1
|
Bian Z, Chen B, Shi G, Yuan H, Zhou Y, Jiang B, Li L, Su H, Zhang Y. Single-cell landscape identified SERPINB9 as a key player contributing to stemness and metastasis in non-seminomas. Cell Death Dis 2024; 15:812. [PMID: 39528470 PMCID: PMC11555415 DOI: 10.1038/s41419-024-07220-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/27/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Embryonal carcinoma (EC), characterized by a high degree of stemness similar to that of embryonic stem cells, is the most malignant subtype within non-seminomatous testicular germ cell tumors (TGCTs). However, the mechanisms underlying its malignancy remain unknown. In this study, we employed single-cell RNA sequencing to analyze four non-seminoma samples. Our differential expression analysis revealed high expression of SERPINB9 in metastatic EC cells. We conducted in vitro experiments to further investigate SERPINB9's role in the progression of EC. Functionally, the knockdown of SERPINB9 in NCCIT and NTERA-2 leads to a diminished migratory capability and decreased cis-platin resistance, as demonstrated by Transwell migration assay and drug sensitivity assay. Moreover, embryoid bodies showed reduced size and lower OCT4 expression, alongside heightened expression of differentiation markers AFP, ACTA2, and CD57 in shSERPINB9 cells. In vivo, the role of SERPINB9 in maintaining cancer stemness was validated by the limiting dilution assay. Mechanistically, Bulk RNA-seq further showed downregulation of ERK1/2 signaling and WNT signaling pathways with concomitant upregulation of differentiation pathways subsequent to SERPINB9 knockdown. Additionally, the analysis indicated increased levels of cytokines linked to tertiary lymphoid structures (TLS), such as IL6, IL11, IL15, CCL2, CCL5, and CXCL13 in shSERPINB9 cells, which were further validated by ELISA. Our research indicates that SERPINB9 plays a key role in driving tumor progression by enhancing tumor stemness and suppressing TLS. This study stands as the first to elucidate the molecular signature of non-seminomas at a single-cell level, presenting a wealth of promising targets with substantial potential for informing the development of future therapeutic interventions.
Collapse
Affiliation(s)
- Zhouliang Bian
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, PR China
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, PR China
| | - Biying Chen
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, PR China
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, PR China
| | - Guohai Shi
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Haihua Yuan
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, PR China
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, PR China
| | - Yue Zhou
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| | - Bin Jiang
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, PR China.
| | - Long Li
- Department of Urology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China.
| | - Hengchuan Su
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China.
| | - Yanjie Zhang
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, PR China.
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, PR China.
| |
Collapse
|
2
|
Chen KQ, Kawakami H, Anderson A, Corcoran D, Soni A, Nishinakamura R, Kawakami Y. Sall genes regulate hindlimb initiation in mouse embryos. Genetics 2024; 227:iyae029. [PMID: 38386912 PMCID: PMC11075541 DOI: 10.1093/genetics/iyae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/15/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024] Open
Abstract
Vertebrate limbs start to develop as paired protrusions from the lateral plate mesoderm at specific locations of the body with forelimb buds developing anteriorly and hindlimb buds posteriorly. During the initiation process, limb progenitor cells maintain active proliferation to form protrusions and start to express Fgf10, which triggers molecular processes for outgrowth and patterning. Although both processes occur in both types of limbs, forelimbs (Tbx5), and hindlimbs (Isl1) utilize distinct transcriptional systems to trigger their development. Here, we report that Sall1 and Sall4, zinc finger transcription factor genes, regulate hindlimb initiation in mouse embryos. Compared to the 100% frequency loss of hindlimb buds in TCre; Isl1 conditional knockouts, Hoxb6Cre; Isl1 conditional knockout causes a hypomorphic phenotype with only approximately 5% of mutants lacking the hindlimb. Our previous study of SALL4 ChIP-seq showed SALL4 enrichment in an Isl1 enhancer, suggesting that SALL4 acts upstream of Isl1. Removing 1 allele of Sall4 from the hypomorphic Hoxb6Cre; Isl1 mutant background caused loss of hindlimbs, but removing both alleles caused an even higher frequency of loss of hindlimbs, suggesting a genetic interaction between Sall4 and Isl1. Furthermore, TCre-mediated conditional double knockouts of Sall1 and Sall4 displayed a loss of expression of hindlimb progenitor markers (Isl1, Pitx1, Tbx4) and failed to develop hindlimbs, demonstrating functional redundancy between Sall1 and Sall4. Our data provides genetic evidence that Sall1 and Sall4 act as master regulators of hindlimb initiation.
