1
|
Karuppasamy M, English KG, Henry CA, Manzini MC, Parant JM, Wright MA, Ruparelia AA, Currie PD, Gupta VA, Dowling JJ, Maves L, Alexander MS. Standardization of zebrafish drug testing parameters for muscle diseases. Dis Model Mech 2024; 17:dmm050339. [PMID: 38235578 PMCID: PMC10820820 DOI: 10.1242/dmm.050339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024] Open
Abstract
Skeletal muscular diseases predominantly affect skeletal and cardiac muscle, resulting in muscle weakness, impaired respiratory function and decreased lifespan. These harmful outcomes lead to poor health-related quality of life and carry a high healthcare economic burden. The absence of promising treatments and new therapies for muscular disorders requires new methods for candidate drug identification and advancement in animal models. Consequently, the rapid screening of drug compounds in an animal model that mimics features of human muscle disease is warranted. Zebrafish are a versatile model in preclinical studies that support developmental biology and drug discovery programs for novel chemical entities and repurposing of established drugs. Due to several advantages, there is an increasing number of applications of the zebrafish model for high-throughput drug screening for human disorders and developmental studies. Consequently, standardization of key drug screening parameters, such as animal husbandry protocols, drug compound administration and outcome measures, is paramount for the continued advancement of the model and field. Here, we seek to summarize and explore critical drug treatment and drug screening parameters in the zebrafish-based modeling of human muscle diseases. Through improved standardization and harmonization of drug screening parameters and protocols, we aim to promote more effective drug discovery programs.
Collapse
Affiliation(s)
- Muthukumar Karuppasamy
- Division of Neurology, Department of Pediatrics, University of Alabama at Birmingham and Children's of Alabama, Birmingham, AL 35294, USA
| | - Katherine G. English
- Division of Neurology, Department of Pediatrics, University of Alabama at Birmingham and Children's of Alabama, Birmingham, AL 35294, USA
| | - Clarissa A. Henry
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | - M. Chiara Manzini
- Child Health Institute of New Jersey and Department of Neuroscience and Cell Biology, Rutgers, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - John M. Parant
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35294, USA
| | - Melissa A. Wright
- Department of Pediatrics, Section of Child Neurology, University of Colorado at Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Avnika A. Ruparelia
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia
- Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria 3010, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Peter D. Currie
- Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria 3010, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
- EMBL Australia, Victorian Node, Monash University, Clayton, Victoria 3800, Australia
| | - Vandana A. Gupta
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - James J. Dowling
- Division of Neurology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario M5G 1X8, Canada
- Program for Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 0A4, Canada
| | - Lisa Maves
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Matthew S. Alexander
- Division of Neurology, Department of Pediatrics, University of Alabama at Birmingham and Children's of Alabama, Birmingham, AL 35294, USA
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- UAB Center for Neurodegeneration and Experimental Therapeutics (CNET), Birmingham, AL 35294, USA
| |
Collapse
|
2
|
Tonelotto V, Consorti C, Facchinello N, Trapani V, Sabatelli P, Giraudo C, Spizzotin M, Cescon M, Bertolucci C, Bonaldo P. Collagen VI ablation in zebrafish causes neuromuscular defects during developmental and adult stages. Matrix Biol 2022; 112:39-61. [PMID: 35961424 DOI: 10.1016/j.matbio.2022.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/21/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
Collagen VI (COL6) is an extracellular matrix protein exerting multiple functions in different tissues. In humans, mutations of COL6 genes cause rare inherited congenital disorders, primarily affecting skeletal muscles and collectively known as COL6-related myopathies, for which no cure is available yet. In order to get insights into the pathogenic mechanisms underlying COL6-related diseases, diverse animal models were produced. However, the roles exerted by COL6 during embryogenesis remain largely unknown. Here, we generated the first zebrafish COL6 knockout line through CRISPR/Cas9 site-specific mutagenesis of the col6a1 gene. Phenotypic characterization during embryonic and larval development revealed that lack of COL6 leads to neuromuscular defects and motor dysfunctions, together with distinctive alterations in the three-dimensional architecture of craniofacial cartilages. These phenotypic features were maintained in adult col6a1 null fish, which displayed defective muscle organization and impaired swimming capabilities. Moreover, col6a1 null fish showed autophagy defects and organelle abnormalities at both embryonic and adult stages, thus recapitulating the main features of patients affected by COL6-related myopathies. Mechanistically, lack of COL6 led to increased BMP signaling, and direct inhibition of BMP activity ameliorated the locomotor col6a1 null embryos. Finally performance of, treatment with salbutamol, a β2-adrenergic receptor agonist, elicited a significant amelioration of the neuromuscular and motility defects of col6a1 null fish embryos. Altogether, these findings indicate that this newly generated zebrafish col6a1 null line is a valuable in vivo tool to model COL6-related myopathies and suitable for drug screenings aimed at addressing the quest for effective therapeutic strategies for these disorders.
Collapse
Affiliation(s)
| | - Chiara Consorti
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Nicola Facchinello
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Valeria Trapani
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Patrizia Sabatelli
- CNR - Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, 40136, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Chiara Giraudo
- Department of Medicine, Unit of Advanced Clinical and Translational Imaging, University of Padova, 35128 Padova, Italy
| | - Marianna Spizzotin
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Matilde Cescon
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy; CRIBI Biotechnology Center, University of Padova, 35131 Padova, Italy.
| |
Collapse
|
3
|
Azzarà A, Rendeli C, Crivello AM, Brugnoletti F, Rumore R, Ausili E, Sangiorgi E, Gurrieri F. Identification of new candidate genes for spina bifida through exome sequencing. Childs Nerv Syst 2021; 37:2589-2596. [PMID: 33855610 DOI: 10.1007/s00381-021-05153-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE Neural tube defects are a group of birth defects caused by failure of neural tube closure during development. The etiology of NTD, requiring a complex interaction between environmental and genetic factors, is not well understood. METHODS We performed whole-exome sequencing (WES) in six trios, with a single affected proband with spina bifida, to identify rare/novel variants as potential causes of the NTD. RESULTS Our analysis identified four de novo and ten X-linked recessive variants in four of the six probands, all of them in genes previously never implicated in NTD. Among the 14 variants, we ruled out six of them, based on different criteria and pursued the evaluation of eight potential candidates in the following genes: RXRγ, DTX1, COL15A1, ARHGAP36, TKTL1, AMOT, GPR50, and NKRF. The de novo variants where located in the RXRγ, DTX1, and COL15A1 genes while ARHGAP36, TKTL1, AMOT, GPR50, and NKRF carry X-linked recessive variants. This analysis also revealed that four patients presented multiple variants, while we were unable to identify any significant variant in two patients. CONCLUSIONS Our preliminary conclusion support a major role for the de novo variants with respect to the X-linked recessive variants where the X-linked could represent a contribution to the phenotype in an oligogenic model.
Collapse
Affiliation(s)
- Alessia Azzarà
- Dipartimento di Scienze della Vita e di Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica del Sacro Cuore, Roma, Italia. .,Unità di Genetica Medica, Università Campus Bio-Medico, Roma, Italia.
| | - Claudia Rendeli
- Spina Bifida Center, Dipartimento di Scienze della Vita e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
| | - Anna Maria Crivello
- Dipartimento di Scienze della Vita e di Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica del Sacro Cuore, Roma, Italia
| | - Fulvia Brugnoletti
- Dipartimento di Scienze della Vita e di Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica del Sacro Cuore, Roma, Italia
| | - Roberto Rumore
- Dipartimento di Scienze della Vita e di Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica del Sacro Cuore, Roma, Italia
| | - Emanuele Ausili
- Spina Bifida Center, Dipartimento di Scienze della Vita e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
| | - Eugenio Sangiorgi
- Dipartimento di Scienze della Vita e di Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica del Sacro Cuore, Roma, Italia.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
| | - Fiorella Gurrieri
- Unità di Genetica Medica, Università Campus Bio-Medico, Roma, Italia
| |
Collapse
|
4
|
Li JY, Liu SZ, Zheng DF, Zhang YS, Yu M. Collagen VI-related myopathy with scoliosis alone: A case report and literature review. World J Clin Cases 2021; 9:5302-5312. [PMID: 34307582 PMCID: PMC8283577 DOI: 10.12998/wjcc.v9.i19.5302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Scoliosis is a complex three-dimensional deformity of spine and one of the common complications of collagen VI-related myopathy, caused by mutations in collagen type VI alpha 1 chain (COL6A1), COL6A2, and COL6A3 genes. The typical clinical presentations of collagen VI-related myopathy include weakness, hypotonia, laxity of distal joints, contractures of proximal joints, and skeletal deformities.
CASE SUMMARY A 28-year-old female presented with scoliosis for 28 years without weakness, hypotonia, laxity of distal joints, and contracture of proximal joints. Computed tomography and magnetic resonance imaging revealed hemivertebra, butterfly vertebra, and the missing vertebral space. Patients underwent orthopedic surgery and paravertebral muscle biopsy. The Cobb angle dropped from 103.4° to 52.9°. However, the muscle biopsy showed neurogenic muscular atrophy with myogenic lesions, suggesting congenital muscular dystrophy. Gene analysis indicated that mutations in COL6A1 (c.1612-10G>A) and COL6A2 (c.115+10G>T, c.2749G>A). Immunohistochemistry staining for collagen VI displayed shallow and discontinuous. Eventually, the patient was diagnosed as collagen VI-related myopathy.
CONCLUSION This newly found subtype of collagen VI-related myopathy has no typical manifestations; however, it is characterized by severe scoliosis and congenital vertebral deformity.
Collapse
Affiliation(s)
- Jun-Yu Li
- Department of Orthopaedics, Peking University Third Hospital, Beijing 100083, China
| | - Shuo-Zi Liu
- Department of Hematology, Peking University Third Hospital, Beijing 100083, China
| | - Dan-Feng Zheng
- Department of Pathology, Peking University Third Hospital, Beijing 100083, China
| | - Ying-Shuang Zhang
- Department of Neurology, Peking University Third Hospital, Beijing 100083, China
| | - Miao Yu
- Department of Orthopaedics, Peking University Third Hospital, Beijing 100083, China
| |
Collapse
|
5
|
Ellingsen S, Narawane S, Fjose A, Verri T, Rønnestad I. Sequence analysis and spatiotemporal developmental distribution of the Cat-1-type transporter slc7a1a in zebrafish (Danio rerio). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:2281-2298. [PMID: 32980952 PMCID: PMC7584565 DOI: 10.1007/s10695-020-00873-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Cationic amino acid transporter 1 (Cat-1 alias Slc7a1) is a Na+-independent carrier system involved in transport and absorption of the cationic amino acids lysine, arginine, histidine, and ornithine and has also been shown to be indispensable in a large variety of biological processes. Starting from isolated full-length zebrafish (Danio rerio) cDNA for slc7a1a, we performed comparative and phylogenetic sequence analysis, investigated the conservation of the gene during vertebrate evolution, and defined tissue expression during zebrafish development. Whole mount in situ hybridization first detected slc7a1a transcripts in somites, eyes, and brain at 14 h post-fertilization (hpf) with additional expression in the distal nephron at 24 hpf and in branchial arches at 3 days post-fertilization (dpf), with significant increase by 5 dpf. Taken together, the expression analysis of the zebrafish Cat-1 system gene slc7a1a suggests a functional role(s) during the early development of the central nervous system, muscle, gills, and kidney. Graphical abstract.
