1
|
Tignard P, Pottin K, Geeverding A, Doulazmi M, Cabrera M, Fouquet C, Liffran M, Fouchard J, Rosello M, Albadri S, Del Bene F, Trembleau A, Breau MA. Basement membranes are crucial for proper olfactory placode shape, position and boundary with the brain, and for olfactory axon development. eLife 2024; 12:RP92004. [PMID: 39713923 DOI: 10.7554/elife.92004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
Despite recent progress, the complex roles played by the extracellular matrix in development and disease are still far from being fully understood. Here, we took advantage of the zebrafish sly mutation which affects Laminin γ1, a major component of basement membranes, to explore its role in the development of the olfactory system. Following a detailed characterisation of Laminin distribution in the developing olfactory circuit, we analysed basement membrane integrity, olfactory placode and brain morphogenesis, and olfactory axon development in sly mutants, using a combination of immunochemistry, electron microscopy and quantitative live imaging of cell movements and axon behaviours. Our results point to an original and dual contribution of Laminin γ1-dependent basement membranes in organising the border between the olfactory placode and the adjacent brain: they maintain placode shape and position in the face of major brain morphogenetic movements, they establish a robust physical barrier between the two tissues while at the same time allowing the local entry of the sensory axons into the brain and their navigation towards the olfactory bulb. This work thus identifies key roles of Laminin γ1-dependent basement membranes in neuronal tissue morphogenesis and axon development in vivo.
Collapse
Affiliation(s)
- Pénélope Tignard
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR7622), Institut de Biologie Paris-Seine (IBPS), Developmental Biology Laboratory, Paris, France
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR8246), Inserm U1130, Institut de Biologie Paris-Seine (IBPS), Neuroscience Paris Seine (NPS), Paris, France
| | - Karen Pottin
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR7622), Institut de Biologie Paris-Seine (IBPS), Developmental Biology Laboratory, Paris, France
| | - Audrey Geeverding
- Imaging Facility, Institut de Biologie Paris-Seine (IBPS), Paris, France
| | - Mohamed Doulazmi
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR8256), Institut de Biologie Paris-Seine (IBPS), Adaptation Biologique et Vieillissement, Paris, France
| | - Mélody Cabrera
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR7622), Institut de Biologie Paris-Seine (IBPS), Developmental Biology Laboratory, Paris, France
| | - Coralie Fouquet
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR7622), Institut de Biologie Paris-Seine (IBPS), Developmental Biology Laboratory, Paris, France
| | - Mathilde Liffran
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR8246), Inserm U1130, Institut de Biologie Paris-Seine (IBPS), Neuroscience Paris Seine (NPS), Paris, France
| | - Jonathan Fouchard
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR7622), Institut de Biologie Paris-Seine (IBPS), Developmental Biology Laboratory, Paris, France
| | - Marion Rosello
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Shahad Albadri
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Filippo Del Bene
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Alain Trembleau
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR8246), Inserm U1130, Institut de Biologie Paris-Seine (IBPS), Neuroscience Paris Seine (NPS), Paris, France
| | - Marie Anne Breau
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR7622), Institut de Biologie Paris-Seine (IBPS), Developmental Biology Laboratory, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
| |
Collapse
|
2
|
Tignard P, Pottin K, Geeverding A, Doulazmi M, Cabrera M, Fouquet C, Liffran M, Fouchard J, Rosello M, Albadri S, Del Bene F, Trembleau A, Breau MA. Laminin γ1-dependent basement membranes are instrumental to ensure proper olfactory placode shape, position and boundary with the brain, as well as olfactory axon development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.29.547040. [PMID: 39253416 PMCID: PMC11383033 DOI: 10.1101/2023.06.29.547040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Despite recent progress, the complex roles played by the extracellular matrix in development and disease are still far from being fully understood. Here, we took advantage of the zebrafish sly mutation which affects Laminin γ1, a major component of basement membranes, to explore its role in the development of the olfactory system. Following a detailed characterisation of Laminin distribution in the developing olfactory circuit, we analysed basement membrane integrity, olfactory placode and brain morphogenesis, and olfactory axon development in sly mutants, using a combination of immunochemistry, electron microscopy and quantitative live imaging of cell movements and axon behaviours. Our results point to an original and dual contribution of Laminin γ1-dependent basement membranes in organising the border between the olfactory placode and the adjacent brain: they maintain placode shape and position in the face of major brain morphogenetic movements, they establish a robust physical barrier between the two tissues while at the same time allowing the local entry of the sensory axons into the brain and their navigation towards the olfactory bulb. This work thus identifies key roles of Laminin γ1-dependent basement membranes in neuronal tissue morphogenesis and axon development in vivo .
Collapse
|
3
|
Feng X, Ye Y, Zhang J, Zhang Y, Zhao S, Mak JCW, Otomo N, Zhao Z, Niu Y, Yonezawa Y, Li G, Lin M, Li X, Cheung PWH, Xu K, Takeda K, Wang S, Xie J, Kotani T, Choi VNT, Song YQ, Yang Y, Luk KDK, Lee KS, Li Z, Li PS, Leung CYH, Lin X, Wang X, Qiu G, Watanabe K, Wu Z, Posey JE, Ikegawa S, Lupski JR, Cheung JPY, Zhang TJ, Gao B, Wu N. Core planar cell polarity genes VANGL1 and VANGL2 in predisposition to congenital vertebral malformations. Proc Natl Acad Sci U S A 2024; 121:e2310283121. [PMID: 38669183 PMCID: PMC11067467 DOI: 10.1073/pnas.2310283121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
Congenital scoliosis (CS), affecting approximately 0.5 to 1 in 1,000 live births, is commonly caused by congenital vertebral malformations (CVMs) arising from aberrant somitogenesis or somite differentiation. While Wnt/ß-catenin signaling has been implicated in somite development, the function of Wnt/planar cell polarity (Wnt/PCP) signaling in this process remains unclear. Here, we investigated the role of Vangl1 and Vangl2 in vertebral development and found that their deletion causes vertebral anomalies resembling human CVMs. Analysis of exome sequencing data from multiethnic CS patients revealed a number of rare and deleterious variants in VANGL1 and VANGL2, many of which exhibited loss-of-function and dominant-negative effects. Zebrafish models confirmed the pathogenicity of these variants. Furthermore, we found that Vangl1 knock-in (p.R258H) mice exhibited vertebral malformations in a Vangl gene dose- and environment-dependent manner. Our findings highlight critical roles for PCP signaling in vertebral development and predisposition to CVMs in CS patients, providing insights into the molecular mechanisms underlying this disorder.
Collapse
Affiliation(s)
- Xin Feng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing100730, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yongyu Ye
- Department of Orthopedic Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou510080, China
| | - Jianan Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yuanqiang Zhang
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan250012, China
| | - Sen Zhao
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | - Judith C. W. Mak
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Nao Otomo
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo160-8582, Japan
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo108-8639, Japan
| | - Zhengye Zhao
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | - Yuchen Niu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
| | - Yoshiro Yonezawa
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo160-8582, Japan
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo108-8639, Japan
| | - Guozhuang Li
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | - Mao Lin
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310003, China
| | - Xiaoxin Li
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
| | - Prudence Wing Hang Cheung
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kexin Xu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | - Kazuki Takeda
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo160-8582, Japan
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo108-8639, Japan
| | - Shengru Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
| | - Junjie Xie
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Toshiaki Kotani
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo160-8582, Japan
| | - Vanessa N. T. Choi
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - You-Qiang Song
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen518009, China
| | - Yang Yang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | - Keith Dip Kei Luk
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kin Shing Lee
- Center for Comparative Medicine Research, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Ziquan Li
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | - Pik Shan Li
- Center for Comparative Medicine Research, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Connie Y. H. Leung
- Center for Comparative Medicine Research, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xiaochen Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xiaolu Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Guixing Qiu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | | | - Kota Watanabe
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo160-8582, Japan
| | | | - Zhihong Wu
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
| | - Jennifer E. Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston77030, TX
| | - Shiro Ikegawa
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo108-8639, Japan
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston77030, TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston77030, TX
- Texas Children’s Hospital, Houston77030, TX
- Department of Pediatrics, Baylor College of Medicine, Houston77030, TX
| | - Jason Pui Yin Cheung
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Orthopedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen518009, China
| | - Terry Jianguo Zhang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | - Bo Gao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Orthopedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen518009, China
- Centre for Translational Stem Cell Biology, Hong Kong Special Administrative Region, China
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Nan Wu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| |
Collapse
|
4
|
Kozol RA, Conith AJ, Yuiska A, Cree-Newman A, Tolentino B, Benesh K, Paz A, Lloyd E, Kowalko JE, Keene AC, Albertson C, Duboue ER. A brain-wide analysis maps structural evolution to distinct anatomical module. eLife 2023; 12:e80777. [PMID: 37498318 PMCID: PMC10435234 DOI: 10.7554/elife.80777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/26/2023] [Indexed: 07/28/2023] Open
Abstract
The vertebrate brain is highly conserved topologically, but less is known about neuroanatomical variation between individual brain regions. Neuroanatomical variation at the regional level is hypothesized to provide functional expansion, building upon ancestral anatomy needed for basic functions. Classically, animal models used to study evolution have lacked tools for detailed anatomical analysis that are widely used in zebrafish and mice, presenting a barrier to studying brain evolution at fine scales. In this study, we sought to investigate the evolution of brain anatomy using a single species of fish consisting of divergent surface and cave morphs, that permits functional genetic testing of regional volume and shape across the entire brain. We generated a high-resolution brain atlas for the blind Mexican cavefish Astyanax mexicanus and coupled the atlas with automated computational tools to directly assess variability in brain region shape and volume across all populations. We measured the volume and shape of every grossly defined neuroanatomical region of the brain and assessed correlations between anatomical regions in surface fish, cavefish, and surface × cave F2 hybrids, whose phenotypes span the range of surface to cave. We find that dorsal regions of the brain are contracted, while ventral regions have expanded, with F2 hybrid data providing support for developmental constraint along the dorsal-ventral axis. Furthermore, these dorsal-ventral relationships in anatomical variation show similar patterns for both volume and shape, suggesting that the anatomical evolution captured by these two parameters could be driven by similar developmental mechanisms. Together, these data demonstrate that A. mexicanus is a powerful system for functionally determining basic principles of brain evolution and will permit testing how genes influence early patterning events to drive brain-wide anatomical evolution.
