
Collapse
|
40
|
Quintana AM, Geiger EA, Achilly N, Rosenblatt DS, Maclean KN, Stabler SP, Artinger KB, Appel B, Shaikh TH. Hcfc1b, a zebrafish ortholog of HCFC1, regulates craniofacial development by modulating mmachc expression. Dev Biol 2014; 396:94-106. [PMID: 25281006 DOI: 10.1016/j.ydbio.2014.09.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 09/24/2014] [Indexed: 12/01/2022]
Abstract
Mutations in HCFC1 (MIM300019), have been recently associated with cblX (MIM309541), an X-linked, recessive disorder characterized by multiple congenital anomalies including craniofacial abnormalities. HCFC1 is a transcriptional co-regulator that modulates the expression of numerous downstream target genes including MMACHC, but it is not clear how these HCFC1 targets play a role in the clinical manifestations of cblX. To begin to elucidate the mechanism by which HCFC1 modulates disease phenotypes, we have carried out loss of function analyses in the developing zebrafish. Of the two HCFC1 orthologs in zebrafish, hcfc1a and hcfc1b, the loss of hcfc1b specifically results in defects in craniofacial development. Subsequent analysis revealed that hcfc1b regulates cranial neural crest cell differentiation and proliferation within the posterior pharyngeal arches. Further, the hcfc1b-mediated craniofacial abnormalities were rescued by expression of human MMACHC, a downstream target of HCFC1 that is aberrantly expressed in cblX. Furthermore, we tested distinct human HCFC1 mutations for their role in craniofacial development and demonstrated variable effects on MMACHC expression in humans and craniofacial development in zebrafish. Notably, several individuals with mutations in either HCFC1 or MMACHC have been reported to have mild to moderate facial dysmorphia. Thus, our data demonstrates that HCFC1 plays a role in craniofacial development, which is in part mediated through the regulation of MMACHC expression.
Collapse
Affiliation(s)
- Anita M Quintana
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Elizabeth A Geiger
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Nate Achilly
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - David S Rosenblatt
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada H3A 1B1.
| | - Kenneth N Maclean
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Section of Genetics, University of Colorado, School of Medicine, Aurora, CO 80045, USA.
| | - Sally P Stabler
- Department of Medicine, University of Colorado School of Medicine, CO 80045, USA.
| | - Kristin B Artinger
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado, CO 80045, USA.
| | - Bruce Appel
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Tamim H Shaikh
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Section of Genetics, University of Colorado, School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
41
|
Mandal A, Waxman J. Retinoic acid negatively regulates dact3b expression in the hindbrain of zebrafish embryos. Gene Expr Patterns 2014; 16:122-9. [PMID: 25266145 DOI: 10.1016/j.gep.2014.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 09/09/2014] [Accepted: 09/24/2014] [Indexed: 12/23/2022]
Abstract
Wnt signaling plays important roles in normal development as well as pathophysiological conditions. The Dapper antagonist of β-catenin (Dact) proteins are modulators of both canonical and non-canonical Wnt signaling via direct interactions with Dishevelled (Dvl) and Van Gogh like-2 (Vangl2). Here, we report the dynamic expression patterns of two zebrafish dact3 paralogs during early embryonic development. Our whole mount in situ hybridization (WISH) analysis indicates that specific dact3a expression starts by the tailbud stage in adaxial cells. Later, it is expressed in the anterior lateral plate mesoderm, somites, migrating cranial neural crest, and hindbrain neurons. By comparison, dact3b expression initiates on the dorsal side at the dome stage and soon after is expressed in the dorsal forerunner cells (DFCs) during gastrulation. At later stages, dact3b expression becomes restricted to the branchial neurons of the hindbrain and to the second pharyngeal arch. To investigate how zebrafish dact3 gene expression is regulated, we manipulated retinoic acid (RA) signaling during development and found that it negatively regulates dact3b in the hindbrain. Our study is the first to document the expression of the paralogous zebrafish dact3 genes during early development and demonstrate dact3b can be regulated by RA signaling. Therefore, our study opens up new avenues to study Dact3 function in the development of multiple tissues and suggests a previously unappreciated cross regulation of Wnt signaling by RA signaling in the developing vertebrate hindbrain.
