1
|
Cooper KL. The case against simplistic genetic explanations of evolution. Development 2024; 151:dev203077. [PMID: 39369308 PMCID: PMC11463953 DOI: 10.1242/dev.203077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Humans are curious to understand the causes of traits that distinguish us from other animals and that distinguish vastly different species from one another. We also have a proclivity for simple stories and sometimes tend toward seeking and accepting simple genetic explanations for large evolutionary shifts, even to a single gene. Here, I reveal how a biased expectation of mechanistic simplicity threads through the long history of evolutionary and developmental genetics. I argue, however, that expecting a simple mechanism threatens a deeper understanding of evolution, and I define the limitations for interpreting experimental evidence in evolutionary developmental genetics.
Collapse
Affiliation(s)
- Kimberly L. Cooper
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
2
|
Mitsiadis TA, Pagella P, Capellini TD, Smith MM. The Notch-mediated circuitry in the evolution and generation of new cell lineages: the tooth model. Cell Mol Life Sci 2023; 80:182. [PMID: 37330998 DOI: 10.1007/s00018-023-04831-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/19/2023] [Accepted: 06/09/2023] [Indexed: 06/20/2023]
Abstract
The Notch pathway is an ancient, evolutionary conserved intercellular signaling mechanism that is involved in cell fate specification and proper embryonic development. The Jagged2 gene, which encodes a ligand for the Notch family of receptors, is expressed from the earliest stages of odontogenesis in epithelial cells that will later generate the enamel-producing ameloblasts. Homozygous Jagged2 mutant mice exhibit abnormal tooth morphology and impaired enamel deposition. Enamel composition and structure in mammals are tightly linked to the enamel organ that represents an evolutionary unit formed by distinct dental epithelial cell types. The physical cooperativity between Notch ligands and receptors suggests that Jagged2 deletion could alter the expression profile of Notch receptors, thus modifying the whole Notch signaling cascade in cells within the enamel organ. Indeed, both Notch1 and Notch2 expression are severely disturbed in the enamel organ of Jagged2 mutant teeth. It appears that the deregulation of the Notch signaling cascade reverts the evolutionary path generating dental structures more reminiscent of the enameloid of fishes rather than of mammalian enamel. Loss of interactions between Notch and Jagged proteins may initiate the suppression of complementary dental epithelial cell fates acquired during evolution. We propose that the increased number of Notch homologues in metazoa enabled incipient sister cell types to form and maintain distinctive cell fates within organs and tissues along evolution.
Collapse
Affiliation(s)
- Thimios A Mitsiadis
- Institute of Oral Biology, Centre for Dental Medicine, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland.
| | - Pierfrancesco Pagella
- Institute of Oral Biology, Centre for Dental Medicine, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland
- Wallenberg Center for Molecular Medicine (WCMM) and Department of Biomedical and Clinical Sciences, Linköpings Universitet, 581 85, Linköping, Sweden
| | - Terence D Capellini
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Moya Meredith Smith
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, King's College London, London, UK
| |
Collapse
|
3
|
Kemmler CL, Moran HR, Murray BF, Scoresby A, Klem JR, Eckert RL, Lepovsky E, Bertho S, Nieuwenhuize S, Burger S, D'Agati G, Betz C, Puller AC, Felker A, Ditrychova K, Bötschi S, Affolter M, Rohner N, Lovely CB, Kwan KM, Burger A, Mosimann C. Next-generation plasmids for transgenesis in zebrafish and beyond. Development 2023; 150:dev201531. [PMID: 36975217 PMCID: PMC10263156 DOI: 10.1242/dev.201531] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/10/2023] [Indexed: 03/29/2023]
Abstract
Transgenesis is an essential technique for any genetic model. Tol2-based transgenesis paired with Gateway-compatible vector collections has transformed zebrafish transgenesis with an accessible modular system. Here, we establish several next-generation transgenesis tools for zebrafish and other species to expand and enhance transgenic applications. To facilitate gene regulatory element testing, we generated Gateway middle entry vectors harboring the small mouse beta-globin minimal promoter coupled to several fluorophores, CreERT2 and Gal4. To extend the color spectrum for transgenic applications, we established middle entry vectors encoding the bright, blue-fluorescent protein mCerulean and mApple as an alternative red fluorophore. We present a series of p2A peptide-based 3' vectors with different fluorophores and subcellular localizations to co-label cells expressing proteins of interest. Finally, we established Tol2 destination vectors carrying the zebrafish exorh promoter driving different fluorophores as a pineal gland-specific transgenesis marker that is active before hatching and through adulthood. exorh-based reporters and transgenesis markers also drive specific pineal gland expression in the eye-less cavefish (Astyanax). Together, our vectors provide versatile reagents for transgenesis applications in zebrafish, cavefish and other models.
Collapse
Affiliation(s)
- Cassie L. Kemmler
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Hannah R. Moran
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Brooke F. Murray
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Aaron Scoresby
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - John R. Klem
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Rachel L. Eckert
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Elizabeth Lepovsky
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Sylvain Bertho
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Susan Nieuwenhuize
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
- Department of Molecular Life Sciences, University of Zurich, 8057 Zürich, Switzerland
| | - Sibylle Burger
- Department of Molecular Life Sciences, University of Zurich, 8057 Zürich, Switzerland
| | - Gianluca D'Agati
- Department of Molecular Life Sciences, University of Zurich, 8057 Zürich, Switzerland
| | - Charles Betz
- Growth & Development, Biozentrum, Spitalstrasse 41, University of Basel, 4056 Basel, Switzerland
| | - Ann-Christin Puller
- Department of Molecular Life Sciences, University of Zurich, 8057 Zürich, Switzerland
| | - Anastasia Felker
- Department of Molecular Life Sciences, University of Zurich, 8057 Zürich, Switzerland
| | - Karolina Ditrychova
- Department of Molecular Life Sciences, University of Zurich, 8057 Zürich, Switzerland
| | - Seraina Bötschi
- Department of Molecular Life Sciences, University of Zurich, 8057 Zürich, Switzerland
| | - Markus Affolter
- Growth & Development, Biozentrum, Spitalstrasse 41, University of Basel, 4056 Basel, Switzerland
| | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - C. Ben Lovely
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Kristen M. Kwan
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Alexa Burger
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Christian Mosimann
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| |
Collapse
|
4
|
Muthuirulan P, Zhao D, Young M, Richard D, Liu Z, Emami A, Portilla G, Hosseinzadeh S, Cao J, Maridas D, Sedlak M, Menghini D, Cheng L, Li L, Ding X, Ding Y, Rosen V, Kiapour AM, Capellini TD. Joint disease-specificity at the regulatory base-pair level. Nat Commun 2021; 12:4161. [PMID: 34230488 PMCID: PMC8260791 DOI: 10.1038/s41467-021-24345-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Given the pleiotropic nature of coding sequences and that many loci exhibit multiple disease associations, it is within non-coding sequence that disease-specificity likely exists. Here, we focus on joint disorders, finding among replicated loci, that GDF5 exhibits over twenty distinct associations, and we identify causal variants for two of its strongest associations, hip dysplasia and knee osteoarthritis. By mapping regulatory regions in joint chondrocytes, we pinpoint two variants (rs4911178; rs6060369), on the same risk haplotype, which reside in anatomical site-specific enhancers. We show that both variants have clinical relevance, impacting disease by altering morphology. By modeling each variant in humanized mice, we observe joint-specific response, correlating with GDF5 expression. Thus, we uncouple separate regulatory variants on a common risk haplotype that cause joint-specific disease. By broadening our perspective, we finally find that patterns of modularity at GDF5 are also found at over three-quarters of loci with multiple GWAS disease associations.