Collapse
Affiliation(s)
- Ståle Ellingsen
- Department of Molecular Biology, University of Bergen, Postbox 7803, NO-5020, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Postbox 7803, NO-5020, Bergen, Norway
| | - Shailesh Narawane
- Department of Molecular Biology, University of Bergen, Postbox 7803, NO-5020, Bergen, Norway
| | - Anders Fjose
- Department of Molecular Biology, University of Bergen, Postbox 7803, NO-5020, Bergen, Norway
| | - Tiziano Verri
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Prov.le Lecce-Monteroni, I-73100, Lecce, Italy
| | - Ivar Rønnestad
- Department of Biological Sciences, University of Bergen, Postbox 7803, NO-5020, Bergen, Norway.
| |
Collapse
|
6
|
Peng H, Qiao R, Dong B. Polarity Establishment and Maintenance in Ascidian Notochord. Front Cell Dev Biol 2020; 8:597446. [PMID: 33195278 PMCID: PMC7661463 DOI: 10.3389/fcell.2020.597446] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/12/2020] [Indexed: 12/27/2022] Open
Abstract
Cell and tissue polarity due to the extracellular signaling and intracellular gene cascades, in turn, signals the directed cell behaviors and asymmetric tissue architectures that play a crucial role in organogenesis and embryogenesis. The notochord is a characteristic midline organ in chordate embryos that supports the body structure and produces positioning signaling. This review summarizes cellular and tissue-level polarities during notochord development in ascidians. At the early stage, planar cell polarity (PCP) is initialized, which drives cell convergence extension and migration to form a rod-like structure. Subsequently, the notochord undergoes a mesenchymal-epithelial transition, becoming an unusual epithelium in which cells have two opposing apical domains facing the extracellular lumen deposited between adjacent notochord cells controlled by apical-basal (AB) polarity. Cytoskeleton distribution is one of the main downstream events of cell polarity. Some cytoskeleton polarity patterns are a consequence of PCP: however, an additional polarized cytoskeleton, together with Rho signaling, might serve as a guide for correct AB polarity initiation in the notochord. In addition, the notochord's mechanical properties are associated with polarity establishment and transformation, which bridge signaling regulation and tissue mechanical properties that enable the coordinated organogenesis during embryo development.
Collapse
Affiliation(s)
- Hongzhe Peng
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Runyu Qiao
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Bo Dong
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| |
Collapse
|
7
|
Caveolin 1 is required for axonal outgrowth of motor neurons and affects Xenopus neuromuscular development. Sci Rep 2020; 10:16446. [PMID: 33020520 PMCID: PMC7536398 DOI: 10.1038/s41598-020-73429-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Caveolins are essential structural proteins driving the formation of caveolae, specialized invaginations of the plasma membrane. Loss of Caveolin-1 (Cav1) function in mice causes distinct neurological phenotypes leading to impaired motor control, however, the underlying developmental mechanisms are largely unknown. In this study we find that loss-of-function of Xenopus Cav1 results in a striking swimming defect characterized by paralysis of the morphants. High-resolution imaging of muscle cells revealed aberrant sarcomeric structures with disorganized actin fibers. As cav1 is expressed in motor neurons, but not in muscle cells, the muscular abnormalities are likely a consequence of neuronal defects. Indeed, targeting cav1 Morpholino oligonucleotides to neural tissue, but not muscle tissue, disrupts axonal outgrowth of motor neurons and causes swimming defects. Furthermore, inhibition of voltage-gated sodium channels mimicked the Cav1 loss-of-function phenotype. In addition, analyzing axonal morphology we detect that Cav1 loss-of-function causes excessive filopodia and lamellipodia formation. Using rescue experiments, we show that the Cav1 Y14 phosphorylation site is essential and identify a role of RhoA, Rac1, and Cdc42 signaling in this process. Taken together, these results suggest a previously unrecognized function of Cav1 in muscle development by supporting axonal outgrowth of motor neurons.
Collapse
|
8
|
Zhang X, Zhou Q, Li X, Zou W, Hu X. Integrating omics and traditional analyses to profile the synergistic toxicity of graphene oxide and triphenyl phosphate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114473. [PMID: 33618456 DOI: 10.1016/j.envpol.2020.114473] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/02/2020] [Accepted: 03/25/2020] [Indexed: 06/12/2023]
Abstract
The increasing production and applications of graphene oxide (GO, a novel carbon nanomaterial) have raised numerous environmental concerns regarding its ecological risks. Triphenyl phosphate (TPhP) disperses in water and poses an increasing hazard to the ecosystem and human health. It is critical to study the environmental responses and molecular mechanisms of GO and TPhP together to assess both chemicals; however, this information is lacking. The present work revealed that GO promoted the bioaccumulation of TPhP in zebrafish larvae by 5.0%-24.3%. The TPhP-induced growth inhibition of embryos (malformation, mortality, heartbeat, and spontaneous movement) at environmentally relevant concentrations was significantly amplified by GO, and these results were supported by the downregulated levels of genes and proteins associated with cytoskeletal construction and cartilage and eye development. TPhP induced negligible alterations in the genes or proteins involved in oxidative stress and apoptosis, but those related proteins were all upregulated by GO. GO and TPhP coexposure activated the mTOR signaling pathway and subsequently promoted apoptosis in zebrafish by potentiating the oxidative stress induced by TPhP, presenting synergistic toxicity. These findings highlight the potential risks and specific molecular mechanisms of combining emerging carbon nanomaterials with coexisting organic contaminants.
Collapse
Affiliation(s)
- Xingli Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang, 453007, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Xinyu Li
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang, 453007, China
| | - Wei Zou
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang, 453007, China.
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| |
Collapse
|
9
|
Vieira R, Venâncio CAS, Félix LM. Toxic effects of a mancozeb-containing commercial formulation at environmental relevant concentrations on zebrafish embryonic development. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:21174-21187. [PMID: 32270457 DOI: 10.1007/s11356-020-08412-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/12/2020] [Indexed: 06/11/2023]
Abstract
The toxicological knowledge of mancozeb (MZ)-containing commercial formulations on non-target species is scarce and limited. Therefore, the objective of this work was to represent a realistic application scenario by evaluating the toxicity of environmental relevant and higher concentrations of a commercial formulation of MZ using zebrafish embryos. Following determination of the 96-h LC50 value, the embryos at the blastula stage (~ 2 h post-fertilisation, hpf) were exposed to 0.5, 5, and 50 μg L-1 of the active ingredient (~ 40× lower than the 96-h LC50). During the exposure period (96 h), lethal, sublethal, and teratogenic parameters, as well as behaviour analysis, at 120 hpf, were assayed. Biochemical parameters such as oxidative stress-linked enzymes (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR)), reactive oxygen species (ROS) levels, and glutathione levels (GSH and GSSG), as well as the activity of degradation (glutathione S-transferase (GST) and carboxylesterase (CarE)), neurotransmission (acetylcholinesterase (AChE)), and anaerobic respiration (lactate dehydrogenase (LDH))-related enzymes, were analysed at the end of the exposure period. Exposed embryos showed a marked decrease in the hatching rate and many malformations (cardiac and yolk sac oedema and spinal torsions), with a higher prevalence at the highest concentration. A dose-dependent decreased locomotor activity and a response to an aversive stimulus, as well as a light-dark transition decline, were observed at environmental relevant concentrations. Furthermore, the activities of SOD and GR increased while the activity of GST, AChE, and MDA contents decreased. Taken together, the involvement of mancozeb metabolites and the generation of ROS are suggested as responsible for the developmental phenotypes. While further studies are needed to fully support the hypothesis presented, the potential cumulative effects of mancozeb-containing formulations and its metabolites could represent an environmental risk which should not be disregarded.
Collapse
Affiliation(s)
- Raquel Vieira
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801, Vila Real, Portugal
| | - Carlos A S Venâncio
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801, Vila Real, Portugal
- Department of Animal Science, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Luís M Félix
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801, Vila Real, Portugal.
- Laboratory Animal Science (LAS), i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto (UP), Porto, Portugal.
| |
Collapse
|
10
|
Bretaud S, Guillon E, Karppinen SM, Pihlajaniemi T, Ruggiero F. Collagen XV, a multifaceted multiplexin present across tissues and species. Matrix Biol Plus 2020; 6-7:100023. [PMID: 33543021 PMCID: PMC7852327 DOI: 10.1016/j.mbplus.2020.100023] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/06/2020] [Accepted: 01/06/2020] [Indexed: 01/09/2023] Open
Abstract
Type XV collagen is a non-fibrillar collagen that is associated with basement membranes and belongs to the multiplexin subset of the collagen superfamily. Collagen XV was initially studied because of its sequence homology with collagen XVIII/endostatin whose anti-angiogenic and anti-tumorigenic properties were subjects of wide interest in the past years. But during the last fifteen years, collagen XV has gained growing attention with increasing number of studies that have attributed new functions to this widely distributed collagen/proteoglycan hybrid molecule. Despite the cumulative evidence of its functional pleiotropy and its evolutionary conserved function, no review compiling the current state of the art about collagen XV is currently available. Here, we thus provide the first comprehensive view of the knowledge gathered so far on the molecular structure, tissue distribution and functions of collagen XV in development, tissue homeostasis and disease with an evolutionary perspective. We hope that our review will open new roads for promising research on collagen XV in the coming years. Type XV collagen belongs to the multiplexin subset of the collagen superfamily. It is evolutionarily conserved collagen and associated with basement membranes. This collagen/proteoglycan hybrid molecule contains an anti-angiogenic restin domain. It has important functions in the cardiovascular and the neuromuscular systems. Its expression is dysregulated in various diseases including cancers.