Collapse
Affiliation(s)
- Robert A Kozol
- Jupiter Life Science Initiative, Florida Atlantic UniversityJupiterUnited States
| | - Andrew J Conith
- Department of Biology, University of Massachusetts AmherstAmherstUnited States
| | - Anders Yuiska
- Jupiter Life Science Initiative, Florida Atlantic UniversityJupiterUnited States
| | - Alexia Cree-Newman
- Jupiter Life Science Initiative, Florida Atlantic UniversityJupiterUnited States
| | - Bernadeth Tolentino
- Jupiter Life Science Initiative, Florida Atlantic UniversityJupiterUnited States
| | - Kasey Benesh
- Jupiter Life Science Initiative, Florida Atlantic UniversityJupiterUnited States
| | - Alexandra Paz
- Jupiter Life Science Initiative, Florida Atlantic UniversityJupiterUnited States
| | - Evan Lloyd
- Department of Biology, Texas A&M UniversityCollege StationUnited States
| | - Johanna E Kowalko
- Department of Biological Sciences, Lehigh UniversityBethlehemUnited States
| | - Alex C Keene
- Department of Biology, Texas A&M UniversityCollege StationUnited States
| | - Craig Albertson
- Department of Biology, University of Massachusetts AmherstAmherstUnited States
| | - Erik R Duboue
- Jupiter Life Science Initiative, Florida Atlantic UniversityJupiterUnited States
| |
Collapse
|
5
|
Genome-Wide Identification of Laminin Family Related to Follicular Pseudoplacenta Development in Black Rockfish ( Sebastes schlegelii). Int J Mol Sci 2022; 23:ijms231810523. [PMID: 36142434 PMCID: PMC9504374 DOI: 10.3390/ijms231810523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
As major elements of the basement membrane, laminins play a significant role in angiogenesis, migration, and adhesion of various cells. Sebastes schlegelii is a marine viviparous teleost of commercial importance. Previous research has reported abundant blood vessels and connective tissue in the ovary during gestation. In this study, 14 laminin genes of the α, β, and γ subfamilies from genomic data were identified based on zebrafish and human laminins, distributed on 9 chromosomes in S. schlegelii. Analysis of structural domains showed that coiled-coil regions and EGF domains existed in all laminin genes. Moreover, via qPCR, we found that the expression of laminin genes, including lama4, lama5, lamb4, lamc1, and lamc3, gradually increased from the phase III ovary stage and peaked in the early stage of gestation, especially lama4 and lama5 which showed dramatically increased expression at the blastula stage. Accordingly, in situ hybridization of lama4 was conducted. The results revealed that signals became stronger following the phase IV ovary stage, and the strongest signals were located on the follicular pseudoplacenta at the blastula stage. These results suggest that the high expression of laminin genes, especially lama4 after fertilization, may drive cell proliferation, migration, and tissue expansion in the S. schlegelii ovary and ultimately promote follicular pseudoplacenta formation.
Collapse
|
6
|
Zhou C, Zhao W, Zhang S, Ma J, Sultan Y, Li X. High-throughput transcriptome sequencing reveals the key stages of cardiovascular development in zebrafish embryos. BMC Genomics 2022; 23:587. [PMID: 35964013 PMCID: PMC9375324 DOI: 10.1186/s12864-022-08808-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/25/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The cardiovascular developmental process is a tightly regulated network involving multiple genes. The current understanding of the molecular mechanism behind cardiovascular development is insufficient and requires further research. RESULTS Transcriptome sequencing of three developmental stages in zebrafish embryos was performed and revealed three key cardiovascular developmental stages. Then, the differentially expressed genes (DEGs) involved in cardiovascular development were screened out. The three developmental stages were 18 (T1), 24 (T2), and 42 h post fertilization (hpf) (T3), and the three stages were confirmed by detecting differences in expression between cardiomyocyte and endothelial marker genes (cmlc2, fli1) using in situ hybridization, which represents the characteristics of cardiovascular development. Thousands of DEGs were identified using transcriptome analysis. Of them, 2605 DEGs were in T1-vs-T2, including 2003 up-regulated and 602 down-regulated genes, 6446 DEGs were in T1-vs-T3, consisting of 4608 up-regulated and 1838 down-regulated genes, and 3275 DEGs were in T2-vs-T3, including 2420 up-regulated and 855 down-regulated genes. There were 644 common DEGs and 167 common five-fold higher differentially expressed genes (HDEGs) identified, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID). Significant differences was observed in the levels of gene expression among different developmental stages in multiple GO terms and KEGG pathways, such as cell migration to the midline involved in heart development, cardiovascular system development, circulatory system process for biological processes of GO terms; and cardiac muscle contraction, adrenergic signaling in cardiomyocytes for KEGG pathways. These results demonstrated that these three stages were important period for the development of the cardiovascular system. Lastly, we used quantitative real-time PCR (qPCR) to validate the reliability of RNA-sequencing by selecting 21 DEGs. CONCLUSIONS These results demonstrated that these three stages represented the important periods for cardiovascular system development of zebrafish and some candidate genes was obtained and provided a solid foundation for additional functional studies of the DEGs.
Collapse
Affiliation(s)
- Chune Zhou
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Wei Zhao
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Shuqiang Zhang
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Junguo Ma
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Yousef Sultan
- Department of Food Toxicology and Contaminants, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Xiaoyu Li
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China.
| |
Collapse
|
7
|
Ferent J, Zaidi D, Francis F. Extracellular Control of Radial Glia Proliferation and Scaffolding During Cortical Development and Pathology. Front Cell Dev Biol 2020; 8:578341. [PMID: 33178693 PMCID: PMC7596222 DOI: 10.3389/fcell.2020.578341] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/08/2020] [Indexed: 01/14/2023] Open
Abstract
During the development of the cortex, newly generated neurons migrate long-distances in the expanding tissue to reach their final positions. Pyramidal neurons are produced from dorsal progenitors, e.g., radial glia (RGs) in the ventricular zone, and then migrate along RG processes basally toward the cortex. These neurons are hence dependent upon RG extensions to support their migration from apical to basal regions. Several studies have investigated how intracellular determinants are required for RG polarity and subsequent formation and maintenance of their processes. Fewer studies have identified the influence of the extracellular environment on this architecture. This review will focus on extracellular factors which influence RG morphology and pyramidal neuronal migration during normal development and their perturbations in pathology. During cortical development, RGs are present in different strategic positions: apical RGs (aRGs) have their cell bodies located in the ventricular zone with an apical process contacting the ventricle, while they also have a basal process extending radially to reach the pial surface of the cortex. This particular conformation allows aRGs to be exposed to long range and short range signaling cues, whereas basal RGs (bRGs, also known as outer RGs, oRGs) have their cell bodies located throughout the cortical wall, limiting their access to ventricular factors. Long range signals impacting aRGs include secreted molecules present in the embryonic cerebrospinal fluid (e.g., Neuregulin, EGF, FGF, Wnt, BMP). Secreted molecules also contribute to the extracellular matrix (fibronectin, laminin, reelin). Classical short range factors include cell to cell signaling, adhesion molecules and mechano-transduction mechanisms (e.g., TAG1, Notch, cadherins, mechanical tension). Changes in one or several of these components influencing the RG extracellular environment can disrupt the development or maintenance of RG architecture on which neuronal migration relies, leading to a range of cortical malformations. First, we will detail the known long range signaling cues impacting RG. Then, we will review how short range cell contacts are also important to instruct the RG framework. Understanding how RG processes are structured by their environment to maintain and support radial migration is a critical part of the investigation of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Julien Ferent
- Inserm, U 1270, Paris, France.,Sorbonne University, UMR-S 1270, IFM, Paris, France.,Institut du Fer á Moulin, Paris, France
| | - Donia Zaidi
- Inserm, U 1270, Paris, France.,Sorbonne University, UMR-S 1270, IFM, Paris, France.,Institut du Fer á Moulin, Paris, France
| | - Fiona Francis
- Inserm, U 1270, Paris, France.,Sorbonne University, UMR-S 1270, IFM, Paris, France.,Institut du Fer á Moulin, Paris, France
| |
Collapse
|
8
|
Fabian L, Dowling JJ. Zebrafish Models of LAMA2-Related Congenital Muscular Dystrophy (MDC1A). Front Mol Neurosci 2020; 13:122. [PMID: 32742259 PMCID: PMC7364686 DOI: 10.3389/fnmol.2020.00122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/11/2020] [Indexed: 01/28/2023] Open
Abstract
LAMA2-related congenital muscular dystrophy (CMD; LAMA2-MD), also referred to as merosin deficient CMD (MDC1A), is a severe neonatal onset muscle disease caused by recessive mutations in the LAMA2 gene. LAMA2 encodes laminin α2, a subunit of the extracellular matrix (ECM) oligomer laminin 211. There are currently no treatments for MDC1A, and there is an incomplete understanding of disease pathogenesis. Zebrafish, due to their high degree of genetic conservation with humans, large clutch sizes, rapid development, and optical clarity, have emerged as an excellent model system for studying rare Mendelian diseases. They are particularly suitable as a model for muscular dystrophy because they contain at least one orthologue to all major human MD genes, have muscle that is similar to human muscle in structure and function, and manifest obvious and easily measured MD related phenotypes. In this review article, we present the existing zebrafish models of MDC1A, and discuss their contribution to the understanding of MDC1A pathomechanisms and therapy development.