Collapse
Affiliation(s)
| | - Dewei Zhao
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Mariel Young
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Daniel Richard
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Zun Liu
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Alireza Emami
- Department of Orthopaedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gabriela Portilla
- Department of Orthopaedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shayan Hosseinzadeh
- Department of Orthopaedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jiaxue Cao
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - David Maridas
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Mary Sedlak
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Danilo Menghini
- Department of Orthopaedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Liangliang Cheng
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Lu Li
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Xinjia Ding
- Department of Surgery, the Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yan Ding
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Ata M Kiapour
- Department of Orthopaedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Terence D Capellini
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
5
|
Kishimoto K, Furukawa KT, Luz-Madrigal A, Yamaoka A, Matsuoka C, Habu M, Alev C, Zorn AM, Morimoto M. Bidirectional Wnt signaling between endoderm and mesoderm confers tracheal identity in mouse and human cells. Nat Commun 2020; 11:4159. [PMID: 32855415 PMCID: PMC7453000 DOI: 10.1038/s41467-020-17969-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 07/24/2020] [Indexed: 12/20/2022] Open
Abstract
The periodic cartilage and smooth muscle structures in mammalian trachea are derived from tracheal mesoderm, and tracheal malformations result in serious respiratory defects in neonates. Here we show that canonical Wnt signaling in mesoderm is critical to confer trachea mesenchymal identity in human and mouse. At the initiation of tracheal development, endoderm begins to express Nkx2.1, and then mesoderm expresses the Tbx4 gene. Loss of β-catenin in fetal mouse mesoderm causes loss of Tbx4+ tracheal mesoderm and tracheal cartilage agenesis. The mesenchymal Tbx4 expression relies on endodermal Wnt activation and Wnt ligand secretion but is independent of known Nkx2.1-mediated respiratory development, suggesting that bidirectional Wnt signaling between endoderm and mesoderm promotes trachea development. Activating Wnt, Bmp signaling in mouse embryonic stem cell (ESC)-derived lateral plate mesoderm (LPM) generates tracheal mesoderm containing chondrocytes and smooth muscle cells. For human ESC-derived LPM, SHH activation is required along with WNT to generate proper tracheal mesoderm. Together, these findings may contribute to developing applications for human tracheal tissue repair.
Collapse
Affiliation(s)
- Keishi Kishimoto
- Laboratory for Lung Development and Regeneration, Riken Center for Biosystems Dynamics Research (BDR), Kobe, 650-0047, Japan
- RIKEN BDR-CuSTOM Joint Laboratory, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Kana T Furukawa
- Laboratory for Lung Development and Regeneration, Riken Center for Biosystems Dynamics Research (BDR), Kobe, 650-0047, Japan
| | - Agustin Luz-Madrigal
- Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Akira Yamaoka
- Laboratory for Lung Development and Regeneration, Riken Center for Biosystems Dynamics Research (BDR), Kobe, 650-0047, Japan
| | - Chisa Matsuoka
- Laboratory for Lung Development and Regeneration, Riken Center for Biosystems Dynamics Research (BDR), Kobe, 650-0047, Japan
| | - Masanobu Habu
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Cantas Alev
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, 606-8501, Japan
| | - Aaron M Zorn
- RIKEN BDR-CuSTOM Joint Laboratory, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Mitsuru Morimoto
- Laboratory for Lung Development and Regeneration, Riken Center for Biosystems Dynamics Research (BDR), Kobe, 650-0047, Japan.
- RIKEN BDR-CuSTOM Joint Laboratory, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
6
|
Prummel KD, Hess C, Nieuwenhuize S, Parker HJ, Rogers KW, Kozmikova I, Racioppi C, Brombacher EC, Czarkwiani A, Knapp D, Burger S, Chiavacci E, Shah G, Burger A, Huisken J, Yun MH, Christiaen L, Kozmik Z, Müller P, Bronner M, Krumlauf R, Mosimann C. A conserved regulatory program initiates lateral plate mesoderm emergence across chordates. Nat Commun 2019; 10:3857. [PMID: 31451684 PMCID: PMC6710290 DOI: 10.1038/s41467-019-11561-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/22/2019] [Indexed: 01/06/2023] Open
Abstract
Cardiovascular lineages develop together with kidney, smooth muscle, and limb connective tissue progenitors from the lateral plate mesoderm (LPM). How the LPM initially emerges and how its downstream fates are molecularly interconnected remain unknown. Here, we isolate a pan-LPM enhancer in the zebrafish-specific draculin (drl) gene that provides specific LPM reporter activity from early gastrulation. In toto live imaging and lineage tracing of drl-based reporters captures the dynamic LPM emergence as lineage-restricted mesendoderm field. The drl pan-LPM enhancer responds to the transcription factors EomesoderminA, FoxH1, and MixL1 that combined with Smad activity drive LPM emergence. We uncover specific activity of zebrafish-derived drl reporters in LPM-corresponding territories of several chordates including chicken, axolotl, lamprey, Ciona, and amphioxus, revealing a universal upstream LPM program. Altogether, our work provides a mechanistic framework for LPM emergence as defined progenitor field, possibly representing an ancient mesodermal cell state that predates the primordial vertebrate embryo. Numerous tissues are derived from the lateral plate mesoderm (LPM) but how this is specified is unclear. Here, the authors identify a pan-LPM reporter activity found in the zebrafish draculin (drl) gene that also shows transgenic activity in LPM-corresponding territories of several chordates, including chicken, axolotl, lamprey, Ciona, and amphioxus.
