1
|
Wu YC, Beets I, Fox BW, Fajardo Palomino D, Chen L, Liao CP, Vandewyer E, Lin LY, He CW, Chen LT, Lin CT, Schroeder FC, Pan CL. Intercellular sphingolipid signaling mediates aversive learning in C. elegans. Curr Biol 2025; 35:2323-2336.e9. [PMID: 40252647 DOI: 10.1016/j.cub.2025.03.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/02/2025] [Accepted: 03/31/2025] [Indexed: 04/21/2025]
Abstract
Physiological stress in non-neural tissues drives aversive learning for sensory cues associated with stress. However, the identities of signals derived from non-neural tissues and the mechanisms by which these signals mediate aversive learning remain elusive. Here, we show that intercellular sphingolipid signaling contributes to aversive learning under mitochondrial stress in C. elegans. We found that stress-induced aversive learning requires sphingosine kinase, SPHK-1, the enzyme that produces sphingosine-1-phosphate (S1P). Genetic and biochemical studies revealed an intercellular signaling pathway in which intestinal or hypodermal SPHK-1 signals through the neuronal G protein-coupled receptor, SPHR-1, and modulates responses of the octopaminergic RIC neuron to promote aversive learning. We further show that SPHK-1-mediated sphingolipid signaling is required for learned aversion of Chryseobacterium indologenes, a bacterial pathogen found in the natural habitats of C. elegans, which causes mitochondrial stress. Taken together, our work reveals a sphingolipid signaling pathway that communicates from intestinal or hypodermal tissues to neurons to promote aversive learning in response to mitochondrial stress and pathogen infection.
Collapse
Affiliation(s)
- Yu-Chun Wu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; Center for Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Isabel Beets
- Department of Biology, KU Leuven, Naamsestraat 59 - Box 2465, Isabel Beets, Leuven, Belgium
| | - Bennett William Fox
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, 533 Tower Road, Ithaca, NY 14853, USA
| | - Diana Fajardo Palomino
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, 533 Tower Road, Ithaca, NY 14853, USA
| | - Li Chen
- Department of Biology, KU Leuven, Naamsestraat 59 - Box 2465, Isabel Beets, Leuven, Belgium
| | - Chien-Po Liao
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; Center for Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Elke Vandewyer
- Department of Biology, KU Leuven, Naamsestraat 59 - Box 2465, Isabel Beets, Leuven, Belgium
| | - Liang-Yi Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Chun-Wei He
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; Center for Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Li-Tzu Chen
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; Center for Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Chih-Ta Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, 533 Tower Road, Ithaca, NY 14853, USA
| | - Chun-Liang Pan
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; Center for Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan.
| |
Collapse
|
2
|
Popiel EM, Ahluwalia R, Schuetz S, Yu B, Derry WB. MRCK-1 activates non-muscle myosin for outgrowth of a unicellular tube in Caenorhabditis elegans. Development 2024; 151:dev202772. [PMID: 39494605 PMCID: PMC11634028 DOI: 10.1242/dev.202772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
The formation and patterning of unicellular biological tubes is essential for metazoan development. It is well established that vascular tubes and neurons use similar guidance cues to direct their development, but the downstream mechanisms that promote the outgrowth of biological tubes are not well characterized. We show that the conserved kinase MRCK-1 and its substrate the regulatory light chain of non-muscle myosin, MLC-4, are required for outgrowth of the unicellular excretory canal in C. elegans. Ablation of MRCK-1 or MLC-4 in the canal causes severe truncations with unlumenized projections of the basal membrane. Structure-function analysis of MRCK-1 indicates that the kinase domain, but not the small GTPase-binding CRIB domain, is required for canal outgrowth. Expression of a phosphomimetic form of MLC-4 rescues canal truncations in mrck-1 mutants and shows enrichment at the growing canal tip. Moreover, our work reveals a previously unreported function for non-muscle myosin downstream of MRCK-1 in excretory canal outgrowth that may be conserved in the development of seamless tubes in other organisms.
Collapse
Affiliation(s)
- Evelyn M. Popiel
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1X5, Canada
| | - Rhea Ahluwalia
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON M5G 0A4, Canada
- Ontario Institute for Cancer Research, 661 University Avenue, Toronto, ON M5G 0A3, Canada
| | - Stefan Schuetz
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1X5, Canada
| | - Bin Yu
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - W. Brent Derry
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1X5, Canada
| |
Collapse
|
3
|
Sundaram MV, Pujol N. The Caenorhabditis elegans cuticle and precuticle: a model for studying dynamic apical extracellular matrices in vivo. Genetics 2024; 227:iyae072. [PMID: 38995735 PMCID: PMC11304992 DOI: 10.1093/genetics/iyae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/25/2024] [Indexed: 07/14/2024] Open
Abstract
Apical extracellular matrices (aECMs) coat the exposed surfaces of animal bodies to shape tissues, influence social interactions, and protect against pathogens and other environmental challenges. In the nematode Caenorhabditis elegans, collagenous cuticle and zona pellucida protein-rich precuticle aECMs alternately coat external epithelia across the molt cycle and play many important roles in the worm's development, behavior, and physiology. Both these types of aECMs contain many matrix proteins related to those in vertebrates, as well as some that are nematode-specific. Extensive differences observed among tissues and life stages demonstrate that aECMs are a major feature of epithelial cell identity. In addition to forming discrete layers, some cuticle components assemble into complex substructures such as ridges, furrows, and nanoscale pillars. The epidermis and cuticle are mechanically linked, allowing the epidermis to sense cuticle damage and induce protective innate immune and stress responses. The C. elegans model, with its optical transparency, facilitates the study of aECM cell biology and structure/function relationships and all the myriad ways by which aECM can influence an organism.
Collapse
Affiliation(s)
- Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Nathalie Pujol
- Aix Marseille University, INSERM, CNRS, CIML, Turing Centre for Living Systems, 13009 Marseille, France
| |
Collapse
|
4
|
Cohen JD, Cadena del Castillo CE, Serra ND, Kaech A, Spang A, Sundaram MV. The Caenorhabditis elegans Patched domain protein PTR-4 is required for proper organization of the precuticular apical extracellular matrix. Genetics 2021; 219:iyab132. [PMID: 34740248 PMCID: PMC8570789 DOI: 10.1093/genetics/iyab132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/04/2021] [Indexed: 12/30/2022] Open
Abstract
The Patched-related superfamily of transmembrane proteins can transport lipids or other hydrophobic molecules across cell membranes. While the Hedgehog receptor Patched has been intensively studied, much less is known about the biological roles of other Patched-related family members. Caenorhabditis elegans has a large number of Patched-related proteins, despite lacking a canonical Hedgehog pathway. Here, we show that PTR-4 promotes the assembly of the precuticle apical extracellular matrix, a transient and molecularly distinct matrix that precedes and patterns the later collagenous cuticle or exoskeleton. ptr-4 mutants share many phenotypes with precuticle mutants, including defects in eggshell dissolution, tube shaping, alae (cuticle ridge) structure, molting, and cuticle barrier function. PTR-4 localizes to the apical side of a subset of outward-facing epithelia, in a cyclical manner that peaks when precuticle matrix is present. Finally, PTR-4 is required to limit the accumulation of the lipocalin LPR-3 and to properly localize the Zona Pellucida domain protein LET-653 within the precuticle. We propose that PTR-4 transports lipids or other hydrophobic components that help to organize the precuticle and that the cuticle and molting defects seen in ptr-4 mutants result at least in part from earlier disorganization of the precuticle.
Collapse
Affiliation(s)
- Jennifer D Cohen
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | - Nicholas D Serra
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Andres Kaech
- Center for Microscopy and Image Analysis, University of Zürich, 8006 Zürich, Switzerland
| | - Anne Spang
- Biozentrum, University of Basel, 4001 Basel, Switzerland
| | - Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
5
|
Lambert J, Lloret-Fernández C, Laplane L, Poole RJ, Jarriault S. On the origins and conceptual frameworks of natural plasticity-Lessons from single-cell models in C. elegans. Curr Top Dev Biol 2021; 144:111-159. [PMID: 33992151 DOI: 10.1016/bs.ctdb.2021.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
How flexible are cell identities? This problem has fascinated developmental biologists for several centuries and can be traced back to Abraham Trembley's pioneering manipulations of Hydra to test its regeneration abilities in the 1700s. Since the cell theory in the mid-19th century, developmental biology has been dominated by a single framework in which embryonic cells are committed to specific cell fates, progressively and irreversibly acquiring their differentiated identities. This hierarchical, unidirectional and irreversible view of cell identity has been challenged in the past decades through accumulative evidence that many cell types are more plastic than previously thought, even in intact organisms. The paradigm shift introduced by such plasticity calls into question several other key traditional concepts, such as how to define a differentiated cell or more generally cellular identity, and has brought new concepts, such as distinct cellular states. In this review, we want to contribute to this representation by attempting to clarify the conceptual and theoretical frameworks of cell plasticity and identity. In the context of these new frameworks we describe here an atlas of natural plasticity of cell identity in C. elegans, including our current understanding of the cellular and molecular mechanisms at play. The worm further provides interesting cases at the borderlines of cellular plasticity that highlight the conceptual challenges still ahead. We then discuss a set of future questions and perspectives arising from the studies of natural plasticity in the worm that are shared with other reprogramming and plasticity events across phyla.
Collapse
Affiliation(s)
- Julien Lambert
- IGBMC, Development and Stem Cells Department, CNRS UMR7104, INSERM U1258, Université de Strasbourg, Strasbourg, France
| | - Carla Lloret-Fernández
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Lucie Laplane
- CNRS UMR 8590, University Paris I Panthéon-Sorbonne, IHPST, Paris, France
| | - Richard J Poole
- Department of Cell and Developmental Biology, University College London, London, United Kingdom.
| | - Sophie Jarriault
- IGBMC, Development and Stem Cells Department, CNRS UMR7104, INSERM U1258, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
6
|
Serra ND, Sundaram MV. Transcytosis in the development and morphogenesis of epithelial tissues. EMBO J 2021; 40:e106163. [PMID: 33792936 DOI: 10.15252/embj.2020106163] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/21/2020] [Accepted: 01/14/2021] [Indexed: 12/15/2022] Open
Abstract
Transcytosis is a form of specialized transport through which an extracellular cargo is endocytosed, shuttled across the cytoplasm in membrane-bound vesicles, and secreted at a different plasma membrane surface. This important process allows membrane-impermeable macromolecules to pass through a cell and become accessible to adjacent cells and tissue compartments. Transcytosis also promotes redistribution of plasma membrane proteins and lipids to different regions of the cell surface. Here we review transcytosis and highlight in vivo studies showing how developing epithelial cells use it to change shape, to migrate, and to relocalize signaling molecules.