Collapse
Affiliation(s)
- Katherine Q Chen
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hiroko Kawakami
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Aaron Anderson
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Dylan Corcoran
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Aditi Soni
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ryuichi Nishinakamura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yasuhiko Kawakami
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
3
|
Poelmann RE, Jongbloed MRM, DeRuiter MC. TAPVR: Molecular Pathways and Animal Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:599-614. [PMID: 38884736 DOI: 10.1007/978-3-031-44087-8_34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The venous pole of the heart where the pulmonary veins will develop encompasses the sinus venosus and the atrium. In the fourth week of development, the sinus venosus consists of a left and a right part receiving blood from the common cardinal vein, the omphalomesenteric and umbilical veins. Asymmetrical expansion of the common atrium corresponds with a rightward shift of the connection of the sinus to the atrium. The right-sided part of the sinus venosus including its tributing cardinal veins enlarges to form the right superior and inferior vena cava that will incorporate into the right atrium. The left-sided part in human development largely obliterates and remodels to form the coronary sinus in adults. In approximately the same time window (4th-fifth weeks), a splanchnic vascular plexus surrounds the developing lung buds (putative lungs) with a twofold connection. Of note, during early developmental stages, the primary route of drainage from the pulmonary plexus is toward the systemic veins and not to the heart. After lumenization of the so-called mid-pharyngeal endothelial strand (MPES), the first anlage of the pulmonary vein, the common pulmonary vein can be observed in the dorsal mesocardium, and the primary route of drainage will gradually change toward a cardiac drainage. The splanchnic pulmonary venous connections with the systemic cardinal veins will gradually disappear during normal development. In case of absence or atresia of the MPES, the pulmonary-to-systemic connections will persist, clinically resulting in total anomalous pulmonary venous return (TAPVR). This chapter describes the developmental processes and molecular pathways underlying anomalous pulmonary venous connections.
Collapse
Affiliation(s)
- Robert E Poelmann
- Department of Integrative Zoology, Institute of Biology, University of Leiden, Leiden, The Netherlands
| | - Monique R M Jongbloed
- Department Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Department Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marco C DeRuiter
- Department Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
4
|
Katano W, Mori S, Sasaki S, Tajika Y, Tomita K, Takeuchi JK, Koshiba-Takeuchi K. Sall1 and Sall4 cooperatively interact with Myocd and SRF to promote cardiomyocyte proliferation by regulating CDK and cyclin genes. Development 2023; 150:dev201913. [PMID: 38014633 DOI: 10.1242/dev.201913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
Sall1 and Sall4 (Sall1/4), zinc-finger transcription factors, are expressed in the progenitors of the second heart field (SHF) and in cardiomyocytes during the early stages of mouse development. To understand the function of Sall1/4 in heart development, we generated heart-specific Sall1/4 functionally inhibited mice by forced expression of the truncated form of Sall4 (ΔSall4) in the heart. The ΔSall4-overexpression mice exhibited a hypoplastic right ventricle and outflow tract, both of which were derived from the SHF, and a thinner ventricular wall. We found that the numbers of proliferative SHF progenitors and cardiomyocytes were reduced in ΔSall4-overexpression mice. RNA-sequencing data showed that Sall1/4 act upstream of the cyclin-dependent kinase (CDK) and cyclin genes, and of key transcription factor genes for the development of compact cardiomyocytes, including myocardin (Myocd) and serum response factor (Srf). In addition, ChIP-sequencing and co-immunoprecipitation analyses revealed that Sall4 and Myocd form a transcriptional complex with SRF, and directly bind to the upstream regulatory regions of the CDK and cyclin genes (Cdk1 and Ccnb1). These results suggest that Sall1/4 are critical for the proliferation of cardiac cells via regulation of CDK and cyclin genes that interact with Myocd and SRF.
Collapse
Affiliation(s)
- Wataru Katano
- Graduate School of Life Sciences, Toyo University, 1-1-1, Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan
| | - Shunta Mori
- Faculty of Life Sciences, Department of Applied Biosciences, Toyo University, 1-1-1, Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan
| | - Shun Sasaki
- Graduate School of Life Sciences, Toyo University, 1-1-1, Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan
| | - Yuki Tajika
- Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
- Department of Radiological Technology, Gunma Prefectural College of Health Sciences, 323-1, Kamioki-machi, Maebashi, Gunma 371-0052, Japan
| | - Koichi Tomita
- Graduate School of Biomedical Sciences, Tokushima University, 3-18-15, Kuramoto-cho, Tokushima 770-8503, Japan
| | - Jun K Takeuchi
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8510, Japan
| | - Kazuko Koshiba-Takeuchi
- Graduate School of Life Sciences, Toyo University, 1-1-1, Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan
- Faculty of Life Sciences, Department of Applied Biosciences, Toyo University, 1-1-1, Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan
| |
Collapse
|
5
|
Schmidt C, Deyett A, Ilmer T, Haendeler S, Torres Caballero A, Novatchkova M, Netzer MA, Ceci Ginistrelli L, Mancheno Juncosa E, Bhattacharya T, Mujadzic A, Pimpale L, Jahnel SM, Cirigliano M, Reumann D, Tavernini K, Papai N, Hering S, Hofbauer P, Mendjan S. Multi-chamber cardioids unravel human heart development and cardiac defects. Cell 2023; 186:5587-5605.e27. [PMID: 38029745 DOI: 10.1016/j.cell.2023.10.030] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/31/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
The number one cause of human fetal death are defects in heart development. Because the human embryonic heart is inaccessible and the impacts of mutations, drugs, and environmental factors on the specialized functions of different heart compartments are not captured by in vitro models, determining the underlying causes is difficult. Here, we established a human cardioid platform that recapitulates the development of all major embryonic heart compartments, including right and left ventricles, atria, outflow tract, and atrioventricular canal. By leveraging 2D and 3D differentiation, we efficiently generated progenitor subsets with distinct first, anterior, and posterior second heart field identities. This advance enabled the reproducible generation of cardioids with compartment-specific in vivo-like gene expression profiles, morphologies, and functions. We used this platform to unravel the ontogeny of signal and contraction propagation between interacting heart chambers and dissect how mutations, teratogens, and drugs cause compartment-specific defects in the developing human heart.