Collapse
Affiliation(s)
- Amrita Mandal
- Heart Institute, Molecular Cardiovascular Biology Division, Cincinnati Children's Hospital Medical Center, Cincinnati OH, USA; Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45208, USA
| | - Joshua Waxman
- Heart Institute, Molecular Cardiovascular Biology Division, Cincinnati Children's Hospital Medical Center, Cincinnati OH, USA.
| |
Collapse
|
42
|
Tissue specific roles for the ribosome biogenesis factor Wdr43 in zebrafish development. PLoS Genet 2014; 10:e1004074. [PMID: 24497835 PMCID: PMC3907300 DOI: 10.1371/journal.pgen.1004074] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 11/15/2013] [Indexed: 01/23/2023] Open
Abstract
During vertebrate craniofacial development, neural crest cells (NCCs) contribute to most of the craniofacial pharyngeal skeleton. Defects in NCC specification, migration and differentiation resulting in malformations in the craniofacial complex are associated with human craniofacial disorders including Treacher-Collins Syndrome, caused by mutations in TCOF1. It has been hypothesized that perturbed ribosome biogenesis and resulting p53 mediated neuroepithelial apoptosis results in NCC hypoplasia in mouse Tcof1 mutants. However, the underlying mechanisms linking ribosome biogenesis and NCC development remain poorly understood. Here we report a new zebrafish mutant, fantome (fan), which harbors a point mutation and predicted premature stop codon in zebrafish wdr43, the ortholog to yeast UTP5. Although wdr43 mRNA is widely expressed during early zebrafish development, and its deficiency triggers early neural, eye, heart and pharyngeal arch defects, later defects appear fairly restricted to NCC derived craniofacial cartilages. Here we show that the C-terminus of Wdr43, which is absent in fan mutant protein, is both necessary and sufficient to mediate its nucleolar localization and protein interactions in metazoans. We demonstrate that Wdr43 functions in ribosome biogenesis, and that defects observed in fan mutants are mediated by a p53 dependent pathway. Finally, we show that proper localization of a variety of nucleolar proteins, including TCOF1, is dependent on that of WDR43. Together, our findings provide new insight into roles for Wdr43 in development, ribosome biogenesis, and also ribosomopathy-induced craniofacial phenotypes including Treacher-Collins Syndrome.
Collapse
|
43
|
Larbuisson A, Dalcq J, Martial JA, Muller M. Fgf receptors Fgfr1a and Fgfr2 control the function of pharyngeal endoderm in late cranial cartilage development. Differentiation 2013; 86:192-206. [DOI: 10.1016/j.diff.2013.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 07/01/2013] [Accepted: 07/22/2013] [Indexed: 01/28/2023]
|
44
|
Xia Z, Tong X, Liang F, Zhang Y, Kuok C, Zhang Y, Liu X, Zhu Z, Lin S, Zhang B. Eif3ba regulates cranial neural crest development by modulating p53 in zebrafish. Dev Biol 2013; 381:83-96. [PMID: 23791820 DOI: 10.1016/j.ydbio.2013.06.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 06/01/2013] [Accepted: 06/06/2013] [Indexed: 02/05/2023]
Abstract
Congenital diseases caused by abnormal development of the cranial neural crest usually present craniofacial malformations and heart defects while the precise mechanism is not fully understood. Here, we show that the zebrafish eif3ba mutant caused by pseudo-typed retrovirus insertion exhibited a similar phenotype due to the hypogenesis of cranial neural crest cells (NCCs). The derivatives of cranial NCCs, including the NCC-derived cell population of pharyngeal arches, craniofacial cartilage, pigment cells and the myocardium derived from cardiac NCCs, were affected in this mutant. The expression of several neural crest marker genes, including crestin, dlx2a and nrp2b, was specifically reduced in the cranial regions of the eif3ba mutant. Through fluorescence-tracing of the cranial NCC migration marker nrp2b, we observed reduced intensity of NCC-derived cells in the heart. In addition, p53 was markedly up-regulated in the eif3ba mutant embryos, which correlated with pronounced apoptosis in the cranial area as shown by TUNEL staining. These findings suggest a novel function of eif3ba during embryonic development and a novel level of regulation in the process of cranial NCC development, in addition to providing a potential animal model to mimic congenital diseases due to cranial NCC defects. Furthermore, we report the identification of a novel transgenic fish line Et(gata2a:EGFP)pku418 to trace the migration of cranial NCCs (including cardiac NCCs); this may serve as an invaluable tool for investigating the development and dynamics of cranial NCCs during zebrafish embryogenesis.