Collapse
Affiliation(s)
- Nicholas D Serra
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Meera V Sundaram
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
7
|
Abrams J, Nance J. A polarity pathway for exocyst-dependent intracellular tube extension. eLife 2021; 10:65169. [PMID: 33687331 PMCID: PMC8021397 DOI: 10.7554/elife.65169] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/08/2021] [Indexed: 12/25/2022] Open
Abstract
Lumen extension in intracellular tubes can occur when vesicles fuse with an invading apical membrane. Within the Caenorhabditis elegans excretory cell, which forms an intracellular tube, the exocyst vesicle-tethering complex is enriched at the lumenal membrane and is required for its outgrowth, suggesting that exocyst-targeted vesicles extend the lumen. Here, we identify a pathway that promotes intracellular tube extension by enriching the exocyst at the lumenal membrane. We show that PAR-6 and PKC-3/aPKC concentrate at the lumenal membrane and promote lumen extension. Using acute protein depletion, we find that PAR-6 is required for exocyst membrane recruitment, whereas PAR-3, which can recruit the exocyst in mammals, appears dispensable for exocyst localization and lumen extension. Finally, we show that CDC-42 and RhoGEF EXC-5/FGD regulate lumen extension by recruiting PAR-6 and PKC-3 to the lumenal membrane. Our findings reveal a pathway that connects CDC-42, PAR proteins, and the exocyst to extend intracellular tubes.
Collapse
Affiliation(s)
- Joshua Abrams
- Skirball Institute of Biomolecular Medicine, NYU Grossman School of Medicine, New York, United States
| | - Jeremy Nance
- Skirball Institute of Biomolecular Medicine, NYU Grossman School of Medicine, New York, United States.,Department of Cell Biology, NYU Grossman School of Medicine, New York, United States
| |
Collapse
|
8
|
Hartman JH, Widmayer SJ, Bergemann CM, King DE, Morton KS, Romersi RF, Jameson LE, Leung MCK, Andersen EC, Taubert S, Meyer JN. Xenobiotic metabolism and transport in Caenorhabditis elegans. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2021; 24:51-94. [PMID: 33616007 PMCID: PMC7958427 DOI: 10.1080/10937404.2021.1884921] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Caenorhabditis elegans has emerged as a major model in biomedical and environmental toxicology. Numerous papers on toxicology and pharmacology in C. elegans have been published, and this species has now been adopted by investigators in academic toxicology, pharmacology, and drug discovery labs. C. elegans has also attracted the interest of governmental regulatory agencies charged with evaluating the safety of chemicals. However, a major, fundamental aspect of toxicological science remains underdeveloped in C. elegans: xenobiotic metabolism and transport processes that are critical to understanding toxicokinetics and toxicodynamics, and extrapolation to other species. The aim of this review was to initially briefly describe the history and trajectory of the use of C. elegans in toxicological and pharmacological studies. Subsequently, physical barriers to chemical uptake and the role of the worm microbiome in xenobiotic transformation were described. Then a review of what is and is not known regarding the classic Phase I, Phase II, and Phase III processes was performed. In addition, the following were discussed (1) regulation of xenobiotic metabolism; (2) review of published toxicokinetics for specific chemicals; and (3) genetic diversity of these processes in C. elegans. Finally, worm xenobiotic transport and metabolism was placed in an evolutionary context; key areas for future research highlighted; and implications for extrapolating C. elegans toxicity results to other species discussed.
Collapse
Affiliation(s)
- Jessica H Hartman
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Samuel J Widmayer
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States
| | | | - Dillon E King
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Katherine S Morton
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Riccardo F Romersi
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Laura E Jameson
- School of Mathematical and Natural Sciences, Arizona State University - West Campus, Glendale, Arizona, United States
| | - Maxwell C K Leung
- School of Mathematical and Natural Sciences, Arizona State University - West Campus, Glendale, Arizona, United States
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States
| | - Stefan Taubert
- Dept. Of Medical Genetics, Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, the University of British Colombia, Vancouver, BC, Canada
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| |
Collapse
|
9
|
Abstract
As multi-cellular organisms evolved from small clusters of cells to complex metazoans, biological tubes became essential for life. Tubes are typically thought of as mainly playing a role in transport, with the hollow space (lumen) acting as a conduit to distribute nutrients and waste, or for gas exchange. However, biological tubes also provide a platform for physiological, mechanical, and structural functions. Indeed, tubulogenesis is often a critical aspect of morphogenesis and organogenesis. C. elegans is made up of tubes that provide structural support and protection (the epidermis), perform the mechanical and enzymatic processes of digestion (the buccal cavity, pharynx, intestine, and rectum), transport fluids for osmoregulation (the excretory system), and execute the functions necessary for reproduction (the germline, spermatheca, uterus and vulva). Here we review our current understanding of the genetic regulation, molecular processes, and physical forces involved in tubulogenesis and morphogenesis of the epidermal, digestive and excretory systems in C. elegans.
Collapse
Affiliation(s)
- Daniel D Shaye
- Department of Physiology and Biophysics, University of Illinois at Chicago-College of Medicine, Chicago, IL, United States.
| | - Martha C Soto
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, United States.
| |
Collapse
|
10
|
Abstract
During multicellular organism development, complex structures are sculpted to form organs and tissues, which are maintained throughout adulthood. Many of these processes require cells to fuse with one another, or with themselves. These plasma membrane fusions merge endoplasmic cellular content across external, exoplasmic, space. In the nematode Caenorhabditis elegans, such cell fusions serve as a unique sculpting force, involved in the embryonic morphogenesis of the skin-like multinuclear hypodermal cells, but also in refining delicate structures, such as valve openings and the tip of the tail. During post-embryonic development, plasma membrane fusions continue to shape complex neuron structures and organs such as the vulva, while during adulthood fusion participates in cell and tissue repair. These processes rely on two fusion proteins (fusogens): EFF-1 and AFF-1, which are part of a broader family of structurally related membrane fusion proteins, encompassing sexual reproduction, viral infection, and tissue remodeling. The established capabilities of these exoplasmic fusogens are further expanded by new findings involving EFF-1 and AFF-1 in endocytic vesicle fission and phagosome sealing. Tight regulation by cell-autonomous and non-cell autonomous mechanisms orchestrates these diverse cell fusions at the correct place and time-these processes and their significance are discussed in this review.
Collapse
|
11
|
Cohen JD, Sundaram MV. C. elegans Apical Extracellular Matrices Shape Epithelia. J Dev Biol 2020; 8:E23. [PMID: 33036165 PMCID: PMC7712855 DOI: 10.3390/jdb8040023] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
Apical extracellular matrices (aECMs) coat exposed surfaces of epithelia to shape developing tissues and protect them from environmental insults. Despite their widespread importance for human health, aECMs are poorly understood compared to basal and stromal ECMs. The nematode Caenorhabditis elegans contains a variety of distinct aECMs, some of which share many of the same types of components (lipids, lipoproteins, collagens, zona pellucida domain proteins, chondroitin glycosaminoglycans and proteoglycans) with mammalian aECMs. These aECMs include the eggshell, a glycocalyx-like pre-cuticle, both collagenous and chitin-based cuticles, and other understudied aECMs of internal epithelia. C. elegans allows rapid genetic manipulations and live imaging of fluorescently-tagged aECM components, and is therefore providing new insights into aECM structure, trafficking, assembly, and functions in tissue shaping.
Collapse
Affiliation(s)
| | - Meera V. Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine 415 Curie Blvd, Philadelphia, PA 19104-6145, USA;
| |
Collapse
|
12
|
Mathew R, Rios-Barrera LD, Machado P, Schwab Y, Leptin M. Transcytosis via the late endocytic pathway as a cell morphogenetic mechanism. EMBO J 2020; 39:e105332. [PMID: 32657472 PMCID: PMC7429744 DOI: 10.15252/embj.2020105332] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022] Open
Abstract
Plasma membranes fulfil many physiological functions. In polarized cells, different membrane compartments take on specialized roles, each being allocated correct amounts of membrane. The Drosophila tracheal system, an established tubulogenesis model, contains branched terminal cells with subcellular tubes formed by apical plasma membrane invagination. We show that apical endocytosis and late endosome‐mediated trafficking are required for membrane allocation to the apical and basal membrane domains. Basal plasma membrane growth stops if endocytosis is blocked, whereas the apical membrane grows excessively. Plasma membrane is initially delivered apically and then continuously endocytosed, together with apical and basal cargo. We describe an organelle carrying markers of late endosomes and multivesicular bodies (MVBs) that is abolished by inhibiting endocytosis and which we suggest acts as transit station for membrane destined to be redistributed both apically and basally. This is based on the observation that disrupting MVB formation prevents growth of both compartments.
Collapse
Affiliation(s)
- Renjith Mathew
- Directors' Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - L Daniel Rios-Barrera
- Directors' Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Pedro Machado
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Yannick Schwab
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Maria Leptin
- Directors' Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Institute of Genetics, University of Cologne, Cologne, Germany
| |
Collapse
|
13
|
Brukman NG, Uygur B, Podbilewicz B, Chernomordik LV. How cells fuse. J Cell Biol 2019; 218:1436-1451. [PMID: 30936162 PMCID: PMC6504885 DOI: 10.1083/jcb.201901017] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 12/11/2022] Open
Abstract
Brukman et al. review cell–cell fusion mechanisms, focusing on the identity of the fusogens that mediate these processes and the regulation of their activities. Cell–cell fusion remains the least understood type of membrane fusion process. However, the last few years have brought about major advances in understanding fusion between gametes, myoblasts, macrophages, trophoblasts, epithelial, cancer, and other cells in normal development and in diseases. While different cell fusion processes appear to proceed via similar membrane rearrangements, proteins that have been identified as necessary and sufficient for cell fusion (fusogens) use diverse mechanisms. Some fusions are controlled by a single fusogen; other fusions depend on several proteins that either work together throughout the fusion pathway or drive distinct stages. Furthermore, some fusions require fusogens to be present on both fusing membranes, and in other fusions, fusogens have to be on only one of the membranes. Remarkably, some of the proteins that fuse cells also sculpt single cells, repair neurons, promote scission of endocytic vesicles, and seal phagosomes. In this review, we discuss the properties and diversity of the known proteins mediating cell–cell fusion and highlight their different working mechanisms in various contexts.