Collapse
Affiliation(s)
- Clara Schmidt
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Alison Deyett
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Tobias Ilmer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; FH Campus Wien, Favoritenstraße 226, 1100 Vienna, Austria
| | - Simon Haendeler
- Center for Integrative Bioinformatics Vienna, Max Perutz Laboratories, University of Vienna, Medical University of Vienna, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Aranxa Torres Caballero
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Maria Novatchkova
- Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter, 1030 Vienna, Austria
| | - Michael A Netzer
- Division of Pharmacology and Toxicology, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Lavinia Ceci Ginistrelli
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Estela Mancheno Juncosa
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Tanishta Bhattacharya
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Amra Mujadzic
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Lokesh Pimpale
- HeartBeat.bio AG, Dr. Bohr Gasse 7, 1030 Vienna, Austria
| | - Stefan M Jahnel
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Martina Cirigliano
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Daniel Reumann
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Katherina Tavernini
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Nora Papai
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Steffen Hering
- Division of Pharmacology and Toxicology, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Pablo Hofbauer
- HeartBeat.bio AG, Dr. Bohr Gasse 7, 1030 Vienna, Austria
| | - Sasha Mendjan
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|
6
|
Lozovska A, Korovesi AG, Duarte P, Casaca A, Assunção T, Mallo M. The control of transitions along the main body axis. Curr Top Dev Biol 2023; 159:272-308. [PMID: 38729678 DOI: 10.1016/bs.ctdb.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Although vertebrates display a large variety of forms and sizes, the mechanisms controlling the layout of the basic body plan are substantially conserved throughout the clade. Following gastrulation, head, trunk, and tail are sequentially generated through the continuous addition of tissue at the caudal embryonic end. Development of each of these major embryonic regions is regulated by a distinct genetic network. The transitions from head-to-trunk and from trunk-to-tail development thus involve major changes in regulatory mechanisms, requiring proper coordination to guarantee smooth progression of embryonic development. In this review, we will discuss the key cellular and embryological events associated with those transitions giving particular attention to their regulation, aiming to provide a cohesive outlook of this important component of vertebrate development.
Collapse
Affiliation(s)
| | | | - Patricia Duarte
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, Oeiras, Portugal
| | - Ana Casaca
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, Oeiras, Portugal
| | - Tereza Assunção
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, Oeiras, Portugal
| | - Moises Mallo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, Oeiras, Portugal.
| |
Collapse
|
7
|
Ori C, Ansari M, Angelidis I, Olmer R, Martin U, Theis FJ, Schiller HB, Drukker M. Human pluripotent stem cell fate trajectories toward lung and hepatocyte progenitors. iScience 2023; 26:108205. [PMID: 38026193 PMCID: PMC10663741 DOI: 10.1016/j.isci.2023.108205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 07/13/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
In this study, we interrogate molecular mechanisms underlying the specification of lung progenitors from human pluripotent stem cells (hPSCs). We employ single-cell RNA-sequencing with high temporal precision, alongside an optimized differentiation protocol, to elucidate the transcriptional hierarchy of lung specification to chart the associated single-cell trajectories. Our findings indicate that Sonic hedgehog, TGF-β, and Notch activation are essential within an ISL1/NKX2-1 trajectory, leading to the emergence of lung progenitors during the foregut endoderm phase. Additionally, the induction of HHEX delineates an alternate trajectory at the early definitive endoderm stage, preceding the lung pathway and giving rise to a significant hepatoblast population. Intriguingly, neither KDR+ nor mesendoderm progenitors manifest as intermediate stages in the lung and hepatic lineage development. Our multistep model offers insights into lung organogenesis and provides a foundation for in-depth study of early human lung development and modeling using hPSCs.
