1
|
Satbhai KM, Marques ES, Ranjan R, Timme-Laragy AR. Single-cell RNA sequencing reveals tissue-specific transcriptomic changes induced by perfluorooctanesulfonic acid (PFOS) in larval zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137515. [PMID: 39947082 PMCID: PMC12038816 DOI: 10.1016/j.jhazmat.2025.137515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 02/01/2025] [Accepted: 02/04/2025] [Indexed: 04/16/2025]
Abstract
Perfluorooctanesulfonic acid (PFOS) elicits adverse effects on numerous organs and developmental processes but the mechanisms underlying these effects are not well understood. Here, we use single-cell RNA-sequencing to assess tissue-specific transcriptomic changes in zebrafish (Danio rerio) larvae exposed to 16 µM PFOS or dimethylsulfoxide (0.01 %) from 3-72 h post fertilization (hpf). Data analysis was multi-pronged and included pseudo-bulk, untargeted clustering, informed pathway queries, and a cluster curated for hepatocyte biomarkers (fabp10a, and apoa2). Overall, 8.63 % (2390/27698) genes were significantly differentially expressed. Results from untargeted analysis revealed 22 distinct clusters that were manually annotated to specific tissues using a weight-of-evidence approach. The clusters with the highest number of significant differentially expressed genes (DEGs) were digestive organs, muscle, and otolith. Additionally, we assessed the distribution of pathway-specific genes known to be involved in PFOS toxicity: the PPAR pathway, β-oxidation of fatty acids, the Nfe2l2 pathway, and epigenetic modifications by DNA methylation, across clusters and identified the blood-related tissue to be the most sensitive. The curated hepatocyte cluster showed 220 significant DEGs and was enriched for the Notch signaling pathway. These findings provide insights into both established and novel sensitive target tissues and molecular mechanisms of developmental toxicity of PFOS.
Collapse
Affiliation(s)
- Kruuttika M Satbhai
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Emily S Marques
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Ravi Ranjan
- Genomics Resource Laboratory, Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Alicia R Timme-Laragy
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
2
|
Erofeeva N, Galstyan DS, Yang L, Strekalova T, Lim LW, de Abreu MS, Golushko NI, Stewart AM, Kalueff AV. Developing zebrafish models of Notch-related CNS pathologies. Neurosci Biobehav Rev 2025; 170:106059. [PMID: 39929383 DOI: 10.1016/j.neubiorev.2025.106059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/01/2025] [Accepted: 02/06/2025] [Indexed: 02/20/2025]
Abstract
Notch signaling is an evolutionarily conserved cellular pathway that regulates various stem cell functions, including fate determination, differentiation, proliferation, and apoptosis. This crucial signaling mechanism also plays an important role in the brain, regulating neurogenesis, cell differentiation, and homeostasis, whereas disrupted Notch signaling is linked to various neurodegenerative diseases and brain cancers. Here, we review the central nervous system (CNS) pathologies associated with aberrant Notch signaling, and summarize the available experimental (animal) models used to study these pathologies, with a special focus on zebrafish (Danio rerio). As genetic, pharmacological, and behavioral models in zebrafish have significantly advanced our understanding of Notch-related CNS disorders, future research is expected to further link Notch signaling to brain disorders and, eventually, lead to their more specific and targeted therapeuties.
Collapse
Affiliation(s)
- Natalia Erofeeva
- St. Petersburg State University, St Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St Petersburg, Russia; Neurobiology Program, Sirius University of Science and Technology, Sirius, Russia
| | - David S Galstyan
- Institute of Translational Biomedicine, St. Petersburg State University, St Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St Petersburg, Russia
| | - Longen Yang
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Tatiana Strekalova
- Peoples Friendship University of Russia (RUDN University) and Department of Normal Physiology, Sechenov University, Moscow, Russia
| | - Lee Wei Lim
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China; Suzhou Municipal Key Laboratory on Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Murilo S de Abreu
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil; Western Caspian University, Baku, Azerbaijan.
| | - Nikita I Golushko
- Institute of Translational Biomedicine, St. Petersburg State University, St Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St Petersburg, Russia
| | - Adam Michael Stewart
- The International Zebrafish Neuroscience Research Consortium (ZNRC), New Orleans, USA
| | - Allan V Kalueff
- Institute of Translational Biomedicine, St. Petersburg State University, St Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St Petersburg, Russia; Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China; Suzhou Municipal Key Laboratory on Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China; Neurobiology Program, Sirius University of Science and Technology, Sirius, Russia.