Collapse
Key Words
- Animal models
- BM, basement membrane
- BMZ, basement membrane zone
- COL, collagenous domain
- CS, chondroitin sulfate
- CSPG, chondroitin sulfate proteoglycan
- Collagen-related disease
- Collagens
- Development
- ECM, extracellular matrix
- Evolution
- Extracellular matrix
- GAG, glycosaminoglycan
- HFD, High fat diet
- HS, heparan sulfate
- HSPG, heparan sulfate proteoglycan
- Multiplexin
- NC, non-collagenous domain
- TD, trimerization domain
- TSPN, Thrombospondin-1 N-terminal like domain
- dpf, day post-fertilization
Collapse
Affiliation(s)
- Sandrine Bretaud
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, UMR CNRS 5242, University of Lyon, Lyon 69364, France
| | - Emilie Guillon
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, UMR CNRS 5242, University of Lyon, Lyon 69364, France
| | - Sanna-Maria Karppinen
- Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7C, FI-90230 Oulu, Finland
| | - Taina Pihlajaniemi
- Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7C, FI-90230 Oulu, Finland
| | - Florence Ruggiero
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, UMR CNRS 5242, University of Lyon, Lyon 69364, France
| |
Collapse
|
11
|
Abstract
How do tissues self-organize to generate the complex organ shapes observed in vertebrates? Organ formation requires the integration of chemical and mechanical information, yet how this is achieved is poorly understood for most organs. Muscle compartments in zebrafish display a V shape, which is believed to be required for efficient swimming. We investigate how this structure emerges during zebrafish development, combining live imaging and quantitative analysis of cellular movements. We use theoretical modeling to understand how cell differentiation and mechanical interactions between tissues guide the emergence of a specific tissue morphology. Our work reveals how spatially modulating the mechanical environment around and within tissues can lead to complex organ shape formation. Organ formation is an inherently biophysical process, requiring large-scale tissue deformations. Yet, understanding how complex organ shape emerges during development remains a major challenge. During zebrafish embryogenesis, large muscle segments, called myotomes, acquire a characteristic chevron morphology, which is believed to aid swimming. Myotome shape can be altered by perturbing muscle cell differentiation or the interaction between myotomes and surrounding tissues during morphogenesis. To disentangle the mechanisms contributing to shape formation of the myotome, we combine single-cell resolution live imaging with quantitative image analysis and theoretical modeling. We find that, soon after segmentation from the presomitic mesoderm, the future myotome spreads across the underlying tissues. The mechanical coupling between the future myotome and the surrounding tissues appears to spatially vary, effectively resulting in spatially heterogeneous friction. Using a vertex model combined with experimental validation, we show that the interplay of tissue spreading and friction is sufficient to drive the initial phase of chevron shape formation. However, local anisotropic stresses, generated during muscle cell differentiation, are necessary to reach the acute angle of the chevron in wild-type embryos. Finally, tissue plasticity is required for formation and maintenance of the chevron shape, which is mediated by orientated cellular rearrangements. Our work sheds light on how a spatiotemporal sequence of local cellular events can have a nonlocal and irreversible mechanical impact at the tissue scale, leading to robust organ shaping.
Collapse
|
12
|
Basement membrane collagens and disease mechanisms. Essays Biochem 2019; 63:297-312. [PMID: 31387942 PMCID: PMC6744580 DOI: 10.1042/ebc20180071] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/09/2019] [Accepted: 07/22/2019] [Indexed: 12/28/2022]
Abstract
Basement membranes (BMs) are specialised extracellular matrix (ECM) structures and collagens are a key component required for BM function. While collagen IV is the major BM collagen, collagens VI, VII, XV, XVII and XVIII are also present. Mutations in these collagens cause rare multi-systemic diseases but these collagens have also been associated with major common diseases including stroke. Developing treatments for these conditions will require a collective effort to increase our fundamental understanding of the biology of these collagens and the mechanisms by which mutations therein cause disease. Novel insights into pathomolecular disease mechanisms and cellular responses to these mutations has been exploited to develop proof-of-concept treatment strategies in animal models. Combined, these studies have also highlighted the complexity of the disease mechanisms and the need to obtain a more complete understanding of these mechanisms. The identification of pathomolecular mechanisms of collagen mutations shared between different disorders represent an attractive prospect for treatments that may be effective across phenotypically distinct disorders.
Collapse
|
13
|
Exploring the roles of MACIT and multiplexin collagens in stem cells and cancer. Semin Cancer Biol 2019; 62:134-148. [PMID: 31479735 DOI: 10.1016/j.semcancer.2019.08.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/20/2019] [Accepted: 08/30/2019] [Indexed: 02/07/2023]
Abstract
The extracellular matrix (ECM) is ubiquitously involved in neoplastic transformation, tumour growth and metastatic dissemination, and the interplay between tumour and stromal cells and the ECM is now considered crucial for the formation of a tumour-supporting microenvironment. The 28 different collagens (Col) form a major ECM protein family and display extraordinary functional diversity in tissue homeostasis as well as in pathological conditions, with functions ranging from structural support for tissues to regulatory binding activities and storage of biologically active cryptic domains releasable through ECM proteolysis. Two subfamilies of collagens, namely the plasma membrane-associated collagens with interrupted triple-helices (MACITs, including ColXIII, ColXXIII and ColXXV) and the basement membrane-associated collagens with multiple triple-helix domains with interruptions (multiplexins, including ColXV and ColXVIII), have highly interesting regulatory functions in tissue and organ development, as well as in various diseases, including cancer. An increasing, albeit yet sparse, data suggest that these collagens play crucial roles in conveying regulatory signals from the extracellular space to cells. We summarize here the current knowledge about MACITs and multiplexins as regulators of stemness and oncogenic processes, as well as their roles in influencing cell fate decisions in healthy and cancerous tissues. In addition, we present a bioinformatic analysis of the impacts of MACITs and multiplexins transcript levels on the prognosis of patients representing a wide array of malignant diseases, to aid future diagnostic and therapeutic efforts.
Collapse
|
14
|
Lleras-Forero L, Winkler C, Schulte-Merker S. Zebrafish and medaka as models for biomedical research of bone diseases. Dev Biol 2019; 457:191-205. [PMID: 31325453 DOI: 10.1016/j.ydbio.2019.07.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 07/13/2019] [Indexed: 12/17/2022]
Abstract
The identification of disease-causing mutations has in recent years progressed immensely due to whole genome sequencing approaches using patient material. The task accordingly is shifting from gene identification to functional analysis of putative disease-causing genes, preferably in an in vivo setting which also allows testing of drug candidates or biotherapeutics in whole animal disease models. In this review, we highlight the advances made in the field of bone diseases using small laboratory fish, focusing on zebrafish and medaka. We particularly highlight those human conditions where teleost models are available.
Collapse
Affiliation(s)
- L Lleras-Forero
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Mendelstrasse 7, 48149 Münster, Germany; CiM Cluster of Excellence (EXC-1003-CiM), Münster, Germany.
| | - C Winkler
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 04, 117558 Singapore
| | - S Schulte-Merker
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Mendelstrasse 7, 48149 Münster, Germany; CiM Cluster of Excellence (EXC-1003-CiM), Münster, Germany.
| |
Collapse
|
15
|
Keenan SR, Currie PD. The Developmental Phases of Zebrafish Myogenesis. J Dev Biol 2019; 7:E12. [PMID: 31159511 PMCID: PMC6632013 DOI: 10.3390/jdb7020012] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/16/2019] [Accepted: 05/31/2019] [Indexed: 01/11/2023] Open
Abstract
The development and growth of vertebrate axial muscle have been studied for decades at both the descriptive and molecular level. The zebrafish has provided an attractive model system for investigating both muscle patterning and growth due to its simple axial musculature with spatially separated fibre types, which contrasts to complex muscle groups often deployed in amniotes. In recent years, new findings have reshaped previous concepts that define how final teleost muscle form is established and maintained. Here, we summarise recent findings in zebrafish embryonic myogenesis with a focus on fibre type specification, followed by an examination of the molecular mechanisms that control muscle growth with emphasis on the role of the dermomyotome-like external cell layer. We also consider these data sets in a comparative context to gain insight into the evolution of axial myogenic patterning systems within the vertebrate lineage.
Collapse
Affiliation(s)
- Samuel R Keenan
- Australian Regenerative Medicine Institute, Monash University, Victoria 3800, Australia.
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Victoria 3800, Australia.
| |
Collapse
|
16
|
Bretaud S, Nauroy P, Malbouyres M, Ruggiero F. Fishing for collagen function: About development, regeneration and disease. Semin Cell Dev Biol 2019; 89:100-108. [DOI: 10.1016/j.semcdb.2018.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 09/06/2018] [Accepted: 10/08/2018] [Indexed: 02/07/2023]
|
17
|
Nauroy P, Guiraud A, Chlasta J, Malbouyres M, Gillet B, Hughes S, Lambert E, Ruggiero F. Gene profile of zebrafish fin regeneration offers clues to kinetics, organization and biomechanics of basement membrane. Matrix Biol 2018; 75-76:82-101. [PMID: 30031067 DOI: 10.1016/j.matbio.2018.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/09/2018] [Accepted: 07/16/2018] [Indexed: 12/22/2022]
Abstract
How some animals regenerate missing body parts is not well understood. Taking advantage of the zebrafish caudal fin model, we performed a global unbiased time-course transcriptomic analysis of fin regeneration. Biostatistics analyses identified extracellular matrix (ECM) as the most enriched gene sets. Basement membranes (BMs) are specialized ECM structures that provide tissues with structural cohesion and serve as a major extracellular signaling platform. While the embryonic formation of BM has been extensively investigated, its regeneration in adults remains poorly studied. We therefore focused on BM gene expression kinetics and showed that it recapitulates many aspects of development. As such, the re-expression of the embryonic col14a1a gene indicated that col14a1a is part of the regeneration-specific program. We showed that laminins and col14a1a genes display similar kinetics and that the corresponding proteins are spatially and temporally controlled during regeneration. Analysis of our CRISPR/Cas9-mediated col14a1a knockout fish showed that collagen XIV-A contributes to timely deposition of laminins. As changes in ECM organization can affect tissue mechanical properties, we analyzed the biomechanics of col14a1a-/- regenerative BM using atomic force microscopy (AFM). Our data revealed a thinner BM accompanied by a substantial increase of the stiffness when compared to controls. Further AFM 3D-reconstructions showed that BM is organized as a checkerboard made of alternation of soft and rigid regions that is compromised in mutants leading to a more compact structure. We conclude that collagen XIV-A transiently acts as a molecular spacer responsible for BM structure and biomechanics possibly by helping laminins integration within regenerative BM.