Collapse
Affiliation(s)
- Chaido Ori
- Institute of Stem Cell Research, Helmholtz Munich, Neuherberg, Munich, Germany
| | - Meshal Ansari
- Comprehensive Pneumology Center Munich (CPC-M), Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
- Department of Computational Health, Institute of Computational Biology, Helmholtz Munich, Munich, Germany
| | - Ilias Angelidis
- Comprehensive Pneumology Center Munich (CPC-M), Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Ruth Olmer
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Fabian J. Theis
- Department of Computational Health, Institute of Computational Biology, Helmholtz Munich, Munich, Germany
- TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Herbert B. Schiller
- Comprehensive Pneumology Center Munich (CPC-M), Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
- Institute of Experimental Pneumology, LMU University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Micha Drukker
- Institute of Stem Cell Research, Helmholtz Munich, Neuherberg, Munich, Germany
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands
| |
Collapse
|
8
|
Edwards W, Bussey OK, Conlon FL. The Tbx20-TLE interaction is essential for the maintenance of the second heart field. Development 2023; 150:dev201677. [PMID: 37756602 PMCID: PMC10629681 DOI: 10.1242/dev.201677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
T-box transcription factor 20 (Tbx20) plays a multifaceted role in cardiac morphogenesis and controls a broad gene regulatory network. However, the mechanism by which Tbx20 activates and represses target genes in a tissue-specific and temporal manner remains unclear. Studies show that Tbx20 directly interacts with the Transducin-like Enhancer of Split (TLE) family of proteins to mediate transcriptional repression. However, a function for the Tbx20-TLE transcriptional repression complex during heart development has yet to be established. We created a mouse model with a two amino acid substitution in the Tbx20 EH1 domain, thereby disrupting the Tbx20-TLE interaction. Disruption of this interaction impaired crucial morphogenic events, including cardiac looping and chamber formation. Transcriptional profiling of Tbx20EH1Mut hearts and analysis of putative direct targets revealed misexpression of the retinoic acid pathway and cardiac progenitor genes. Further, we show that altered cardiac progenitor development and function contribute to the severe cardiac defects in our model. Our studies indicate that TLE-mediated repression is a primary mechanism by which Tbx20 controls gene expression.
Collapse
Affiliation(s)
- Whitney Edwards
- Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological & Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Olivia K. Bussey
- Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological & Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Frank L. Conlon
- Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological & Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
9
|
Oh SY, Na SB, Kang YK, Do JT. In Vitro Embryogenesis and Gastrulation Using Stem Cells in Mice and Humans. Int J Mol Sci 2023; 24:13655. [PMID: 37686459 PMCID: PMC10563085 DOI: 10.3390/ijms241713655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
During early mammalian embryonic development, fertilized one-cell embryos develop into pre-implantation blastocysts and subsequently establish three germ layers through gastrulation during post-implantation development. In recent years, stem cells have emerged as a powerful tool to study embryogenesis and gastrulation without the need for eggs, allowing for the generation of embryo-like structures known as synthetic embryos or embryoids. These in vitro models closely resemble early embryos in terms of morphology and gene expression and provide a faithful recapitulation of early pre- and post-implantation embryonic development. Synthetic embryos can be generated through a combinatorial culture of three blastocyst-derived stem cell types, such as embryonic stem cells, trophoblast stem cells, and extraembryonic endoderm cells, or totipotent-like stem cells alone. This review provides an overview of the progress and various approaches in studying in vitro embryogenesis and gastrulation in mice and humans using stem cells. Furthermore, recent findings and breakthroughs in synthetic embryos and gastruloids are outlined. Despite ethical considerations, synthetic embryo models hold promise for understanding mammalian (including humans) embryonic development and have potential implications for regenerative medicine and developmental research.
Collapse
Affiliation(s)
| | | | | | - Jeong Tae Do
- Department of Stem Cell Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul 05029, Republic of Korea; (S.Y.O.); (S.B.N.); (Y.K.K.)
| |
Collapse
|
10
|
Zhao K, Yang Z. The second heart field: the first 20 years. Mamm Genome 2022:10.1007/s00335-022-09975-8. [PMID: 36550326 DOI: 10.1007/s00335-022-09975-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
In 2001, three independent groups reported the identification of a novel cluster of progenitor cells that contribute to heart development in mouse and chicken embryos. This population of progenitor cells was designated as the second heart field (SHF), and a new research direction in heart development was launched. Twenty years have since passed and a comprehensive understanding of the SHF has been achieved. This review provides retrospective insights in to the contribution, the signaling regulatory networks and the epithelial properties of the SHF. It also includes the spatiotemporal characteristics of SHF development and interactions between the SHF and other types of cells during heart development. Although considerable efforts will be required to investigate the cellular heterogeneity of the SHF, together with its intricate regulatory networks and undefined mechanisms, it is expected that the burgeoning new technology of single-cell sequencing and precise lineage tracing will advance the comprehension of SHF function and its molecular signals. The advances in SHF research will translate to clinical applications and to the treatment of congenital heart diseases, especially conotruncal defects, as well as to regenerative medicine.