| |
Collapse
|
3
|
Cotellessa L, Marelli F, Duminuco P, Adamo M, Papadakis GE, Bartoloni L, Sato N, Lang-Muritano M, Troendle A, Dhillo WS, Morelli A, Guarnieri G, Pitteloud N, Persani L, Bonomi M, Giacobini P, Vezzoli V. Defective jagged-1 signaling affects GnRH development and contributes to congenital hypogonadotropic hypogonadism. JCI Insight 2023; 8:161998. [PMID: 36729644 PMCID: PMC10077483 DOI: 10.1172/jci.insight.161998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 02/01/2023] [Indexed: 02/03/2023] Open
Abstract
In vertebrate species, fertility is controlled by gonadotropin-releasing hormone (GnRH) neurons. GnRH cells arise outside the central nervous system, in the developing olfactory pit, and migrate along olfactory/vomeronasal/terminal nerve axons into the forebrain during embryonic development. Congenital hypogonadotropic hypogonadism (CHH) and Kallmann syndrome are rare genetic disorders characterized by infertility, and they are associated with defects in GnRH neuron migration and/or altered GnRH secretion and signaling. Here, we documented the expression of the jagged-1/Notch signaling pathway in GnRH neurons and along the GnRH neuron migratory route both in zebrafish embryos and in human fetuses. Genetic knockdown of the zebrafish ortholog of JAG1 (jag1b) resulted in altered GnRH migration and olfactory axonal projections to the olfactory bulbs. Next-generation sequencing was performed in 467 CHH unrelated probands, leading to the identification of heterozygous rare variants in JAG1. Functional in vitro validation of JAG1 mutants revealed that 7 out of the 9 studied variants exhibited reduced protein levels and altered subcellular localization. Together our data provide compelling evidence that Jag1/Notch signaling plays a prominent role in the development of GnRH neurons, and we propose that JAG1 insufficiency may contribute to the pathogenesis of CHH in humans.
Collapse
Affiliation(s)
- Ludovica Cotellessa
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.,University Lille, INSERM, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition UMR-S 1172, FHU 1000 days for health, Lille, France
| | - Federica Marelli
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Paolo Duminuco
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Michela Adamo
- Department of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Georgios E Papadakis
- Department of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Lucia Bartoloni
- Department of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Naoko Sato
- Department of Pediatrics, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Mariarosaria Lang-Muritano
- Department of Pediatric Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland
| | - Amineh Troendle
- Department of Endocrinology, Diabetology, and Metabolism, Lindenhofspital, Bern, Switzerland
| | - Waljit S Dhillo
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, United Kingdom
| | - Annamaria Morelli
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Giulia Guarnieri
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Nelly Pitteloud
- Department of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Luca Persani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.,Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Marco Bonomi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.,Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Paolo Giacobini
- University Lille, INSERM, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition UMR-S 1172, FHU 1000 days for health, Lille, France
| | - Valeria Vezzoli
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
4
|
Fang JS, Hultgren NW, Hughes CCW. Regulation of Partial and Reversible Endothelial-to-Mesenchymal Transition in Angiogenesis. Front Cell Dev Biol 2021; 9:702021. [PMID: 34692672 PMCID: PMC8529039 DOI: 10.3389/fcell.2021.702021] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/22/2021] [Indexed: 12/11/2022] Open
Abstract
During development and in several diseases, endothelial cells (EC) can undergo complete endothelial-to-mesenchymal transition (EndoMT or EndMT) to generate endothelial-derived mesenchymal cells. Emerging evidence suggests that ECs can also undergo a partial EndoMT to generate cells with intermediate endothelial- and mesenchymal-character. This partial EndoMT event is transient, reversible, and supports both developmental and pathological angiogenesis. Here, we discuss possible regulatory mechanisms that may control the EndoMT program to dictate whether cells undergo complete or partial mesenchymal transition, and we further consider how these pathways might be targeted therapeutically in cancer.
Collapse
Affiliation(s)
- Jennifer S. Fang
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Nan W. Hultgren
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| | - Christopher C. W. Hughes
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
5
|
nr0b1 (DAX1) loss of function in zebrafish causes hypothalamic defects via abnormal progenitor proliferation and differentiation. J Genet Genomics 2021; 49:217-229. [PMID: 34606992 DOI: 10.1016/j.jgg.2021.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 11/23/2022]
Abstract
The nuclear receptor DAX-1 (encoded by the NR0B1 gene) is presented in the hypothalamic tissues in humans and other vertebrates. Human patients with NR0B1 mutations often have hypothalamic-pituitary defects, but the involvement of NR0B1 in hypothalamic development and function is not well understood. Here, we report the disruption of the nr0b1 gene in zebrafish causes abnormal expression of gonadotropins, a reduction in fertilization rate, and an increase in post-fasting food intake, which is indicative of abnormal hypothalamic functions. We find that loss of nr0b1 increases the number of prodynorphin (pdyn)-expressing neurons but decreases the number of pro-opiomelanocortin (pomcb)-expressing neurons in the zebrafish hypothalamic arcuate region (ARC). Further examination reveals that the proliferation of progenitor cells is reduced in the hypothalamus of nr0b1 mutant embryos accompanying with the decreased expression of genes in the Notch signaling pathway. Additionally, the inhibition of Notch signaling in wild-type embryos increases the number of pdyn neurons, mimicking the nr0b1 mutant phenotype. In contrast, ectopic activation of Notch signaling in nr0b1 mutant embryos decreases the number of pdyn neurons. Taken together, our results suggest that nr0b1 regulates neural progenitor proliferation and maintenance to ensure normal hypothalamic neuron development.