Collapse
Affiliation(s)
- Lacramioara Fabian
- Program for Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - James J Dowling
- Program for Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada.,Division of Neurology, Hospital for Sick Children, Toronto, ON, Canada.,Departments of Pediatrics and Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Buckley DM, Sidik A, Kar RD, Eberhart JK. Differentially sensitive neuronal subpopulations in the central nervous system and the formation of hindbrain heterotopias in ethanol-exposed zebrafish. Birth Defects Res 2019; 111:700-713. [PMID: 30793540 DOI: 10.1002/bdr2.1477] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND A cardinal feature of prenatal ethanol exposure is CNS damage, resulting in a continuum of neurological and behavioral impairments that are described by the term fetal alcohol spectrum disorders (FASD). FASDs are variable and depend on several factors, including the amount, timing, and duration of prenatal ethanol exposure. To enhance interventions for CNS dysfunction, it is necessary to identify ethanol-sensitive neuronal populations and expand the understanding of factors that modify ethanol teratogenesis. METHODS To investigate the susceptibility of different neuronal subtypes, we exposed transgenic zebrafish (Danio rerio) to several ethanol concentrations (0.25, 0.5, 1.0, 1.5, or 2.0%), at different hours post fertilization (hpf; 0, 6, or 24 hpf), for various durations (0-24, 0-48, 4-24, 6-24, 6-48,or 24-48 hpf). Following exposure, embryo survival rates were determined, and CNS neurogenesis, differentiation, and patterning were assessed. RESULTS Embryo survival rates decrease as ethanol concentrations increase and drastically decline when exposed from 0-24 hpf compared to 4-24 hpf. Abnormal tangential migration of facial motor neurons is observed in isl1:gfp embryos exposed to ethanol concentrations as low as 0.25%, and the formation of IVth ventricle heterotopias are revealed by embryos exposed to ≥1.0% ethanol. Whereas, expression of olig2:dsred and ptf1a:gfp in the cerebellum and spinal cord are largely unaffected. While levels of etv4 mRNA are overtly resistant to ethanol, we observe significant reductions in ptch2 mRNA levels. CONCLUSIONS These data show differentially sensitive CNS neuron subpopulations with susceptibility to low levels of ethanol. In addition, these data reveal the formation of ethanol-induced hindbrain heterotopias.
Collapse
Affiliation(s)
- Desire M Buckley
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas
| | - Alfire Sidik
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas
| | - Ranjeet D Kar
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas
| | - Johann K Eberhart
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
10
|
Neural stem cells deriving from chick embryonic hindbrain recapitulate hindbrain development in culture. Sci Rep 2018; 8:13920. [PMID: 30224755 PMCID: PMC6141497 DOI: 10.1038/s41598-018-32203-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 09/03/2018] [Indexed: 12/15/2022] Open
Abstract
Neural stem cells (NSCs) are self-renewing multipotent cells that line the neural-tube and generate all the nervous system. Understanding NSC biology is fundamental for neurodevelopmental research and therapy. Many studies emphasized the need to culture NSCs, which are typically purified from mammalian embryonic/adult brains. These sources are somewhat limited in terms of quantity, availability and animal ethical guidelines. Therefore, new sources are needed. The chick is a powerful system for experimental embryology which contributed enormously to neurodevelopmental concepts. Its accessibility, genetic/molecular manipulations, and homology to other vertebrates, makes it valuable for developmental biology research. Recently, we identified a population of NSCs in the chick hindbrain. It resides in rhombomere-boundaries, expresses Sox2 and generates progenitors and neurons. Here, we investigated whether these cells can recapitulate hindbrain development in culture. By developing approaches to propagate and image cells, manipulate their growth-conditions and separate them into subpopulations, we demonstrate the ordered formation of multipotent and self-renewing neurospheres that maintain regional identity and display differential stem/differentiation/proliferation properties. Live imaging revealed new cellular dynamics in the culture. Collectively, these NSC cultures reproduce major aspects of hindbrain development in-vitro, proposing the chick as a model for culturing hindbrain-NSCs that can be directly applied to other neural-tube domains and species.
Collapse
|
11
|
Gurung S, Asante E, Hummel D, Williams A, Feldman-Schultz O, Halloran MC, Sittaramane V, Chandrasekhar A. Distinct roles for the cell adhesion molecule Contactin2 in the development and function of neural circuits in zebrafish. Mech Dev 2018; 152:1-12. [PMID: 29777776 DOI: 10.1016/j.mod.2018.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/02/2018] [Accepted: 05/09/2018] [Indexed: 01/17/2023]
Abstract
Contactin2 (Cntn2)/Transient Axonal Glycoprotein 1 (Tag1), a neural cell adhesion molecule, has established roles in neuronal migration and axon fasciculation in chick and mouse. In zebrafish, antisense morpholino-based studies have indicated roles for cntn2 in the migration of facial branchiomotor (FBM) neurons, the guidance of the axons of the nucleus of the medial longitudinal fascicle (nucMLF), and the outgrowth of Rohon-Beard (RB) central axons. To study functions of Cntn2 in later stages of neuronal development, we generated cntn2 mutant zebrafish using CRISPR-Cas9. Using a null mutant allele, we detected genetic interactions between cntn2 and the planar cell polarity gene vangl2, as shown previously with cntn2 morphants, demonstrating a function for cntn2 during FBM neuron migration in a sensitized background of reduced planar cell polarity signaling. In addition, maternal-zygotic (MZ) cntn2 mutant larvae exhibited aberrant touch responses and swimming, suggestive of defects in sensorimotor circuits, consistent with studies in mice. However, the nucMLF axon convergence, FBM neuron migration, and RB outgrowth defects seen in morphants were not seen in the mutants, and we show here that they are likely off-target effects of morpholinos. However, MLF axons exhibited local defasciculation in MZcntn2 mutants, consistent with a role for Cntn2 in axon fasciculation. These data demonstrate distinct roles for zebrafish cntn2 in neuronal migration and axon fasciculation, and in the function of sensorimotor circuits.
Collapse
Affiliation(s)
- Suman Gurung
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Emilia Asante
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Devynn Hummel
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Ashley Williams
- Department of Biology, Georgia Southern University, Statesboro, GA 30458, USA
| | - Oren Feldman-Schultz
- Department of Integrative Biology, Department of Neuroscience, University of Wisconsin, Madison, WI 53706, USA
| | - Mary C Halloran
- Department of Integrative Biology, Department of Neuroscience, University of Wisconsin, Madison, WI 53706, USA
| | - Vinoth Sittaramane
- Department of Biology, Georgia Southern University, Statesboro, GA 30458, USA
| | - Anand Chandrasekhar
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
12
|
Planar cell polarity genes Frizzled3a, Vangl2, and Scribble are required for spinal commissural axon guidance. BMC Neurosci 2016; 17:83. [PMID: 27955617 PMCID: PMC5154073 DOI: 10.1186/s12868-016-0318-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/29/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND A fundamental feature of early nervous system development is the guidance of axonal projections to their targets in order to assemble neural circuits that control behavior. Spinal commissural neurons are an attractive model to investigate the multiple guidance cues that control growth cone navigation both pre- and post-midline crossing, as well as along both the dorsal-ventral (D-V) and anterior-posterior (A-P) axes. Accumulating evidence suggests that guidance of spinal commissural axons along the A-P axis is dependent on components of the planar cell polarity (PCP) signaling pathway. In the zebrafish, the earliest born spinal commissural neuron to navigate the midline and turn rostrally is termed commissural primary ascending (CoPA). Unlike mammalian systems, CoPA axons cross the midline as a single axon and allow an analysis of the role of PCP components in anterior pathfinding in single pioneering axons. RESULTS Here, we establish CoPA cells in the zebrafish spinal cord as a model system for investigating the molecular function of planar cell polarity signaling in axon guidance. Using mutant analysis, we show that the functions of Fzd3a and Vangl2 in the anterior turning of commissural axons are evolutionarily conserved in teleosts. We extend our findings to reveal a role for the PCP gene scribble in the anterior guidance of CoPA axons. Analysis of single CoPA axons reveals that these commissural axons become responsive to PCP-dependent anterior guidance cues even prior to midline crossing. When midline crossing is prevented by dcc gene knockdown, ipsilateral CoPA axons still extend axons anteriorly in response to A-P guidance cues. We show that this ipsilateral anterior pathfinding that occurs in the absence of midline crossing is dependent on PCP signaling. CONCLUSION Our results demonstrate that anterior guidance decisions by CoPA axons are dependent on the function of planar cell polarity genes both prior to and after midline crossing.
Collapse
|
13
|
Gennarini G, Bizzoca A, Picocci S, Puzzo D, Corsi P, Furley AJW. The role of Gpi-anchored axonal glycoproteins in neural development and neurological disorders. Mol Cell Neurosci 2016; 81:49-63. [PMID: 27871938 DOI: 10.1016/j.mcn.2016.11.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 01/06/2023] Open
Abstract
This review article focuses on the Contactin (CNTN) subset of the Immunoglobulin supergene family (IgC2/FNIII molecules), whose components share structural properties (the association of Immunoglobulin type C2 with Fibronectin type III domains), as well as a general role in cell contact formation and axonal growth control. IgC2/FNIII molecules include 6 highly related components (CNTN 1-6), associated with the cell membrane via a Glycosyl Phosphatidyl Inositol (GPI)-containing lipid tail. Contactin 1 and Contactin 2 share ~50 (49.38)% identity at the aminoacid level. They are components of the cell surface, from which they may be released in soluble forms. They bind heterophilically to multiple partners in cis and in trans, including members of the related L1CAM family and of the Neurexin family Contactin-associated proteins (CNTNAPs or Casprs). Such interactions are important for organising the neuronal membrane, as well as for modulating the growth and pathfinding of axon tracts. In addition, they also mediate the functional maturation of axons by promoting their interactions with myelinating cells at the nodal, paranodal and juxtaparanodal regions. Such interactions also mediate differential ionic channels (both Na+ and K+) distribution, which is of critical relevance in the generation of the peak-shaped action potential. Indeed, thanks to their interactions with Ankyrin G, Na+ channels map within the nodal regions, where they drive axonal depolarization. However, no ionic channels are found in the flanking Contactin1-containing paranodal regions, where CNTN1 interactions with Caspr1 and with the Ig superfamily component Neurofascin 155 in cis and in trans, respectively, build a molecular barrier between the node and the juxtaparanode. In this region K+ channels are clustered, depending upon molecular interactions with Contactin 2 and with Caspr2. In addition to these functions, the Contactins appear to have also a role in degenerative and inflammatory disorders: indeed Contactin 2 is involved in neurodegenerative disorders with a special reference to the Alzheimer disease, given its ability to work as a ligand of the Alzheimer Precursor Protein (APP), which results in increased Alzheimer Intracellular Domain (AICD) release in a γ-secretase-dependent manner. On the other hand Contactin 1 drives Notch signalling activation via the Hes pathway, which could be consistent with its ability to modulate neuroinflammation events, and with the possibility that Contactin 1-dependent interactions may participate to the pathogenesis of the Multiple Sclerosis and of other inflammatory disorders.