Collapse
Affiliation(s)
- Pauline Nauroy
- Université de Lyon, ENSL, CNRS, Institut de Génomique Fonctionnelle de Lyon, 46 allée d'Italie, F-69364 Lyon, France
| | - Alexandre Guiraud
- Université de Lyon, ENSL, CNRS, Institut de Génomique Fonctionnelle de Lyon, 46 allée d'Italie, F-69364 Lyon, France
| | - Julien Chlasta
- BioMeca, ENSL, Université de Lyon, 46 allée d'Italie, F-69364 Lyon, France
| | - Marilyne Malbouyres
- Université de Lyon, ENSL, CNRS, Institut de Génomique Fonctionnelle de Lyon, 46 allée d'Italie, F-69364 Lyon, France
| | - Benjamin Gillet
- Université de Lyon, ENSL, CNRS, Institut de Génomique Fonctionnelle de Lyon, 46 allée d'Italie, F-69364 Lyon, France
| | - Sandrine Hughes
- Université de Lyon, ENSL, CNRS, Institut de Génomique Fonctionnelle de Lyon, 46 allée d'Italie, F-69364 Lyon, France
| | - Elise Lambert
- Université de Lyon, ENSL, CNRS, Institut de Génomique Fonctionnelle de Lyon, 46 allée d'Italie, F-69364 Lyon, France
| | - Florence Ruggiero
- Université de Lyon, ENSL, CNRS, Institut de Génomique Fonctionnelle de Lyon, 46 allée d'Italie, F-69364 Lyon, France.
| |
Collapse
|
18
|
Trapani V, Bonaldo P, Corallo D. Role of the ECM in notochord formation, function and disease. J Cell Sci 2017; 130:3203-3211. [PMID: 28883093 DOI: 10.1242/jcs.175950] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The notochord is a midline structure common to all chordate animals; it provides mechanical and signaling cues for the developing embryo. In vertebrates, the notochord plays key functions during embryogenesis, being a source of developmental signals that pattern the surrounding tissues. It is composed of a core of vacuolated cells surrounded by an epithelial-like sheath of cells that secrete a thick peri-notochordal basement membrane made of different extracellular matrix (ECM) proteins. The correct deposition and organization of the ECM is essential for proper notochord morphogenesis and function. Work carried out in the past two decades has allowed researchers to dissect the contribution of different ECM components to this embryonic tissue. Here, we will provide an overview of these genetic and mechanistic studies. In particular, we highlight the specific functions of distinct matrix molecules in regulating notochord development and notochord-derived signals. Moreover, we also discuss the involvement of ECM synthesis and its remodeling in the pathogenesis of chordoma, a malignant bone cancer that originates from remnants of notochord remaining after embryogenesis.
Collapse
Affiliation(s)
- Valeria Trapani
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy .,CRIBI Biotechnology Center, University of Padova, Padova, 35131, Italy
| | - Diana Corallo
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy .,Pediatric Research Institute, Città della Speranza, 35127 Padova, Italy
| |
Collapse
|
19
|
Wang F, Gao ZX, Cai F, Sinkemani A, Xie ZY, Shi R, Wei JN, Wu XT. Formation, function, and exhaustion of notochordal cytoplasmic vacuoles within intervertebral disc: current understanding and speculation. Oncotarget 2017; 8:57800-57812. [PMID: 28915712 PMCID: PMC5593684 DOI: 10.18632/oncotarget.18101] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 05/01/2017] [Indexed: 01/08/2023] Open
Abstract
Notochord nucleus pulposus cells are characteristic of containing abundant and giant cytoplasmic vacuoles. This review explores the embryonic formation, biological function, and postnatal exhaustion of notochord vacuoles, aiming to characterize the signal network transforming the vacuolated nucleus pulposus cells into the vacuole-less chondrocytic cells. Embryonically, the cytoplasmic vacuoles within vertebrate notochord originate from an evolutionarily conserved vacuolation process during neurulation, which may continue to provide mechanical and signal support in constructing a mammalian intervertebral disc. For full vacuolation, a vacuolating specification from dorsal organizer cells, synchronized convergent extension, well-structured notochord sheath, and sufficient post-Golgi trafficking in notochord cells are required. Postnatally, age-related and species-specific exhaustion of vacuolated nucleus pulposus cells could be potentiated by Fas- and Fas ligand-induced apoptosis, intolerance to mechanical stress and nutrient deficiency, vacuole-mediated proliferation check, and gradual de-vacuolation within the avascular and compression-loaded intervertebral disc. These results suggest that the notochord vacuoles are active and versatile organelles for both embryonic notochord and postnatal nucleus pulposus, and may provide novel information on intervertebral disc degeneration to guide cell-based regeneration.
Collapse
Affiliation(s)
- Feng Wang
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
- Surgery Research Center, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | - Zeng-Xin Gao
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
- Surgery Research Center, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | - Feng Cai
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Soochow, Jiangsu Province, China
| | - Arjun Sinkemani
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
- Surgery Research Center, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | - Zhi-Yang Xie
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
- Surgery Research Center, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | - Rui Shi
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
- Surgery Research Center, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | - Ji-Nan Wei
- Surgery Research Center, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
- Department of Orthopedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | - Xiao-Tao Wu
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
- Surgery Research Center, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| |
Collapse
|
20
|
Nauroy P, Hughes S, Naba A, Ruggiero F. The in-silico zebrafish matrisome: A new tool to study extracellular matrix gene and protein functions. Matrix Biol 2017; 65:5-13. [PMID: 28739138 DOI: 10.1016/j.matbio.2017.07.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 01/19/2023]
Abstract
Extracellular matrix (ECM) proteins are major components of most tissues and organs. In addition to their crucial role in tissue cohesion and biomechanics, they chiefly regulate various important biological processes during embryonic development, tissue homeostasis and repair. In essence, ECM proteins were defined as secreted proteins that localized in the extracellular space. The characterization of the human and mouse matrisomes provided the first definition of ECM actors by comprehensively listing ECM proteins and classified them into categories. Because zebrafish is becoming a popular model to study ECM biology, we sought to characterize the zebrafish matrisome using an in-silico gene-orthology-based approach. We report the identification of 1002 genes encoding the in-silico zebrafish matrisome. Using independent validations, we provide evidence for the robustness of the orthology-based approach. Moreover, we evaluated the orthology relationships between human and zebrafish genes at the whole-genome and matrisome levels and showed that the different categories of ECM genes are differentially subjected to evolutionary pressure. Last, we illustrate how the zebrafish matrisome list can be employed to annotate big data using the example of a previously published proteomic study of the skeletal ECM. The establishment of the zebrafish matrisome will undoubtedly facilitate the analysis of ECM components in "-omic" data sets.
Collapse
Affiliation(s)
- Pauline Nauroy
- Univ Lyon, Institut de Génomique Fonctionnelle de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 allée d'Italie, F-69364 Lyon, France
| | - Sandrine Hughes
- Univ Lyon, Institut de Génomique Fonctionnelle de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 allée d'Italie, F-69364 Lyon, France
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois at Chicago, College of Medicine, 835 S. Wolcott Avenue, Chicago, IL 60612, USA.
| | - Florence Ruggiero
- Univ Lyon, Institut de Génomique Fonctionnelle de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 allée d'Italie, F-69364 Lyon, France.
| |
Collapse
|
21
|
|
22
|
Slow Muscle Precursors Lay Down a Collagen XV Matrix Fingerprint to Guide Motor Axon Navigation. J Neurosci 2016; 36:2663-76. [PMID: 26937007 DOI: 10.1523/jneurosci.2847-15.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED The extracellular matrix (ECM) provides local positional information to guide motoneuron axons toward their muscle target. Collagen XV is a basement membrane component mainly expressed in skeletal muscle. We have identified two zebrafish paralogs of the human COL15A1 gene, col15a1a and col15a1b, which display distinct expression patterns. Here we show that col15a1b is expressed and deposited in the motor path ECM by slow muscle precursors also called adaxial cells. We further demonstrate that collagen XV-B deposition is both temporally and spatially regulated before motor axon extension from the spinal cord in such a way that it remains in this region after the adaxial cells have migrated toward the periphery of the myotome. Loss- and gain-of-function experiments in zebrafish embryos demonstrate that col15a1b expression and subsequent collagen XV-B deposition and organization in the motor path ECM depend on a previously undescribed two-step mechanism involving Hedgehog/Gli and unplugged/MuSK signaling pathways. In silico analysis predicts a putative Gli binding site in the col15a1b proximal promoter. Using col15a1b promoter-reporter constructs, we demonstrate that col15a1b participates in the slow muscle genetic program as a direct target of Hedgehog/Gli signaling. Loss and gain of col15a1b function provoke pathfinding errors in primary and secondary motoneuron axons both at and beyond the choice point where axon pathway selection takes place. These defects result in muscle atrophy and compromised swimming behavior, a phenotype partially rescued by injection of a smyhc1:col15a1b construct. These reveal an unexpected and novel role for collagen XV in motor axon pathfinding and neuromuscular development. SIGNIFICANCE STATEMENT In addition to the archetypal axon guidance cues, the extracellular matrix provides local information that guides motor axons from the spinal cord to their muscle targets. Many of the proteins involved are unknown. Using the zebrafish model, we identified an unexpected role of the extracellular matrix collagen XV in motor axon pathfinding. We show that the synthesis of collagen XV-B by slow muscle precursors and its deposition in the common motor path are dependent on a novel two-step mechanism that determines axon decisions at a choice point during motor axonogenesis. Zebrafish and humans use common molecular cues and regulatory mechanisms for the neuromuscular system development. And as such, our study reveals COL15A1 as a candidate gene for orphan neuromuscular disorders.
Collapse
|
23
|
Diaz-Tellez A, Zampedri C, Ramos-Balderas JL, García-Hernández F, Maldonado E. Zebrafish scarb2a insertional mutant reveals a novel function for the Scarb2/Limp2 receptor in notochord development. Dev Dyn 2016; 245:508-19. [PMID: 26743566 DOI: 10.1002/dvdy.24383] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 12/04/2015] [Accepted: 12/23/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Scarb2 or Limp2 belong to a subfamily of Scavenger receptors described as lysosomal transmembrane glycosylated receptors, that are mutated in the human syndrome AMRF (action myoclonus-renal failure). The zebrafish insertional mutant scarb2a(hi1463Tg) has notochord defects, the notochord is a defining feature of chordates running along the center of the longitudinal axis and it is essential for forming the spinal column in all vertebrates. RESULTS There are three paralogous scarb2 genes in zebrafish; scarb2a, scarb2b, and scarb2c. Both Scarb2a and Scarb2b proteins lack the classical di-leucine motif. We found that scarb2a(hi1463Tg) homozygous zebrafish embryos have a null mutation impairing vacuole formation in the notochord and simultaneously disrupting proper formation of the basement membrane resulting in its thickening at the ventral side of the notochord, which may be the cause for the anomalous upward bending observed in the trunk. Through whole-mount in situ hybridization, we detected scarb2a mRNA expression in the notochord and in the brain early in development. However, it is puzzling that scarb2a notochord mRNA expression is short-lived in the presumptive notochord and precedes the complete differentiation of the notochord. CONCLUSIONS This work describes a novel function for the Scarb2 receptor as an essential glycoprotein for notochord development.