Collapse
|
6
|
Zhou Z, Zhu Y, Zhang Z, Jiang T, Ling Z, Yang B, Li W. Comparative Analysis of Promoters and Enhancers in the Pituitary Glands of the Bama Xiang and Large White Pigs. Front Genet 2021; 12:697994. [PMID: 34367256 PMCID: PMC8343535 DOI: 10.3389/fgene.2021.697994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022] Open
Abstract
The epigenetic regulation of gene expression is implicated in complex diseases in humans and various phenotypes in other species. There has been little exploration of regulatory elements in the pig. Here, we performed chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-Seq) to profile histone H3 lysine 4 trimethylation (H3K4me3) and histone H3 lysine 27 acetylation (H3K27ac) in the pituitary gland of adult Bama Xiang and Large White pigs, which have divergent evolutionary histories and large phenotypic differences. We identified a total of 65,044 non-redundant regulatory regions, including 23,680 H3K4me3 peaks and 61,791 H3K27ac peaks (12,318 proximal and 49,473 distal), augmenting the catalog of pituitary regulatory elements in pigs. We found 793 H3K4me3 and 3,602 H3K27ac peaks that show differential activity between the two breeds, overlapping with genes involved in the Notch signaling pathway, response to growth hormone (GH), thyroid hormone signaling pathway, and immune system, and enriched for binding motifs of transcription factors (TFs), including JunB, ATF3, FRA1, and BATF. We further identified 2,025 non-redundant super enhancers from H3K27ac ChIP-seq data, among which 302 were shared in all samples of cover genes enriched for biological processes related to pituitary function. This study generated a valuable dataset of H3K4me3 and H3K27ac regions in porcine pituitary glands and revealed H3K4me3 and H3K27ac peaks with differential activity between Bama Xiang and Large White pigs.
Collapse
Affiliation(s)
- Zhimin Zhou
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yaling Zhu
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China.,Laboratory Animal Research Center, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zhen Zhang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Tao Jiang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Ziqi Ling
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Bin Yang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Wanbo Li
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China.,Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| |
Collapse
|
7
|
Camilletti MA, Martinez Mayer J, Vishnopolska SA, Perez-Millan MI. From Pituitary Stem Cell Differentiation to Regenerative Medicine. Front Endocrinol (Lausanne) 2020; 11:614999. [PMID: 33542708 PMCID: PMC7851048 DOI: 10.3389/fendo.2020.614999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/01/2020] [Indexed: 11/18/2022] Open
Abstract
The anterior pituitary gland is comprised of specialized cell-types that produce and secrete polypeptide hormones in response to hypothalamic input and feedback from target organs. These specialized cells arise during embryonic development, from stem cells that express SOX2 and the pituitary transcription factor PROP1, which is necessary to establish the stem cell pool and promote an epithelial to mesenchymal-like transition, releasing progenitors from the niche. Human and mouse embryonic stem cells can differentiate into all major hormone-producing cell types of the anterior lobe in a highly plastic and dynamic manner. More recently human induced pluripotent stem cells (iPSCs) emerged as a viable alternative due to their plasticity and high proliferative capacity. This mini-review gives an overview of the major advances that have been achieved to develop protocols to generate pituitary hormone-producing cell types from stem cells and how these mechanisms are regulated. We also discuss their application in pituitary diseases, such as pituitary hormone deficiencies.
Collapse
|
8
|
Marelli F, Persani L. Role of Jagged1-Notch pathway in thyroid development. J Endocrinol Invest 2018; 41:75-81. [PMID: 28653287 DOI: 10.1007/s40618-017-0715-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/12/2017] [Indexed: 10/19/2022]
Abstract
The zebrafish thyroid gland shows a unique pattern of growth. Despite the lack of a compact gland, the zebrafish thyroid tissue originates from the pharyngeal endoderm and the main genes involved in its patterning and early development are conserved between zebrafish and mammals. In recent years, the research has been focused to the search of novel candidate genes and environmental factors underlying congenital hypothyroidism. Among these, it has been demonstrated that the Notch signalling plays a central role during zebrafish thyroid development. In this review, we will provide an overview of the current knowledge of the distinct roles of the Notch signalling and of the jag1a and jag1b ligands during the different phases of thyroid organogenesis. Furthermore, we will discuss the role of JAG1 variants in congenital thyroid defects.
Collapse
Affiliation(s)
- F Marelli
- Department of Clinical and Community Sciences, University of Milan, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149, Milan, Italy
| | - L Persani
- Department of Clinical and Community Sciences, University of Milan, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149, Milan, Italy.