Collapse
Affiliation(s)
- Gianfranco Gennarini
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Policlinico. Piazza Giulio Cesare. I-70124 Bari, Italy.
| | - Antonella Bizzoca
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Policlinico. Piazza Giulio Cesare. I-70124 Bari, Italy
| | - Sabrina Picocci
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Policlinico. Piazza Giulio Cesare. I-70124 Bari, Italy
| | - Daniela Puzzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Italy
| | - Patrizia Corsi
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Policlinico. Piazza Giulio Cesare. I-70124 Bari, Italy
| | - Andrew J W Furley
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2NT, UK
| |
Collapse
|
14
|
Bryan CD, Chien CB, Kwan KM. Loss of laminin alpha 1 results in multiple structural defects and divergent effects on adhesion during vertebrate optic cup morphogenesis. Dev Biol 2016; 416:324-37. [PMID: 27339294 DOI: 10.1016/j.ydbio.2016.06.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 06/08/2016] [Accepted: 06/16/2016] [Indexed: 01/02/2023]
Abstract
The vertebrate eye forms via a complex set of morphogenetic events. The optic vesicle evaginates and undergoes transformative shape changes to form the optic cup, in which neural retina and retinal pigmented epithelium enwrap the lens. It has long been known that a complex, glycoprotein-rich extracellular matrix layer surrounds the developing optic cup throughout the process, yet the functions of the matrix and its specific molecular components have remained unclear. Previous work established a role for laminin extracellular matrix in particular steps of eye development, including optic vesicle evagination, lens differentiation, and retinal ganglion cell polarization, yet it is unknown what role laminin might play in the early process of optic cup formation subsequent to the initial step of optic vesicle evagination. Here, we use the zebrafish lama1 mutant (lama1(UW1)) to determine the function of laminin during optic cup morphogenesis. Using live imaging, we find, surprisingly, that loss of laminin leads to divergent effects on focal adhesion assembly in a spatiotemporally-specific manner, and that laminin is required for multiple steps of optic cup morphogenesis, including optic stalk constriction, invagination, and formation of a spherical lens. Laminin is not required for single cell behaviors and changes in cell shape. Rather, in lama1(UW1) mutants, loss of epithelial polarity and altered adhesion lead to defective tissue architecture and formation of a disorganized retina. These results demonstrate that the laminin extracellular matrix plays multiple critical roles regulating adhesion and polarity to establish and maintain tissue structure during optic cup morphogenesis.
Collapse
Affiliation(s)
- Chase D Bryan
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Chi-Bin Chien
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Kristen M Kwan
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
15
|
Sittaramane V, Padgett J, Salter P, Williams A, Luke S, McCall R, Arambula JF, Graves VB, Blocker M, Van Leuven D, Bowe K, Heimberger J, Cade HC, Immaneni S, Shaikh A. Discovery of Quinoline-Derived Trifluoromethyl Alcohols, Determination of Their in vivo Toxicity and Anticancer Activity in a Zebrafish Embryo Model. ChemMedChem 2015; 10:1802-7. [PMID: 26388134 DOI: 10.1002/cmdc.201500341] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 09/08/2015] [Indexed: 12/17/2022]
Abstract
In this study the rational design, synthesis, and anticancer activity of quinoline-derived trifluoromethyl alcohols were evaluated. Members of this novel class of trifluoromethyl alcohols were identified as potent growth inhibitors in a zebrafish embryo model. Synthesis of these compounds was carried out with an sp(3) -C-H functionalization strategy of methyl quinolines with trifluoromethyl ketones. A zebrafish embryo model was also used to explore the toxicity of ethyl 4,4,4-trifluoro-3-hydroxy-3-(quinolin-2-ylmethyl)butanoate (1), 2-benzyl-1,1,1-trifluoro-3-(quinolin-2-yl)propan-2-ol (2), and trifluoro-3-(isoquinolin-1-yl)-2-(thiophen-2-yl)propan-2-ol (3). Compounds 2 and 3 were found to be more toxic than compound 1; apoptotic staining assays indicated that compound 3 causes increased cell death. In vitro cell proliferation assays showed that compound 2, with an LC50 value of 14.14 μm, has more potent anticancer activity than cisplatin. This novel class of inhibitors provides a new direction in the discovery of effective anticancer agents.
Collapse
Affiliation(s)
- Vinoth Sittaramane
- Department of Biology, Georgia Southern University, 1332 Southern Drive, Statesboro, GA, 30460-8042, USA.
| | - Jihan Padgett
- Department of Biology, Georgia Southern University, 1332 Southern Drive, Statesboro, GA, 30460-8042, USA
| | - Philip Salter
- Department of Biology, Georgia Southern University, 1332 Southern Drive, Statesboro, GA, 30460-8042, USA
| | - Ashley Williams
- Department of Biology, Georgia Southern University, 1332 Southern Drive, Statesboro, GA, 30460-8042, USA
| | - Shauntelle Luke
- Department of Biology, Georgia Southern University, 1332 Southern Drive, Statesboro, GA, 30460-8042, USA
| | - Rebecca McCall
- Department of Chemistry, Georgia Southern University, 521 College of Education Drive, Statesboro, GA, 30460-8064, USA
| | - Jonathan F Arambula
- Department of Chemistry, Georgia Southern University, 521 College of Education Drive, Statesboro, GA, 30460-8064, USA
| | - Vincent B Graves
- Department of Chemistry, Georgia Southern University, 521 College of Education Drive, Statesboro, GA, 30460-8064, USA
| | - Mark Blocker
- Department of Chemistry, Georgia Southern University, 521 College of Education Drive, Statesboro, GA, 30460-8064, USA
| | - David Van Leuven
- Department of Chemistry, Georgia Southern University, 521 College of Education Drive, Statesboro, GA, 30460-8064, USA
| | - Keturah Bowe
- Department of Chemistry, Georgia Southern University, 521 College of Education Drive, Statesboro, GA, 30460-8064, USA
| | - Julia Heimberger
- Department of Chemistry, Georgia Southern University, 521 College of Education Drive, Statesboro, GA, 30460-8064, USA
| | - Hannah C Cade
- Department of Chemistry, Georgia Southern University, 521 College of Education Drive, Statesboro, GA, 30460-8064, USA
| | - Supriya Immaneni
- Department of Chemistry, Georgia Southern University, 521 College of Education Drive, Statesboro, GA, 30460-8064, USA
| | - Abid Shaikh
- Department of Chemistry, Georgia Southern University, 521 College of Education Drive, Statesboro, GA, 30460-8064, USA.
| |
Collapse
|
16
|
Heck MV, Azizov M, Stehning T, Walter M, Kedersha N, Auburger G. Dysregulated expression of lipid storage and membrane dynamics factors in Tia1 knockout mouse nervous tissue. Neurogenetics 2015; 15:135-44. [PMID: 24659297 PMCID: PMC3994287 DOI: 10.1007/s10048-014-0397-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 03/03/2014] [Indexed: 12/13/2022]
Abstract
During cell stress, the transcription and translation of immediate early genes are prioritized, while most other messenger RNAs (mRNAs) are stored away in stress granules or degraded in processing bodies (P-bodies). TIA-1 is an mRNA-binding protein that needs to translocate from the nucleus to seed the formation of stress granules in the cytoplasm. Because other stress granule components such as TDP-43, FUS, ATXN2, SMN, MAPT, HNRNPA2B1, and HNRNPA1 are crucial for the motor neuron diseases amyotrophic lateral sclerosis (ALS)/spinal muscular atrophy (SMA) and for the frontotemporal dementia (FTD), here we studied mouse nervous tissue to identify mRNAs with selective dependence on Tia1 deletion. Transcriptome profiling with oligonucleotide microarrays in comparison of spinal cord and cerebellum, together with independent validation in quantitative reverse transcriptase PCR and immunoblots demonstrated several strong and consistent dysregulations. In agreement with previously reported TIA1 knock down effects, cell cycle and apoptosis regulators were affected markedly with expression changes up to +2-fold, exhibiting increased levels for Cdkn1a, Ccnf, and Tprkb vs. decreased levels for Bid and Inca1 transcripts. Novel and surprisingly strong expression alterations were detected for fat storage and membrane trafficking factors, with prominent +3-fold upregulations of Plin4, Wdfy1, Tbc1d24, and Pnpla2 vs. a −2.4-fold downregulation of Cntn4 transcript, encoding an axonal membrane adhesion factor with established haploinsufficiency. In comparison, subtle effects on the RNA processing machinery included up to 1.2-fold upregulations of Dcp1b and Tial1. The effect on lipid dynamics factors is noteworthy, since also the gene deletion of Tardbp (encoding TDP-43) and Atxn2 led to fat metabolism phenotypes in mouse. In conclusion, genetic ablation of the stress granule nucleator TIA-1 has a novel major effect on mRNAs encoding lipid homeostasis factors in the brain, similar to the fasting effect.
Collapse
Affiliation(s)
- Melanie Vanessa Heck
- Experimental Neurology, Department of Neurology, Goethe University Medical School, Building 89, 3rd floor, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Mekhman Azizov
- Experimental Neurology, Department of Neurology, Goethe University Medical School, Building 89, 3rd floor, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Tanja Stehning
- Experimental Neurology, Department of Neurology, Goethe University Medical School, Building 89, 3rd floor, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Michael Walter
- Institute for Medical Genetics, Eberhard-Karls-University of Tuebingen, 72076 Tübingen, Germany
| | - Nancy Kedersha
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Smith 652, One Jimmy Fund Way, Boston, MA 02115 USA
| | - Georg Auburger
- Experimental Neurology, Department of Neurology, Goethe University Medical School, Building 89, 3rd floor, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
17
|
Ingold E, Vom Berg-Maurer CM, Burckhardt CJ, Lehnherr A, Rieder P, Keller PJ, Stelzer EH, Greber UF, Neuhauss SCF, Gesemann M. Proper migration and axon outgrowth of zebrafish cranial motoneuron subpopulations require the cell adhesion molecule MDGA2A. Biol Open 2015; 4:146-54. [PMID: 25572423 PMCID: PMC4365483 DOI: 10.1242/bio.20148482] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The formation of functional neuronal circuits relies on accurate migration and proper axonal outgrowth of neuronal precursors. On the route to their targets migrating cells and growing axons depend on both, directional information from neurotropic cues and adhesive interactions mediated via extracellular matrix molecules or neighbouring cells. The inactivation of guidance cues or the interference with cell adhesion can cause severe defects in neuronal migration and axon guidance. In this study we have analyzed the function of the MAM domain containing glycosylphosphatidylinositol anchor 2A (MDGA2A) protein in zebrafish cranial motoneuron development. MDGA2A is prominently expressed in distinct clusters of cranial motoneurons, especially in the ones of the trigeminal and facial nerves. Analyses of MDGA2A knockdown embryos by light sheet and confocal microscopy revealed impaired migration and aberrant axonal outgrowth of these neurons; suggesting that adhesive interactions mediated by MDGA2A are required for the proper arrangement and outgrowth of cranial motoneuron subtypes.