Collapse
Affiliation(s)
- Abigail Diaz-Tellez
- EvoDevo Lab, Unidad de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Cecilia Zampedri
- EvoDevo Lab, Unidad de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Jose L Ramos-Balderas
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, D.F. México
| | | | - Ernesto Maldonado
- EvoDevo Lab, Unidad de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| |
Collapse
|
24
|
Abstract
The intervertebral disc is a complex structure responsible for flexibility, multi-axial motion, and load transmission throughout the spine. Importantly, degeneration of the intervertebral disc is thought to be an initiating factor for back pain. Due to a lack of understanding of the pathways that govern disc degeneration, there are currently no disease-modifying treatments to delay or prevent degenerative disc disease. This review presents an overview of our current understanding of the developmental processes that regulate intervertebral disc formation, with particular emphasis on the role of the notochord and notochord-derived cells in disc homeostasis and how their loss can result in degeneration. We then describe the role of small animal models in understanding the development of the disc and their use to interrogate disc degeneration and associated pathologies. Finally, we highlight essential development pathways that are associated with disc degeneration and/or implicated in the reparative response of the tissue that might serve as targets for future therapeutic approaches.
Collapse
|
25
|
Ramanoudjame L, Rocancourt C, Lainé J, Klein A, Joassard L, Gartioux C, Fleury M, Lyphout L, Kabashi E, Ciura S, Cousin X, Allamand V. Two novel COLVI long chains in zebrafish that are essential for muscle development. Hum Mol Genet 2015; 24:6624-39. [PMID: 26362255 DOI: 10.1093/hmg/ddv368] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/04/2015] [Indexed: 12/25/2022] Open
Abstract
Collagen VI (COLVI), a protein ubiquitously expressed in connective tissues, is crucial for structural integrity, cellular adhesion, migration and survival. Six different genes are recognized in mammalians, encoding six COLVI-chains that assemble as two 'short' (α1, α2) and one 'long' chain (theoretically any one of α3-6). In humans, defects in the most widely expressed heterotrimer (α123), due to mutations in the COL6A1-3 genes, cause a heterogeneous group of neuromuscular disorders, collectively termed COLVI-related muscle disorders. Little is known about the function(s) of the recently described α4-6 chains and no mutations have been detected yet. In this study, we characterized two novel COLVI long chains in zebrafish that are most homologous to the mammalian α4 chain; therefore, we named the corresponding genes col6a4a and col6a4b. These orthologues represent ancestors of the mammalian Col6a4-6 genes. By in situ hybridization and RT-qPCR, we unveiled a distinctive expression kinetics for col6a4b, compared with the other col6a genes. Using morpholino antisense oligonucleotides targeting col6a4a, col6a4b and col6a2, we modelled partial and complete COLVI deficiency, respectively. All morphant embryos presented altered muscle structure and impaired motility. While apoptosis was not drastically increased, autophagy induction was defective in all morphants. Furthermore, motoneuron axon growth was abnormal in these morphants. Importantly, some phenotypical differences emerged between col6a4a and col6a4b morphants, suggesting only partial functional redundancy. Overall, our results further confirm the importance of COLVI in zebrafish muscle development and may provide important clues for potential human phenotypes associated with deficiency of the recently described COLVI-chains.
Collapse
Affiliation(s)
- Laetitia Ramanoudjame
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris F-75013, France, Institut de Myologie, Paris F-75013, France
| | | | - Jeanne Lainé
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris F-75013, France, Institut de Myologie, Paris F-75013, France, Département de Physiologie, Sorbonne Universités UPMC Paris 06, Site Pitié-Salpêtrière, Paris F-75013, France
| | - Arnaud Klein
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris F-75013, France, Institut de Myologie, Paris F-75013, France
| | | | - Corine Gartioux
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris F-75013, France, Institut de Myologie, Paris F-75013, France
| | - Marjory Fleury
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris F-75013, France, Institut de Myologie, Paris F-75013, France
| | - Laura Lyphout
- Fish Ecophysiology Group, Ifremer, L'Houmeau F-17137, France
| | - Edor Kabashi
- Sorbonne Universités Paris VI, UMR CNRS 1127 UPMC, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière-ICM, Paris, France and
| | - Sorana Ciura
- Sorbonne Universités Paris VI, UMR CNRS 1127 UPMC, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière-ICM, Paris, France and
| | - Xavier Cousin
- Fish Ecophysiology Group, Ifremer, L'Houmeau F-17137, France, INRA LPGP, Campus de Beaulieu, Rennes F-35042, France
| | - Valérie Allamand
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris F-75013, France, Institut de Myologie, Paris F-75013, France,
| |
Collapse
|
26
|
Corallo D, Trapani V, Bonaldo P. The notochord: structure and functions. Cell Mol Life Sci 2015; 72:2989-3008. [PMID: 25833128 PMCID: PMC11114051 DOI: 10.1007/s00018-015-1897-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/23/2015] [Accepted: 03/26/2015] [Indexed: 01/08/2023]
Abstract
The notochord is an embryonic midline structure common to all members of the phylum Chordata, providing both mechanical and signaling cues to the developing embryo. In vertebrates, the notochord arises from the dorsal organizer and it is critical for proper vertebrate development. This evolutionary conserved structure located at the developing midline defines the primitive axis of embryos and represents the structural element essential for locomotion. Besides its primary structural function, the notochord is also a source of developmental signals that patterns surrounding tissues. Among the signals secreted by the notochord, Hedgehog proteins play key roles during embryogenesis. The Hedgehog signaling pathway is a central regulator of embryonic development, controlling the patterning and proliferation of a wide variety of organs. In this review, we summarize the current knowledge on notochord structure and functions, with a particular emphasis on the key developmental events that take place in vertebrates. Moreover, we discuss some genetic studies highlighting the phenotypic consequences of impaired notochord development, which enabled to understand the molecular basis of different human congenital defects and diseases.
Collapse
Affiliation(s)
- Diana Corallo
- Department of Molecular Medicine, University of Padova, Viale G. Colombo 3, 35131 Padua, Italy
| | - Valeria Trapani
- Department of Molecular Medicine, University of Padova, Viale G. Colombo 3, 35131 Padua, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, Viale G. Colombo 3, 35131 Padua, Italy
| |
Collapse
|
27
|
Ruf-Zamojski F, Trivedi V, Fraser SE, Trinh LA. Spatio-Temporal Differences in Dystrophin Dynamics at mRNA and Protein Levels Revealed by a Novel FlipTrap Line. PLoS One 2015; 10:e0128944. [PMID: 26083378 PMCID: PMC4471274 DOI: 10.1371/journal.pone.0128944] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 05/01/2015] [Indexed: 11/18/2022] Open
Abstract
Dystrophin (Dmd) is a structural protein that links the extracellular matrix to actin filaments in muscle fibers and is required for the maintenance of muscles integrity. Mutations in Dmd lead to muscular dystrophies in humans and other vertebrates. Here, we report the characterization of a zebrafish gene trap line that fluorescently labels the endogenous Dmd protein (Dmd-citrine, Gt(dmd-citrine) ct90a). We show that the Dmd-citrine line recapitulates endogenous dmd transcript expression and Dmd protein localization. Using this Dmd-citrine line, we follow Dmd localization to the myosepta in real-time using time-lapse microscopy, and find that the accumulation of Dmd protein at the transverse myosepta coincides with the onset of myotome formation, a critical stage in muscle maturation. We observed that Dmd protein localizes specifically to the myosepta prior to dmd mRNA localization. Additionally, we demonstrate that the Dmd-citrine line can be used to assess muscular dystrophy following both genetic and physical disruptions of the muscle.
Collapse
Affiliation(s)
- Frederique Ruf-Zamojski
- California Institute of Technology, Biological Imaging Center, Beckman Institute, Division of Biology, Pasadena, California 91125, United States of America
| | - Vikas Trivedi
- California Institute of Technology, Department of Bioengineering, Pasadena, California 91125, United States of America
| | - Scott E. Fraser
- California Institute of Technology, Biological Imaging Center, Beckman Institute, Division of Biology, Pasadena, California 91125, United States of America
| | - Le A. Trinh
- California Institute of Technology, Biological Imaging Center, Beckman Institute, Division of Biology, Pasadena, California 91125, United States of America
- * E-mail:
| |
Collapse
|
28
|
Ferrari L, Pistocchi A, Libera L, Boari N, Mortini P, Bellipanni G, Giordano A, Cotelli F, Riva P. FAS/FASL are dysregulated in chordoma and their loss-of-function impairs zebrafish notochord formation. Oncotarget 2015; 5:5712-24. [PMID: 25071022 PMCID: PMC4170636 DOI: 10.18632/oncotarget.2145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Chordoma is a rare malignant tumor that recapitulates the notochord phenotype and is thought to derive from notochord remnants not correctly regressed during development. Apoptosis is necessary for the proper notochord development in vertebrates, and the apoptotic pathway mediated by Fas and Fasl has been demonstrated to be involved in notochord cells regression. This study was conducted to investigate the expression of FAS/FASL pathway in a cohort of skull base chordomas and to analyze the role of fas/fasl homologs in zebrafish notochord formation. FAS/FASL expression was found to be dysregulated in chordoma leading to inactivation of the downstream Caspases in the samples analyzed. Both fas and fasl were specifically expressed in zebrafish notochord sorted cells. fas and fasl loss-of-function mainly resulted in larvae with notochord multi-cell-layer jumps organization, larger vacuolated notochord cells, defects in the peri-notochordal sheath structure and in vertebral mineralization. Interestingly, we observed the persistent expression of ntla and col2a1a, the zebrafish homologs of the human T gene and COL2A1 respectively, which are specifically up-regulated in chordoma. These results demonstrate for the first time the dysregulation of FAS/FASL in chordoma and their role in notochord formation in the zebrafish model, suggesting their possible implication in chordoma onset.