Collapse
Affiliation(s)
- Nicolas G Brukman
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Berna Uygur
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | | | - Leonid V Chernomordik
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| |
Collapse
|
14
|
Low IIC, Williams CR, Chong MK, McLachlan IG, Wierbowski BM, Kolotuev I, Heiman MG. Morphogenesis of neurons and glia within an epithelium. Development 2019; 146:dev171124. [PMID: 30683663 PMCID: PMC6398450 DOI: 10.1242/dev.171124] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 01/15/2019] [Indexed: 12/13/2022]
Abstract
To sense the outside world, some neurons protrude across epithelia, the cellular barriers that line every surface of our bodies. To study the morphogenesis of such neurons, we examined the C. elegans amphid, in which dendrites protrude through a glial channel at the nose. During development, amphid dendrites extend by attaching to the nose via DYF-7, a type of protein typically found in epithelial apical ECM. Here, we show that amphid neurons and glia exhibit epithelial properties, including tight junctions and apical-basal polarity, and develop in a manner resembling other epithelia. We find that DYF-7 is a fibril-forming apical ECM component that promotes formation of the tube-shaped glial channel, reminiscent of roles for apical ECM in other narrow epithelial tubes. We also identify a requirement for FRM-2, a homolog of EPBL15/moe/Yurt that promotes epithelial integrity in other systems. Finally, we show that other environmentally exposed neurons share a requirement for DYF-7. Together, our results suggest that these neurons and glia can be viewed as part of an epithelium continuous with the skin, and are shaped by mechanisms shared with other epithelia.
Collapse
Affiliation(s)
- Isabel I C Low
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Claire R Williams
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Megan K Chong
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Ian G McLachlan
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Bradley M Wierbowski
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Irina Kolotuev
- Université de Rennes 1, Plateforme microscopie électronique, 35043 Rennes, France
| | - Maxwell G Heiman
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| |
Collapse
|
15
|
Yu S, Zheng C, Zhou F, Baillie DL, Rose AM, Deng Z, Chu JSC. Genomic identification and functional analysis of essential genes in Caenorhabditis elegans. BMC Genomics 2018; 19:871. [PMID: 30514206 PMCID: PMC6278001 DOI: 10.1186/s12864-018-5251-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 11/14/2018] [Indexed: 11/27/2022] Open
Abstract
Background Essential genes are required for an organism’s viability and their functions can vary greatly, spreading across many pathways. Due to the importance of essential genes, large scale efforts have been undertaken to identify the complete set of essential genes and to understand their function. Studies of genome architecture and organization have found that genes are not randomly disturbed in the genome. Results Using combined genetic mapping, Illumina sequencing, and bioinformatics analyses, we successfully identified 44 essential genes with 130 lethal mutations in genomic regions of C. elegans of around 7.3 Mb from Chromosome I (left). Of the 44 essential genes, six of which were genes not characterized previously by mutant alleles, let-633/let-638 (B0261.1), let-128 (C53H9.2), let-511 (W09C3.4), let-162 (Y47G6A.18), let-510 (Y47G6A.19), and let-131 (Y71G12B.6). Examine essential genes with Hi-C data shows that essential genes tend to cluster within TAD units rather near TAD boundaries. We have also shown that essential genes in the left half of chromosome I in C. elegans function in enzyme and nucleic acid binding activities during fundamental processes, such as DNA replication, transcription, and translation. From protein-protein interaction networks, essential genes exhibit more protein connectivity than non-essential genes in the genome. Also, many of the essential genes show strong expression in embryos or early larvae stages, indicating that they are important to early development. Conclusions Our results confirmed that this work provided a more comprehensive picture of the essential gene and their functional characterization. These genetic resources will offer important tools for further heath and disease research. Electronic supplementary material The online version of this article (10.1186/s12864-018-5251-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shicheng Yu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China. .,Wuhan Frasergen Bioinformatics, Wuhan East Lake High-tech Zone, Wuhan, 430075, China.
| | - Chaoran Zheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Fan Zhou
- Wuhan Frasergen Bioinformatics, Wuhan East Lake High-tech Zone, Wuhan, 430075, China
| | - David L Baillie
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Ann M Rose
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| | | |
Collapse
|
16
|
The AFF-1 exoplasmic fusogen is required for endocytic scission and seamless tube elongation. Nat Commun 2018; 9:1741. [PMID: 29717108 PMCID: PMC5931541 DOI: 10.1038/s41467-018-04091-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 04/03/2018] [Indexed: 12/28/2022] Open
Abstract
Many membranes must merge during cellular trafficking, but fusion and fission events initiating at exoplasmic (non-cytosolic) membrane surfaces are not well understood. Here we show that the C. elegans cell-cell fusogen anchor-cell fusion failure 1 (AFF-1) is required for membrane trafficking events during development of a seamless unicellular tube. EGF-Ras-ERK signaling upregulates AFF-1 expression in the excretory duct tube to promote tube auto-fusion and subsequent lumen elongation. AFF-1 is required for scission of basal endocytic compartments and for apically directed exocytosis to extend the apical membrane. Lumen elongation also requires the transcytosis factor Rab11, but occurs independently of dynamin and clathrin. These results support a transcytosis model of seamless tube lumen growth and show that cell-cell fusogens also can play roles in intracellular membrane trafficking events.
Collapse
|
17
|
Abstract
Cell-cell fusion is essential for fertilization and organ development. Dedicated proteins known as fusogens are responsible for mediating membrane fusion. However, until recently, these proteins either remained unidentified or were poorly understood at the mechanistic level. Here, we review how fusogens surmount multiple energy barriers to mediate cell-cell fusion. We describe how early preparatory steps bring membranes to a distance of ∼10 nm, while fusogens act in the final approach between membranes. The mechanical force exerted by cell fusogens and the accompanying lipidic rearrangements constitute the hallmarks of cell-cell fusion. Finally, we discuss the relationship between viral and eukaryotic fusogens, highlight a classification scheme regrouping a superfamily of fusogens called Fusexins, and propose new questions and avenues of enquiry.
Collapse
Affiliation(s)
- Javier M Hernández
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, D-44227 Dortmund, Germany
| | - Benjamin Podbilewicz
- Department of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
18
|
Rosa JB, Metzstein MM, Ghabrial AS. An Ichor-dependent apical extracellular matrix regulates seamless tube shape and integrity. PLoS Genet 2018; 14:e1007146. [PMID: 29309404 PMCID: PMC5774827 DOI: 10.1371/journal.pgen.1007146] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/19/2018] [Accepted: 12/09/2017] [Indexed: 01/25/2023] Open
Abstract
During sprouting angiogenesis in the vertebrate vascular system, and primary branching in the Drosophila tracheal system, specialized tip cells direct branch outgrowth and network formation. When tip cells lumenize, they form subcellular (seamless) tubes. How these seamless tubes are made, shaped and maintained remains poorly understood. Here we characterize a Drosophila mutant called ichor (ich), and show that ich is essential for the integrity and shape of seamless tubes in tracheal terminal cells. We find that Ich regulates seamless tubulogenesis via its role in promoting the formation of a mature apical extracellular matrix (aECM) lining the lumen of the seamless tubes. We determined that ich encodes a zinc finger protein (CG11966) that acts, as a transcriptional activator required for the expression of multiple aECM factors, including a novel membrane-anchored trypsin protease (CG8213). Thus, the integrity and shape of seamless tubes are regulated by the aECM that lines their lumens.
Collapse
Affiliation(s)
- Jeffrey B. Rosa
- Department of Cell & Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Mark M. Metzstein
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Amin S. Ghabrial
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America
| |
Collapse
|
19
|
Lipocalins Are Required for Apical Extracellular Matrix Organization and Remodeling in Caenorhabditis elegans. Genetics 2017; 207:625-642. [PMID: 28842397 DOI: 10.1534/genetics.117.300207] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/22/2017] [Indexed: 12/11/2022] Open
Abstract
A lipid and glycoprotein-rich apical extracellular matrix (aECM) or glycocalyx lines exposed membranes in the body, and is particularly important to protect narrow tube integrity. Lipocalins ("fat cups") are small, secreted, cup-shaped proteins that bind and transport lipophilic cargo and are often found in luminal or aECM compartments such as mammalian plasma, urine, or tear film. Although some lipocalins can bind known aECM lipids and/or matrix metalloproteinases, it is not known if and how lipocalins affect aECM structure due to challenges in visualizing the aECM in most systems. Here we show that two Caenorhabditiselegans lipocalins, LPR-1 and LPR-3, have distinct functions in the precuticular glycocalyx of developing external epithelia. LPR-1 moves freely through luminal compartments, while LPR-3 stably localizes to a central layer of the membrane-anchored glycocalyx, adjacent to the transient zona pellucida domain protein LET-653 Like LET-653 and other C. elegans glycocalyx components, these lipocalins are required to maintain the patency of the narrow excretory duct tube, and also affect multiple aspects of later cuticle organization. lpr-1 mutants cannot maintain a continuous excretory duct apical domain and have misshapen cuticle ridges (alae) and abnormal patterns of cuticular surface lipid staining. lpr-3 mutants cannot maintain a passable excretory duct lumen, properly degrade the eggshell, or shed old cuticle during molting, and they lack cuticle barrier function. Based on these phenotypes, we infer that both LPR-1 and LPR-3 are required to build a properly organized aECM, while LPR-3 additionally is needed for aECM clearance and remodeling. The C. elegans glycocalyx provides a powerful system, amenable to both genetic analysis and live imaging, for investigating how lipocalins and lipids affect aECM structure.
Collapse
|
20
|
Oren-Suissa M, Gattegno T, Kravtsov V, Podbilewicz B. Extrinsic Repair of Injured Dendrites as a Paradigm for Regeneration by Fusion in Caenorhabditis elegans. Genetics 2017; 206:215-230. [PMID: 28283540 PMCID: PMC5419471 DOI: 10.1534/genetics.116.196386] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 03/07/2017] [Indexed: 11/18/2022] Open
Abstract
Injury triggers regeneration of axons and dendrites. Research has identified factors required for axonal regeneration outside the CNS, but little is known about regeneration triggered by dendrotomy. Here, we study neuronal plasticity triggered by dendrotomy and determine the fate of complex PVD arbors following laser surgery of dendrites. We find that severed primary dendrites grow toward each other and reconnect via branch fusion. Simultaneously, terminal branches lose self-avoidance and grow toward each other, meeting and fusing at the tips via an AFF-1-mediated process. Ectopic branch growth is identified as a step in the regeneration process required for bypassing the lesion site. Failure of reconnection to the severed dendrites results in degeneration of the distal end of the neuron. We discover pruning of excess branches via EFF-1 that acts to recover the original wild-type arborization pattern in a late stage of the process. In contrast, AFF-1 activity during dendritic auto-fusion is derived from the lateral seam cells and not autonomously from the PVD neuron. We propose a model in which AFF-1-vesicles derived from the epidermal seam cells fuse neuronal dendrites. Thus, EFF-1 and AFF-1 fusion proteins emerge as new players in neuronal arborization and maintenance of arbor connectivity following injury in Caenorhabditis elegans Our results demonstrate that there is a genetically determined multi-step pathway to repair broken dendrites in which EFF-1 and AFF-1 act on different steps of the pathway. EFF-1 is essential for dendritic pruning after injury and extrinsic AFF-1 mediates dendrite fusion to bypass injuries.