- Laboratorio di Ricerche Endocrino-Metaboliche, IRCCS Istituto Auxologico Italiano, Milan, Italy.
| |
Collapse
|
9
|
Li SZ, Liu W, Li Z, Li WH, Wang Y, Zhou L, Gui JF. greb1 regulates convergent extension movement and pituitary development in zebrafish. Gene 2017; 627:176-187. [DOI: 10.1016/j.gene.2017.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/18/2017] [Accepted: 06/08/2017] [Indexed: 12/15/2022]
|
10
|
Cheung LYM, Davis SW, Brinkmeier ML, Camper SA, Pérez-Millán MI. Regulation of pituitary stem cells by epithelial to mesenchymal transition events and signaling pathways. Mol Cell Endocrinol 2017; 445:14-26. [PMID: 27650955 PMCID: PMC5590650 DOI: 10.1016/j.mce.2016.09.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 12/11/2022]
Abstract
The anterior pituitary gland is comprised of specialized cell-types that produce and secrete polypeptide hormones in response to hypothalamic input and feedback from target organs. These specialized cells arise from stem cells that express SOX2 and the pituitary transcription factor PROP1, which is necessary to establish the stem cell pool and promote an epithelial to mesenchymal-like transition, releasing progenitors from the niche. The adult anterior pituitary responds to physiological challenge by mobilizing the SOX2-expressing progenitor pool and producing additional hormone-producing cells. Knowledge of the role of signaling pathways and extracellular matrix components in these processes may lead to improvements in the efficiency of differentiation of embryonic stem cells or induced pluripotent stem cells into hormone producing cells in vitro. Advances in our basic understanding of pituitary stem cell regulation and differentiation may lead to improved diagnosis and treatment for patients with hypopituitarism.
Collapse
Affiliation(s)
- Leonard Y M Cheung
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USA.
| | - Shannon W Davis
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208-0001, USA.
| | - Michelle L Brinkmeier
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USA.
| | - Sally A Camper
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USA.
| | - María Inés Pérez-Millán
- Institute of Biomedical Investgations (UBA-CONICET), University of Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
11
|
Nakahara Y, Muto A, Hirabayashi R, Sakuma T, Yamamoto T, Kume S, Kikuchi Y. Temporal effects of Notch signaling and potential cooperation with multiple downstream effectors on adenohypophysis cell specification in zebrafish. Genes Cells 2016; 21:492-504. [PMID: 27027936 DOI: 10.1111/gtc.12358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/17/2016] [Indexed: 01/17/2023]
Abstract
The adenohypophysis (AH) consists of six distinct types of hormone-secreting cells. In zebrafish, although proper differentiation of all AH cell types has been shown to require Notch signaling within a period of 14-16 h postfertilization (hpf), the mechanisms underlying this process remain to be elucidated. Herein, we observed using the Notch inhibitor dibenzazepine (DBZ) that Notch signaling also contributed to AH cell specification beyond 16 hpf. Specification of distinct cell types was perturbed by DBZ treatment for different time frames, suggesting that AH cells are specified by Notch-dependent and cell-type-specific mechanisms. We also found that two hes-family genes, her4.1 and hey1, were expressed in the developing AH under the influence of Notch signaling. her4.1 knockdown reduced expression of proopiomelanocortin a (pomca), growth hormone (gh), and prolactin, whereas hey1 was responsible only for gh expression. Simultaneous loss of both Her4.1 and Hey1 produced milder phenotypes than that of DBZ-treated embryos. Moreover, DBZ treatment from 18 hpf led to a significant down-regulation of both gh and pomca genes only when combined with injection of a subthreshold level of her4.1-morpholino. These observations suggest that multiple downstream effectors, including Her4.1 and Hey1, mediate Notch signaling during AH cell specification.
Collapse
Affiliation(s)
- Yoshinari Nakahara
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Akihiko Muto
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Ryo Hirabayashi
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Shoen Kume
- Department of Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Yutaka Kikuchi
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| |
Collapse
|
12
|
Weltzien FA, Hildahl J, Hodne K, Okubo K, Haug TM. Embryonic development of gonadotrope cells and gonadotropic hormones--lessons from model fish. Mol Cell Endocrinol 2014; 385:18-27. [PMID: 24145126 DOI: 10.1016/j.mce.2013.10.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/30/2013] [Accepted: 10/11/2013] [Indexed: 01/05/2023]
Abstract
Pituitary gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH), are key regulators of vertebrate reproduction. The differential regulation of these hormones, however, is poorly understood and little is known about gonadotrope embryonic development. The different cell types in the vertebrate pituitary develop from common progenitor cells just after gastrulation. Proper development and merging of the anterior and posterior pituitary is dependent upon carefully regulated cell-to-cell interactions, and a suite of signaling pathways with precisely organized temporal and spatial expression patterns, which include transcription factors and their co-activators and repressors. Among the pituitary endocrine cell types, the gonadotropes are the last to develop and become functional. Although much progress has been made during the last decade regarding details of gonadotrope development, the coordinated program for their maturation is not well described. FSH and LH form an integral part of the hypothalamo-pituitary-gonad axis, the main regulator of gonad development and reproduction. Besides regulating gonad development, pre- and early post-natal activity in this axis is thought to be essential for proper development, especially of the central nervous system in mammals. As a means to investigate early functions of FSH and LH in more detail, we have developed a stable transgenic line of medaka with the LH beta subunit gene (lhb) promoter driving green fluorescent protein (Gfp) expression to characterize development of lhb-expressing gonadotropes. The lhb gene is maternally expressed early during embryogenesis. lhb-Expressing cells are initially localized outside the primordial pituitary in the developing gut tube as early as 32 hpf. At hatching, lhb-Gfp is clearly detected in the gut epithelium and in the anterior digestive tract. lhb-Gfp expression later consolidates in the developing pituitary by 2 weeks post-fertilization. This review discusses status of knowledge regarding pituitary morphology and development, with emphasis on gonadotrope cells and gonadotropins during early development, comparing main model species like mouse, zebrafish and medaka, including possible developmental functions of the observed extra pituitary expression of lhb in medaka.