Collapse
Affiliation(s)
- Karin D Prummel
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland
| | - Christopher Hess
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland
| | - Susan Nieuwenhuize
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland
| | - Hugo J Parker
- Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS, 66160, USA.,Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Katherine W Rogers
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, 72076, Germany
| | - Iryna Kozmikova
- Institute of Molecular Genetics of the ASCR, Prague, 142 20, Czech Republic
| | - Claudia Racioppi
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, 10003, USA
| | - Eline C Brombacher
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland
| | - Anna Czarkwiani
- TUD-CRTD Center for Regenerative Therapies Dresden, Dresden, 01307, Germany
| | - Dunja Knapp
- TUD-CRTD Center for Regenerative Therapies Dresden, Dresden, 01307, Germany
| | - Sibylle Burger
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland
| | - Elena Chiavacci
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland
| | - Gopi Shah
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | - Alexa Burger
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland
| | - Jan Huisken
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany.,Morgridge Institute for Research, Madison, WI, 53715, USA
| | - Maximina H Yun
- TUD-CRTD Center for Regenerative Therapies Dresden, Dresden, 01307, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, 10003, USA
| | - Zbynek Kozmik
- Institute of Molecular Genetics of the ASCR, Prague, 142 20, Czech Republic
| | - Patrick Müller
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, 72076, Germany
| | - Marianne Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Robb Krumlauf
- Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS, 66160, USA.,Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Christian Mosimann
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland.
| |
Collapse
|
7
|
Han Y, Ren J, Lee E, Xu X, Yu W, Muegge K. Lsh/HELLS regulates self-renewal/proliferation of neural stem/progenitor cells. Sci Rep 2017; 7:1136. [PMID: 28442710 PMCID: PMC5430779 DOI: 10.1038/s41598-017-00804-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 03/16/2017] [Indexed: 12/11/2022] Open
Abstract
Epigenetic mechanisms are known to exert control over gene expression and determine cell fate. Genetic mutations in epigenetic regulators are responsible for several neurologic disorders. Mutations of the chromatin remodeling protein Lsh/HELLS can cause the human Immunodeficiency, Centromere instability and Facial anomalies (ICF) syndrome, which is associated with neurologic deficiencies. We report here a critical role for Lsh in murine neural development. Lsh depleted neural stem/progenitor cells (NSPCs) display reduced growth, increases in apoptosis and impaired ability of self-renewal. RNA-seq analysis demonstrates differential gene expression in Lsh-/- NSPCs and suggests multiple aberrant pathways. Concentrating on specific genomic targets, we show that ablation of Lsh alters epigenetic states at specific enhancer regions of the key cell cycle regulator Cdkn1a and the stem cell regulator Bmp4 in NSPCs and alters their expression. These results suggest that Lsh exerts epigenetic regulation at key regulators of neural stem cell fate ensuring adequate NSPCs self-renewal and maintenance during development.
Collapse
Affiliation(s)
- Yixing Han
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702, USA
| | - Jianke Ren
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702, USA
| | - Eunice Lee
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702, USA
| | - Xiaoping Xu
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702, USA
| | - Weishi Yu
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702, USA
| | - Kathrin Muegge
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702, USA.
- Basic Science Program, Leidos Biomedical Research, Inc., Mouse Cancer Genetics Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, 21702, USA.
| |
Collapse
|
8
|
Chromatin Dynamics in Lineage Commitment and Cellular Reprogramming. Genes (Basel) 2015; 6:641-61. [PMID: 26193323 PMCID: PMC4584322 DOI: 10.3390/genes6030641] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/08/2015] [Accepted: 07/10/2015] [Indexed: 12/15/2022] Open
Abstract
Dynamic structural properties of chromatin play an essential role in defining cell identity and function. Transcription factors and chromatin modifiers establish and maintain cell states through alteration of DNA accessibility and histone modifications. This activity is focused at both gene-proximal promoter regions and distally located regulatory elements. In the three-dimensional space of the nucleus, distal elements are localized in close physical proximity to the gene-proximal regulatory sequences through the formation of chromatin loops. These looping features in the genome are highly dynamic as embryonic stem cells differentiate and commit to specific lineages, and throughout reprogramming as differentiated cells reacquire pluripotency. Identifying these functional distal regulatory regions in the genome provides insight into the regulatory processes governing early mammalian development and guidance for improving the protocols that generate induced pluripotent cells.
Collapse
|
9
|
Identification and analysis of a novel bmp4 enhancer in Fugu genome. Arch Oral Biol 2015; 60:540-5. [PMID: 25594624 DOI: 10.1016/j.archoralbio.2014.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/18/2014] [Accepted: 12/07/2014] [Indexed: 12/24/2022]
Abstract
Spatiotemporal expression of bone morphogenetic protein 4 (Bmp4) in epithelial and mesenchymal cells is critical for the development of many organs including teeth. Since Bmp4 has a complex and widespread regulatory area in mammals, the tissue-specific enhancers that are responsible for mesenchymal expression of Bmp4 are difficult to identify in mammals. TakiFugu rubripes (Fugu, pufferfish) has a highly compact genome size and is widely used in comparative genomics studies of gene regulatory mechanisms. In this study, we used the Fugu genome to evaluate the 15kb promoter region upstream of the Fugu bmp4 gene. By DNA segmental cloning and luciferase assay with two dental odontoblast-like cell lines, a dental ameloblast-like cell line, and a kidney fibroblast cell line, we identified a 485bp cis-regulatory enhancer between -4213 and -3728bp of the Fugu bmp4 gene. This enhancer showed strong transcriptional activity in all three dental cell lines and, to a lesser extent, also in kidney fibroblast cells. Though not located in an evolutionary conserved region, the enhancer activity for the DNA segment is intense. This is the first time a bmp4 enhancer sequence with activity in both mesenchymal and epithelial cells has been identified, which will help to decode the mechanism of tooth development in vertebrates.