Collapse
Affiliation(s)
- Meital Oren-Suissa
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Tamar Gattegno
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Veronika Kravtsov
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Benjamin Podbilewicz
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
21
|
Hall DH. Gap junctions in C. elegans: Their roles in behavior and development. Dev Neurobiol 2017; 77:587-596. [PMID: 27294317 PMCID: PMC5412865 DOI: 10.1002/dneu.22408] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/08/2016] [Accepted: 06/08/2016] [Indexed: 01/07/2023]
Abstract
The nematode Caenorhabditis elegans utilizes gap junctions in different fashions in virtually all of its cells. This model animal has a surprisingly large number of innexin genes within its genome, and many nematode cell types can express multiple innexins at once, leading to the formation of diverse junction types and enough redundancy to limit the effect of single gene knockdowns on animal development or behavioral phenotypes. Here, we review the general properties of these junctions, their expression patterns, and their known roles in tissue development and in the animal's connectome. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 587-596, 2017.
Collapse
Affiliation(s)
- David H Hall
- Department of Neuroscience, Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, New York, 10461
| |
Collapse
|
22
|
Klose SP, Rolke D, Baumann O. Morphogenesis of honeybee hypopharyngeal gland during pupal development. Front Zool 2017; 14:22. [PMID: 28428804 PMCID: PMC5397693 DOI: 10.1186/s12983-017-0207-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/05/2017] [Indexed: 12/31/2022] Open
Abstract
Background The hypopharyngeal gland of worker bees contributes to the production of the royal jelly fed to queens and larvae. The gland consists of thousands of two-cell units that are composed of a secretory cell and a duct cell and that are arranged in sets of about 12 around a long collecting duct. Results By fluorescent staining, we have examined the morphogenesis of the hypopharyngeal gland during pupal life, from a saccule lined by a pseudostratified epithelium to the elaborate organ of adult worker bees. The hypopharyngeal gland develops as follows. (1) Cell proliferation occurs during the first day of pupal life in the hypopharyngeal gland primordium. (2) Subsequently, the epithelium becomes organized into rosette-like units of three cells. Two of these will become the secretory cell and the duct cell of the adult secretory units; the third cell contributes only temporarily to the development of the secretory units and is eliminated by apoptosis in the second half of pupal life. (3) The three-cell units of flask-shaped cells undergo complex changes in cell morphology. Thus, by mid-pupal stage, the gland is structurally similar to the adult hypopharyngeal gland. (4) Concomitantly, the prospective secretory cell attains its characteristic subcellular organization by the invagination of a small patch of apical membrane domain, its extension to a tube of about 100 μm in length (termed a canaliculus), and the expansion of the tube to a diameter of about 3 μm. (6) Finally, the canaliculus-associated F-actin system becomes reorganized into rings of bundled actin filaments that are positioned at regular distances along the membrane tube. Conclusions The morphogenesis of the secretory units in the hypopharyngeal gland of the worker bee seems to be based on a developmental program that is conserved, with slight modification, among insects for the production of dermal glands. Elaboration of the secretory cell as a unicellular seamless epithelial tube occurs by invagination of the apical membrane, its extension likely by targeted exocytosis and its expansion, and finally the reorganisation of the membrane-associated F-actin system. Our work is fundamental for future studies of environmental effects on hypopharyngeal gland morphology and development. Electronic supplementary material The online version of this article (doi:10.1186/s12983-017-0207-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sascha Peter Klose
- Institute of Biochemistry and Biology, Department of Animal Physiology, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany.,Present Address: Institute of Biology, Department of Molecular Parasitology, Humboldt University, Philippstrasse 13, 10115 Berlin, Germany
| | - Daniel Rolke
- Institute of Biochemistry and Biology, Department of Animal Physiology, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany
| | - Otto Baumann
- Institute of Biochemistry and Biology, Department of Animal Physiology, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany
| |
Collapse
|
23
|
Pu P, Stone CE, Burdick JT, Murray JI, Sundaram MV. The Lipocalin LPR-1 Cooperates with LIN-3/EGF Signaling To Maintain Narrow Tube Integrity in Caenorhabditis elegans. Genetics 2017; 205:1247-1260. [PMID: 28040739 PMCID: PMC5340336 DOI: 10.1534/genetics.116.195156] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/21/2016] [Indexed: 11/18/2022] Open
Abstract
Lipocalins are secreted cup-shaped glycoproteins that bind sterols, fatty acids, and other lipophilic molecules. Lipocalins have been implicated in a wide array of processes related to lipophilic cargo transport, sequestration, and signaling, and several are used as biomarkers for human disease, but the functions of most lipocalins remain poorly understood. Here we show that the Caenorhabditis elegans lipocalin LPR-1 is required to maintain apical membrane integrity and a continuous lumen in two narrow unicellular tubes, the excretory duct and pore, during a period of rapid lumen elongation. LPR-1 fusion protein is expressed by the duct and pore and accumulates both intracellularly and in apical extracellular compartments, but it can also function cell nonautonomously when provided from outside of the excretory system. lpr-1 mutant defects can be rescued by increased signaling through the epidermal growth factor (EGF)-Ras-extracellular signal regulated kinase (ERK) pathway, which promotes the more elongated duct vs. less elongated pore tube fate. Spatial and temporal rescue experiments indicate that Ras signaling acts within the duct and pore tubes during or prior to cell fate determination to bypass the requirement for LPR-1 lpr-1 mutations did not disrupt LIN-3/EGF-dependent duct-fate specification, prevent functioning of any specific LIN-3/EGF isoform, or alter LET-23/EGFR localization, and reduced signaling did not phenocopy or enhance lpr-1 mutant defects. These data suggest that LPR-1 protects lumen integrity through a LIN-3/EGF-independent mechanism, but that increased signaling upregulates some target(s) that can compensate for lpr-1 absence.
Collapse
Affiliation(s)
- Pu Pu
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Craig E Stone
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Joshua T Burdick
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - John I Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Meera V Sundaram
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
24
|
The Caenorhabditis elegans Excretory System: A Model for Tubulogenesis, Cell Fate Specification, and Plasticity. Genetics 2017; 203:35-63. [PMID: 27183565 DOI: 10.1534/genetics.116.189357] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/07/2016] [Indexed: 12/12/2022] Open
Abstract
The excretory system of the nematode Caenorhabditis elegans is a superb model of tubular organogenesis involving a minimum of cells. The system consists of just three unicellular tubes (canal, duct, and pore), a secretory gland, and two associated neurons. Just as in more complex organs, cells of the excretory system must first adopt specific identities and then coordinate diverse processes to form tubes of appropriate topology, shape, connectivity, and physiological function. The unicellular topology of excretory tubes, their varied and sometimes complex shapes, and the dynamic reprogramming of cell identity and remodeling of tube connectivity that occur during larval development are particularly fascinating features of this organ. The physiological roles of the excretory system in osmoregulation and other aspects of the animal's life cycle are only beginning to be explored. The cellular mechanisms and molecular pathways used to build and shape excretory tubes appear similar to those used in both unicellular and multicellular tubes in more complex organs, such as the vertebrate vascular system and kidney, making this simple organ system a useful model for understanding disease processes.
Collapse
|
25
|
Kravtsov V, Oren-Suissa M, Podbilewicz B. AFF-1 fusogen can rejuvenate the regenerative potential of adult dendritic trees via self-fusion. Development 2017; 144:2364-2374. [DOI: 10.1242/dev.150037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/27/2017] [Indexed: 12/20/2022]
Abstract
The aging brain undergoes structural changes, affecting brain homeostasis, neuronal function and consequently cognition. The complex architecture of dendritic arbors poses a challenge to understanding age-dependent morphological alterations, behavioral plasticity and remodeling following brain injury. Here, we use the PVD polymodal neurons of C. elegans as a model to study how aging affects neuronal plasticity. Using confocal live imaging of C. elegans PVD neurons, we demonstrate age-related progressive morphological alterations of intricate dendritic arbors. We show that insulin/IGF-1 receptor mutations (daf-2) fail to inhibit the progressive morphological aging of dendrites and do not prevent the minor decline in response to harsh touch during aging. We uncovered that PVD aging is characterized by a major decline in regenerative potential of dendrites following experimental laser dendrotomy. Furthermore, the remodeling of transected dendritic trees via AFF-1-mediated self-fusion can be restored in old animals by DAF-2 insulin/IGF-1 receptor mutations, and can be differentially reestablished by ectopic expression of AFF-1 fusion protein (fusogen). Thus, AFF-1 fusogen ectopically expressed in the PVD and mutations in DAF-2/IGF-1R, differentially rejuvenate some aspects of dendritic regeneration following injury.
Collapse
Affiliation(s)
- Veronika Kravtsov
- Department of Biology, Technion- Israel Institute of Technology, Haifa 32000, Israel
| | - Meital Oren-Suissa
- Department of Biology, Technion- Israel Institute of Technology, Haifa 32000, Israel
| | - Benjamin Podbilewicz
- Department of Biology, Technion- Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
26
|
Rudgalvyte M, Peltonen J, Lakso M, Wong G. Chronic MeHg exposure modifies the histone H3K4me3 epigenetic landscape in Caenorhabditis elegans. Comp Biochem Physiol C Toxicol Pharmacol 2017; 191:109-116. [PMID: 27717699 DOI: 10.1016/j.cbpc.2016.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 09/29/2016] [Accepted: 10/02/2016] [Indexed: 01/05/2023]
Abstract
Methylmercury (MeHg) is a persistent environmental pollutant that occurs in the food chain, at occupational sites, and via medical procedures. Exposure in humans and animal models results in renal, neuro, and reproductive toxicities. In this study, we demonstrate that chronic exposure to MeHg (10μM) causes epigenetic landscape modifications of histone H3K4 trimethylation (H3K4me3) marks in Caenorhabditis elegans using chromatin immuno-precipitation sequencing (ChIP-seq). The modifications correspond to the locations of 1467 genes with enhanced and 508 genes with reduced signals. Among enhanced genes are those encoding glutathione-S-transferases, lipocalin-related protein and a cuticular collagen. ChIP-seq enhancement of these genes was confirmed with increased mRNA expression levels revealed by qRT-PCR. Furthermore, we observed enhancement of H3K4me3 marks in these genes in animals exposed to MeHg in utero and assayed at L4 stage. In utero exposure enhanced marks without alterations in mRNA expression except for the lpr-5 gene. Finally, knockdown of lipocalin-related protein gene lpr-5, which is involved in intercellular signaling, and cuticular collagen gene dpy-7, structural component of the cuticle, by RNA interference (RNAi) resulted in increased lethality of animals after MeHg exposure. Our results provide new data on the epigenetic landscape changes elicited by MeHg exposure, as well as describe a unique model for studying in utero effects of heavy metals. Together, these findings may help to understand the toxicological effects of MeHg at the molecular level.