Collapse
Affiliation(s)
- Finn-Arne Weltzien
- Department of Basic Sciences and Aquatic Medicine, Weltzien Laboratory, Norwegian School of Veterinary Science, Oslo, Norway; Department of Biosciences, University of Oslo, Oslo, Norway.
| | - Jon Hildahl
- Department of Basic Sciences and Aquatic Medicine, Weltzien Laboratory, Norwegian School of Veterinary Science, Oslo, Norway; Department of Biosciences, University of Oslo, Oslo, Norway
| | - Kjetil Hodne
- Department of Basic Sciences and Aquatic Medicine, Weltzien Laboratory, Norwegian School of Veterinary Science, Oslo, Norway
| | - Kataaki Okubo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Trude M Haug
- Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
13
|
Lu R, Gao H, Wang H, Cao L, Bai J, Zhang Y. Overexpression of the Notch3 receptor and its ligand Jagged1 in human clinically non-functioning pituitary adenomas. Oncol Lett 2013; 5:845-851. [PMID: 23426998 PMCID: PMC3576212 DOI: 10.3892/ol.2013.1113] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 11/29/2012] [Indexed: 12/15/2022] Open
Abstract
Human clinically non-functioning pituitary adenomas (NFPAs) primarily cause headaches, visual impairment and hypopituitarism due to the effect of the mass of the tumor. Surgery is the first-line treatment for these tumors. To date, no efficacious medical therapy exists for non-functioning adenomas. Previous studies have demonstrated that the Notch3 receptor is involved in the pathogenesis of various types of malignancies, including human NFPAs. The current study focused on the expression of the Notch3 receptor and its ligand Jagged1 in three types of pituitary adenomas and in the normal pituitary gland. Using quantitative real-time RT-PCR assays and western blot analyses, upregulated Notch3 and Jagged1 were observed in human NFPAs, but not in normal human pituitary glands or in hormone-secreting adenomas. Furthermore, Notch3 was positively correlated with Jagged1 at the mRNA and protein levels. These data indicate that Notch3 and Jagged1 may play an important role in the initiation and proliferation of human non-functioning adenomas, and there may be an interaction between Notch3 and Jagged1 in this process. Our study further elucidates the role of the Notch3 signaling pathway in the tumorigenesis of human NFPAs and provides a potential therapeutic target for the medical treatment of these tumors.
Collapse
Affiliation(s)
- Runchun Lu
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Dongcheng, Beijing 100050, P.R. China
| | | | | | | | | | | |
Collapse
|
14
|
Porazzi P, Marelli F, Benato F, de Filippis T, Calebiro D, Argenton F, Tiso N, Persani L. Disruptions of global and JAGGED1-mediated notch signaling affect thyroid morphogenesis in the zebrafish. Endocrinology 2012; 153:5645-58. [PMID: 23008514 DOI: 10.1210/en.2011-1888] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mechanisms underlying the early steps of thyroid development are largely unknown. In search for novel candidate genes implicated in thyroid function, we performed a gene expression analysis on thyroid cells revealing that TSH regulates the expression of several elements of the Notch pathway, including the ligand Jagged1. Because the Notch pathway is involved in cell-fate determination of several foregut-derived endocrine tissues, we tested its contribution in thyroid development using the zebrafish, a teleost model recapitulating the mammalian molecular events during thyroid development. Perturbing the Notch signaling (e.g. mib mutants, γ-secretase inhibition, or Notch intracellular domain overexpression), we obtained evidence that this pathway has a biological role during the earlier phases of thyroid primordium induction, limiting the number of cells that proceed to a specialized fate and probably involving actions from surrounding tissues. Moreover, we were able to confirm the expression of Jagged1 during different phases of zebrafish thyroid development, as well as in mouse and human thyroid tissues. The two orthologues to the single jagged1 gene (JAG1) in humans, jag1a and jag1b, are expressed with different spatiotemporal patterns in the developing zebrafish thyroid. Both jag1a and jag1b morphants, as well as jag1b mutant fish line, display thyroid hypoplasia and impaired T(4) production; this thyroid phenotype was rescued by coinjection of human JAG1 mRNA. In conclusion, Notch pathway is involved in the early steps of thyroid morphogenesis, and Jagged1-Notch signal is required for zebrafish thyroid development and function. Thus, genetic alterations affecting the Notch pathway may confer susceptibility for thyroid dysgenesis.