Collapse
Affiliation(s)
- Ke Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, 210093, China
| | - Zhongzhou Yang
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, 210093, China.
| |
Collapse
|
11
|
Ren J, Miao D, Li Y, Gao R. Spotlight on Isl1: A Key Player in Cardiovascular Development and Diseases. Front Cell Dev Biol 2021; 9:793605. [PMID: 34901033 PMCID: PMC8656156 DOI: 10.3389/fcell.2021.793605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/10/2021] [Indexed: 02/01/2023] Open
Abstract
Cardiac transcription factors orchestrate a regulatory network controlling cardiovascular development. Isl1, a LIM-homeodomain transcription factor, acts as a key player in multiple organs during embryonic development. Its crucial roles in cardiovascular development have been elucidated by extensive studies, especially as a marker gene for the second heart field progenitors. Here, we summarize the roles of Isl1 in cardiovascular development and function, and outline its cellular and molecular modes of action, thus providing insights for the molecular basis of cardiovascular diseases.
Collapse
Affiliation(s)
- Jie Ren
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Danxiu Miao
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China.,Department of Toxicology, College of Public Health, Harbin Medical University, Harbin, China
| | - Yanshu Li
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin, China
| | - Rui Gao
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| |
Collapse
|
12
|
Hatzistergos KE, Durante MA, Valasaki K, Wanschel ACBA, Harbour JW, Hare JM. A novel cardiomyogenic role for Isl1 + neural crest cells in the inflow tract. SCIENCE ADVANCES 2020; 6:6/49/eaba9950. [PMID: 33268364 PMCID: PMC7821887 DOI: 10.1126/sciadv.aba9950] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 10/20/2020] [Indexed: 06/12/2023]
Abstract
The degree to which populations of cardiac progenitors (CPCs) persist in the postnatal heart remains a controversial issue in cardiobiology. To address this question, we conducted a spatiotemporally resolved analysis of CPC deployment dynamics, tracking cells expressing the pan-CPC gene Isl1 Most CPCs undergo programmed silencing during early cardiogenesis through proteasome-mediated and PRC2 (Polycomb group repressive complex 2)-mediated Isl1 repression, selectively in the outflow tract. A notable exception is a domain of cardiac neural crest cells (CNCs) in the inflow tract. These "dorsal CNCs" are regulated through a Wnt/β-catenin/Isl1 feedback loop and generate a limited number of trabecular cardiomyocytes that undergo multiple clonal divisions during compaction, to eventually produce ~10% of the biventricular myocardium. After birth, CNCs continue to generate cardiomyocytes that, however, exhibit diminished clonal amplification dynamics. Thus, although the postnatal heart sustains cardiomyocyte-producing CNCs, their regenerative potential is likely diminished by the loss of trabeculation-like proliferative properties.
Collapse
Affiliation(s)
- Konstantinos E Hatzistergos
- Aristotle University of Thessaloniki, Faculty of Sciences, School of Biology, Department of Genetics, Development and Molecular Biology, Thessaloniki 54124, Greece.
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Michael A Durante
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Krystalenia Valasaki
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Amarylis C B A Wanschel
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - J William Harbour
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
13
|
Galang G, Mandla R, Ruan H, Jung C, Sinha T, Stone NR, Wu RS, Mannion BJ, Allu PKR, Chang K, Rammohan A, Shi MB, Pennacchio LA, Black BL, Vedantham V. ATAC-Seq Reveals an Isl1 Enhancer That Regulates Sinoatrial Node Development and Function. Circ Res 2020; 127:1502-1518. [PMID: 33044128 DOI: 10.1161/circresaha.120.317145] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
RATIONALE Cardiac pacemaker cells (PCs) in the sinoatrial node (SAN) have a distinct gene expression program that allows them to fire automatically and initiate the heartbeat. Although critical SAN transcription factors, including Isl1 (Islet-1), Tbx3 (T-box transcription factor 3), and Shox2 (short-stature homeobox protein 2), have been identified, the cis-regulatory architecture that governs PC-specific gene expression is not understood, and discrete enhancers required for gene regulation in the SAN have not been identified. OBJECTIVE To define the epigenetic profile of PCs using comparative ATAC-seq (assay for transposase-accessible chromatin with sequencing) and to identify novel enhancers involved in SAN gene regulation, development, and function. METHODS AND RESULTS We used ATAC-seq on sorted neonatal mouse SAN to compare regions of accessible chromatin in PCs and right atrial cardiomyocytes. PC-enriched assay for transposase-accessible chromatin peaks, representing candidate SAN regulatory elements, were located near established SAN genes and were enriched for distinct sets of TF (transcription factor) binding sites. Among several novel SAN enhancers that were experimentally validated using transgenic mice, we identified a 2.9-kb regulatory element at the Isl1 locus that was active specifically in the cardiac inflow at embryonic day 8.5 and throughout later SAN development and maturation. Deletion of this enhancer from the genome of mice resulted in SAN hypoplasia and sinus arrhythmias. The mouse SAN enhancer also directed reporter activity to the inflow tract in developing zebrafish hearts, demonstrating deep conservation of its upstream regulatory network. Finally, single nucleotide polymorphisms in the human genome that occur near the region syntenic to the mouse enhancer exhibit significant associations with resting heart rate in human populations. CONCLUSIONS (1) PCs have distinct regions of accessible chromatin that correlate with their gene expression profile and contain novel SAN enhancers, (2) cis-regulation of Isl1 specifically in the SAN depends upon a conserved SAN enhancer that regulates PC development and SAN function, and (3) a corresponding human ISL1 enhancer may regulate human SAN function.