Collapse
Affiliation(s)
- Martina Rudgalvyte
- A. I. Virtanen Institute for Molecular Sciences, Department of Neurobiology, University of Eastern Finland, Kuopio, Finland; Faculty of Health Sciences, University of Macau, Macau, S.A.R., China
| | - Juhani Peltonen
- A. I. Virtanen Institute for Molecular Sciences, Department of Neurobiology, University of Eastern Finland, Kuopio, Finland
| | - Merja Lakso
- A. I. Virtanen Institute for Molecular Sciences, Department of Neurobiology, University of Eastern Finland, Kuopio, Finland
| | - Garry Wong
- Faculty of Health Sciences, University of Macau, Macau, S.A.R., China.
| |
Collapse
|
27
|
Zhang Z, Liu L, Twumasi-Boateng K, Block DHS, Shapira M. FOS-1 functions as a transcriptional activator downstream of the C. elegans JNK homolog KGB-1. Cell Signal 2016; 30:1-8. [PMID: 27864060 DOI: 10.1016/j.cellsig.2016.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/04/2016] [Accepted: 11/13/2016] [Indexed: 12/30/2022]
Abstract
JNK proteins are conserved stress-activated MAP kinases. In C. elegans, the JNK-homolog KGB-1 plays essential roles in protection from heavy metals and protein folding stress. However, the contributions of KGB-1 are age-dependent, providing protection in larvae, but reducing stress resistance and shortening lifespan in adults. Attenuation of DAF-16 was linked to the detrimental contributions of KGB-1 in adults, but its involvement in KGB-1-dependent protection in larvae remains unclear. To characterize age-dependent contributions of KGB-1, we used microarray analysis to measure gene expression following KGB-1 activation either in developing larvae or in adults, achieved by knocking down its negative phosphatase regulator vhp-1. This revealed a robust KGB-1 regulon, most of which consisting of genes induced following KGB-1 activation regardless of age; a smaller number of genes was regulated in an age-dependent manner. We found that the bZIP transcription factor FOS-1 was essential for age-invariant KGB-1-dependent gene induction, but not for age-dependent expression. The latter was more affected by DAF-16, which was further found to be required for KGB-1-dependent cadmium resistance in larvae. Our results identify FOS-1 as a transcriptional activator mediating age-invariant contributions of KGB-1, including a regulatory loop of KGB-1 signaling, but also stress the importance of DAF-16 as a mediator of age-dependent contributions.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Limeng Liu
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kwame Twumasi-Boateng
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Graduate Group in Microbiology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Dena H S Block
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michael Shapira
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Graduate Group in Microbiology, University of California Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
28
|
Chen L, Zhang J, Xu J, Wan L, Teng K, Xiang J, Zhang R, Huang Z, Liu Y, Li W, Liu X. rBmαTX14 Increases the Life Span and Promotes the Locomotion of Caenorhabditis Elegans. PLoS One 2016; 11:e0161847. [PMID: 27611314 PMCID: PMC5017660 DOI: 10.1371/journal.pone.0161847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 08/12/2016] [Indexed: 12/02/2022] Open
Abstract
The scorpion has been extensively used in various pharmacological profiles or as food supplies. The exploration of scorpion venom has been reported due to the presence of recombinant peptides. rBmαTX14 is an α-neurotoxin extracted from the venom gland of the East Asian scorpion Buthus martensii Karsch and can affect ion channel conductance. Here, we investigated the functions of rBmαTX14 using the Caenorhabditis elegans model. Using western blot analysis, rBmαTX14 was shown to be expressed both in the cytoplasm and inclusion bodies in the E.coli Rosetta (DE3) strain. Circular dichroism spectroscopy analysis demonstrated that purified rBmαTX14 retained its biological structures. Next, feeding nematodes with E.coli Rosetta (DE3) expressing rBmαTX14 caused extension of the life span and promoted the locomotion of the nematodes. In addition, we identified several genes that play various roles in the life span and locomotion of C. elegans through microarray analysis and quantitative real-time PCR. Furthermore, if the amino acid site H15 of rBmαTX14 was mutated, rBmαTX14 no longer promoted the C. elegans life span. In conclusion, the results not only demonstrated the functions and mechanism of rBmαTX14 in C. elegans, but also provided the new sight in the utility of recombinant peptides from scorpion venom.
Collapse
Affiliation(s)
- Lan Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Ju Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jie Xu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lu Wan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Kaixuan Teng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jin Xiang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Rui Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zebo Huang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yongmei Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wenhua Li
- School of Life Science, Wuhan University, Wuhan, 430071, China
| | - Xin Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- * E-mail:
| |
Collapse
|
29
|
Gill HK, Cohen JD, Ayala-Figueroa J, Forman-Rubinsky R, Poggioli C, Bickard K, Parry JM, Pu P, Hall DH, Sundaram MV. Integrity of Narrow Epithelial Tubes in the C. elegans Excretory System Requires a Transient Luminal Matrix. PLoS Genet 2016; 12:e1006205. [PMID: 27482894 PMCID: PMC4970718 DOI: 10.1371/journal.pgen.1006205] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/28/2016] [Indexed: 02/07/2023] Open
Abstract
Most epithelial cells secrete a glycoprotein-rich apical extracellular matrix that can have diverse but still poorly understood roles in development and physiology. Zona Pellucida (ZP) domain glycoproteins are common constituents of these matrices, and their loss in humans is associated with a number of diseases. Understanding of the functions, organization and regulation of apical matrices has been hampered by difficulties in imaging them both in vivo and ex vivo. We identified the PAN-Apple, mucin and ZP domain glycoprotein LET-653 as an early and transient apical matrix component that shapes developing epithelia in C. elegans. LET-653 has modest effects on shaping of the vulva and epidermis, but is essential to prevent lumen fragmentation in the very narrow, unicellular excretory duct tube. We were able to image the transient LET-653 matrix by both live confocal imaging and transmission electron microscopy. Structure/function and fluorescence recovery after photobleaching studies revealed that LET-653 exists in two separate luminal matrix pools, a loose fibrillar matrix in the central core of the lumen, to which it binds dynamically via its PAN domains, and an apical-membrane-associated matrix, to which it binds stably via its ZP domain. The PAN domains are both necessary and sufficient to confer a cyclic pattern of duct lumen localization that precedes each molt, while the ZP domain is required for lumen integrity. Ectopic expression of full-length LET-653, but not the PAN domains alone, could expand lumen diameter in the developing gut tube, where LET-653 is not normally expressed. Together, these data support a model in which the PAN domains regulate the ability of the LET-653 ZP domain to interact with other factors at the apical membrane, and this ZP domain interaction promotes expansion and maintenance of lumen diameter. These data identify a transient apical matrix component present prior to cuticle secretion in C. elegans, demonstrate critical roles for this matrix component in supporting lumen integrity within narrow bore tubes such as those found in the mammalian microvasculature, and reveal functional importance of the evolutionarily conserved ZP domain in this tube protecting activity. Most organs in the body are made up of networks of tubes that transport fluids or gases. These tubes come in many different sizes and shapes, with some narrow capillaries being only one cell in diameter. As tubes develop and take their final shapes, they secrete various glycoproteins into their hollow interior or lumen. The functions of these luminal proteins are not well understood, but there is increasing evidence that they are important for lumen shaping and that their loss can contribute to diseases such as cardiovascular disease and chronic kidney disease. Through studies of the nematode C. elegans, we identified a luminal glycoprotein, LET-653, that is transiently expressed in multiple developing tube types but is particularly critical to maintain integrity of the narrowest, unicellular tubes. We identified protein domains that direct LET-653 to specific apical matrix compartments and mediate its oscillatory pattern of lumen localization. Furthermore, we showed that the LET-653 tube-protecting activity depends on a Zona Pellucida (ZP) domain similar to that found in the mammalian egg-coat and in many other luminal or sensory matrix proteins involved in human disease.
Collapse
Affiliation(s)
- Hasreet K. Gill
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jennifer D. Cohen
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jesus Ayala-Figueroa
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rachel Forman-Rubinsky
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Corey Poggioli
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kevin Bickard
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jean M. Parry
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Biology, Georgian Court University, Lakewood, New Jersey, United States of America
| | - Pu Pu
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - David H. Hall
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Meera V. Sundaram
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
30
|
Grussendorf KA, Trezza CJ, Salem AT, Al-Hashimi H, Mattingly BC, Kampmeyer DE, Khan LA, Hall DH, Göbel V, Ackley BD, Buechner M. Facilitation of Endosomal Recycling by an IRG Protein Homolog Maintains Apical Tubule Structure in Caenorhabditis elegans. Genetics 2016; 203:1789-806. [PMID: 27334269 PMCID: PMC4981278 DOI: 10.1534/genetics.116.192559] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 06/15/2016] [Indexed: 02/08/2023] Open
Abstract
Determination of luminal diameter is critical to the function of small single-celled tubes. A series of EXC proteins, including EXC-1, prevent swelling of the tubular excretory canals in Caenorhabditis elegans In this study, cloning of exc-1 reveals it to encode a homolog of mammalian IRG proteins, which play roles in immune response and autophagy and are associated with Crohn's disease. Mutants in exc-1 accumulate early endosomes, lack recycling endosomes, and exhibit abnormal apical cytoskeletal structure in regions of enlarged tubules. EXC-1 interacts genetically with two other EXC proteins that also affect endosomal trafficking. In yeast two-hybrid assays, wild-type and putative constitutively active EXC-1 binds to the LIM-domain protein EXC-9, whose homolog, cysteine-rich intestinal protein, is enriched in mammalian intestine. These results suggest a model for IRG function in forming and maintaining apical tubule structure via regulation of endosomal recycling.