Collapse
Affiliation(s)
- Patrizia Porazzi
- Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Trudeau VL, Martyniuk CJ, Zhao E, Hu H, Volkoff H, Decatur WA, Basak A. Is secretoneurin a new hormone? Gen Comp Endocrinol 2012; 175:10-8. [PMID: 22036841 DOI: 10.1016/j.ygcen.2011.10.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 10/05/2011] [Accepted: 10/12/2011] [Indexed: 11/25/2022]
Abstract
Numerous small potentially bioactive peptides are derived from the selective processing of the ~600 amino acid secretogranin II (SgII) precursor, but only the 31-42 amino acid segment termed secretoneurin (SN) is well-conserved from sharks to mammals. Both SNa and SNb paralogs have been identified in some teleosts, likely arising as a result of the specific genome duplication event in this lineage. Only one copy of the putative lamprey SgII (188 amino acids) could be identified which gives rise to a divergent agnathan SN that contains the signature YTPQ-X-LA-X(7)-EL sequence typical of the central core of all known SN peptides. In rodent models, SN has regulatory effects on neuroinflammation and neurotransmitter release, and possesses therapeutic potential for the induction of angiogenesis. The wide distribution of SN in neuroendocrine neurons and pituitary cells suggests important endocrine roles. The clearest example of the endocrine action of SN is the stimulatory effects on pituitary luteinizing hormone release from goldfish pituitary and mouse LβT2 gonadotroph cells, indicative of an important role in reproduction. Several lines of evidence suggest that the SN receptor is most likely a G-protein coupled protein. Microarray analysis of SN effects on dispersed goldfish pituitary cells in vitro reveals novel SN actions that include effects on genes involved in notch signaling and the guanylate cyclase pathway. Intracerebroventricular injection of SN increases feeding and locomotory behaviors in goldfish. Given that SgII appeared early in vertebrate evolution, SN is an old peptide with emerging implications as a new multifunctional hormone.
Collapse
Affiliation(s)
- Vance L Trudeau
- Department of Biology, Centre for Advanced Research in Environmental Genomics, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada.
| | | | | | | | | | | | | |
Collapse
|
16
|
Park S, Bustamante EL, Antonova J, McLean GW, Kim SK. Specification of Drosophila corpora cardiaca neuroendocrine cells from mesoderm is regulated by Notch signaling. PLoS Genet 2011; 7:e1002241. [PMID: 21901108 PMCID: PMC3161926 DOI: 10.1371/journal.pgen.1002241] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 06/28/2011] [Indexed: 12/15/2022] Open
Abstract
Drosophila neuroendocrine cells comprising the corpora cardiaca (CC) are essential for systemic glucose regulation and represent functional orthologues of vertebrate pancreatic α-cells. Although Drosophila CC cells have been regarded as developmental orthologues of pituitary gland, the genetic regulation of CC development is poorly understood. From a genetic screen, we identified multiple novel regulators of CC development, including Notch signaling factors. Our studies demonstrate that the disruption of Notch signaling can lead to the expansion of CC cells. Live imaging demonstrates localized emergence of extra precursor cells as the basis of CC expansion in Notch mutants. Contrary to a recent report, we unexpectedly found that CC cells originate from head mesoderm. We show that Tinman expression in head mesoderm is regulated by Notch signaling and that the combination of Daughterless and Tinman is sufficient for ectopic CC specification in mesoderm. Understanding the cellular, genetic, signaling, and transcriptional basis of CC cell specification and expansion should accelerate discovery of molecular mechanisms regulating ontogeny of organs that control metabolism. The requirement for glucose regulation is conserved in metazoans and crucial for metabolism, growth, and survival. In fruit flies and other insects, neurons secrete insulin-like hormones and neuroendocrine corpora cardiaca cells secrete adipokinetic hormone, a peptide with functional similarities to glucagon. Both hormones are essential for systemic glucose control in Drosophila. To understand the mechanisms governing formation and function of corpora cardiaca cells, we sought to identify their embryonic origin and investigate their developmental genetic regulation. Based on prior reports suggesting a neuroectodermal origin, we were surprised to discover—using genetic lineage tracing methods—that embryonic corpora cardiac progenitors derive from anterior head mesoderm. To our knowledge, this is the first demonstration of neuroendocrine differentiation from mesoderm in Drosophila. Genetic studies reveal that Notch signaling restricts the number of corpora cardiaca progenitors, and we show that Notch signaling inactivation results in significant expansion of corpora cardiac cells. Loss- and gain-of-function studies identified transcription factors both necessary and sufficient for corpora cardiaca development. These and other findings reveal similarities in the development of fly corpora cardiaca cells and mammalian neuroendocrine cells that develop in the pancreas, pituitary, and from neural crest.