Collapse
|
10
|
Pregizer SK, Mortlock DP. Dynamics and cellular localization of Bmp2, Bmp4, and Noggin transcription in the postnatal mouse skeleton. J Bone Miner Res 2015; 30:64-70. [PMID: 25043193 PMCID: PMC4818007 DOI: 10.1002/jbmr.2313] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 06/20/2014] [Accepted: 07/07/2014] [Indexed: 01/09/2023]
Abstract
Transcription of BMPs and their antagonists in precise spatiotemporal patterns is essential for proper skeletal development, maturation, maintenance, and repair. Nevertheless, transcriptional activity of these molecules in skeletal tissues beyond embryogenesis has not been well characterized. In this study, we used several transgenic reporter mouse lines to define the transcriptional activity of two potent BMP ligands, Bmp2 and Bmp4, and their antagonist, Noggin, in the postnatal skeleton. At 3 to 4 weeks of age, Bmp4 and Noggin reporter activity was readily apparent in most cells of the osteogenic or chondrogenic lineages, respectively, whereas Bmp2 reporter activity was strongest in terminally differentiated cells of both lineages. By 5 to 6 months, activity of the reporters had generally abated; however, the Noggin and Bmp2 reporters remained remarkably active in articular chondrocytes and persisted there indefinitely. We further found that endogenous Bmp2, Bmp4, and Noggin transcript levels in postnatal bone and cartilage mirrored the activity of their respective reporters in these tissues. Finally, we found that the activity of the Bmp2, Bmp4, and Noggin reporters in bone and cartilage at 3 to 4 weeks could be recapitulated in both osteogenic and chondrogenic culture models. These results reveal that Bmp2, Bmp4, and Noggin transcription persists to varying degrees in skeletal tissues postnatally, with each gene exhibiting its own cell type-specific pattern of activity. Illuminating these patterns and their dynamics will guide future studies aimed at elucidating both the causes and consequences of aberrant BMP signaling in the postnatal skeleton.
Collapse
Affiliation(s)
- Steven K Pregizer
- Center for Human Genetics Research, Department of Molecular Physiology & Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
| | | |
Collapse
|
11
|
Powder KE, Cousin H, McLinden GP, Craig Albertson R. A nonsynonymous mutation in the transcriptional regulator lbh is associated with cichlid craniofacial adaptation and neural crest cell development. Mol Biol Evol 2014; 31:3113-24. [PMID: 25234704 DOI: 10.1093/molbev/msu267] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Since the time of Darwin, biologists have sought to understand the origins and maintenance of life's diversity of form. However, the nature of the exact DNA mutations and molecular mechanisms that result in morphological differences between species remains unclear. Here, we characterize a nonsynonymous mutation in a transcriptional coactivator, limb bud and heart homolog (lbh), which is associated with adaptive variation in the lower jaw of cichlid fishes. Using both zebrafish and Xenopus, we demonstrate that lbh mediates migration of cranial neural crest cells, the cellular source of the craniofacial skeleton. A single amino acid change that is alternatively fixed in cichlids with differing facial morphologies results in discrete shifts in migration patterns of this multipotent cell type that are consistent with both embryological and adult craniofacial phenotypes. Among animals, this polymorphism in lbh represents a rare example of a coding change that is associated with continuous morphological variation. This work offers novel insights into the development and evolution of the craniofacial skeleton, underscores the evolutionary potential of neural crest cells, and extends our understanding of the genetic nature of mutations that underlie divergence in complex phenotypes.
Collapse
Affiliation(s)
- Kara E Powder
- Department of Biology, University of Massachusetts, Amherst
| | - Hélène Cousin
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst
| | - Gretchen P McLinden
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst
| | | |
Collapse
|
12
|
Herrera A, Shuster S, Perriton C, Cohn M. Developmental Basis of Phallus Reduction during Bird Evolution. Curr Biol 2013; 23:1065-74. [DOI: 10.1016/j.cub.2013.04.062] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 04/18/2013] [Accepted: 04/23/2013] [Indexed: 01/13/2023]
|
13
|
Yasunaga M, Masui E, Oji A, Soma A, Osaki M, Nakanishi T, Sato K. Identification of the control region of pancreatic expression of Bmp4 in vitro and in vivo. PLoS One 2013; 8:e61821. [PMID: 23626735 PMCID: PMC3633997 DOI: 10.1371/journal.pone.0061821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 03/13/2013] [Indexed: 12/28/2022] Open
Abstract
Bone morphogenetic protein 4 (Bmp4) was recently shown to be related to glucose homeostasis in mouse adult pancreas through the regulation of insulin production. We previously revealed the predominant expression of Bmp4 in adult pancreas by in vivo imaging of transgenic mice. However, the control regions for predominant Bmp4 expression in the adult pancreas are unclear. In this study, we established transgenic (Tg) mice that allow real time in vivo bioluminescence imaging of the enhancer/promoter activity of the Bmp4 gene. Tg mice expressing firefly luciferase with a 7 kb upstream region and 5′-non-coding sequence (three exons and two introns) of the Bmp4 gene showed pancreatic expression of bioluminescence, while the Tg mice bearing luciferase with the 7 kb upstream region alone did not show pancreatic expression of the reporter gene. Interestingly, pancreatic expression of bioluminescence was also present in Tg mice harboring the truncated promoter without exon IA and IB, indicating the presence of a cryptic promoter in front of exon II. Furthermore, the bioluminescence signal was not detected in embryonic pancreas, but increasing signals were observed in neonatal and infantile Tg mice depending on the genotypes observed. These results suggested that a novel mechanism of transcription is involved in pancreatic expression of the Bmp4 gene.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Bone Morphogenetic Protein 4/genetics
- Bone Morphogenetic Protein 4/metabolism
- Embryo, Mammalian
- Exons
- Gene Expression Regulation, Developmental
- Genes, Reporter
- Introns
- Luciferases
- Luminescent Measurements
- Mice
- Mice, Transgenic
- Microscopy, Fluorescence
- NIH 3T3 Cells
- Pancreas/growth & development
- Pancreas/metabolism
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Mayu Yasunaga
- Division of Molecular Biology, School of Life Sciences, Tottori University Faculty of Medicine, Yonago, Japan
| | - Eiji Masui