Collapse
Affiliation(s)
- Zhidan Xia
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
MacDonald RB, Pollack JN, Debiais-Thibaud M, Heude E, Talbot JC, Ekker M. The ascl1a and dlx genes have a regulatory role in the development of GABAergic interneurons in the zebrafish diencephalon. Dev Biol 2013; 381:276-85. [PMID: 23747543 DOI: 10.1016/j.ydbio.2013.05.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/08/2013] [Accepted: 05/25/2013] [Indexed: 11/28/2022]
Abstract
During development of the mouse forebrain interneurons, the Dlx genes play a key role in a gene regulatory network (GRN) that leads to the GABAergic phenotype. Here, we have examined the regulatory relationships between the ascl1a, dlx, and gad1b genes in the zebrafish forebrain. Expression of ascl1a overlaps with dlx1a in the telencephalon and diencephalon during early forebrain development. The loss of Ascl1a function results in a loss of dlx expression, and subsequent losses of dlx5a and gad1b expression in the diencephalic prethalamus and hypothalamus. Loss of Dlx1a and Dlx2a function, and, to a lesser extent, of Dlx5a and Dlx6a, impairs gad1b expression in the prethalamus and hypothalamus. We conclude that dlx1a/2a act downstream of ascl1a but upstream of dlx5a/dlx6a and gad1b to activate GABAergic specification. This pathway is conserved in the diencephalon, but has diverged between mammals and teleosts in the telencephalon.
Collapse
Affiliation(s)
- Ryan B MacDonald
- Center for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| | | | | | | | | | | |
Collapse
|
46
|
Teslaa JJ, Keller AN, Nyholm MK, Grinblat Y. Zebrafish Zic2a and Zic2b regulate neural crest and craniofacial development. Dev Biol 2013; 380:73-86. [PMID: 23665173 DOI: 10.1016/j.ydbio.2013.04.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 04/25/2013] [Accepted: 04/29/2013] [Indexed: 11/25/2022]
Abstract
Holoprosencephaly (HPE), the most common malformation of the human forebrain, is associated with defects of the craniofacial skeleton. ZIC2, a zinc-finger transcription factor, is strongly linked to HPE and to a characteristic set of dysmorphic facial features in humans. We have previously identified important functions for zebrafish Zic2 in the developing forebrain. Here, we demonstrate that ZIC2 orthologs zic2a and zic2b also regulate the forming zebrafish craniofacial skeleton, including the jaw and neurocranial cartilages, and use the zebrafish to study Zic2-regulated processes that may contribute to the complex etiology of HPE. Using temporally controlled Zic2a overexpression, we show that the developing craniofacial cartilages are sensitive to Zic2 elevation prior to 24hpf. This window of sensitivity overlaps the critical expansion and migration of the neural crest (NC) cells, which migrate from the developing neural tube to populate vertebrate craniofacial structures. We demonstrate that zic2b influences the induction of NC at the neural plate border, while both zic2a and zic2b regulate NC migratory onset and strongly contribute to chromatophore development. Both Zic2 depletion and early ectopic Zic2 expression cause moderate, incompletely penetrant mispatterning of the NC-derived jaw precursors at 24hpf, yet by 2dpf these changes in Zic2 expression result in profoundly mispatterned chondrogenic condensations. We attribute this discrepancy to an additional role for Zic2a and Zic2b in patterning the forebrain primordium, an important signaling source during craniofacial development. This hypothesis is supported by evidence that transplanted Zic2-deficient cells can contribute to craniofacial cartilages in a wild-type background. Collectively, these data suggest that zebrafish Zic2 plays a dual role during craniofacial development, contributing to two disparate aspects of craniofacial morphogenesis: (1) neural crest induction and migration, and (2) early patterning of tissues adjacent to craniofacial chondrogenic condensations.