Collapse
Affiliation(s)
- Giselle Galang
- Cardiology Division (G.G., R.M., H.R., C.J., R.S.W., P.K.R.A., A.R., M.B.S., V.V.), University of California, San Francisco
| | - Ravi Mandla
- Cardiology Division (G.G., R.M., H.R., C.J., R.S.W., P.K.R.A., A.R., M.B.S., V.V.), University of California, San Francisco
| | - Hongmei Ruan
- Cardiology Division (G.G., R.M., H.R., C.J., R.S.W., P.K.R.A., A.R., M.B.S., V.V.), University of California, San Francisco
| | - Catherine Jung
- Cardiology Division (G.G., R.M., H.R., C.J., R.S.W., P.K.R.A., A.R., M.B.S., V.V.), University of California, San Francisco
| | - Tanvi Sinha
- Cardiovascular Research Institute (T.S., R.S.W., B.L.B., V.V.), University of California, San Francisco
| | - Nicole R Stone
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA (N.R.S.)
| | - Roland S Wu
- Cardiology Division (G.G., R.M., H.R., C.J., R.S.W., P.K.R.A., A.R., M.B.S., V.V.), University of California, San Francisco.,Cardiovascular Research Institute (T.S., R.S.W., B.L.B., V.V.), University of California, San Francisco
| | - Brandon J Mannion
- Environmental and Systems Biology Division, Lawrence Berkeley National Laboratory, CA (B.J.M., L.A.P.).,Department of Energy Joint Genome Institute, Berkeley, CA (B.J.M., L.A.P.).,Comparative Biochemistry Program, University of California, Berkeley (B.J.M., L.A.P.)
| | - Prasanna K R Allu
- Cardiology Division (G.G., R.M., H.R., C.J., R.S.W., P.K.R.A., A.R., M.B.S., V.V.), University of California, San Francisco
| | - Kevin Chang
- School of Medicine (K.C.), University of California, San Francisco
| | - Ashwin Rammohan
- Cardiology Division (G.G., R.M., H.R., C.J., R.S.W., P.K.R.A., A.R., M.B.S., V.V.), University of California, San Francisco
| | - Marie B Shi
- Cardiology Division (G.G., R.M., H.R., C.J., R.S.W., P.K.R.A., A.R., M.B.S., V.V.), University of California, San Francisco
| | - Len A Pennacchio
- Environmental and Systems Biology Division, Lawrence Berkeley National Laboratory, CA (B.J.M., L.A.P.).,Department of Energy Joint Genome Institute, Berkeley, CA (B.J.M., L.A.P.).,Comparative Biochemistry Program, University of California, Berkeley (B.J.M., L.A.P.)
| | - Brian L Black
- Cardiovascular Research Institute (T.S., R.S.W., B.L.B., V.V.), University of California, San Francisco.,Department of Biochemistry and Biophysics (B.L.B.), University of California, San Francisco
| | - Vasanth Vedantham
- Cardiology Division (G.G., R.M., H.R., C.J., R.S.W., P.K.R.A., A.R., M.B.S., V.V.), University of California, San Francisco.,Cardiovascular Research Institute (T.S., R.S.W., B.L.B., V.V.), University of California, San Francisco
| |
Collapse
|
14
|
Abstract
The function of the mammalian heart depends on the interplay between different cardiac cell types. The deployment of these cells, with precise spatiotemporal regulation, is also important during development to establish the heart structure. In this Review, we discuss the diverse origins of cardiac cell types and the lineage relationships between cells of a given type that contribute to different parts of the heart. The emerging lineage tree shows the progression of cell fate diversification, with patterning cues preceding cell type segregation, as well as points of convergence, with overlapping lineages contributing to a given tissue. Several cell lineage markers have been identified. However, caution is required with genetic-tracing experiments in comparison with clonal analyses. Genetic studies on cell populations provided insights into the mechanisms for lineage decisions. In the past 3 years, results of single-cell transcriptomics are beginning to reveal cell heterogeneity and early developmental trajectories. Equating this information with the in vivo location of cells and their lineage history is a current challenge. Characterization of the progenitor cells that form the heart and of the gene regulatory networks that control their deployment is of major importance for understanding the origin of congenital heart malformations and for producing cardiac tissue for use in regenerative medicine.