- Division of Molecular Biology, School of Life Sciences, Tottori University Faculty of Medicine, Yonago, Japan
| | - Asami Oji
- Division of Molecular Biology, School of Life Sciences, Tottori University Faculty of Medicine, Yonago, Japan
| | - Atsumi Soma
- Division of Molecular Biology, School of Life Sciences, Tottori University Faculty of Medicine, Yonago, Japan
| | - Mitsuhiko Osaki
- Division of Pathological Biochemistry, School of Life Sciences, Tottori University Faculty of Medicine, Yonago, Japan
- Chromosome Engineering Research Center, Tottori University Faculty of Medicine, Yonago, Japan
| | - Tomoko Nakanishi
- Division of Molecular Biology, School of Life Sciences, Tottori University Faculty of Medicine, Yonago, Japan
- Chromosome Engineering Research Center, Tottori University Faculty of Medicine, Yonago, Japan
| | - Kenzo Sato
- Division of Molecular Biology, School of Life Sciences, Tottori University Faculty of Medicine, Yonago, Japan
- Chromosome Engineering Research Center, Tottori University Faculty of Medicine, Yonago, Japan
- * E-mail:
| |
Collapse
|
14
|
Jumlongras D, Lachke SA, O’Connell DJ, Aboukhalil A, Li X, Choe SE, Ho JWK, Turbe-Doan A, Robertson EA, Olsen BR, Bulyk ML, Amendt BA, Maas RL. An evolutionarily conserved enhancer regulates Bmp4 expression in developing incisor and limb bud. PLoS One 2012; 7:e38568. [PMID: 22701669 PMCID: PMC3373496 DOI: 10.1371/journal.pone.0038568] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 05/07/2012] [Indexed: 12/02/2022] Open
Abstract
To elucidate the transcriptional regulation of Bmp4 expression during organogenesis, we used phylogenetic footprinting and transgenic reporter analyses to identify Bmp4 cis-regulatory modules (CRMs). These analyses identified a regulatory region located ∼46 kb upstream of the mouse Bmp4 transcription start site that had previously been shown to direct expression in lateral plate mesoderm. We refined this regulatory region to a 396-bp minimal enhancer, and show that it recapitulates features of endogenous Bmp4 expression in developing mandibular arch ectoderm and incisor epithelium during the initiation-stage of tooth development. In addition, this enhancer directs expression in the apical ectodermal ridge (AER) of the developing limb and in anterior and posterior limb mesenchyme. Transcript profiling of E11.5 mouse incisor dental lamina, together with protein binding microarray (PBM) analyses, allowed identification of a conserved DNA binding motif in the Bmp4 enhancer for Pitx homeoproteins, which are also expressed in the developing mandibular and incisor epithelium. In vitro electrophoretic mobility shift assays (EMSA) and in vivo transgenic reporter mutational analyses revealed that this site supports Pitx binding and that the site is necessary to recapitulate aspects of endogenous Bmp4 expression in developing craniofacial and limb tissues. Finally, Pitx2 chromatin immunoprecipitation (ChIP) demonstrated direct binding of Pitx2 to this Bmp4 enhancer site in a dental epithelial cell line. These results establish a direct molecular regulatory link between Pitx family members and Bmp4 gene expression in developing incisor epithelium.
Collapse
Affiliation(s)
- Dolrudee Jumlongras
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston Massachusetts, United States of America
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Salil A. Lachke
- Department of Biological Sciences, Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, United States of America
| | - Daniel J. O’Connell
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston Massachusetts, United States of America
| | - Anton Aboukhalil
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston Massachusetts, United States of America
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
| | - Xiao Li
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, United States of America
| | - Sung E. Choe
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston Massachusetts, United States of America
| | - Joshua W. K. Ho
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston Massachusetts, United States of America
- Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Annick Turbe-Doan
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston Massachusetts, United States of America
| | - Erin A. Robertson
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston Massachusetts, United States of America
| | - Bjorn R. Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Martha L. Bulyk
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston Massachusetts, United States of America
- Department of Pathology, Harvard Medical School, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brad A. Amendt
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, United States of America
| | - Richard L. Maas
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston Massachusetts, United States of America
| |
Collapse
|
15
|
Ren Y, Feng J, Liu ZZ, Wan H, Li JH, Lin X. A new haplotype in BMP4 implicated in ossification of the posterior longitudinal ligament (OPLL) in a Chinese population. J Orthop Res 2012; 30:748-56. [PMID: 22052794 DOI: 10.1002/jor.21586] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 10/07/2011] [Indexed: 02/04/2023]
Abstract
Previous genome-wide microarray analysis of candidate genes involved in the ossification of the posterior longitudinal ligament (OPLL) of the spine resulted in the identification of a novel, clinically relevant gene encoding bone morphogenetic protein 4 (BMP4) but was defined only by its expression patterns. The complete genomic BMP4 coding DNA from 450 patients with OPLL and 550 matched controls were sequenced and compared. We identified 18 SNPs, among which the minor alleles of SNP8 (C>T; p < 0.001; OR: 1.58), SNP13 (rs17563C>T; p < 0.001; OR: 1.76), and SNP14 (rs76335800A>T; p < 0.001; OR: 1.68) were associated with OPLL. Logistic regression analysis showed that the additive model of SNP8 (p < 0.001; OR: 3.48), SNP13 (p < 0.001; OR: 2.22), and SNP14 (p < 0.001; OR: 1.99) retained statistical significance. Linkage disequilibrium (LD) analysis identified a 3-kbp block of intense LD in BMP4 and 1 specific haplotype, TGGGCTT (p < 0.001, OR: 2.54), which was associated with OPLL-associated risk alleles and increased severity of OPLL, as shown by the distribution of ossified vertebrae in patients with OPLL (p = 0.002). Novel mutations in the BMP4 gene and a specific haplotype TGGGCTT appear to contribute to the risk of developing OPLL. Also the severity of OPLL seems to be mediated predominantly by genetic variations in this specific BMP4 gene region, but might be associated with other certain clinical and demographic characteristics in the Chinese population studied.