Collapse
Affiliation(s)
- Kelly A Grussendorf
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045 Department of Biological Sciences, Minnesota State University, Mankato, Minnesota 56001
| | - Christopher J Trezza
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Alexander T Salem
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Hikmat Al-Hashimi
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Brendan C Mattingly
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Drew E Kampmeyer
- Department of Biological Sciences, Minnesota State University, Mankato, Minnesota 56001
| | - Liakot A Khan
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - David H Hall
- Department of Neuroscience, Center for Caenorhabditis elegans Anatomy, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Verena Göbel
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Brian D Ackley
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Matthew Buechner
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| |
Collapse
|
31
|
Soulavie F, Sundaram MV. Auto-fusion and the shaping of neurons and tubes. Semin Cell Dev Biol 2016; 60:136-145. [PMID: 27436685 DOI: 10.1016/j.semcdb.2016.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/15/2016] [Accepted: 07/15/2016] [Indexed: 12/14/2022]
Abstract
Cells adopt specific shapes that are necessary for specific functions. For example, some neurons extend elaborate arborized dendrites that can contact multiple targets. Epithelial and endothelial cells can form tiny seamless unicellular tubes with an intracellular lumen. Recent advances showed that cells can auto-fuse to acquire those specific shapes. During auto-fusion, a cell merges two parts of its own plasma membrane. In contrast to cell-cell fusion or macropinocytic fission, which result in the merging or formation of two separate membrane bound compartments, auto-fusion preserves one compartment, but changes its shape. The discovery of auto-fusion in C. elegans was enabled by identification of specific protein fusogens, EFF-1 and AFF-1, that mediate cell-cell fusion. Phenotypic characterization of eff-1 and aff-1 mutants revealed that fusogen-mediated fusion of two parts of the same cell can be used to sculpt dendritic arbors, reconnect two parts of an axon after injury, or form a hollow unicellular tube. Similar auto-fusion events recently were detected in vertebrate cells, suggesting that auto-fusion could be a widely used mechanism for shaping neurons and tubes.
Collapse
Affiliation(s)
- Fabien Soulavie
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104,United States
| | - Meera V Sundaram
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104,United States.
| |
Collapse
|
32
|
BLIMP-1/BLMP-1 and Metastasis-Associated Protein Regulate Stress Resistant Development in Caenorhabditis elegans. Genetics 2016; 203:1721-32. [PMID: 27334271 DOI: 10.1534/genetics.116.190793] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/14/2016] [Indexed: 01/17/2023] Open
Abstract
Environmental stress triggers multilevel adaptations in animal development that depend in part on epigenetic mechanisms. In response to harsh environmental conditions and pheromone signals, Caenorhabditis elegans larvae become the highly stress-resistant and long-lived dauer. Despite extensive studies of dauer formation pathways that integrate specific environmental cues and appear to depend on transcriptional reprogramming, the role of epigenetic regulation in dauer development has remained unclear. Here we report that BLMP-1, the BLIMP-1 ortholog, regulates dauer formation via epigenetic pathways; in the absence of TGF-β signaling (in daf-7 mutants), lack of blmp-1 caused lethality. Using this phenotype, we screened 283 epigenetic factors, and identified lin-40, a homolog of metastasis-associate protein 1 (MTA1) as an interactor of BLMP-1 The interaction between LIN-40 and BLMP-1 is conserved because mammalian homologs for both MTA1 and BLIMP-1 could also interact. From microarray studies, we identified several downstream target genes of blmp-1: npr-3, nhr-23, ptr-4, and sams-1 Among them S-adenosyl methionine synthase (SAMS-1), is the key enzyme for production of SAM used in histone methylation. Indeed, blmp-1 is necessary for controlling histone methylation level in daf-7 mutants, suggesting BLMP-1 regulates the expression of SAMS-1, which in turn may regulate histone methylation and dauer formation. Our results reveal a new interaction between BLMP-1/BLIMP-1 and LIN-40/MTA1, as well as potential epigenetic downstream pathways, whereby these proteins cooperate to regulate stress-specific developmental adaptations.
Collapse
|
33
|
Sundaram MV, Cohen JD. Time to make the doughnuts: Building and shaping seamless tubes. Semin Cell Dev Biol 2016; 67:123-131. [PMID: 27178486 DOI: 10.1016/j.semcdb.2016.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 10/21/2022]
Abstract
A seamless tube is a very narrow-bore tube that is composed of a single cell with an intracellular lumen and no adherens or tight junctions along its length. Many capillaries in the vertebrate vascular system are seamless tubes. Seamless tubes also are found in invertebrate organs, including the Drosophila trachea and the Caenorhabditis elegans excretory system. Seamless tube cells can be less than a micron in diameter, and they can adopt very simple "doughnut-like" shapes or very complex, branched shapes comparable to those of neurons. The unusual topology and varied shapes of seamless tubes raise many basic cell biological questions about how cells form and maintain such structures. The prevalence of seamless tubes in the vascular system means that answering such questions has significant relevance to human health. In this review, we describe selected examples of seamless tubes in animals and discuss current models for how seamless tubes develop and are shaped, focusing particularly on insights that have come from recent studies in Drosophila and C. elegans.
Collapse
Affiliation(s)
- Meera V Sundaram
- Dept. of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Jennifer D Cohen
- Dept. of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
34
|
Rudgalvyte M, Peltonen J, Lakso M, Nass R, Wong G. RNA-Seq Reveals Acute Manganese Exposure Increases Endoplasmic Reticulum Related and Lipocalin mRNAs in Caenorhabditis elegans. J Biochem Mol Toxicol 2015; 30:97-105. [PMID: 26418576 PMCID: PMC5054866 DOI: 10.1002/jbt.21768] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 08/27/2015] [Indexed: 01/13/2023]
Abstract
Manganese (Mn) is an essential nutrient; nonetheless, excessive amounts can accumulate in brain tissues causing manganism, a severe neurological condition. Previous studies have suggested oxidative stress, mitochondria dysfunction, and impaired metabolism pathways as routes for Mn toxicity. Here, we used the nematode Caenorhabditis elegans to analyze gene expression changes after acute Mn exposure using RNA‐Seq. L1 stage animals were exposed to 50 mM MnCl2 for 30 min and analyzed at L4. We identified 746 up‐ and 1828 downregulated genes (FDR corrected p < 0.05; two‐fold change) that included endoplasmic reticulum related abu and fkb family genes, as well as six of seven lipocalin‐related (lpr) family members. These were also verified by qRT‐PCR. RNA interference of lpr‐5 showed a dramatic increase in whole body vulnerability to Mn exposure. Our studies demonstrate that Mn exposure alters gene transcriptional levels in different cell stress pathways that may ultimately contribute to its toxic effects.
Collapse
Affiliation(s)
- Martina Rudgalvyte
- A. I. Virtanen Institute for Molecular Sciences, Department of Neurobiology, University of Eastern Finland, Kuopio 70211, Finland
| | - Juhani Peltonen
- A. I. Virtanen Institute for Molecular Sciences, Department of Neurobiology, University of Eastern Finland, Kuopio 70211, Finland
| | - Merja Lakso
- A. I. Virtanen Institute for Molecular Sciences, Department of Neurobiology, University of Eastern Finland, Kuopio 70211, Finland
| | - Richard Nass
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Garry Wong
- A. I. Virtanen Institute for Molecular Sciences, Department of Neurobiology, University of Eastern Finland, Kuopio 70211, Finland. .,Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau S.A.R., 999078, China.
| |
Collapse
|
35
|
Lenard A, Daetwyler S, Betz C, Ellertsdottir E, Belting HG, Huisken J, Affolter M. Endothelial cell self-fusion during vascular pruning. PLoS Biol 2015; 13:e1002126. [PMID: 25884426 PMCID: PMC4401649 DOI: 10.1371/journal.pbio.1002126] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 03/10/2015] [Indexed: 12/30/2022] Open
Abstract
During embryonic development, vascular networks remodel to meet the increasing demand of growing tissues for oxygen and nutrients. This is achieved by the pruning of redundant blood vessel segments, which then allows more efficient blood flow patterns. Because of the lack of an in vivo system suitable for high-resolution live imaging, the dynamics of the pruning process have not been described in detail. Here, we present the subintestinal vein (SIV) plexus of the zebrafish embryo as a novel model to study pruning at the cellular level. We show that blood vessel regression is a coordinated process of cell rearrangements involving lumen collapse and cell-cell contact resolution. Interestingly, the cellular rearrangements during pruning resemble endothelial cell behavior during vessel fusion in a reversed order. In pruning segments, endothelial cells first migrate toward opposing sides where they join the parental vascular branches, thus remodeling the multicellular segment into a unicellular connection. Often, the lumen is maintained throughout this process, and transient unicellular tubes form through cell self-fusion. In a second step, the unicellular connection is resolved unilaterally, and the pruning cell rejoins the opposing branch. Thus, we show for the first time that various cellular activities are coordinated to achieve blood vessel pruning and define two different morphogenetic pathways, which are selected by the flow environment.
Collapse
Affiliation(s)
- Anna Lenard
- Biozentrum der Universität Basel, Basel, Switzerland
| | - Stephan Daetwyler
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Charles Betz
- Biozentrum der Universität Basel, Basel, Switzerland
| | | | | | - Jan Huisken
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | |
Collapse
|
36
|
Walton T, Preston E, Nair G, Zacharias AL, Raj A, Murray JI. The Bicoid class homeodomain factors ceh-36/OTX and unc-30/PITX cooperate in C. elegans embryonic progenitor cells to regulate robust development. PLoS Genet 2015; 11:e1005003. [PMID: 25738873 PMCID: PMC4349592 DOI: 10.1371/journal.pgen.1005003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 01/14/2015] [Indexed: 01/30/2023] Open
Abstract
While many transcriptional regulators of pluripotent and terminally differentiated states have been identified, regulation of intermediate progenitor states is less well understood. Previous high throughput cellular resolution expression studies identified dozens of transcription factors with lineage-specific expression patterns in C. elegans embryos that could regulate progenitor identity. In this study we identified a broad embryonic role for the C. elegans OTX transcription factor ceh-36, which was previously shown to be required for the terminal specification of four neurons. ceh-36 is expressed in progenitors of over 30% of embryonic cells, yet is not required for embryonic viability. Quantitative phenotyping by computational analysis of time-lapse movies of ceh-36 mutant embryos identified cell cycle or cell migration defects in over 100 of these cells, but most defects were low-penetrance, suggesting redundancy. Expression of ceh-36 partially overlaps with that of the PITX transcription factor unc-30. unc-30 single mutants are viable but loss of both ceh-36 and unc-30 causes 100% lethality, and double mutants have significantly higher frequencies of cellular developmental defects in the cells where their expression normally overlaps. These factors are also required for robust expression of the downstream developmental regulator mls-2/HMX. This work provides the first example of genetic redundancy between the related yet evolutionarily distant OTX and PITX families of bicoid class homeodomain factors and demonstrates the power of quantitative developmental phenotyping in C. elegans to identify developmental regulators acting in progenitor cells.