Collapse
Affiliation(s)
- Luca Ferrari
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università Degli Studi di Milano, Via Viotti 3/5 20133 Milan, Italy; These authors contribute equally in this study
| | - Anna Pistocchi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università Degli Studi di Milano, Via Viotti 3/5 20133 Milan, Italy; Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26 20133 Milan, Italy; These authors contribute equally in this study
| | - Laura Libera
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università Degli Studi di Milano, Via Viotti 3/5 20133 Milan, Italy
| | - Nicola Boari
- Dipartimento di Neurochirurgia, Università Vita-Salute IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| | - Pietro Mortini
- Dipartimento di Neurochirurgia, Università Vita-Salute IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| | - Gianfranco Bellipanni
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, USA; Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Antonio Giordano
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, USA; Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Franco Cotelli
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26 20133 Milan, Italy
| | - Paola Riva
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università Degli Studi di Milano, Via Viotti 3/5 20133 Milan, Italy
| |
Collapse
|
29
|
Abstract
The function of muscle is to contract, which means to exert force on a substrate. The adaptations required for skeletal muscle differentiation, from a prototypic cell, involve specialization of housekeeping cytoskeletal contracting and supporting systems into crystalline arrays of proteins. Here I discuss the changes that all three cytoskeletal systems (microfilaments, intermediate filaments, and microtubules) undergo through myogenesis. I also discuss their interaction, through the membrane, to extracellular matrix and to other cells, where force will be exerted during contraction. The three cytoskeletal systems are necessary for the muscle cell and must exert complementary roles in the cell. Muscle is a responsive system, where structure and function are integrated: the structural adaptations it undergoes depend on force production. In this way, the muscle cytoskeleton is a portrait of its physiology. I review the cytoskeletal proteins and structures involved in muscle function and focus particularly on their role in myogenesis, the process by which this incredible muscle machine is made. Although the focus is on skeletal muscle, some of the discussion is applicable to cardiac and smooth muscle.
Collapse
|
30
|
Daniels O, Fabbro L, Makiela S. The effects of the toxic cyanobacterium Limnothrix (strain AC0243) on Bufo marinus larvae. Toxins (Basel) 2014; 6:1021-35. [PMID: 24662524 PMCID: PMC3968374 DOI: 10.3390/toxins6031021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 02/17/2014] [Accepted: 02/20/2014] [Indexed: 02/07/2023] Open
Abstract
Limnothrix (strain AC0243) is a cyanobacterium, which has only recently been identified as toxin producing. Under laboratory conditions, Bufo marinus larvae were exposed to 100,000 cells mL(-1) of Limnothrix (strain AC0243) live cultures for seven days. Histological examinations were conducted post mortem and revealed damage to the notochord, eyes, brain, liver, kidney, pancreas, gastrointestinal tract, and heart. The histopathological results highlight the toxicological impact of this strain, particularly during developmental stages. Toxicological similarities to β-N-Methylamino-L-alanine are discussed.
Collapse
Affiliation(s)
- Olivia Daniels
- School of Medical and Applied Sciences, Central Queensland University, Rockhampton 4701, Australia.
| | - Larelle Fabbro
- School of Medical and Applied Sciences, Central Queensland University, Rockhampton 4701, Australia.
| | - Sandrine Makiela
- School of Medical and Applied Sciences, Central Queensland University, Rockhampton 4701, Australia.
| |
Collapse
|
31
|
Gray RS, Wilm TP, Smith J, Bagnat M, Dale RM, Topczewski J, Johnson SL, Solnica-Krezel L. Loss of col8a1a function during zebrafish embryogenesis results in congenital vertebral malformations. Dev Biol 2013; 386:72-85. [PMID: 24333517 DOI: 10.1016/j.ydbio.2013.11.028] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/19/2013] [Accepted: 11/27/2013] [Indexed: 01/05/2023]
Abstract
Congenital vertebral malformations (CVM) occur in 1 in 1000 live births and in many cases can cause spinal deformities, such as scoliosis, and result in disability and distress of affected individuals. Many severe forms of the disease, such as spondylocostal dystostosis, are recessive monogenic traits affecting somitogenesis, however the etiologies of the majority of CVM cases remain undetermined. Here we demonstrate that morphological defects of the notochord in zebrafish can generate congenital-type spine defects. We characterize three recessive zebrafish leviathan/col8a1a mutant alleles ((m531, vu41, vu105)) that disrupt collagen type VIII alpha1a (col8a1a), and cause folding of the embryonic notochord and consequently adult vertebral column malformations. Furthermore, we provide evidence that a transient loss of col8a1a function or inhibition of Lysyl oxidases with drugs during embryogenesis was sufficient to generate vertebral fusions and scoliosis in the adult spine. Using periodic imaging of individual zebrafish, we correlate focal notochord defects of the embryo with vertebral malformations (VM) in the adult. Finally, we show that bends and kinks in the notochord can lead to aberrant apposition of osteoblasts normally confined to well-segmented areas of the developing vertebral bodies. Our results afford a novel mechanism for the formation of VM, independent of defects of somitogenesis, resulting from aberrant bone deposition at regions of misshapen notochord tissue.
Collapse
Affiliation(s)
- Ryan S Gray
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Thomas P Wilm
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeff Smith
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michel Bagnat
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Rodney M Dale
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jacek Topczewski
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Stephen L Johnson
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
32
|
Corallo D, Schiavinato A, Trapani V, Moro E, Argenton F, Bonaldo P. Emilin3 is required for notochord sheath integrity and interacts with Scube2 to regulate notochord-derived Hedgehog signals. Development 2013; 140:4594-601. [PMID: 24131633 DOI: 10.1242/dev.094078] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The notochord is a transient and essential structure that provides both mechanical and signaling cues to the developing vertebrate embryo. In teleosts, the notochord is composed of a core of large vacuolated cells and an outer layer of cells that secrete the notochord sheath. In this work, we have identified the extracellular matrix glycoprotein Emilin3 as a novel essential component of the zebrafish notochord sheath. The development of the notochord sheath is impaired in Emilin3 knockdown embryos. The patterning activity of the notochord is also affected by Emilin3, as revealed by the increase of Hedgehog (Hh) signaling in Emilin3-depleted embryos and the decreased Hh signaling in embryos overexpressing Emilin3 in the notochord. In vitro and in vivo experiments indicate that Emilin3 modulates the availability of Hh ligands by interacting with the permissive factor Scube2 in the notochord sheath. Overall, this study reveals a new role for an EMILIN protein and reinforces the concept that structure and function of the notochord are strictly linked.
Collapse
Affiliation(s)
- Diana Corallo
- Department of Biomedical Sciences, University of Padova, I-35121 Padova, Italy
| | | | | | | | | | | |
Collapse
|
33
|
Charvet B, Guiraud A, Malbouyres M, Zwolanek D, Guillon E, Bretaud S, Monnot C, Schulze J, Bader HL, Allard B, Koch M, Ruggiero F. Knockdown of col22a1 gene in zebrafish induces a muscular dystrophy by disruption of the myotendinous junction. Development 2013; 140:4602-13. [PMID: 24131632 DOI: 10.1242/dev.096024] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The myotendinous junction (MTJ) is the major site of force transfer in skeletal muscle, and defects in its structure correlate with a subset of muscular dystrophies. Col22a1 encodes the MTJ component collagen XXII, the function of which remains unknown. Here, we have cloned and characterized the zebrafish col22a1 gene and conducted morpholino-based loss-of-function studies in developing embryos. We showed that col22a1 transcripts localize at muscle ends when the MTJ forms and that COLXXII protein integrates the junctional extracellular matrix. Knockdown of COLXXII expression resulted in muscular dystrophy-like phenotype, including swimming impairment, curvature of embryo trunk/tail, strong reduction of twitch-contraction amplitude and contraction-induced muscle fiber detachment, and provoked significant activation of the survival factor Akt. Electron microscopy and immunofluorescence studies revealed that absence of COLXXII caused a strong reduction of MTJ folds and defects in myoseptal structure. These defects resulted in reduced contractile force and susceptibility of junctional extracellular matrix to rupture when subjected to repeated mechanical stress. Co-injection of sub-phenotypic doses of morpholinos against col22a1 and genes of the major muscle linkage systems showed a synergistic gene interaction between col22a1 and itga7 (α7β1 integrin) that was not observed with dag1 (dystroglycan). Finally, pertinent to a conserved role in humans, the dystrophic phenotype was rescued by microinjection of recombinant human COLXXII. Our findings indicate that COLXXII contributes to the stabilization of myotendinous junctions and strengthens skeletal muscle attachments during contractile activity.
Collapse
Affiliation(s)
- Benjamin Charvet
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, UMR CNRS 5242, Université Lyon 1, 46 Allée d'Italie, 69364 Lyon cedex 07, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Cartilage and bone malformations in the head of zebrafish (Danio rerio) embryos following exposure to disulfiram and acetic acid hydrazide. Toxicol Appl Pharmacol 2013; 268:221-31. [DOI: 10.1016/j.taap.2013.01.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 01/18/2013] [Accepted: 01/20/2013] [Indexed: 11/17/2022]
|
35
|
Ishikawa T, Okada T, Ishikawa-Fujiwara T, Todo T, Kamei Y, Shigenobu S, Tanaka M, Saito TL, Yoshimura J, Morishita S, Toyoda A, Sakaki Y, Taniguchi Y, Takeda S, Mori K. ATF6α/β-mediated adjustment of ER chaperone levels is essential for development of the notochord in medaka fish. Mol Biol Cell 2013; 24:1387-95. [PMID: 23447699 PMCID: PMC3639050 DOI: 10.1091/mbc.e12-11-0830] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
ATF6α and ATF6β are membrane-bound transcription factors activated by regulated intramembrane proteolysis in response to endoplasmic reticulum (ER) stress to induce various ER quality control proteins. ATF6α- and ATF6β single-knockout mice develop normally, but ATF6α/β double knockout causes embryonic lethality, the reason for which is unknown. Here we show in medaka fish that ATF6α is primarily responsible for transcriptional induction of the major ER chaperone BiP and that ATF6α/β double knockout, but not ATF6α- or ATF6β single knockout, causes embryonic lethality, as in mice. Analyses of ER stress reporters reveal that ER stress occurs physiologically during medaka early embryonic development, particularly in the brain, otic vesicle, and notochord, resulting in ATF6α- and ATF6β-mediated induction of BiP, and that knockdown of the α1 chain of type VIII collagen reduces such ER stress. The absence of transcriptional induction of several ER chaperones in ATF6α/β double knockout causes more profound ER stress and impaired notochord development, which is partially rescued by overexpression of BiP. Thus ATF6α/β-mediated adjustment of chaperone levels to increased demands in the ER is essential for development of the notochord, which synthesizes and secretes large amounts of extracellular matrix proteins to serve as the body axis before formation of the vertebra.