Collapse
Affiliation(s)
- Yuan Ren
- Department of Orthopaedics, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | | | | | | | | | | |
Collapse
|
16
|
UG4 enhancer-driven GATA-2 and bone morphogenetic protein 4 complementation remedies the CAKUT phenotype in Gata2 hypomorphic mutant mice. Mol Cell Biol 2012; 32:2312-22. [PMID: 22493062 DOI: 10.1128/mcb.06699-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
During renal development, the proper emergence of the ureteric bud (UB) from the Wolffian duct is essential for formation of the urinary system. Previously, we showed that expression of transcription factor GATA-2 in the urogenital primordium was demarcated anteroposteriorly into two domains that were regulated by separate enhancers. While GATA-2 expression in the caudal urogenital mesenchyme is controlled by the UG4 enhancer, its more-rostral expression is regulated by UG2. We found that anteriorly displaced budding led to obstructed megaureters in Gata2 hypomorphic mutant mice, possibly due to reduced expression of the downstream effector bone morphogenetic protein 4 (BMP4). Here, we report that UG4-driven, but not UG2-driven, GATA-2 expression in the urogenital mesenchyme significantly reverts the uropathy observed in the Gata2 hypomorphic mutant mice. Furthermore, the data show that transgenic rescue by GATA-2 reverses the rostral outgrowth of the UB. We also provide evidence for a GATA-2-BMP4 epistatic relationship by demonstrating that reporter gene expression from a Bmp4 bacterial artificial chromosome (BAC) transgene is altered in Gata2 hypomorphs; furthermore, UG4-directed BMP4 expression in the mutants leads to reduced incidence of megaureters. These results demonstrate that GATA-2 expression in the caudal urogenital mesenchyme as directed by the UG4 enhancer is crucial for proper development of the urinary tract and that its regulation of BMP4 expression is a critical aspect of this function.
Collapse
|
17
|
Collins PL, Henderson MA, Aune TM. Diverse functions of distal regulatory elements at the IFNG locus. THE JOURNAL OF IMMUNOLOGY 2012; 188:1726-33. [PMID: 22246629 DOI: 10.4049/jimmunol.1102879] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Previous studies have identified multiple conserved noncoding sequences (CNS) at the mouse Ifng locus sufficient for enhancer activity in cell-based assays. These studies do not directly address biology of the human IFNG locus in a genomic setting. IFNG enhancers may be functionally redundant or each may be functionally unique. We test the hypothesis that each IFNG enhancer has a unique necessary function using a bacterial artificial chromosome transgenic model. We find that CNS-30, CNS-4, and CNS+20 are required at distinct stages of Th1 differentiation, whereas CNS-16 has a repressive role in Th1 and Th2 cells. CNS+20 is required for IFN-γ expression by memory Th1 cells and NKT cells. CNS-4 is required for IFN-γ expression by effector Th1 cells. In contrast, CNS-16, CNS-4, and CNS+20 are each partially required for human IFN-γ expression by NK cells. Thus, IFNG CNS enhancers have redundant necessary functions in NK cells but unique necessary functions in Th cells. These results also demonstrate that distinct CNSs are required to transcribe IFNG at each stage of the Th1 differentiation pathway.
Collapse
Affiliation(s)
- Patrick L Collins
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | |
Collapse
|
18
|
Mutation of Rubie, a novel long non-coding RNA located upstream of Bmp4, causes vestibular malformation in mice. PLoS One 2012; 7:e29495. [PMID: 22253730 PMCID: PMC3257225 DOI: 10.1371/journal.pone.0029495] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 11/29/2011] [Indexed: 12/02/2022] Open
Abstract
Background The vestibular apparatus of the vertebrate inner ear uses three fluid-filled semicircular canals to sense angular acceleration of the head. Malformation of these canals disrupts the sense of balance and frequently causes circling behavior in mice. The Epistatic circler (Ecl) is a complex mutant derived from wildtype SWR/J and C57L/J mice. Ecl circling has been shown to result from the epistatic interaction of an SWR-derived locus on chromosome 14 and a C57L-derived locus on chromosome 4, but the causative genes have not been previously identified. Methodology/Principal Findings We developed a mouse chromosome substitution strain (CSS-14) that carries an SWR/J chromosome 14 on a C57BL/10J genetic background and, like Ecl, exhibits circling behavior due to lateral semicircular canal malformation. We utilized CSS-14 to identify the chromosome 14 Ecl gene by positional cloning. Our candidate interval is located upstream of bone morphogenetic protein 4 (Bmp4) and contains an inner ear-specific, long non-coding RNA that we have designated Rubie (RNA upstream of Bmp4 expressed in inner ear). Rubie is spliced and polyadenylated, and is expressed in developing semicircular canals. However, we discovered that the SWR/J allele of Rubie is disrupted by an intronic endogenous retrovirus that causes aberrant splicing and premature polyadenylation of the transcript. Rubie lies in the conserved gene desert upstream of Bmp4, within a region previously shown to be important for inner ear expression of Bmp4. We found that the expression patterns of Bmp4 and Rubie are nearly identical in developing inner ears. Conclusions/Significance Based on these results and previous studies showing that Bmp4 is essential for proper vestibular development, we propose that Rubie is the gene mutated in Ecl mice, that it is involved in regulating inner ear expression of Bmp4, and that aberrant Bmp4 expression contributes to the Ecl phenotype.