Collapse
Affiliation(s)
- Sangbin Park
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Erika L. Bustamante
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Julie Antonova
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Graeme W. McLean
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford, California, United States of America
| | - Seung K. Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford, California, United States of America
- Department of Medicine (Oncology), Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
17
|
Hortopan GA, Baraban SC. Aberrant expression of genes necessary for neuronal development and Notch signaling in an epileptic mind bomb zebrafish. Dev Dyn 2011; 240:1964-76. [PMID: 21688347 PMCID: PMC3137702 DOI: 10.1002/dvdy.22680] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2011] [Indexed: 11/11/2022] Open
Abstract
Mutation within an ubiquitin E3 ligase gene can lead to a failure in Notch signaling, excessive neurons, and depletion of neural progenitor cells in mind bomb mutants. Using mib(hi904) zebrafish, we reported seizures and a down-regulation of γ-aminobutyric acid (GABA) signaling pathway genes. A transcriptome analysis also identified differential expression pattern of genes related to Notch signaling and neurodevelopment. Here, we selected nine of these genes (her4.2, hes5, bhlhb5, hoxa5a, hoxb5b, dmbx1a, dbx1a, nxph1, and plxnd1) and performed a more thorough analysis of expression using conventional polymerase chain reaction, real-time polymerase chain reaction and in situ hybridization. Transgenic reporter fish (Gfap:GFP and Dlx5a-6a:GFP) were used to assess early brain morphology in vivo. Down-regulation of many of these genes was prominent throughout key structures of the developing mib(hi904) zebrafish brain including, but not limited to, the pallium, ventral thalamus, and optic tectum. Brain expression of Dlx5a-6a and Gfap was also reduced. In conclusion, these expression studies indicate a general down-regulation of Notch signaling genes necessary for proper brain development and suggest that these mutant fish could provide valuable insights into neurological conditions, such as Angelman syndrome, associated with ubiquitin E3 ligase mutation.
Collapse
Affiliation(s)
- Gabriela A. Hortopan
- Epilepsy Research Laboratory, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California 94143
| | - Scott C. Baraban
- Epilepsy Research Laboratory, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California 94143
| |
Collapse
|
18
|
Goldberg LB, Aujla PK, Raetzman LT. Persistent expression of activated Notch inhibits corticotrope and melanotrope differentiation and results in dysfunction of the HPA axis. Dev Biol 2011; 358:23-32. [PMID: 21781958 DOI: 10.1016/j.ydbio.2011.07.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 06/17/2011] [Accepted: 07/05/2011] [Indexed: 11/30/2022]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis is an important regulator of energy balance, immune function and the body's response to stress. Signaling networks governing the initial specification of corticotropes, a major component of this axis, are not fully understood. Loss of function studies indicate that Notch signaling may be necessary to repress premature differentiation of corticotropes and to promote proliferation of pituitary progenitors. To elucidate whether Notch signaling must be suppressed in order for corticotrope differentiation to proceed and whether Notch signaling is sufficient to promote corticotrope proliferation, we examined the effects of persistent Notch expression in Pomc lineage cells. We show that constitutive activation of the Notch cascade inhibits the differentiation of both corticotropes and melanotropes and results in the suppression of transcription factors required for Pomc expression. Furthermore, persistent Notch signaling traps cells in the intermediate lobe of the pituitary in a progenitor state, but has no effect on pituitary proliferation. Undifferentiated cells are eliminated in the first two postnatal weeks in these mice, resulting in a modest increase in CRH expression in the paraventricular nucleus, hypoplastic adrenal glands and decreased stress-induced corticosterone levels. Taken together, these findings show that Notch signaling is sufficient to prevent corticotrope and melanotrope differentiation, resulting in dysregulation of the HPA axis.
Collapse
Affiliation(s)
- Leah B Goldberg
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | |
Collapse
|
19
|
Barresi MJF, Burton S, Dipietrantonio K, Amsterdam A, Hopkins N, Karlstrom RO. Essential genes for astroglial development and axon pathfinding during zebrafish embryogenesis. Dev Dyn 2011; 239:2603-18. [PMID: 20806318 DOI: 10.1002/dvdy.22393] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The formation of the central nervous system depends on the coordinated development of neural and glial cell types that arise from a common precursor. Using an existing group of zebrafish mutants generated by viral insertion, we performed a "shelf-screen" to identify genes necessary for astroglial development and axon scaffold formation. We screened 274 of 315 viral insertion lines using antibodies that label axons (anti-Acetylated Tubulin) and astroglia (anti-Gfap) and identified 25 mutants with defects in gliogenesis, glial patterning, neurogenesis, and axon guidance. We also identified a novel class of mutants affecting radial glial cell numbers. Defects in astroglial patterning were always associated with axon defects, supporting an important role for axon-glial interactions during axon scaffold development. The genes disrupted in these viral lines have all been identified, providing a powerful new resource for the study of axon guidance, glio- and neurogenesis, and neuron-glial interactions during development of the vertebrate CNS.