Collapse
Affiliation(s)
- Tokiro Ishikawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Cerveny KL, Varga M, Wilson SW. Continued growth and circuit building in the anamniote visual system. Dev Neurobiol 2012; 72:328-45. [PMID: 21563317 DOI: 10.1002/dneu.20917] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fish and amphibia are capable of lifelong growth and regeneration. The two core components of their visual system, the retina and tectum both maintain small populations of stem cells that contribute new neurons and glia to these tissues as they grow. As the animals age, the initial retinal projections onto the tectum are continuously remodeled to maintain retinotopy. These properties raise several biological challenges related to the control of proliferation and differentiation of retinal and tectal stem cells. For instance, how do stem and progenitor cells integrate intrinsic and extrinsic cues to produce the appropriate type and number of cells needed by the growing tissue. Does retinal growth or neuronal activity influence tectal growth? What are the cellular and molecular mechanisms that enable retinal axons to shift their tectal connections as these two tissues grow in incongruent patterns? While we cannot yet provide answers to these questions, this review attempts to supply background and context, laying the ground work for new investigations.
Collapse
Affiliation(s)
- Kara L Cerveny
- Department of Cell and Developmental Biology, University College, London, UK
| | | | | |
Collapse
|
37
|
Neacsu CD, Grosch M, Tejada M, Winterpacht A, Paulsson M, Wagener R, Tagariello A. Ucmaa (Grp-2) is required for zebrafish skeletal development. Evidence for a functional role of its glutamate γ-carboxylation. Matrix Biol 2011; 30:369-78. [PMID: 21839171 DOI: 10.1016/j.matbio.2011.07.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/22/2011] [Accepted: 07/25/2011] [Indexed: 01/20/2023]
Abstract
UCMA (alternatively named GRP) is a novel member of the family of γ-carboxyglutamate (Gla) containing proteins that is mainly expressed in cartilage. We have used the zebrafish as a model organism to study UCMA function. Due to the whole genome duplication two Ucma genes are present in zebrafish, ucmaa and ucmab, located on chromosomes 25 and 4, respectively. UCMA gene structure, alternative splicing and protein sequence are highly conserved between mammals and zebrafish and Ucmaa and Ucmab are expressed in zebrafish skeletal tissues. Ucmaa is first detected in the notochord at 18 hpf and expression continues during notochord development. In addition, it is widely present in the developing craniofacial cartilage. In contrast, the weakly expressed Ucmab can be first detected at specific sites in the craniofacial cartilage at 96 hpf, but not in notochord. Knockdown of ucmaa leads to severe growth retardation and perturbance of skeletal development. The cartilage of the morphants has a decreased aggrecan and collagen II content. Similar malformations were observed when glutamate γ-carboxylation was inhibited by warfarin treatment, indicating that glutamate γ-carboxylation is crucial for Ucma function and pointing to a role of UCMA in the pathogenesis of "warfarin embryopathies" and other human skeletal diseases.
Collapse
|
38
|
Momota R, Naito I, Ninomiya Y, Ohtsuka A. Drosophila type XV/XVIII collagen, Mp, is involved in Wingless distribution. Matrix Biol 2011; 30:258-66. [DOI: 10.1016/j.matbio.2011.03.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 02/19/2011] [Accepted: 03/29/2011] [Indexed: 11/27/2022]
|
39
|
Gonzalez-Nunez V, Nocco V, Budd A. Characterization of drCol 15a1b: a novel component of the stem cell niche in the zebrafish retina. Stem Cells 2011; 28:1399-411. [PMID: 20549708 DOI: 10.1002/stem.461] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
There is a clear need to develop novel tools to help improve our understanding of stem cell biology, and potentially also the utility of stem cells in regenerative medicine. We report the cloning, functional, and bioinformatic characterization of a novel stem cell marker in the zebrafish retina, drCol 15a1b. The expression pattern of drCol 15a1b is restricted to stem cell niches located in the central nervous system, whereas other collagen XVs are associated with muscle and endothelial tissues. Knocking down drCol 15a1b expression causes smaller eyes, ear defects, and brain edema. Microscopic analysis reveals enhanced proliferation in the morphant eye, with many mitotic nuclei located in the central retina, together with a delayed differentiation of the mature retinal cell types. Besides, several markers known to be expressed in the ciliary marginal zone display broader expression areas in morpholino-injected embryos, suggesting an anomalous diffusion of signaling effectors from the sonic hedgehog and notch pathways. These results indicate that drCol 15a1b is a novel stem cell marker in the central nervous system that has a key role in homing stem cells into specialized niches in the adult organism. Moreover, mutations in the hCol 18a1 gene are responsible for the Knobloch syndrome, which affects brain and retinal structures, suggesting that drCol 15a1b may function similarly to mammalian Col 18a1. Thus, our results shed new light on the signaling pathways that underlie the maintenance of stem cells in the adult organism while helping us to understand the role of extracellular matrix proteins in modulating the signals that determine stem cell differentiation, cell cycle exit and apoptosis.
Collapse
Affiliation(s)
- Veronica Gonzalez-Nunez
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| | | | | |
Collapse
|
40
|
Feitosa NM, Richardson R, Bloch W, Hammerschmidt M. Basement membrane diseases in zebrafish. Methods Cell Biol 2011; 105:191-222. [PMID: 21951531 DOI: 10.1016/b978-0-12-381320-6.00008-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Basement membranes (BMs) are a complex, sheet-like network of specialized extracellular matrix that underlies epithelial cells and surrounds muscle cells. They provide adherence between neighboring tissues, permit some flexibility of these adherent structures, and can act as a store for growth factors and as a guide for cell migration. The BM is not just a static structure; its deposition and remodeling are important for many processes including embryonic development, immune response, and wound healing. To date, dysfunction in BM deposition or remodeling has been linked to many human congenital disorders and diseases, affecting many different tissues in the body, including malformations, dystrophies, and cancer. However, many questions remain to be answered on the role BM proteins, and their mutations, play in the pathogenesis of human disease. In recent years, the zebrafish (Danio rerio) has emerged as a powerful animal model for human development and disease. In the first part of this chapter, we provide an overview of described defects caused by BM dysfunction in zebrafish, including development and function of notochord, muscle, central nervous system, skin, cardiovascular system, and kidney. In the second part, we will describe details of methods used to visualize and assess the structure of the BM in zebrafish, and to functionally analyze its different components.
Collapse
|
41
|
Bretaud S, Pagnon-Minot A, Guillon E, Ruggiero F, Le Guellec D. Characterization of spatial and temporal expression pattern of Col15a1b during zebrafish development. Gene Expr Patterns 2010; 11:129-34. [PMID: 21044700 DOI: 10.1016/j.gep.2010.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 10/19/2010] [Accepted: 10/22/2010] [Indexed: 09/30/2022]
Abstract
In mammals, collagen XV is primarily expressed in skeletal and cardiac muscles, and loss of its expression in mice results in a mild skeletal myopathy. We recently identified Col15a1a, a zebrafish ortholog of the human collagen XV gene which expression was restricted to notochord in embryos. Col15a1a knockdown led to defects in muscle maintenance via Shh signaling. Here we report that zebrafish express a second ortholog Col15a1b. The identification of its complete primary sequence showed that the overall structure of collagen XV is well conserved between vertebrates. Whole mount in situ hybridization and RT-PCR analysis revealed that at 12hpf Col15a1b is mainly expressed in slow muscle cell lineage and in nervous tissues, and, at later stages transcripts are detected in eyes, otic placodes and aortic arches. Based on the expression pattern of col15a1b, sequence alignments and synteny comparisons, we conclude that, contrary to collagen XVa, the zebrafish collagen XVb likely displays the same or similar function than the mammalian orthologs.
Collapse
Affiliation(s)
- Sandrine Bretaud
- Institut de Biologie et Chimie des Protéines, CNRS UMR 5086, IFR 128, Université de Lyon, Université Lyon 1, 7 passage du Vercors, 69367 Lyon cedex 07, France
| | | | | | | | | |
Collapse
|
42
|
Goody MF, Kelly MW, Lessard KN, Khalil A, Henry CA. Nrk2b-mediated NAD+ production regulates cell adhesion and is required for muscle morphogenesis in vivo: Nrk2b and NAD+ in muscle morphogenesis. Dev Biol 2010; 344:809-26. [PMID: 20566368 DOI: 10.1016/j.ydbio.2010.05.513] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 04/22/2010] [Accepted: 05/27/2010] [Indexed: 10/19/2022]
Abstract
Cell-matrix adhesion complexes (CMACs) play fundamental roles during morphogenesis. Given the ubiquitous nature of CMACs and their roles in many cellular processes, one question is how specificity of CMAC function is modulated. The clearly defined cell behaviors that generate segmentally reiterated axial skeletal muscle during zebrafish development comprise an ideal system with which to investigate CMAC function during morphogenesis. We found that Nicotinamide riboside kinase 2b (Nrk2b) cell autonomously modulates the molecular composition of CMACs in vivo. Nrk2b is required for normal Laminin polymerization at the myotendinous junction (MTJ). In Nrk2b-deficient embryos, at MTJ loci where Laminin is not properly polymerized, muscle fibers elongate into adjacent myotomes and are abnormally long. In yeast and human cells, Nrk2 phosphorylates Nicotinamide Riboside and generates NAD+ through an alternative salvage pathway. Exogenous NAD+ treatment rescues MTJ development in Nrk2b-deficient embryos, but not in laminin mutant embryos. Both Nrk2b and Laminin are required for localization of Paxillin, but not beta-Dystroglycan, to CMACs at the MTJ. Overexpression of Paxillin in Nrk2b-deficient embryos is sufficient to rescue MTJ integrity. Taken together, these data show that Nrk2b plays a specific role in modulating subcellular localization of discrete CMAC components that in turn plays roles in musculoskeletal development. Furthermore, these data suggest that Nrk2b-mediated synthesis of NAD+ is functionally upstream of Laminin adhesion and Paxillin subcellular localization during MTJ development. These results indicate a previously unrecognized complexity to CMAC assembly in vivo and also elucidate a novel role for NAD+ during morphogenesis.