Collapse
|
19
|
Wolf XA, Klein T, Garcia R, Hyttel P, Serup P. Identification of a conserved cis-acting region driving expression of mouse Eomesodermin to the primitive streak, node, and definitive endoderm. Gene Expr Patterns 2012; 12:85-93. [DOI: 10.1016/j.gep.2011.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 06/20/2011] [Accepted: 06/24/2011] [Indexed: 12/12/2022]
|
20
|
Yasunaga M, Oumi N, Osaki M, Kazuki Y, Nakanishi T, Oshimura M, Sato K. Establishment and characterization of a transgenic mouse model for in vivo imaging of Bmp4 expression in the pancreas. PLoS One 2011; 6:e24956. [PMID: 21949805 PMCID: PMC3174230 DOI: 10.1371/journal.pone.0024956] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 08/25/2011] [Indexed: 12/17/2022] Open
Abstract
Type-2 diabetes results from the development of insulin resistance and a concomitant impairment of insulin secretion. Bone morphogenetic protein 4 (Bmp4)-Bmp receptor 1A signaling in β cells has recently been reported to be required for insulin production and secretion. In addition, Bmp4 blocks the differentiation and promotes the expansion of endocrine progenitor cells. Bmp4 therefore regulates the maintenance of homeostasis in the pancreas. In this study, we constructed a reporter plasmid carrying 7-kb enhancer and promoter region of the Bmp4 gene upstream of the firefly luciferase gene. We used this construct to produce transgenic mice by pro-nuclear microinjection, for subsequent in vivo monitoring of Bmp4 expression. The bioluminescent signal was detected mainly in the pancreas in three independent lines of transgenic mice. Furthermore, the bioluminescent signal was enhanced in association with the autophagy response to 24-h fasting. These results suggest that pancreatic expression of Bmp4 is involved in responding to the physiological environment, including through autophagy. These mouse models represent useful tools for toxicological screening, and for investigating the mechanisms responsible for pancreatic Bmp4 functions in vivo, with relevance to improving our understanding of pancreatic diseases.
Collapse
Affiliation(s)
- Mayu Yasunaga
- Division of Molecular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, Yonago, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Oxburgh L. Control of the bone morphogenetic protein 7 gene in developmental and adult life. Curr Genomics 2011; 10:223-30. [PMID: 19949543 PMCID: PMC2709933 DOI: 10.2174/138920209788488490] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 03/20/2009] [Accepted: 03/20/2009] [Indexed: 11/24/2022] Open
Abstract
The TGFβ superfamily growth factor BMP7 performs essential biological functions in embryonic development and regeneration of injured tissue in the adult. BMP7 activity is regulated at numerous levels in the signaling pathway by the expression of extracellular antagonists, decoy receptors and inhibitory cell signaling components. Additionally, expression of the BMP7 gene is tightly controlled both during embryonic development and adult life. In this review, the current status of work on regulation of BMP7 at the genomic level is discussed. In situ hybridization and reporter gene studies have conclusively defined patterns of BMP7 expression in many tissues. Additionally, both in vivo and cell culture studies have defined some of the mechanistic bases for this regulation. In addition to transcriptional activation mediated by binding of activating transcription factors, there is also strong evidence for repression through recruitment of histone modifying enzymes to specific genetic elements. This review summarizes our current understanding of BMP7 gene regulation in embryonic development and adult tissues.
Collapse
Affiliation(s)
- Leif Oxburgh
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA
| |
Collapse
|
22
|
Kong H, Wang Y, Patel M, Mues G, D'Souza RN. Regulation of bmp4 expression in odontogenic mesenchyme: from simple to complex. Cells Tissues Organs 2011; 194:156-60. [PMID: 21546760 DOI: 10.1159/000324747] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
For many years the molecular mechanisms governing bone morphogenetic protein 4 (Bmp4) expression in tooth bud mesenchyme could be explained by an uncomplicated model involving the interaction of the homeobox gene Msx1 and the paired domain gene Pax9 and a limited proximal promoter segment of Bmp4. New insights have led to major revisions, but we are still far from understanding the role of Msx1 and Pax9 in the complex processes that result in the expression of Bmp4 in the mesenchymal layer of the developing tooth bud. The objective of these studies was to gain further insight into the molecular relationship between Pax9, Msx1, and Bmp4 in dental mesenchyme and explore its association with nonsyndromic tooth agenesis in humans.
Collapse
Affiliation(s)
- Hui Kong
- Department of Biomedical Sciences, Texas A&M University Health Science Center Baylor College of Dentistry, Dallas, TX, USA
| | | | | | | | | |
Collapse
|
23
|
Abstract
Mutations in the transcription factors PAX9 and MSX1 cause selective tooth agenesis in humans. In tooth bud mesenchyme of mice, both proteins are required for the expression of Bmp4, which is the key signaling factor for progression to the next step of tooth development. We have previously shown that Pax9 can transactivate a 2.4-kb Bmp4 promoter construct, and that most tooth-agenesis-causing PAX9 mutations impair DNA binding and Bmp4 promoter activation. We also found that Msx1 by itself represses transcription from this proximal Bmp4 promoter, and that, in combination with Pax9, it acts as a potentiator of Pax9-induced Bmp4 transactivation. This synergism of Msx1 with Pax9 is significant, because it is currently the only documented mechanism for Msx1-mediated activation of Bmp4. In this study, we investigated whether the 5 known tooth-agenesis-causing MSX1 missense mutations disrupt this Pax9-potentiation effect, or if they lead to deficiencies in protein stability, protein-protein interactions, nuclear translocation, and DNA-binding. We found that none of the studied molecular mechanisms yielded a satisfactory explanation for the pathogenic effects of the Msx1 mutations, calling for an entirely different approach to the investigation of this step of odontogenesis on the molecular level.
Collapse
Affiliation(s)
- Y Wang
- Department of Biomedical Sciences, Texas A&M University Health Science Center Baylor College of Dentistry, 3302 Gaston Ave., Dallas, TX 75246, USA
| | | | | | | |
Collapse
|
24
|
Mitsiadis TA, Graf D, Luder H, Gridley T, Bluteau G. BMPs and FGFs target Notch signalling via jagged 2 to regulate tooth morphogenesis and cytodifferentiation. Development 2010; 137:3025-35. [PMID: 20685737 DOI: 10.1242/dev.049528] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The Notch signalling pathway is an evolutionarily conserved intercellular signalling mechanism that is essential for cell fate specification and proper embryonic development. We have analysed the expression, regulation and function of the jagged 2 (Jag2) gene, which encodes a ligand for the Notch family of receptors, in developing mouse teeth. Jag2 is expressed in epithelial cells that give rise to the enamel-producing ameloblasts from the earliest stages of tooth development. Tissue recombination experiments showed that its expression in epithelium is regulated by mesenchyme-derived signals. In dental explants cultured in vitro, the local application of fibroblast growth factors upregulated Jag2 expression, whereas bone morphogenetic proteins provoked the opposite effect. Mice homozygous for a deletion in the Notch-interaction domain of Jag2 presented a variety of severe dental abnormalities. In molars, the crown morphology was misshapen, with additional cusps being formed. This was due to alterations in the enamel knot, an epithelial signalling structure involved in molar crown morphogenesis, in which Bmp4 expression and apoptosis were altered. In incisors, cytodifferentiation and enamel matrix deposition were inhibited. The expression of Tbx1 in ameloblast progenitors, which is a hallmark for ameloblast differentiation and enamel formation, was dramatically reduced in Jag2(-/-) teeth. Together, these results demonstrate that Notch signalling mediated by Jag2 is indispensable for normal tooth development.