Collapse
|
15
|
Shao W, Szeto V, Song Z, Tian L, Feng ZP, Nostro MC, Jin T. The LIM homeodomain protein ISL1 mediates the function of TCF7L2 in pancreatic beta cells. J Mol Endocrinol 2018; 61:1-12. [PMID: 29678908 DOI: 10.1530/jme-17-0181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 03/29/2018] [Indexed: 11/08/2022]
Abstract
Pancreatic β-cell Tcf7l2 deletion or its functional knockdown suggested the essential role of this Wnt pathway effector in controlling insulin secretion, glucose homeostasis and β-cell gene expression. As the LIM homeodomain protein ISL1 is a suggested Wnt pathway downstream target, we hypothesize that it mediates metabolic functions of TCF7L2. We aimed to determine the role of ISL1 in mediating the function of TCF7L2 and the incretin hormone GLP-1 in pancreatic β-cells. The effect of dominant negative TCF7L2 (TCF7L2DN) mediated Wnt pathway functional knockdown on Isl1 expression was determined in βTCFDN mouse islets and in the rat insulinoma cell line INS-1 832/13. Luciferase reporter assay and chromatin immunoprecipitation were utilized to determine whether Isl1 is a direct downstream target of Tcf7l2 TCF7L2DN adenovirus infection and siRNA-mediated Isl1 knockdown on β-cell gene expression were compared. Furthermore, Isl1 knockdown on GLP-1 stimulated β-catenin S675 phosphorylation and insulin secretion was determined. We found that TCF7L2DN repressed ISL1 levels in βTCFDN islets and the INS-1 832/13 cell line. Wnt stimulators enhanced Isl1 promoter activity and binding of TCF7L2 on Isl1 promoter. TCF7L2DN adenovirus infection and Isl1 knockdown generated similar repression on expression of β-cell genes, including the ones that encode GLUT2 and GLP-1 receptor. Either TCF7L2DN adenovirus infection or Isl1 knockdown attenuated GLP-1-stimulated β-catenin S675 phosphorylation in INS-1 832/13 cells or mouse islets and GLP-1 stimulated insulin secretion in INS-1 832/13 or MIN6 cells. Our observations support the existence of TCF7L2-ISL1 transcriptional network, and we suggest that this network also mediates β-cell function of GLP-1.
Collapse
Affiliation(s)
- Weijuan Shao
- Division of Advanced DiagnosticsToronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Vivian Szeto
- Department of PhysiologyUniversity of Toronto, Medical Sciences Building, Toronto, Ontario, Canada
| | - Zhuolun Song
- Department of PhysiologyUniversity of Toronto, Medical Sciences Building, Toronto, Ontario, Canada
| | - Lili Tian
- Division of Advanced DiagnosticsToronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Zhong-Ping Feng
- Department of PhysiologyUniversity of Toronto, Medical Sciences Building, Toronto, Ontario, Canada
| | - M Cristina Nostro
- Department of PhysiologyUniversity of Toronto, Medical Sciences Building, Toronto, Ontario, Canada
- Division of Experimental TherapeuticsToronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- McEwen Centre for Regenerative MedicineUniversity Health Network, Toronto, Ontario, Canada
| | - Tianru Jin
- Division of Advanced DiagnosticsToronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of PhysiologyUniversity of Toronto, Medical Sciences Building, Toronto, Ontario, Canada
- McEwen Centre for Regenerative MedicineUniversity Health Network, Toronto, Ontario, Canada
- Banting and Best Diabetes CenterUniversity of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Tahara N, Akiyama R, Theisen JWM, Kawakami H, Wong J, Garry DJ, Kawakami Y. Gata6 restricts Isl1 to the posterior of nascent hindlimb buds through Isl1 cis-regulatory modules. Dev Biol 2018; 434:74-83. [PMID: 29197504 PMCID: PMC5785445 DOI: 10.1016/j.ydbio.2017.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/07/2017] [Accepted: 11/25/2017] [Indexed: 01/30/2023]
Abstract
Isl1 is required for two processes during hindlimb development: initiation of the processes directing hindlimb development in the lateral plate mesoderm and configuring posterior hindlimb field in the nascent hindlimb buds. During these processes, Isl1 expression is restricted to the posterior mesenchyme of hindlimb buds. How this dynamic change in Isl1 expression is regulated remains unknown. We found that two evolutionarily conserved sequences, located 3' to the Isl1 gene, regulate LacZ transgene expression in the hindlimb-forming region in mouse embryos. Both sequences contain GATA binding motifs, and expression pattern analysis identified that Gata6 is expressed in the flank and the anterior portion of nascent hindlimb buds. Recent studies have shown that conditional inactivation of Gata6 in mice causes hindlimb-specific pre-axial polydactyly, indicating a role of Gata6 in anterior-posterior patterning of hindlimbs. We studied whether Gata6 restricts Isl1 in the nascent hindlimb bud through the cis-regulatory modules. In vitro experiments demonstrate that GATA6 binds to the conserved GATA motifs in the cis-regulatory modules. GATA6 repressed expression of a luciferase reporter that contains the cis-regulatory modules by synergizing with Zfpm2. Analyses of Gata6 mutant embryos showed that ISL1 levels are higher in the anterior of nascent hindlimb buds than in wild type. Moreover, we detected a greater number of Isl1-transcribing cells in the anterior of nascent hindlimb buds in Gata6 mutants. Our results support a model in which Gata6 contributes to repression of Isl1 expression in the anterior of nascent hindlimb buds.