Collapse
Affiliation(s)
- Esther Ingold
- Brain Research Institute of the University Zurich and Swiss Federal Institute of Technology (ETH), Department of Biology, 8057 Zurich, Switzerland
| | | | | | - André Lehnherr
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Philip Rieder
- Brain Research Institute of the University Zurich and Swiss Federal Institute of Technology (ETH), Department of Biology, 8057 Zurich, Switzerland
| | - Philip J Keller
- EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Ernst H Stelzer
- EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Urs F Greber
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Stephan C F Neuhauss
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Matthias Gesemann
- Brain Research Institute of the University Zurich and Swiss Federal Institute of Technology (ETH), Department of Biology, 8057 Zurich, Switzerland Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
18
|
Ratié L, Ware M, Jagline H, David V, Dupé V. Dynamic expression of Notch-dependent neurogenic markers in the chick embryonic nervous system. Front Neuroanat 2014; 8:158. [PMID: 25565981 PMCID: PMC4270182 DOI: 10.3389/fnana.2014.00158] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 12/04/2014] [Indexed: 11/13/2022] Open
Abstract
The establishment of a functional nervous system requires a highly orchestrated process of neural proliferation and differentiation. The evolutionary conserved Notch signaling pathway is a key regulator of this process, regulating basic helix-loop-helix (bHLH) transcriptional repressors and proneural genes. However, little is known about downstream Notch targets and subsequently genes required for neuronal specification. In this report, the expression pattern of Transgelin 3 (Tagln3), Chromogranin A (Chga) and Contactin 2 (Cntn2) was described in detail during early chick embryogenesis. Expression of these genes was largely restricted to the nervous system including the early axon scaffold populations, cranial ganglia and spinal motor neurons. Their temporal and spatial expression were compared with the neuronal markers Nescient Helix-Loop-Helix 1 (Nhlh1), Stathmin 2 (Stmn2) and HuC/D. We show that Tagln3 is an early marker for post-mitotic neurons whereas Chga and Cntn2 are expressed in mature neurons. We demonstrate that inhibition of Notch signaling during spinal cord neurogenesis enhances expression of these markers. This data demonstrates that Tagln3, Chga and Cntn2 represent strong new candidates to contribute to the sequential progression of vertebrate neurogenesis.
Collapse
Affiliation(s)
- Leslie Ratié
- CNRS UMR6290, Faculté de Médecine, Institut de Génétique et Développement de Rennes, Université de Rennes 1 Rennes, France
| | - Michelle Ware
- CNRS UMR6290, Faculté de Médecine, Institut de Génétique et Développement de Rennes, Université de Rennes 1 Rennes, France
| | - Hélène Jagline
- CNRS UMR6290, Faculté de Médecine, Institut de Génétique et Développement de Rennes, Université de Rennes 1 Rennes, France
| | - Véronique David
- CNRS UMR6290, Faculté de Médecine, Institut de Génétique et Développement de Rennes, Université de Rennes 1 Rennes, France ; Laboratoire de Génétique Moléculaire, CHU Pontchaillou Rennes Cedex, France
| | - Valérie Dupé
- CNRS UMR6290, Faculté de Médecine, Institut de Génétique et Développement de Rennes, Université de Rennes 1 Rennes, France
| |
Collapse
|
19
|
Structural and temporal requirements of Wnt/PCP protein Vangl2 function for convergence and extension movements and facial branchiomotor neuron migration in zebrafish. Mech Dev 2013; 131:1-14. [PMID: 24333599 DOI: 10.1016/j.mod.2013.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 11/28/2013] [Accepted: 12/01/2013] [Indexed: 01/07/2023]
Abstract
Van gogh-like 2 (Vangl2), a core component of the Wnt/planar cell polarity (PCP) signaling pathway, is a four-pass transmembrane protein with N-terminal and C-terminal domains located in the cytosol, and is structurally conserved from flies to mammals. In vertebrates, Vangl2 plays an essential role in convergence and extension (CE) movements during gastrulation and in facial branchiomotor (FBM) neuron migration in the hindbrain. However, the roles of specific Vangl2 domains, of membrane association, and of specific extracellular and intracellular motifs have not been examined, especially in the context of FBM neuron migration. Through heat shock-inducible expression of various Vangl2 transgenes, we found that membrane associated functions of the N-terminal and C-terminal domains of Vangl2 are involved in regulating FBM neuron migration. Importantly, through temperature shift experiments, we found that the critical period for Vangl2 function coincides with the initial stages of FBM neuron migration out of rhombomere 4. Intriguingly, we have also uncovered a putative nuclear localization motif in the C-terminal domain that may play a role in regulating CE movements.
Collapse
|
20
|
Wanner SJ, Saeger I, Guthrie S, Prince VE. Facial motor neuron migration advances. Curr Opin Neurobiol 2013; 23:943-50. [PMID: 24090878 DOI: 10.1016/j.conb.2013.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 09/03/2013] [Indexed: 11/19/2022]
Abstract
During development, the migration of specific neuronal subtypes is required for the correct establishment of neural circuits. In mice and zebrafish, facial branchiomotor (FBM) neurons undergo a tangential migration from rhombomere 4 caudally through the hindbrain. Recent advances in the field have capitalized on genetic studies in zebrafish and mouse, and high-resolution time-lapse imaging in zebrafish. Planar cell polarity signaling has emerged as a critical conserved factor in FBM neuron migration, functioning both within the neurons and their environment. In zebrafish, migration depends on specialized 'pioneer' neurons to lead follower FBM neurons through the hindbrain, and on interactions with structural components including pre-laid axon tracts and the basement membrane. Despite fundamental conservation, species-specific differences in migration mechanisms are being uncovered.
Collapse
Affiliation(s)
- Sarah J Wanner
- Department of Organismal Biology and Anatomy, The University of Chicago, 1027 E 57th Street, Chicago, IL 60637, United States
| | | | | | | |
Collapse
|
21
|
Okamoto M, Namba T, Shinoda T, Kondo T, Watanabe T, Inoue Y, Takeuchi K, Enomoto Y, Ota K, Oda K, Wada Y, Sagou K, Saito K, Sakakibara A, Kawaguchi A, Nakajima K, Adachi T, Fujimori T, Ueda M, Hayashi S, Kaibuchi K, Miyata T. TAG-1-assisted progenitor elongation streamlines nuclear migration to optimize subapical crowding. Nat Neurosci 2013. [PMID: 24056697 DOI: 10.1038/nn.3525.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neural progenitors exhibit cell cycle-dependent interkinetic nuclear migration (INM) along the apicobasal axis. Despite recent advances in understanding its underlying molecular mechanisms, the processes to which INM contributes mechanically and the regulation of INM by the apicobasally elongated morphology of progenitors remain unclear. We found that knockdown of the cell-surface molecule TAG-1 resulted in retraction of neocortical progenitors' basal processes. Highly shortened stem-like progenitors failed to undergo basalward INM and became overcrowded in the periventricular (subapical) space. Surprisingly, the overcrowded progenitors left the apical surface and migrated into basal neuronal territories. These observations, together with the results of in toto imaging and physical tests, suggest that progenitors may sense and respond to excessive mechanical stress. Although, unexpectedly, the heterotopic progenitors remained stem-like and continued to sequentially produce neurons until the late embryonic period, histogenesis was severely disrupted. Thus, INM is essential for preventing overcrowding of nuclei and their somata, thereby ensuring normal brain histogenesis.
Collapse
Affiliation(s)
- Mayumi Okamoto
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Okamoto M, Namba T, Shinoda T, Kondo T, Watanabe T, Inoue Y, Takeuchi K, Enomoto Y, Ota K, Oda K, Wada Y, Sagou K, Saito K, Sakakibara A, Kawaguchi A, Nakajima K, Adachi T, Fujimori T, Ueda M, Hayashi S, Kaibuchi K, Miyata T. TAG-1-assisted progenitor elongation streamlines nuclear migration to optimize subapical crowding. Nat Neurosci 2013; 16:1556-66. [PMID: 24056697 DOI: 10.1038/nn.3525] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/22/2013] [Indexed: 12/15/2022]
Abstract
Neural progenitors exhibit cell cycle-dependent interkinetic nuclear migration (INM) along the apicobasal axis. Despite recent advances in understanding its underlying molecular mechanisms, the processes to which INM contributes mechanically and the regulation of INM by the apicobasally elongated morphology of progenitors remain unclear. We found that knockdown of the cell-surface molecule TAG-1 resulted in retraction of neocortical progenitors' basal processes. Highly shortened stem-like progenitors failed to undergo basalward INM and became overcrowded in the periventricular (subapical) space. Surprisingly, the overcrowded progenitors left the apical surface and migrated into basal neuronal territories. These observations, together with the results of in toto imaging and physical tests, suggest that progenitors may sense and respond to excessive mechanical stress. Although, unexpectedly, the heterotopic progenitors remained stem-like and continued to sequentially produce neurons until the late embryonic period, histogenesis was severely disrupted. Thus, INM is essential for preventing overcrowding of nuclei and their somata, thereby ensuring normal brain histogenesis.
Collapse
Affiliation(s)
- Mayumi Okamoto
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Sittaramane V, Pan X, Glasco DM, Huang P, Gurung S, Bock A, Li S, Wang H, Kawakami K, Matise MP, Chandrasekhar A. The PCP protein Vangl2 regulates migration of hindbrain motor neurons by acting in floor plate cells, and independently of cilia function. Dev Biol 2013; 382:400-12. [PMID: 23988578 DOI: 10.1016/j.ydbio.2013.08.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/16/2013] [Accepted: 08/19/2013] [Indexed: 10/26/2022]
Abstract
Vangl2, a core component of the Planar Cell Polarity pathway, is necessary for the caudal migration of Facial Branchiomotor (FBM) neurons in the vertebrate hindbrain. Studies in zebrafish suggest that vangl2 functions largely non-cell autonomously to regulate FBM neuron migration out of rhombomere 4 (r4), but the cell-type within which it acts is not known. Here, we demonstrate that vangl2 functions largely in floor plate cells to regulate caudal neuronal migration. Furthermore, FBM neurons fail to migrate caudally in the mouse Gli2 mutant that lacks the floor plate, suggesting an evolutionarily conserved role for this cell type in neuronal migration. Although hindbrain floor plate cilia are disorganized in vangl2 mutant embryos, cilia appear to be dispensable for neuronal migration. Notably, Vangl2 is enriched in the basolateral, but not apical, membranes of floor plate cells. Taken together, our data suggest strongly that Vangl2 regulates FBM neuron migration by acting in floor plate cells, independently of cilia function.