Collapse
Affiliation(s)
- Thimios A Mitsiadis
- Institute of Oral Biology, ZZMK, Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
25
|
McGaughey DM, McCallion AS. Efficient discovery of ASCL1 regulatory sequences through transgene pooling. Genomics 2010; 95:363-9. [PMID: 20206680 PMCID: PMC2904508 DOI: 10.1016/j.ygeno.2010.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 02/19/2010] [Accepted: 02/25/2010] [Indexed: 10/19/2022]
Abstract
Zebrafish transgenesis is a powerful and increasingly common strategy to assay vertebrate transcriptional regulatory control. Several challenges remain, however, to the broader application of this technique; they include increasing the rate with which transgenes can be analyzed and maximizing the informational value of the data generated. Presently, many rely on the injection of individual constructs and the analysis of resulting reporter expression in mosaic G0 embryos. Here, we contrast these approaches, examining whether injecting pooled transgene constructs can increase the efficiency with which regulatory sequences can be assayed, restricting analysis to the offspring of germ line transmitting transgenic zebrafish in an effort to reduce potential subjectivity. We selected a 64kb interval encompassing the human ASCL1 locus as our model interval and report the analysis of 9 highly conserved putative enhancers therein. We identified 32 transgene-positive zebrafish, transmitting one or more independent constructs displaying ASCL1-like regulatory control. Through examination of embryos harboring one or more transgenes, we demonstrate that five of the nine sequences account for the observed control and describe their likely roles in ASCL1 regulation. These data demonstrate the utility of this approach and its potential for further adaptation and higher throughput application.
Collapse
Affiliation(s)
- David M. McGaughey
- McKusick - Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, BRB Suite 449, Baltimore, MD 21205, USA
| | - Andrew S. McCallion
- McKusick - Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, BRB Suite 449, Baltimore, MD 21205, USA
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
26
|
Reed NP, Mortlock DP. Identification of a distant cis-regulatory element controlling pharyngeal arch-specific expression of zebrafish gdf6a/radar. Dev Dyn 2010; 239:1047-60. [PMID: 20201106 PMCID: PMC3110066 DOI: 10.1002/dvdy.22251] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Skeletal formation is an essential and intricately regulated part of vertebrate development. Humans and mice deficient in growth and differentiation factor 6 (Gdf6) have numerous skeletal abnormalities, including joint fusions and cartilage reductions. The expression of Gdf6 is dynamic and in part regulated by distant evolutionarily conserved cis-regulatory elements. radar/gdf6a is a zebrafish ortholog of Gdf6 and has an essential role in embryonic patterning. Here, we show that radar is transcribed in the cells surrounding and between the developing cartilages of the ventral pharyngeal arches, similar to mouse Gdf6. A 312 bp evolutionarily conserved region (ECR5), 122 kilobases downstream, drives expression in a pharyngeal arch-specific manner similar to endogenous radar/gdf6a. Deletion analysis identified a 78 bp region within ECR5 that is essential for transgene activity. This work illustrates that radar is regulated in the pharyngeal arches by a distant conserved element and suggests radar has similar functions in skeletal development in fish and mammals.
Collapse
Affiliation(s)
- Nykolaus P. Reed
- Dept of Microbial Pathogenesis & Immune Response, School of Graduate Studies and Research, Meharry Medical College, 1005 D.B. Todd Blvd, Nashville, Tennessee 37208
| | - Douglas P. Mortlock
- Department of Molecular Physiology and Biophysics, Center for Human Genetics Research, Vanderbilt University School of Medicine, 519 Light Hall, 2215 Garland Avenue, Nashville, Tennessee 37232
| |
Collapse
|
27
|
Vervoort R, Ceulemans H, Van Aerschot L, D'Hooge R, David G. Genetic modification of the inner ear lateral semicircular canal phenotype of the Bmp4 haplo-insufficient mouse. Biochem Biophys Res Commun 2010; 394:780-5. [PMID: 20233579 DOI: 10.1016/j.bbrc.2010.03.069] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Accepted: 03/10/2010] [Indexed: 12/27/2022]
Abstract
In the mouse, development of the lateral semicircular canal of the inner ear is sensitive to Bmp4 heterozygosity. In the C57BL6 background 30% of the heterozygotes display circling behavior, 66% have a specific defect in the vestibular part of the inner ear, namely the constriction, interruption or absence of the lateral semicircular canal. Only mice having both ears affected display circling behavior. In the (C57BL6xCBA)N1 background, the penetrance of the canal phenotype is greatly reduced, and bilateral lateral canal defect is not sufficient to induce circling. We found association of the canal phenotype with the genotype of markers on chromosome 14 and 4, co-localizing with Ecs and Eclb identified in the Ecl mouse with similar lateral canal defects. Candidate genes to contain the causal mutation are Bmp4 on chromosome 14, and Rere on chromosome 4.
Collapse
Affiliation(s)
- Raf Vervoort
- Laboratory of Glycobiology and Developmental Genetics, Flanders Institute for Biotechnology (VIB) and Department of Human Genetics, Katholieke Universiteit Leuven, Herestraat 49 bus 602, B-3000 Leuven, Belgium.
| | | | | | | | | |
Collapse
|
28
|
Abstract
Much evidence suggests that "developmental regulator" genes, like those encoding transcription factors and signaling molecules, are typically controlled by many modular, tissue-specific cis-regulatory elements that function during embryogenesis. These elements are often far from gene coding regions and promoters. Bone morphogenetic proteins (BMPs) drive many processes in development relating to organogenesis and differentiation. Four BMP family members, Bmp2, Bmp4, Bmp5, and Gdf6, are now known to be under the control of distant cis-regulatory elements. BMPs are thus firmly placed in the category of genes prone to this phenomenon. The analysis of distant BMP regulatory elements has provided insight into the many pleiotropic effects of BMP genes, and underscores the biological importance of non-coding genomic DNA elements.
Collapse
|