Collapse
Affiliation(s)
- Michelle F Goody
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | | | | | | | | |
Collapse
|
43
|
sec24d encoding a component of COPII is essential for vertebra formation, revealed by the analysis of the medaka mutant, vbi. Dev Biol 2010; 342:85-95. [DOI: 10.1016/j.ydbio.2010.03.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 03/18/2010] [Accepted: 03/18/2010] [Indexed: 11/18/2022]
|
44
|
|
45
|
Rozario T, DeSimone DW. The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biol 2010; 341:126-40. [PMID: 19854168 PMCID: PMC2854274 DOI: 10.1016/j.ydbio.2009.10.026] [Citation(s) in RCA: 950] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 10/16/2009] [Accepted: 10/17/2009] [Indexed: 02/06/2023]
Abstract
The extracellular matrix (ECM) is synthesized and secreted by embryonic cells beginning at the earliest stages of development. Our understanding of ECM composition, structure and function has grown considerably in the last several decades and this knowledge has revealed that the extracellular microenvironment is critically important for cell growth, survival, differentiation and morphogenesis. ECM and the cellular receptors that interact with it mediate both physical linkages with the cytoskeleton and the bidirectional flow of information between the extracellular and intracellular compartments. This review considers the range of cell and tissue functions attributed to ECM molecules and summarizes recent findings specific to key developmental processes. The importance of ECM as a dynamic repository for growth factors is highlighted along with more recent studies implicating the 3-dimensional organization and physical properties of the ECM as it relates to cell signaling and the regulation of morphogenetic cell behaviors. Embryonic cell and tissue generated forces and mechanical signals arising from ECM adhesion represent emerging areas of interest in this field.
Collapse
Affiliation(s)
- Tania Rozario
- Department of Cell Biology and the Morphogenesis and Regenerative Medicine Institute, University of Virginia, PO Box 800732, School of Medicine, Charlottesville, VA 22908, USA
| | | |
Collapse
|
46
|
Edeling MA, Sanker S, Shima T, Umasankar PK, Höning S, Kim HY, Davidson LA, Watkins SC, Tsang M, Owen DJ, Traub LM. Structural requirements for PACSIN/Syndapin operation during zebrafish embryonic notochord development. PLoS One 2009; 4:e8150. [PMID: 19997509 PMCID: PMC2780292 DOI: 10.1371/journal.pone.0008150] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 11/05/2009] [Indexed: 11/18/2022] Open
Abstract
PACSIN/Syndapin proteins are membrane-active scaffolds that participate in endocytosis. The structure of the Drosophila Syndapin N-terminal EFC domain reveals a crescent shaped antiparallel dimer with a high affinity for phosphoinositides and a unique membrane-inserting prong upon the concave surface. Combined structural, biochemical and reverse genetic approaches in zebrafish define an important role for Syndapin orthologue, Pacsin3, in the early formation of the notochord during embryonic development. In pacsin3-morphant embryos, midline convergence of notochord precursors is defective as axial mesodermal cells fail to polarize, migrate and differentiate properly. The pacsin3 morphant phenotype of a stunted body axis and contorted trunk is rescued by ectopic expression of Drosophila Syndapin, and depends critically on both the prong that protrudes from the surface of the bowed Syndapin EFC domain and the ability of the antiparallel dimer to bind tightly to phosphoinositides. Our data confirm linkage between directional migration, endocytosis and cell specification during embryonic morphogenesis and highlight a key role for Pacsin3 in this coupling in the notochord.
Collapse
Affiliation(s)
- Melissa A. Edeling
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Subramaniam Sanker
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Takaki Shima
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - P. K. Umasankar
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Stefan Höning
- Institute of Biochemistry I and Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Hye Y. Kim
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Lance A. Davidson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Simon C. Watkins
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Michael Tsang
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - David J. Owen
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Linton M. Traub
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
47
|
Latimer A, Jessen JR. Extracellular matrix assembly and organization during zebrafish gastrulation. Matrix Biol 2009; 29:89-96. [PMID: 19840849 DOI: 10.1016/j.matbio.2009.10.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 10/08/2009] [Accepted: 10/08/2009] [Indexed: 01/31/2023]
Abstract
Zebrafish gastrulation entails morphogenetic cell movements that shape the body plan and give rise to an embryo with defined anterior-posterior and dorsal-ventral axes. Regulating these cell movements are diverse signaling pathways and proteins including Wnts, Src-family tyrosine kinases, cadherins, and matrix metalloproteinases. While our knowledge of how these proteins impact cell polarity and migration has advanced considerably in the last decade, almost no data exist regarding the organization of extracellular matrix (ECM) during zebrafish gastrulation. Here, we describe for the first time the assembly of a fibronectin (FN) and laminin containing ECM in the early zebrafish embryo. This matrix was first detected at early gastrulation (65% epiboly) in the form of punctae that localize to tissue boundaries separating germ layers from each other and the underlying yolk cell. Fibrillogenesis increased after mid-gastrulation (80% epiboly) coinciding with the period of planar cell polarity pathway-dependent convergence and extension cell movements. We demonstrate that FN fibrils present beneath deep mesodermal cells are aligned in the direction of membrane protrusion formation. Utilizing antisense morpholino oligonucleotides, we further show that knockdown of FN expression causes a convergence and extension defect. Taken together, our data show that similar to amphibian embryos, the formation of ECM in the zebrafish gastrula is a dynamic process that occurs in parallel to at least a portion of the polarized cell behaviors shaping the embryonic body plan. These results provide a framework for uncovering the interrelationship between ECM structure and cellular processes regulating convergence and extension such as directed migration and mediolateral/radial intercalation.
Collapse
Affiliation(s)
- Andrew Latimer
- Department of Medicine/Division of Genetic Medicine and the Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | |
Collapse
|
48
|
Zhou Y, Xu Y, Li J, Liu Y, Zhang Z, Deng F. Znrg, a novel gene expressed mainly in the developing notochord of zebrafish. Mol Biol Rep 2009; 37:2199-205. [PMID: 19693699 DOI: 10.1007/s11033-009-9702-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 07/29/2009] [Indexed: 11/24/2022]
Abstract
The notochord, a defining characteristic of the chordate embryo is a critical midline structure required for axial skeletal formation in vertebrates, and acts as a signaling center throughout embryonic development. We utilized the digital differential display program of the National Center for Biotechnology Information, and identified a contig of expressed sequence tags (no. Dr. 83747) from the zebrafish ovary library in Genbank. Full-length cDNA of the identified gene was cloned by 5'- and 3'- RACE, and the resulting sequence was confirmed by polymerase chain reaction and sequencing. The cDNA clone contains 2,505 base pairs and encodes a novel protein of 707 amino acids that shares no significant homology with any known proteins. This gene was expressed in mature oocytes and at the one-cell stage, and persisted until the 5th day of development, as determined by RT-PCR. Transcripts were detected by whole-mount RNA in situ hybridization from the two-cell stage to 72 h of embryonic development. This gene was uniformly distributed from the cleavage stage up to the blastula stage. During early gastrulation, it was present in the dorsal region, and became restricted to the notochord and pectoral fin at 48 and 72 h of embryonic development. Based on its abundance in the notochord, we hypothesized that the novel gene may play an important role in notochord development in zebrafish; we named this gene, zebrafish notochord-related gene, or znrg.
Collapse
Affiliation(s)
- Yaping Zhou
- The Laboratory of Molecular Genetics and Developmental Biology, College of Life Sciences, Wuhan University, 430072 Wuhan, Hubei, China
| | | | | | | | | | | |
Collapse
|
49
|
Baas D, Malbouyres M, Haftek-Terreau Z, Le Guellec D, Ruggiero F. Craniofacial cartilage morphogenesis requires zebrafish col11a1 activity. Matrix Biol 2009; 28:490-502. [PMID: 19638309 DOI: 10.1016/j.matbio.2009.07.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 07/14/2009] [Accepted: 07/17/2009] [Indexed: 11/26/2022]
Abstract
The zebrafish ortholog of the human COL11A1 gene encoding the cartilage collagen XI proalpha1 chain was characterized to explore its function in developing zebrafish using the morpholino-based knockdown strategy. We showed that its expression in zebrafish is developmentally regulated. A low expression level was detected by real-time PCR during the early stages of development. At 24 hpf, a sharp peak of expression was observed. At that stage, in situ hybridization indicated that col11a1 transcripts are restricted to notochord. At 48 hpf, they were exclusively detected in the craniofacial skeleton, endoskeleton of pectoral fins and in otic vesicles. Collagen XI alpha1-deficient zebrafish embryos developed defects in craniofacial cartilage formation and in notochord morphology. Neural crest specification and mesenchymal condensation occurred normally in morpholino-injected embryos. Col11a1 depletion affected the spatial organization of chondrocytes, the shaping of cartilage elements, and the maturation of chondrocytes to hypertrophy. Knockdown of col11a1 in embryos stimulated the expression of the marker of chondrocyte differentiation col2a1, resulting in the deposit of abnormally thick and sparse fibrils in the cartilage extracellular matrix. The extracellular matrix organization of the perichordal sheath was also altered and led to notochord distortion. The data underscore the importance of collagen XI in the development of a functional cartilage matrix. Moreover, the defects observed in cartilage formation resemble those observed in human chondrodysplasia such as the Stickler/Marshall syndrome. Zebrafish represent a novel reliable vertebrate model for collagen XI collagenopathies.
Collapse
|
50
|
Esterberg R, Delalande JM, Fritz A. Tailbud-derived Bmp4 drives proliferation and inhibits maturation of zebrafish chordamesoderm. Development 2008; 135:3891-901. [PMID: 18948415 DOI: 10.1242/dev.029264] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In zebrafish, BMP signaling establishes cell identity along the dorsoventral (DV) axis during gastrulation. Owing to the early requirements of BMP activity in DV patterning, it has been difficult to assign later roles in cell fate specification to specific BMP ligands. In this study, we have taken advantage of two follistatin-like genes (fstl1 and fstl2), as well as a transgenic zebrafish line carrying an inducible truncated form of the BMP-type 1 receptor to study the role of Bmp4 outside of the context of DV specification. Characterization of fstl1/2 suggests that they exert a redundant role as BMP antagonists during late gastrulation, regulating BMP activity in axial mesoderm. Maintenance of appropriate levels of BMP signaling is crucial for the proper development of chordamesoderm, a subset of axial mesoderm that gives rise to the notochord, but not prechordal mesoderm, which gives rise to the prechordal plate. Bmp4 activity in particular is required during a crucial window beginning at late gastrulation and lasting through early somitogenesis to promote chordamesoderm proliferation. In the absence of Bmp4, the notochord precursor pool is depleted, and the notochord differentiates prematurely. Our results illustrate a role for Bmp4 in the proliferation and timely differentiation of axial tissue after DV axis specification.
Collapse
|