Collapse
Affiliation(s)
- Travis Walton
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Elicia Preston
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gautham Nair
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Amanda L. Zacharias
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Arjun Raj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - John Isaac Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
37
|
Parry JM, Sundaram MV. A non-cell-autonomous role for Ras signaling in C. elegans neuroblast delamination. Development 2015; 141:4279-84. [PMID: 25371363 DOI: 10.1242/dev.112045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Receptor tyrosine kinase (RTK) signaling through Ras influences many aspects of normal cell behavior, including epithelial-to-mesenchymal transition, and aberrant signaling promotes both tumorigenesis and metastasis. Although many such effects are cell-autonomous, here we show a non-cell-autonomous role for RTK-Ras signaling in the delamination of a neuroblast from an epithelial organ. The C. elegans renal-like excretory organ is initially composed of three unicellular epithelial tubes, namely the canal, duct and G1 pore cells; however, the G1 cell later delaminates from the excretory system to become a neuroblast and is replaced by the G2 cell. G1 delamination and G2 intercalation involve cytoskeletal remodeling, interconversion of autocellular and intercellular junctions and migration over a luminal extracellular matrix, followed by G1 junction loss. LET-23/EGFR and SOS-1, an exchange factor for Ras, are required for G1 junction loss but not for initial cytoskeletal or junction remodeling. Surprisingly, expression of activated LET-60/Ras in the neighboring duct cell, but not in the G1 or G2 cells, is sufficient to rescue sos-1 delamination defects, revealing that Ras acts non-cell-autonomously to permit G1 delamination. We suggest that, similarly, oncogenic mutations in cells within a tumor might help create a microenvironment that is permissive for other cells to detach and ultimately metastasize.
Collapse
Affiliation(s)
- Jean M Parry
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, 415 Curie Boulevard, Philadelphia, PA 19104, USA Department of Biology, Georgian Court University, 900 Lakewood Avenue, Lakewood, NJ 08701, USA
| | - Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
38
|
Sumida GM, Yamada S. Rho GTPases and the downstream effectors actin-related protein 2/3 (Arp2/3) complex and myosin II induce membrane fusion at self-contacts. J Biol Chem 2014; 290:3238-47. [PMID: 25527498 DOI: 10.1074/jbc.m114.612168] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Actin regulation is required for membrane activities that drive cell adhesion and migration. The Rho GTPase family plays critical roles in actin and membrane dynamics; however, the roles of the Rho GTPase family are not limited to cell adhesion and migration. Using micron-sized obstacles to induce the formation of self-contacts in epithelial cells, we previously showed that self-adhesion is distinct from cell-to-cell adhesion in that self-contacts are eliminated by membrane fusion. In the current study, we identified Rho GTPases, RhoA, Rac1, and Cdc42, as potential upstream regulators of membrane fusion. The RhoA downstream effector myosin II is required for fusion as the expression of mutant myosin light chain reduced membrane fusion. Furthermore, an inhibitor of the Arp2/3 complex, a downstream effector of Rac1 and Cdc42, also reduced self-contact-induced membrane fusion. At self-contacts, while the concentration of E-cadherin diminished, the intensity of GFP-tagged Arp3 rapidly fluctuated then decreased and stabilized after membrane fusion. Taken together, these data suggest that the Arp2/3 complex-mediated actin polymerization brings two opposing membranes into close apposition by possibly excluding E-cadherin from contact sites, thus promoting membrane fusion at self-contacts.
Collapse
Affiliation(s)
- Grant M Sumida
- From the Department of Biomedical Engineering, University of California, Davis, California 95616
| | - Soichiro Yamada
- From the Department of Biomedical Engineering, University of California, Davis, California 95616
| |
Collapse
|
39
|
Affiliation(s)
- Benjamin Podbilewicz
- Department of Biology, Technion–Israel Institute of Technology, Haifa 32000, Israel;
| |
Collapse
|
40
|
Abstract
Mutual, homophilic cell-cell adhesion between epithelial cells is required for proper maintenance of epithelial barrier function. Whereas opposing membranes from neighboring cells rapidly assemble junctional complexes, self-contacting membranes curiously do not, suggesting that cells have the ability to prevent the maturation of self-junctions. Using a self-contact-inducing microfabricated substrate, we show that self-contacts of normal epithelial cells are rapidly eliminated by membrane fusion between two opposing plasma membranes of a single cell. This membrane fusion is most frequently observed in E-cadherin-expressing epithelial cells, but not in fibroblasts. The efficiency of self-contact elimination depends on extracellular calcium concentration and the level of E-cadherin, suggesting that E-cadherin, although not required, enhances membrane fusion efficiency by bringing opposing membranes into close apposition to one another. Additionally, Rho-associated protein kinase inhibition decreases self-contact-induced membrane fusion of epithelial cells, suggesting that this fusion may be mechanically regulated through the actin-myosin network. This self-contact-induced membrane fusion is a key elimination mechanism for unwanted self-junctions and may be a feature of cell self-recognition.
Collapse
|
41
|
Song Y, Eng M, Ghabrial AS. Focal defects in single-celled tubes mutant for Cerebral cavernous malformation 3, GCKIII, or NSF2. Dev Cell 2013; 25:507-19. [PMID: 23763949 DOI: 10.1016/j.devcel.2013.05.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 04/09/2013] [Accepted: 05/02/2013] [Indexed: 10/26/2022]
Abstract
Tubes of differing cellular architecture connect into networks. In the Drosophila tracheal system, two tube types connect within single cells (terminal cells); however, the genes that mediate this interconnection are unknown. Here we characterize two genes that are essential for this process: lotus, required for maintaining a connection between the tubes, and wheezy, required to prevent local tube dilation. We find that lotus encodes N-ethylmaleimide sensitive factor 2 (NSF2), whereas wheezy encodes Germinal center kinase III (GCKIII). GCKIIIs are effectors of Cerebral cavernous malformation 3 (CCM3), a protein mutated in vascular disease. Depletion of Ccm3 by RNA interference phenocopies wheezy; thus, CCM3 and GCKIII, which prevent capillary dilation in humans, prevent tube dilation in Drosophila trachea. Ectopic junctional and apical proteins are present in wheezy terminal cells, and we show that tube dilation is suppressed by reduction of NSF2, of the apical determinant Crumbs, or of septate junction protein Varicose.
Collapse
Affiliation(s)
- Yanjun Song
- Department of Cell and Developmental Biology, Perelman School of Medicine, BRBII/III Room 1214, 421 Curie Boulevard, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
42
|
Rudgalvyte M, VanDuyn N, Aarnio V, Heikkinen L, Peltonen J, Lakso M, Nass R, Wong G. Methylmercury exposure increases lipocalin related (lpr) and decreases activated in blocked unfolded protein response (abu) genes and specific miRNAs in Caenorhabditis elegans. Toxicol Lett 2013; 222:189-96. [PMID: 23872261 DOI: 10.1016/j.toxlet.2013.07.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/10/2013] [Accepted: 07/10/2013] [Indexed: 01/15/2023]
Abstract
Methylmercury (MeHg) is a persistent environmental and dietary contaminant that causes serious adverse developmental and physiologic effects at multiple cellular levels. In order to understand more fully the consequences of MeHg exposure at the molecular level, we profiled gene and miRNA transcripts from the model organism Caenorhabditis elegans. Animals were exposed to MeHg (10 μM) from embryo to larval 4 (L4) stage and RNAs were isolated. RNA-seq analysis on the Illumina platform revealed 541 genes up- and 261 genes down-regulated at a cutoff of 2-fold change and false discovery rate-corrected significance q < 0.05. Among the up-regulated genes were those previously shown to increase under oxidative stress conditions including hsp-16.11 (2.5-fold), gst-35 (10.1-fold), and fmo-2 (58.5-fold). In addition, we observed up-regulation of 6 out of 7 lipocalin related (lpr) family genes and down regulation of 7 out of 15 activated in blocked unfolded protein response (abu) genes. Gene Ontology enrichment analysis highlighted the effect of genes related to development and organism growth. miRNA-seq analysis revealed 6-8 fold down regulation of mir-37-3p, mir-41-5p, mir-70-3p, and mir-75-3p. Our results demonstrate the effects of MeHg on specific transcripts encoding proteins in oxidative stress responses and in ER stress pathways. Pending confirmation of these transcript changes at protein levels, their association and dissociation characteristics with interaction partners, and integration of these signals, these findings indicate broad and dynamic mechanisms by which MeHg exerts its harmful effects.
Collapse
Affiliation(s)
- Martina Rudgalvyte
- A. I. Virtanen Institute for Molecular Sciences, Department of Neurobiology, University of Eastern Finland, Kuopio, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Receptor Tyrosine Kinase (RTK)-Ras-Extracellular signal-regulated kinase (ERK) signaling pathways control many aspects of C. elegans development and behavior. Studies in C. elegans helped elucidate the basic framework of the RTK-Ras-ERK pathway and continue to provide insights into its complex regulation, its biological roles, how it elicits cell-type appropriate responses, and how it interacts with other signaling pathways to do so. C. elegans studies have also revealed biological contexts in which alternative RTK- or Ras-dependent pathways are used instead of the canonical pathway.
Collapse
Affiliation(s)
- Meera V Sundaram
- Dept. of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6145, USA.
| |
Collapse
|
44
|
Schottenfeld-Roames J, Ghabrial AS. Osmotic regulation of seamless tube growth. Nat Cell Biol 2013; 15:137-9. [PMID: 23377027 DOI: 10.1038/ncb2683] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most organs are composed of tubes of differing cellular architectures, including intracellular 'seamless' tubes. Two studies examining the morphogenesis of the seamless tubes formed by the excretory canal cell in Caenorhabditis elegans reveal a previously unappreciated role for osmoregulation of tubulogenesis: hyperosmotic shock recruits canalicular vesicles to the lumenal membrane to promote seamless tube growth.