Collapse
Affiliation(s)
- Jessica J Teslaa
- Department of Zoology, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
47
|
Takechi M, Adachi N, Hirai T, Kuratani S, Kuraku S. The Dlx genes as clues to vertebrate genomics and craniofacial evolution. Semin Cell Dev Biol 2013; 24:110-8. [PMID: 23291259 DOI: 10.1016/j.semcdb.2012.12.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 12/25/2012] [Indexed: 11/25/2022]
Abstract
The group of Dlx genes belongs to the homeobox-containing superfamily, and its members are involved in various morphogenetic processes. In vertebrate genomes, Dlx genes exist as multiple paralogues generated by tandem duplication followed by whole genome duplications. In this review, we provide an overview of the Dlx gene phylogeny with an emphasis on the chordate lineage. Referring to the Dlx gene repertoire, we discuss the establishment and conservation of the nested expression patterns of the Dlx genes in craniofacial development. Despite the accumulating genomic sequence resources in diverse vertebrates, embryological analyses of Dlx gene expression and function remain limited in terms of species diversity. By supplementing our original analysis of shark embryos with previous data from other osteichthyans, such as mice and zebrafish, we support the previous speculation that the nested Dlx expression in the pharyngeal arch is likely a shared feature among all the extant jawed vertebrates. Here, we highlight several hitherto unaddressed issues regarding the evolution and function of Dlx genes, with special reference to the craniofacial development of vertebrates.
Collapse
Affiliation(s)
- Masaki Takechi
- Laboratory for Evolutionary Morphology, Center for Developmental Biology, RIKEN, 2-2-3 Minatojimaminami-machi, Chuo-ku, Kobe 650-0047, Japan
| | | | | | | | | |
Collapse
|
48
|
Dalcq J, Pasque V, Ghaye A, Larbuisson A, Motte P, Martial JA, Muller M. RUNX3, EGR1 and SOX9B form a regulatory cascade required to modulate BMP-signaling during cranial cartilage development in zebrafish. PLoS One 2012; 7:e50140. [PMID: 23209659 PMCID: PMC3507947 DOI: 10.1371/journal.pone.0050140] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 10/17/2012] [Indexed: 12/14/2022] Open
Abstract
The cartilaginous elements forming the pharyngeal arches of the zebrafish derive from cranial neural crest cells. Their proper differentiation and patterning are regulated by reciprocal interactions between neural crest cells and surrounding endodermal, ectodermal and mesodermal tissues. In this study, we show that the endodermal factors Runx3 and Sox9b form a regulatory cascade with Egr1 resulting in transcriptional repression of the fsta gene, encoding a BMP antagonist, in pharyngeal endoderm. Using a transgenic line expressing a dominant negative BMP receptor or a specific BMP inhibitor (dorsomorphin), we show that BMP signaling is indeed required around 30 hpf in the neural crest cells to allow cell differentiation and proper pharyngeal cartilage formation. Runx3, Egr1, Sox9b and BMP signaling are required for expression of runx2b, one of the key regulator of cranial cartilage maturation and bone formation. Finally, we show that egr1 depletion leads to increased expression of fsta and inhibition of BMP signaling in the pharyngeal region. In conclusion, we show that the successive induction of the transcription factors Runx3, Egr1 and Sox9b constitutes a regulatory cascade that controls expression of Follistatin A in pharyngeal endoderm, the latter modulating BMP signaling in developing cranial cartilage in zebrafish.