Collapse
Affiliation(s)
- Vinoth Sittaramane
- Division of Biological Sciences, and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Miller DL, Zhou W. A system for investigation of biological effects of diagnostic ultrasound on development of zebrafish embryos. Zebrafish 2013; 10:459-65. [PMID: 23848997 DOI: 10.1089/zeb.2013.0883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A system for scanning zebrafish embryos with diagnostic ultrasound was developed for research into possible biological effects during development. Two troughs for holding embryos were formed from agarose in a rectangular dish and separated by an ultrasound absorber. A 4.9 MHz linear array ultrasound probe was positioned to uniformly scan all the embryos at the bottom of one trough, with the other used for controls. Zebrafish embryos were scanned continuously from 10-24 h post fertilization (hpf) during the segmentation period and gross morphological parameters were measured at 30 hpf, including viability, length, number of visible axons, and the progression of the lateral line primordium (LLP). Our initial tests were encumbered by the thermal effects of probe self-heating, which resulted in accelerated development of the zebrafish embryos. After subsequent optimization, our test revealed a significant retardation of primary motor axons and the migration of the LLP in embryos scanned with ultrasound, which indicated a potential for nonthermal effects on neuronal development. This diagnostic ultrasound exposure system is suitable for further investigation of possible subtle bioeffects, such as perturbation of neuronal migration.
Collapse
Affiliation(s)
- Douglas L Miller
- 1 Department of Radiology, University of Michigan Health System , Ann Arbor, Michigan
| | | |
Collapse
|
25
|
Tatin F, Taddei A, Weston A, Fuchs E, Devenport D, Tissir F, Makinen T. Planar cell polarity protein Celsr1 regulates endothelial adherens junctions and directed cell rearrangements during valve morphogenesis. Dev Cell 2013; 26:31-44. [PMID: 23792146 PMCID: PMC3714594 DOI: 10.1016/j.devcel.2013.05.015] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 04/23/2013] [Accepted: 05/14/2013] [Indexed: 01/04/2023]
Abstract
Planar cell polarity (PCP) signaling controls tissue morphogenesis by coordinating collective cell behaviors. We show a critical role for the core PCP proteins Celsr1 and Vangl2 in the complex morphogenetic process of intraluminal valve formation in lymphatic vessels. We found that valve-forming endothelial cells undergo elongation, reorientation, and collective migration into the vessel lumen as they initiate valve leaflet formation. During this process, Celsr1 and Vangl2 are recruited from endothelial filopodia to discrete membrane domains at cell-cell contacts. Celsr1- or Vangl2-deficient mice show valve aplasia due to failure of endothelial cells to undergo rearrangements and adopt perpendicular orientation at valve initiation sites. Mechanistically, we show that Celsr1 regulates dynamic cell movements by inhibiting stabilization of VE-cadherin and maturation of adherens junctions. These findings reveal a role for PCP signaling in regulating adherens junctions and directed cell rearrangements during vascular development. Endothelial cells undergo collective migration during lymphatic valve morphogenesis PCP signaling directs rearrangements of valve-forming endothelial cells PCP components localize to filopodia and cell-cell contacts in valve endothelia PCP signaling regulates adherens junction formation and stabilization
Collapse
Affiliation(s)
- Florence Tatin
- Lymphatic Development Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | | | | | | | | | | | | |
Collapse
|
26
|
Hadas Y, Nitzan N, Furley AJW, Kozlov SV, Klar A. Distinct cis regulatory elements govern the expression of TAG1 in embryonic sensory ganglia and spinal cord. PLoS One 2013; 8:e57960. [PMID: 23469119 PMCID: PMC3582508 DOI: 10.1371/journal.pone.0057960] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 01/29/2013] [Indexed: 01/06/2023] Open
Abstract
Cell fate commitment of spinal progenitor neurons is initiated by long-range, midline-derived, morphogens that regulate an array of transcription factors that, in turn, act sequentially or in parallel to control neuronal differentiation. Included among these are transcription factors that regulate the expression of receptors for guidance cues, thereby determining axonal trajectories. The Ig/FNIII superfamily molecules TAG1/Axonin1/CNTN2 (TAG1) and Neurofascin (Nfasc) are co-expressed in numerous neuronal cell types in the CNS and PNS – for example motor, DRG and interneurons - both promote neurite outgrowth and both are required for the architecture and function of nodes of Ranvier. The genes encoding TAG1 and Nfasc are adjacent in the genome, an arrangement which is evolutionarily conserved. To study the transcriptional network that governs TAG1 and Nfasc expression in spinal motor and commissural neurons, we set out to identify cis elements that regulate their expression. Two evolutionarily conserved DNA modules, one located between the Nfasc and TAG1 genes and the second directly 5′ to the first exon and encompassing the first intron of TAG1, were identified that direct complementary expression to the CNS and PNS, respectively, of the embryonic hindbrain and spinal cord. Sequential deletions and point mutations of the CNS enhancer element revealed a 130bp element containing three conserved E-boxes required for motor neuron expression. In combination, these two elements appear to recapitulate a major part of the pattern of TAG1 expression in the embryonic nervous system.
Collapse
Affiliation(s)
- Yoav Hadas
- Dept. of medical neurobiology, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Noa Nitzan
- Dept. of medical neurobiology, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Andrew J. W. Furley
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, United Kingdom
- * E-mail: (AV); (SVK); (AJWF)
| | - Serguei V. Kozlov
- Center for Advanced Preclinical Research, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research (FNLCR), Frederick, Maryland, United States of America
- * E-mail: (AV); (SVK); (AJWF)
| | - Avihu Klar
- Dept. of medical neurobiology, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
- * E-mail: (AV); (SVK); (AJWF)
| |
Collapse
|
27
|
Wanner SJ, Prince VE. Axon tracts guide zebrafish facial branchiomotor neuron migration through the hindbrain. Development 2013; 140:906-15. [PMID: 23325758 DOI: 10.1242/dev.087148] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Appropriate localization of neurons within the brain is a crucial component of the establishment of neural circuitry. In the zebrafish hindbrain, the facial branchiomotor neurons (FBMNs) undergo a chain-like tangential migration from their birthplace in rhombomere (r) 4 to their final destination in r6/r7. Here, we report that ablation of either the cell body or the trailing axon of the leading FBMN, or 'pioneer' neuron, blocks the migration of follower FBMNs into r5. This demonstrates that the pioneer neuron and its axon are crucial to the early migration of FBMNs. Later migration from r5 to r6 is not dependent on pioneer neurons but on the medial longitudinal fasciculus (MLF), a bundle of axons lying ventral to the FBMNs. We find that MLF axons enter r5 only after the pioneer neuron has led several followers into this region; the MLF is then contacted by projections from the FBMNs. The interactions between FBMNs and the MLF are important for migration from r5 to r6, as blocking MLF axons from entering the hindbrain can stall FBMN migration in r5. Finally, we have found that the adhesion molecule Cdh2 (N-cadherin) is important for interactions between the MLF and FBMNs, as well as for interactions between the trailing axon of the pioneer neuron and follower FBMNs. Interestingly, migration of pioneer neurons is independent of both the MLF and Cdh2, suggesting pioneer migration relies on independent cues.
Collapse
Affiliation(s)
- Sarah J Wanner
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
28
|
Extracellular Matrix Remodeling in Zebrafish Development. EXTRACELLULAR MATRIX IN DEVELOPMENT 2013. [DOI: 10.1007/978-3-642-35935-4_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
29
|
Wallingford JB. Planar cell polarity and the developmental control of cell behavior in vertebrate embryos. Annu Rev Cell Dev Biol 2012; 28:627-53. [PMID: 22905955 DOI: 10.1146/annurev-cellbio-092910-154208] [Citation(s) in RCA: 197] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Planar cell polarity (PCP), the orientation and alignment of cells within a sheet, is a ubiquitous cellular property that is commonly governed by the conserved set of proteins encoded by so-called PCP genes. The PCP proteins coordinate developmental signaling cues with individual cell behaviors in a wildly diverse array of tissues. Consequently, disruptions of PCP protein functions are linked to defects in axis elongation, inner ear patterning, neural tube closure, directed ciliary beating, and left/right patterning, to name only a few. This review attempts to synthesize what is known about PCP and the PCP proteins in vertebrate animals, with a particular focus on the mechanisms by which individual cells respond to PCP cues in order to execute specific cellular behaviors.
Collapse
Affiliation(s)
- John B Wallingford
- Howard Hughes Medical Institute, Section of Molecular, Cell and Developmental Biology, University of Texas, Austin, Texas 78712, USA.
| |
Collapse
|
30
|
Hirota Y, Sawada M, Kida YS, Huang SH, Yamada O, Sakaguchi M, Ogura T, Okano H, Sawamoto K. Roles of Planar Cell Polarity Signaling in Maturation of Neuronal Precursor Cells in the Postnatal Mouse Olfactory Bulb. Stem Cells 2012; 30:1726-33. [DOI: 10.1002/stem.1137] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
31
|
Zannino DA, Sagerström CG, Appel B. olig2-Expressing hindbrain cells are required for migrating facial motor neurons. Dev Dyn 2012; 241:315-26. [PMID: 22275004 DOI: 10.1002/dvdy.23718] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The complicated trajectory of facial motor neuron migration requires coordination of intrinsic signals and cues from the surrounding environment. Migration begins in rhombomere (r) 4 where facial motor neurons are born and proceeds in a caudal direction. Once facial motor neurons reach their target rhombomeres, they migrate laterally and radially from the ventral neural tube. In zebrafish, as facial motor neurons migrate through r5/r6, they pass near cells that express olig2, which encodes a bHLH transcription factor. In this study, we found that olig2 function is required for facial motor neurons to complete their caudal migration into r6 and r7 and form stereotypical clusters. Additionally, embryos that lack mafba function, in which facial motor neurons also fail to complete caudal migration, lack olig2 expression in r5 and r6. Our data raise the possibility that cells expressing olig2 are intermediate targets that help guide facial motor neuron migration.