Collapse
|
20
|
Davis SW, Mortensen AH, Camper SA. Birthdating studies reshape models for pituitary gland cell specification. Dev Biol 2011; 352:215-27. [PMID: 21262217 DOI: 10.1016/j.ydbio.2011.01.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 12/20/2010] [Accepted: 01/07/2011] [Indexed: 11/15/2022]
Abstract
The intermediate and anterior lobes of the pituitary gland are derived from an invagination of oral ectoderm that forms Rathke's pouch. During gestation proliferating cells are enriched around the pouch lumen, and they appear to delaminate as they exit the cell cycle and differentiate. During late mouse gestation and the postnatal period, anterior lobe progenitors re-enter the cell cycle and expand the populations of specialized, hormone-producing cells. At birth, all cell types are present, and their localization appears stratified based on cell type. We conducted a birth dating study of Rathke's pouch derivatives to determine whether the location of specialized cells at birth is correlated with the timing of cell cycle exit. We find that all of the anterior lobe cell types initiate differentiation concurrently with a peak between e11.5 and e13.5. Differentiation of intermediate lobe melanotropes is delayed relative to anterior lobe cell types. We discovered that specialized cell types are not grouped together based on birth date and are dispersed throughout the anterior lobe. Thus, the apparent stratification of specialized cells at birth is not correlated with cell cycle exit. Thus, the currently popular model of cell specification, dependent upon timing of extrinsic, directional gradients of signaling molecules, needs revision. We propose that signals intrinsic to Rathke's pouch are necessary for cell specification between e11.5 and e13.5 and that cell-cell communication likely plays an important role in regulating this process.
Collapse
Affiliation(s)
- Shannon W Davis
- Department of Human Genetics, University of Michigan Medical School, 4909 Buhl Building, 1241 East Catherine Street, Ann Arbor, MI 48109-5618, USA.
| | | | | |
Collapse
|
21
|
|
22
|
Pogoda HM, Hammerschmidt M. How to make a teleost adenohypophysis: molecular pathways of pituitary development in zebrafish. Mol Cell Endocrinol 2009; 312:2-13. [PMID: 19728983 DOI: 10.1016/j.mce.2009.03.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 03/12/2009] [Accepted: 03/19/2009] [Indexed: 11/28/2022]
Abstract
The anterior pituitary gland, or adenohypophysis (AH), represents the key component of the vertebrate hypothalamo-hypophyseal axis, where it functions at the interphase of the nervous and endocrine system to regulate basic body functions like growth, metabolism and reproduction. For developmental biologists, the adenohypophysis serves as an excellent model system for the studies of organogenesis and differential cell fate specification. Previous research, mainly done in mouse, identified numerous extrinsic signaling cues and intrinsic transcription factors that orchestrate the gland's developmental progression. In the past years, the zebrafish has emerged as a powerful tool to elucidate the genetic networks controlling vertebrate development, behavior and disease. Based on mutants isolated in forward genetic screens and on gene knock-downs using morpholino oligonucleotide (oligo) antisense technology, our current understanding of the molecular machinery driving adenohypophyseal ontogeny could be considerably improved. In addition, comparative analyses have shed further light onto the evolution of this rather recently invented organ. The goal of this review is to summarize current knowledge of the genetic and molecular control of zebrafish pituitary development, with special focus on most recent findings, including some thus far unpublished data from our own laboratory on the transcription factor Six1. In addition, zebrafish data will be discussed in comparison with current understanding of adenohypophysis development in mouse.
Collapse
Affiliation(s)
- Hans-Martin Pogoda
- Institute for Developmental Biology, University of Cologne, Gyrhofstr. 17, D-50931 Cologne, Germany.
| | | |
Collapse
|
23
|
Parsons MJ, Pisharath H, Yusuff S, Moore JC, Siekmann AF, Lawson N, Leach SD. Notch-responsive cells initiate the secondary transition in larval zebrafish pancreas. Mech Dev 2009; 126:898-912. [PMID: 19595765 DOI: 10.1016/j.mod.2009.07.002] [Citation(s) in RCA: 284] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 06/23/2009] [Accepted: 07/02/2009] [Indexed: 11/28/2022]
Abstract
Zebrafish provide a highly versatile model in which to study vertebrate development. Many recent studies have elucidated early events in the organogenesis of the zebrafish pancreas; however, several aspects of early endocrine pancreas formation in the zebrafish are not homologous to the mammalian system. To better identify mechanisms of islet formation in the zebrafish, with true homology to those observed in mammals, we have temporally and spatially characterized zebrafish secondary islet formation. As is the case in the mouse, we show that Notch inhibition leads to precocious differentiation of endocrine tissues. Furthermore, we have used transgenic fish expressing fluorescent markers under the control of a Notch-responsive element to observe the precursors of these induced endocrine cells. These pancreatic Notch-responsive cells represent a novel population of putative progenitors that are associated with larval pancreatic ductal epithelium, suggesting functional homology between secondary islet formation in zebrafish and the secondary transition in mammals. We also show that Notch-responsive cells persist in the adult pancreas and possess the classical characteristics of centroacinar cells, a cell type believed to be a multipotent progenitor cell in adult mammalian pancreas.
Collapse
Affiliation(s)
- Michael J Parsons
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
A dynamic Gli code interprets Hh signals to regulate induction, patterning, and endocrine cell specification in the zebrafish pituitary. Dev Biol 2009; 326:143-54. [DOI: 10.1016/j.ydbio.2008.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 10/30/2008] [Accepted: 11/04/2008] [Indexed: 11/21/2022]
|
25
|
Recent Papers on Zebrafish and Other Aquarium Fish Models. Zebrafish 2008. [DOI: 10.1089/zeb.2008.9987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|