Collapse
Affiliation(s)
- Julia Dalcq
- Laboratory for Molecular Biology and Genetic Engineering, GIGA-R, Université de Liège, Liège, Belgium
| | - Vincent Pasque
- Laboratory for Molecular Biology and Genetic Engineering, GIGA-R, Université de Liège, Liège, Belgium
| | - Aurélie Ghaye
- Laboratory for Molecular Biology and Genetic Engineering, GIGA-R, Université de Liège, Liège, Belgium
| | - Arnaud Larbuisson
- Laboratory for Molecular Biology and Genetic Engineering, GIGA-R, Université de Liège, Liège, Belgium
| | - Patrick Motte
- Plant Functional Genomics and Molecular Imaging and Center for Assistance in Technology of Microscopy, University of Liège, Liège, Belgium
| | - Joseph A. Martial
- Laboratory for Molecular Biology and Genetic Engineering, GIGA-R, Université de Liège, Liège, Belgium
| | - Marc Muller
- Laboratory for Molecular Biology and Genetic Engineering, GIGA-R, Université de Liège, Liège, Belgium
- * E-mail:
| |
Collapse
|
49
|
Jayasena CS, Bronner ME. Rbms3 functions in craniofacial development by posttranscriptionally modulating TGF-β signaling. ACTA ACUST UNITED AC 2012; 199:453-66. [PMID: 23091072 PMCID: PMC3483135 DOI: 10.1083/jcb.201204138] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rbms3 regulates TGF-βr signaling, a critical pathway for chondrogenesis, by binding and stabilizing Smad2 transcripts. Cranial neural crest cells form much of the facial skeleton, and abnormalities in their development lead to severe birth defects. In a novel zebrafish protein trap screen, we identified an RNA-binding protein, Rbms3, that is transiently expressed in the cytoplasm of condensing neural crest cells within the pharyngeal arches. Morphants for rbms3 displayed reduced proliferation of prechondrogenic crest and significantly altered expression for chondrogenic/osteogenic lineage markers. This phenotype strongly resembles cartilage/crest defects observed in Tgf-βr2:Wnt1-Cre mutants, which suggests a possible link with TGF-β signaling. Consistent with this are the findings that: (a) Rbms3 stabilized a reporter transcript with smad2 3′ untranslated region, (b) RNA immunoprecipitation with full-length Rbms3 showed enrichment for smad2/3, and (c) pSmad2 levels were reduced in rbms3 morphants. Overall, these results suggest that Rbms3 posttranscriptionally regulates one of the major pathways that promotes chondrogenesis, the transforming growth factor β receptor (TGF-βr) pathway.
Collapse
|
50
|
Jeong J, Cesario J, Zhao Y, Burns L, Westphal H, Rubenstein JLR. Cleft palate defect of Dlx1/2-/- mutant mice is caused by lack of vertical outgrowth in the posterior palate. Dev Dyn 2012; 241:1757-69. [PMID: 22972697 DOI: 10.1002/dvdy.23867] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2012] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mice lacking the activities of Dlx1 and Dlx2 (Dlx1/2-/-) exhibit cleft palate, one of the most common human congenital defects, but the etiology behind this phenotype has been unknown. Therefore, we analyzed the morphological, cellular, and molecular changes caused by inactivation of Dlx1 and Dlx2 as related to palate development. RESULTS Dlx1/2-/- mutants exhibited lack of vertical growth in the posterior palate during the earliest stage of palatogenesis. We attributed this growth deficiency to reduced cell proliferation. Expression of a cell cycle regulator Ccnd1 was specifically down-regulated in the same region. Previous studies established that the epithelial-mesenchymal signaling loop involving Shh, Bmp4, and Fgf10 is important for cell proliferation and tissue growth during palate development. This signaling loop was disrupted in Dlx1/2-/- palate. Interestingly, however, the decreases in Ccnd1 expression and mitosis in Dlx1/2-/- mutants were independent of this signaling loop. Finally, Dlx1/2 activity was required for normal expression of several transcription factor genes whose mutation results in palate defects. CONCLUSIONS The functions of Dlx1 and Dlx2 are crucial for the initial formation of the posterior palatal shelves, and that the Dlx genes lie upstream of multiple signaling molecules and transcription factors important for later stages of palatogenesis.
Collapse
Affiliation(s)
- Juhee Jeong
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY 10010, USA.
| | | | | | | | | | | |
Collapse
|