Collapse
Affiliation(s)
- Denise A Zannino
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | | | | |
Collapse
|
32
|
Glasco DM, Sittaramane V, Bryant W, Fritzsch B, Sawant A, Paudyal A, Stewart M, Andre P, Cadete Vilhais-Neto G, Yang Y, Song MR, Murdoch JN, Chandrasekhar A. The mouse Wnt/PCP protein Vangl2 is necessary for migration of facial branchiomotor neurons, and functions independently of Dishevelled. Dev Biol 2012; 369:211-22. [PMID: 22771245 DOI: 10.1016/j.ydbio.2012.06.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 06/19/2012] [Accepted: 06/27/2012] [Indexed: 11/18/2022]
Abstract
During development, facial branchiomotor (FBM) neurons, which innervate muscles in the vertebrate head, migrate caudally and radially within the brainstem to form a motor nucleus at the pial surface. Several components of the Wnt/planar cell polarity (PCP) pathway, including the transmembrane protein Vangl2, regulate caudal migration of FBM neurons in zebrafish, but their roles in neuronal migration in mouse have not been investigated in detail. Therefore, we analyzed FBM neuron migration in mouse looptail (Lp) mutants, in which Vangl2 is inactivated. In Vangl2(Lp/+) and Vangl2(Lp/Lp) embryos, FBM neurons failed to migrate caudally from rhombomere (r) 4 into r6. Although caudal migration was largely blocked, many FBM neurons underwent normal radial migration to the pial surface of the neural tube. In addition, hindbrain patterning and FBM progenitor specification were intact, and FBM neurons did not transfate into other non-migratory neuron types, indicating a specific effect on caudal migration. Since loss-of-function in some zebrafish Wnt/PCP genes does not affect caudal migration of FBM neurons, we tested whether this was also the case in mouse. Embryos null for Ptk7, a regulator of PCP signaling, had severe defects in caudal migration of FBM neurons. However, FBM neurons migrated normally in Dishevelled (Dvl) 1/2 double mutants, and in zebrafish embryos with disrupted Dvl signaling, suggesting that Dvl function is essentially dispensable for FBM neuron caudal migration. Consistent with this, loss of Dvl2 function in Vangl2(Lp/+) embryos did not exacerbate the Vangl2(Lp/+) neuronal migration phenotype. These data indicate that caudal migration of FBM neurons is regulated by multiple components of the Wnt/PCP pathway, but, importantly, may not require Dishevelled function. Interestingly, genetic-interaction experiments suggest that rostral FBM neuron migration, which is normally suppressed, depends upon Dvl function.
Collapse
Affiliation(s)
- Derrick M Glasco
- Division of Biological Sciences, Bond Life Sciences Center, University of Missouri, Columbia, 65211, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Prunet P, Øverli Ø, Douxfils J, Bernardini G, Kestemont P, Baron D. Fish welfare and genomics. FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:43-60. [PMID: 21671026 DOI: 10.1007/s10695-011-9522-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 05/31/2011] [Indexed: 05/30/2023]
Abstract
There is a considerable public and scientific debate concerning welfare of fish in aquaculture. In this review, we will consider fish welfare as an integration of physiological, behavioral, and cognitive/emotional responses, all of which are essentially adaptative responses to stressful situations. An overview of fish welfare in this context suggests that understanding will rely on knowledge of all components of allostatic responses to stress and environmental perturbations. The development of genomic technologies provides new approaches to this task, exemplified by how genome-wide analysis of genetic structures and corresponding expression patterns can lead to the discovery of new aspects of adaptative responses. We will illustrate how the genomic approach may give rise to new biomarkers for fish welfare and also increase our understanding of the interaction between physiological, behavioral, and emotional responses. In a first part, we present data on expression of candidate genes selected a priori. This is a common avenue to develop molecular biomarkers capable of diagnosing a stress condition at its earliest onset, in order to allow quick corrective intervention in an aquaculture setting. However, most of these studies address isolated physiological functions and stress responses that may not be truly indicative of animal welfare, and there is only rudimentary understanding of genes related to possible cognitive and emotional responses in fish. We also present an overview on transcriptomic analysis related to the effect of aquaculture stressors, environmental changes (temperature, salinity, hypoxia), or concerning specific behavioral patterns. These studies illustrate the potential of genomic approaches to characterize the complexity of the molecular mechanisms which underlies not only physiological but also behavioral responses in relation to fish welfare. Thirdly, we address proteomic studies on biological responses to stressors such as salinity change and hypoxia. We will also consider proteomic studies developed in mammals in relation to anxiety and depressive status which may lead to new potential candidates in fish. Finally, in the conclusion, we will suggest new developments to facilitate an integrated view of fish welfare. This includes use of laser microdissection in the transcriptomic/proteomic studies, development of meta-analysis methods for extracting information from genomic data sets, and implementation of technological advances for high-throughput proteomic studies. Development of these new approaches should be as productive for our understanding of the biological processes underlying fish welfare as it has been for the progress of pathophysiological research.
Collapse
Affiliation(s)
- P Prunet
- UR1037 SCRIBE, IFR140, INRA, Campus de Beaulieu, Rennes, France.
| | | | | | | | | | | |
Collapse
|
34
|
Stockinger P, Maître JL, Heisenberg CP. Defective neuroepithelial cell cohesion affects tangential branchiomotor neuron migration in the zebrafish neural tube. Development 2011; 138:4673-83. [PMID: 21965614 DOI: 10.1242/dev.071233] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Facial branchiomotor neurons (FBMNs) in zebrafish and mouse embryonic hindbrain undergo a characteristic tangential migration from rhombomere (r) 4, where they are born, to r6/7. Cohesion among neuroepithelial cells (NCs) has been suggested to function in FBMN migration by inhibiting FBMNs positioned in the basal neuroepithelium such that they move apically between NCs towards the midline of the neuroepithelium instead of tangentially along the basal side of the neuroepithelium towards r6/7. However, direct experimental evaluation of this hypothesis is still lacking. Here, we have used a combination of biophysical cell adhesion measurements and high-resolution time-lapse microscopy to determine the role of NC cohesion in FBMN migration. We show that reducing NC cohesion by interfering with Cadherin 2 (Cdh2) activity results in FBMNs positioned at the basal side of the neuroepithelium moving apically towards the neural tube midline instead of tangentially towards r6/7. In embryos with strongly reduced NC cohesion, ectopic apical FBMN movement frequently results in fusion of the bilateral FBMN clusters over the apical midline of the neural tube. By contrast, reducing cohesion among FBMNs by interfering with Contactin 2 (Cntn2) expression in these cells has little effect on apical FBMN movement, but reduces the fusion of the bilateral FBMN clusters in embryos with strongly diminished NC cohesion. These data provide direct experimental evidence that NC cohesion functions in tangential FBMN migration by restricting their apical movement.
Collapse
Affiliation(s)
- Petra Stockinger
- Institute of Science and Technology Austria, Am Campus 1, A-3400 Klosterneuburg, Austria
| | | | | |
Collapse
|
35
|
Walsh GS, Grant PK, Morgan JA, Moens CB. Planar polarity pathway and Nance-Horan syndrome-like 1b have essential cell-autonomous functions in neuronal migration. Development 2011; 138:3033-42. [PMID: 21693519 PMCID: PMC3119310 DOI: 10.1242/dev.063842] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Components of the planar cell polarity (PCP) pathway are required for the caudal tangential migration of facial branchiomotor (FBM) neurons, but how PCP signaling regulates this migration is not understood. In a forward genetic screen, we identified a new gene, nhsl1b, required for FBM neuron migration. nhsl1b encodes a WAVE-homology domain-containing protein related to human Nance-Horan syndrome (NHS) protein and Drosophila GUK-holder (Gukh), which have been shown to interact with components of the WAVE regulatory complex that controls cytoskeletal dynamics and with the polarity protein Scribble, respectively. Nhsl1b localizes to FBM neuron membrane protrusions and interacts physically and genetically with Scrib to control FBM neuron migration. Using chimeric analysis, we show that FBM neurons have two modes of migration: one involving interactions between the neurons and their planar-polarized environment, and an alternative, collective mode involving interactions between the neurons themselves. We demonstrate that the first mode of migration requires the cell-autonomous functions of Nhsl1b and the PCP components Scrib and Vangl2 in addition to the non-autonomous functions of Scrib and Vangl2, which serve to polarize the epithelial cells in the environment of the migrating neurons. These results define a role for Nhsl1b as a neuronal effector of PCP signaling and indicate that proper FBM neuron migration is directly controlled by PCP signaling between the epithelium and the migrating neurons.
Collapse
Affiliation(s)
- Gregory S Walsh
- Howard Hughes Medical Institute and Division of Basic Science, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | | | | | | |
Collapse
|
36
|
Mapp OM, Walsh GS, Moens CB, Tada M, Prince VE. Zebrafish Prickle1b mediates facial branchiomotor neuron migration via a farnesylation-dependent nuclear activity. Development 2011; 138:2121-32. [PMID: 21521740 DOI: 10.1242/dev.060442] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The facial branchiomotor neurons (FBMNs) undergo a characteristic tangential migration in the vertebrate hindbrain. We previously used a morpholino knockdown approach to reveal that zebrafish prickle1b (pk1b) is required for this migration. Here we report that FBMN migration is also blocked in a pk1b mutant with a disruption in the consensus farnesylation motif. We confirmed that this lipid modification is required during FBMN migration by disrupting the function of farnesyl biosynthetic enzymes. Furthermore, farnesylation of a tagged Pk1b is required for its nuclear localization. Using a unique rescue approach, we have demonstrated that Pk1b nuclear localization and farnesylation are required during FBMN migration. Our data suggest that Pk1b acts at least partially independently of core planar cell polarity molecules at the plasma membrane, and might instead be acting at the nucleus. We also found that the neuronal transcriptional silencer REST is necessary for FBMN migration, and we provide evidence that interaction between Pk1b and REST is required during this process. Finally, we demonstrate that REST protein, which is normally localized in the nuclei of migrating FBMNs, is depleted from the nuclei of Pk1b-deficient neurons. We conclude that farnesylation-dependent nuclear localization of Pk1b is required to regulate REST localization and thus FBMN migration.