Collapse
Affiliation(s)
- Jodi Schottenfeld-Roames
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, 19104, USA
| | | |
Collapse
|
45
|
Aguilar PS, Baylies MK, Fleissner A, Helming L, Inoue N, Podbilewicz B, Wang H, Wong M. Genetic basis of cell-cell fusion mechanisms. Trends Genet 2013; 29:427-37. [PMID: 23453622 DOI: 10.1016/j.tig.2013.01.011] [Citation(s) in RCA: 194] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 01/15/2013] [Accepted: 01/25/2013] [Indexed: 12/22/2022]
Abstract
Cell-cell fusion in sexually reproducing organisms is a mechanism to merge gamete genomes and, in multicellular organisms, it is a strategy to sculpt organs, such as muscle, bone, and placenta. Moreover, this mechanism has been implicated in pathological conditions, such as infection and cancer. Studies of genetic model organisms have uncovered a unifying principle: cell fusion is a genetically programmed process. This process can be divided in three stages: competence (cell induction and differentiation); commitment (cell determination, migration, and adhesion); and cell fusion (membrane merging and cytoplasmic mixing). Recent work has led to the discovery of fusogens, which are cell fusion proteins that are necessary and sufficient to fuse cell membranes. Two unrelated families of fusogens have been discovered, one in mouse placenta and one in Caenorhabditis elegans (syncytins and F proteins, respectively). Current research aims to identify new fusogens and determine the mechanisms by which they merge membranes.
Collapse
Affiliation(s)
- Pablo S Aguilar
- Cellular Membranes Laboratory, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abdus-Saboor I, Stone CE, Murray JI, Sundaram MV. The Nkx5/HMX homeodomain protein MLS-2 is required for proper tube cell shape in the C. elegans excretory system. Dev Biol 2012; 366:298-307. [PMID: 22537498 DOI: 10.1016/j.ydbio.2012.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/26/2012] [Accepted: 03/28/2012] [Indexed: 01/20/2023]
Abstract
Cells perform wide varieties of functions that are facilitated, in part, by adopting unique shapes. Many of the genes and pathways that promote cell fate specification have been elucidated. However, relatively few transcription factors have been identified that promote shape acquisition after fate specification. Here we show that the Nkx5/HMX homeodomain protein MLS-2 is required for cellular elongation and shape maintenance of two tubular epithelial cells in the C. elegans excretory system, the duct and pore cells. The Nkx5/HMX family is highly conserved from sea urchins to humans, with known roles in neuronal and glial development. MLS-2 is expressed in the duct and pore, and defects in mls-2 mutants first arise when the duct and pore normally adopt unique shapes. MLS-2 cooperates with the EGF-Ras-ERK pathway to turn on the LIN-48/Ovo transcription factor in the duct cell during morphogenesis. These results reveal a novel interaction between the Nkx5/HMX family and the EGF-Ras pathway and implicate a transcription factor, MLS-2, as a regulator of cell shape.
Collapse
Affiliation(s)
- Ishmail Abdus-Saboor
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
47
|
Mancuso VP, Parry JM, Storer L, Poggioli C, Nguyen KCQ, Hall DH, Sundaram MV. Extracellular leucine-rich repeat proteins are required to organize the apical extracellular matrix and maintain epithelial junction integrity in C. elegans. Development 2012; 139:979-90. [PMID: 22278925 PMCID: PMC3274359 DOI: 10.1242/dev.075135] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2011] [Indexed: 12/13/2022]
Abstract
Epithelial cells are linked by apicolateral junctions that are essential for tissue integrity. Epithelial cells also secrete a specialized apical extracellular matrix (ECM) that serves as a protective barrier. Some components of the apical ECM, such as mucins, can influence epithelial junction remodeling and disassembly during epithelial-to-mesenchymal transition (EMT). However, the molecular composition and biological roles of the apical ECM are not well understood. We identified a set of extracellular leucine-rich repeat only (eLRRon) proteins in C. elegans (LET-4 and EGG-6) that are expressed on the apical surfaces of epidermal cells and some tubular epithelia, including the excretory duct and pore. A previously characterized paralog, SYM-1, is also expressed in epidermal cells and secreted into the apical ECM. Related mammalian eLRRon proteins, such as decorin or LRRTM1-3, influence stromal ECM or synaptic junction organization, respectively. Mutants lacking one or more of the C. elegans epithelial eLRRon proteins show multiple defects in apical ECM organization, consistent with these proteins contributing to the embryonic sheath and cuticular ECM. Furthermore, epithelial junctions initially form in the correct locations, but then rupture at the time of cuticle secretion and remodeling of cell-matrix interactions. This work identifies epithelial eLRRon proteins as important components and organizers of the pre-cuticular and cuticular apical ECM, and adds to the small but growing body of evidence linking the apical ECM to epithelial junction stability. We propose that eLRRon-dependent apical ECM organization contributes to cell-cell adhesion and may modulate epithelial junction dynamics in both normal and disease situations.
Collapse
Affiliation(s)
- Vincent P. Mancuso
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jean M. Parry
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Luke Storer
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Corey Poggioli
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ken C. Q. Nguyen
- Department of Neuroscience, Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - David H. Hall
- Department of Neuroscience, Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Meera V. Sundaram
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
48
|
Abdus-Saboor I, Mancuso VP, Murray JI, Palozola K, Norris C, Hall DH, Howell K, Huang K, Sundaram MV. Notch and Ras promote sequential steps of excretory tube development in C. elegans. Development 2011; 138:3545-55. [PMID: 21771815 PMCID: PMC3143567 DOI: 10.1242/dev.068148] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2011] [Indexed: 12/31/2022]
Abstract
Receptor tyrosine kinases and Notch are crucial for tube formation and branching morphogenesis in many systems, but the specific cellular processes that require signaling are poorly understood. Here we describe sequential roles for Notch and Epidermal growth factor (EGF)-Ras-ERK signaling in the development of epithelial tube cells in the C. elegans excretory (renal-like) organ. This simple organ consists of three tandemly connected unicellular tubes: the excretory canal cell, duct and G1 pore. lin-12 and glp-1/Notch are required to generate the canal cell, which is a source of LIN-3/EGF ligand and physically attaches to the duct during de novo epithelialization and tubulogenesis. Canal cell asymmetry and let-60/Ras signaling influence which of two equivalent precursors will attach to the canal cell. Ras then specifies duct identity, inducing auto-fusion and a permanent epithelial character; the remaining precursor becomes the G1 pore, which eventually loses epithelial character and withdraws from the organ to become a neuroblast. Ras continues to promote subsequent aspects of duct morphogenesis and differentiation, and acts primarily through Raf-ERK and the transcriptional effectors LIN-1/Ets and EOR-1. These results reveal multiple genetically separable roles for Ras signaling in tube development, as well as similarities to Ras-mediated control of branching morphogenesis in more complex organs, including the mammalian kidney. The relative simplicity of the excretory system makes it an attractive model for addressing basic questions about how cells gain or lose epithelial character and organize into tubular networks.
Collapse
Affiliation(s)
- Ishmail Abdus-Saboor
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Vincent P. Mancuso
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - John I. Murray
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Katherine Palozola
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Carolyn Norris
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - David H. Hall
- Department of Neuroscience, Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kelly Howell
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Kai Huang
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Meera V. Sundaram
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
49
|
Viau A, El Karoui K, Laouari D, Burtin M, Nguyen C, Mori K, Pillebout E, Berger T, Mak TW, Knebelmann B, Friedlander G, Barasch J, Terzi F. Lipocalin 2 is essential for chronic kidney disease progression in mice and humans. J Clin Invest 2010; 120:4065-76. [PMID: 20921623 PMCID: PMC2964970 DOI: 10.1172/jci42004] [Citation(s) in RCA: 292] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 08/09/2010] [Indexed: 12/21/2022] Open
Abstract
Mechanisms of progression of chronic kidney disease (CKD), a major health care burden, are poorly understood. EGFR stimulates CKD progression, but the molecular networks that mediate its biological effects remain unknown. We recently showed that the severity of renal lesions after nephron reduction varied substantially among mouse strains and required activation of EGFR. Here, we utilized two mouse strains that react differently to nephron reduction--FVB/N mice, which develop severe renal lesions, and B6D2F1 mice, which are resistant to early deterioration--coupled with genome-wide expression to elucidate the molecular nature of CKD progression. Our results showed that lipocalin 2 (Lcn2, also known as neutrophil gelatinase-associated lipocalin [NGAL]), the most highly upregulated gene in the FVB/N strain, was not simply a marker of renal lesions, but an active player in disease progression. In fact, the severity of renal lesions was dramatically reduced in Lcn2-/- mice. We discovered that Lcn2 expression increased upon EGFR activation and that Lcn2 mediated its mitogenic effect during renal deterioration. EGFR inhibition prevented Lcn2 upregulation and lesion development in mice expressing a dominant negative EGFR isoform, and hypoxia-inducible factor 1α (Hif-1α) was crucially required for EGFR-induced Lcn2 overexpression. Consistent with this, cell proliferation was dramatically reduced in Lcn2-/- mice. These data are relevant to human CKD, as we found that LCN2 was increased particularly in patients who rapidly progressed to end-stage renal failure. Together our results uncover what we believe to be a novel function for Lcn2 and a critical pathway leading to progressive renal failure and cystogenesis.
Collapse
Affiliation(s)
- Amandine Viau
- INSERM U845, Centre de Recherche Croissance et Signalisation, Université Paris Descartes, Hôpital Necker Enfants Malades, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Oren-Suissa M, Podbilewicz B. Evolution of programmed cell fusion: common mechanisms and distinct functions. Dev Dyn 2010; 239:1515-28. [PMID: 20419783 DOI: 10.1002/dvdy.22284] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Eukaryotic cells have evolved diverged mechanisms to merge cells. Here, we discuss three types of cell fusion: (1) Non-self-fusion, cells with different genetic contents fuse to start a new organism and fusion between enveloped viruses and host cells; (2) Self-fusion, genetically identical cells fuse to form a multinucleated cell; and (3) Auto-fusion, a single cell fuses with itself by bringing specialized cell membrane domains into contact and transforming itself into a ring-shaped cell. This is a new type of selfish fusion discovered in C. elegans. We divide cell fusion into three stages: (1) Specification of the cell-fusion fate; (2) Cell attraction, attachment, and recognition; (3) Execution of plasma membrane fusion, cytoplasmic mixing and cytoskeletal rearrangements. We analyze cell fusion in diverse biological systems in development and disease emphasizing the mechanistic contributions of C. elegans to the understanding of programmed cell fusion, a genetically encoded pathway to merge specific cells.
Collapse
Affiliation(s)
- Meital Oren-Suissa
- Department of Biology, Technion, Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|