Collapse
Affiliation(s)
- Oni M Mapp
- Committee on Developmental Biology, University of Chicago, Chicago, IL 60615, USA
| | | | | | | | | |
Collapse
|
37
|
Baycin-Hizal D, Tian Y, Akan I, Jacobson E, Clark D, Wu A, Jampol R, Palter K, Betenbaugh M, Zhang H. GlycoFish: a database of zebrafish N-linked glycoproteins identified using SPEG method coupled with LC/MS. Anal Chem 2011; 83:5296-303. [PMID: 21591763 DOI: 10.1021/ac200726q] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Zebrafish (Danio rerio) is a model organism that is used to study the mechanisms and pathways of human disorders. Many dysfunctions in neurological, development, and neuromuscular systems are due to glycosylation deficiencies, but the glycoproteins involved in zebrafish embryonic development have not been established. In this study, a mass spectrometry-based glycoproteomic characterization of zebrafish embryos was performed to identify the N-linked glycoproteins and N-linked glycosylation sites. To increase the number of glycopeptides, proteins from zebrafish were digested with two different proteases--chymotrypsin and trypsin--into peptides of different length. The N-glycosylated peptides of zebrafish were then captured by the solid-phase extraction of N-linked glycopeptides (SPEG) method and the peptides were identified with an LTQ OrbiTrap Velos mass spectrometer. From 265 unique glycopeptides, including 269 consensus NXT/S glycosites, we identified 169 different N-glycosylated proteins. The identified glycoproteins were highly abundant in proteins belonging to the transporter, cell adhesion, and ion channel/ion binding categories, which are important to embryonic, organ, and central nervous system development. This proteomics data will expand our knowledge about glycoproteins in zebrafish and may be used to elucidate the role that glycosylation plays in cellular processes and disease. The glycoprotein data are available through the GlycoFish database (http://betenbaugh.jhu.edu/GlycoFish) introduced in this paper.
Collapse
Affiliation(s)
- Deniz Baycin-Hizal
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Feitosa NM, Richardson R, Bloch W, Hammerschmidt M. Basement membrane diseases in zebrafish. Methods Cell Biol 2011; 105:191-222. [PMID: 21951531 DOI: 10.1016/b978-0-12-381320-6.00008-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Basement membranes (BMs) are a complex, sheet-like network of specialized extracellular matrix that underlies epithelial cells and surrounds muscle cells. They provide adherence between neighboring tissues, permit some flexibility of these adherent structures, and can act as a store for growth factors and as a guide for cell migration. The BM is not just a static structure; its deposition and remodeling are important for many processes including embryonic development, immune response, and wound healing. To date, dysfunction in BM deposition or remodeling has been linked to many human congenital disorders and diseases, affecting many different tissues in the body, including malformations, dystrophies, and cancer. However, many questions remain to be answered on the role BM proteins, and their mutations, play in the pathogenesis of human disease. In recent years, the zebrafish (Danio rerio) has emerged as a powerful animal model for human development and disease. In the first part of this chapter, we provide an overview of described defects caused by BM dysfunction in zebrafish, including development and function of notochord, muscle, central nervous system, skin, cardiovascular system, and kidney. In the second part, we will describe details of methods used to visualize and assess the structure of the BM in zebrafish, and to functionally analyze its different components.
Collapse
|
39
|
Planar cell polarity signaling in neural development. Curr Opin Neurobiol 2010; 20:572-7. [DOI: 10.1016/j.conb.2010.05.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 05/20/2010] [Accepted: 05/21/2010] [Indexed: 11/15/2022]
|
40
|
Mapp OM, Wanner SJ, Rohrschneider MR, Prince VE. Prickle1b mediates interpretation of migratory cues during zebrafish facial branchiomotor neuron migration. Dev Dyn 2010; 239:1596-608. [PMID: 20503357 DOI: 10.1002/dvdy.22283] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The facial branchiomotor neurons undergo a characteristic tangential migration in the vertebrate hindbrain. Several signaling mechanisms have been implicated in this process, including the non-canonical Wnt/planar cell polarity (PCP) pathway. However, the role of this signaling pathway in controlling the dynamics of these neurons is unclear. Here, we describe the cellular dynamics of the facial neurons as they migrate, focusing on the speed and direction of migration, extension of protrusions, cell shape, and orientation. Furthermore, we show that the PET/LIM domain protein Prickle1b (Pk1b) is required for several aspects of these migratory behaviors, including cell orientation. However, we find that centrosome localization is not significantly affected by disruption of Pk1b function, suggesting that polarization of the neurons is not completely lost. Together, our data suggest that Pk1b function may be required to integrate the multiple migratory cues received by the neurons into polarization instructions for proper posterior movement.
Collapse
Affiliation(s)
- Oni M Mapp
- Committee on Developmental Biology, University of Chicago, Chicago, Illinois, USA
| | | | | | | |
Collapse
|
41
|
Atypical cadherins Celsr1-3 differentially regulate migration of facial branchiomotor neurons in mice. J Neurosci 2010; 30:9392-401. [PMID: 20631168 DOI: 10.1523/jneurosci.0124-10.2010] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During hindbrain development, facial branchiomotor neurons (FBM neurons) migrate from medial rhombomere (r) 4 to lateral r6. In zebrafish, mutations in planar cell polarity genes celsr2 and frizzled3a block caudal migration of FBM neurons. Here, we investigated the role of cadherins Celsr1-3, and Fzd3 in FBM neuron migration in mice. In Celsr1 mutants (knock-out and Crash alleles), caudal migration was compromised and neurons often migrated rostrally into r2 and r3, as well as laterally. These phenotypes were not caused by defects in hindbrain patterning or neuronal specification. Celsr1 is expressed in FBM neuron precursors and the floor plate, but not in FBM neurons. Consistent with this, conditional inactivation showed that the function of Celsr1 in FBM neuron migration was non-cell autonomous. In Celsr2 mutants, FBM neurons initiated caudal migration but moved prematurely into lateral r4 and r5. This phenotype was enhanced by inactivation of Celsr3 in FBM neurons and mimicked by inactivation of Fzd3. Furthermore, Celsr2 was epistatic to Celsr1. These data indicate that Celsr1-3 differentially regulate FBM neuron migration. Celsr1 helps to specify the direction of FBM neuron migration, whereas Celsr2 and 3 control its ability to migrate.
Collapse
|
42
|
Grant PK, Moens CB. The neuroepithelial basement membrane serves as a boundary and a substrate for neuron migration in the zebrafish hindbrain. Neural Dev 2010; 5:9. [PMID: 20350296 PMCID: PMC2857861 DOI: 10.1186/1749-8104-5-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 03/29/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The facial branchiomotor neurons of cranial nerve VII undergo a stereotyped tangential migration in the zebrafish hindbrain that provides an ideal system for examining the complex interactions between neurons and their environment that result in directed migration. Several studies have shown the importance of the planar cell polarity pathway in facial branchiomotor neuron migration but the role of apical-basal polarity has not been determined. Here we examine the role of the PAR-aPKC complex in forming the basal structures that guide facial branchiomotor neurons on an appropriate migratory path. RESULTS High resolution timelapse imaging reveals that facial branchiomotor neurons begin their migration by moving slowly ventrally and posteriorly with their centrosomes oriented medially and then, upon contact with the Laminin-containing basement membrane at the rhombomere 4-rhombomere 5 boundary, speed up and reorient their centrosomes on the anterior-posterior axis. Disruption of the PAR-aPKC complex members aPKClambda, aPKCzeta, and Pard6gb results in an ectopic ventral migration in which facial branchiomotor neurons escape from the hindbrain through holes in the Laminin-containing basement membrane. Mosaic analysis reveals that the requirement for aPKC is cell-nonautonomous, indicating that it is likely required in the surrounding polarized neuroepithelium rather than in facial motor neurons themselves. Ventral facial motor neuron ectopia can be phenocopied by mutation of lamininalpha1, suggesting that it is defects in maintenance of the laminin-containing basement membrane that are the likely cause of ventral mismigration in aPKClambda+zeta double morphants. CONCLUSIONS Our results suggest that the laminin-containing ventral basement membrane, dependent on the activity of the PAR-aPKC complex in the hindbrain neuroepithelium, is both a substrate for migration and a boundary that constrains facial branchiomotor neurons to the appropriate migratory path.
Collapse
Affiliation(s)
- Paul K Grant
- HHMI and Division of Basic Science, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109-1024, USA
| | | |
Collapse
|
43
|
Bingham SM, Sittaramane V, Mapp O, Patil S, Prince VE, Chandrasekhar A. Multiple mechanisms mediate motor neuron migration in the zebrafish hindbrain. Dev Neurobiol 2010; 70:87-99. [PMID: 19937772 DOI: 10.1002/dneu.20761] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The transmembrane protein Van gogh-like 2 (Vangl2) is a component of the noncanonical Wnt/Planar Cell Polarity (PCP) signaling pathway, and is required for tangential migration of facial branchiomotor neurons (FBMNs) from rhombomere 4 (r4) to r5-r7 in the vertebrate hindbrain. Since vangl2 is expressed throughout the zebrafish hindbrain, it might also regulate motor neuron migration in other rhombomeres. We tested this hypothesis by examining whether migration of motor neurons out of r2 following ectopic hoxb1b expression was affected in vangl2(-) (trilobite) mutants. Hoxb1b specifies r4 identity, and when ectopically expressed transforms r2 to an "r4-like" compartment. Using time-lapse imaging, we show that GFP-expressing motor neurons in the r2/r3 region of a hoxb1b-overexpressing wild-type embryo migrate along the anterior-posterior (AP) axis. Furthermore, these cells express prickle1b (pk1b), a Wnt/PCP gene that is specifically expressed in FBMNs and is essential for their migration. Importantly, GFP-expressing motor neurons in the r2/r3 region of hoxb1b-overexpressing trilobite mutants and pk1b morphants often migrate, even though FBMNs in r4 of the same embryos fail to migrate longitudinally (tangentially) into r6 and r7. These observations suggest that tangentially migrating motor neurons in the anterior hindbrain (r1-r3) can use mechanisms that are independent of vangl2 and pk1b functions. Interestingly, analysis of tri; val double mutants also suggests a role for vangl2-independent factors in neuronal migration, since the valentino mutation partially suppresses the trilobite mutant migration defect. Together, the hoxb1b and val experiments suggest that multiple mechanisms regulate motor neuron migration along the AP axis of the zebrafish hindbrain.
Collapse
Affiliation(s)
- Stephanie M Bingham
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | | | |
Collapse
|