Collapse
Affiliation(s)
- Naoyuki Tahara
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States; Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Ryutaro Akiyama
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States; Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Joshua W M Theisen
- Lillehei Heart Institute Regenerative Medicine and Sciences Program, University of Minnesota, Minneapolis, MN, United States
| | - Hiroko Kawakami
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States; Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Julia Wong
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States
| | - Daniel J Garry
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States; Lillehei Heart Institute Regenerative Medicine and Sciences Program, University of Minnesota, Minneapolis, MN, United States; Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN, United States
| | - Yasuhiko Kawakami
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States; Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
17
|
Single-cell analysis delineates a trajectory toward the human early otic lineage. Proc Natl Acad Sci U S A 2016; 113:8508-13. [PMID: 27402757 DOI: 10.1073/pnas.1605537113] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Efficient pluripotent stem cell guidance protocols for the production of human posterior cranial placodes such as the otic placode that gives rise to the inner ear do not exist. Here we use a systematic approach including defined monolayer culture, signaling modulation, and single-cell gene expression analysis to delineate a developmental trajectory for human otic lineage specification in vitro. We found that modulation of bone morphogenetic protein (BMP) and WNT signaling combined with FGF and retinoic acid treatments over the course of 18 days generates cell populations that develop chronological expression of marker genes of non-neural ectoderm, preplacodal ectoderm, and early otic lineage. Gene expression along this differentiation path is distinct from other lineages such as endoderm, mesendoderm, and neural ectoderm. Single-cell analysis exposed the heterogeneity of differentiating cells and allowed discrimination of non-neural ectoderm and otic lineage cells from off-target populations. Pseudotemporal ordering of human embryonic stem cell and induced pluripotent stem cell-derived single-cell gene expression profiles revealed an initially synchronous guidance toward non-neural ectoderm, followed by comparatively asynchronous occurrences of preplacodal and otic marker genes. Positive correlation of marker gene expression between both cell lines and resemblance to mouse embryonic day 10.5 otocyst cells implied reasonable robustness of the guidance protocol. Single-cell trajectory analysis further revealed that otic progenitor cell types are induced in monolayer cultures, but further development appears impeded, likely because of lack of a lineage-stabilizing microenvironment. Our results provide a framework for future exploration of stabilizing microenvironments for efficient differentiation of stem cell-generated human otic cell types.
Collapse
|
18
|
Lambers E, Arnone B, Fatima A, Qin G, Wasserstrom JA, Kume T. Foxc1 Regulates Early Cardiomyogenesis and Functional Properties of Embryonic Stem Cell Derived Cardiomyocytes. Stem Cells 2016; 34:1487-500. [DOI: 10.1002/stem.2301] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/21/2015] [Accepted: 12/23/2015] [Indexed: 01/16/2023]
Affiliation(s)
- Erin Lambers
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University; Chicago Illinois USA
| | - Baron Arnone
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University; Chicago Illinois USA
| | - Anees Fatima
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University; Chicago Illinois USA
| | - Gangjian Qin
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University; Chicago Illinois USA
| | - J. Andrew Wasserstrom
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University; Chicago Illinois USA
| | - Tsutomu Kume
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University; Chicago Illinois USA
| |
Collapse
|
19
|
Dorn T, Goedel A, Lam JT, Haas J, Tian Q, Herrmann F, Bundschu K, Dobreva G, Schiemann M, Dirschinger R, Guo Y, Kühl SJ, Sinnecker D, Lipp P, Laugwitz KL, Kühl M, Moretti A. Direct nkx2-5 transcriptional repression of isl1 controls cardiomyocyte subtype identity. Stem Cells 2016; 33:1113-29. [PMID: 25524439 PMCID: PMC6750130 DOI: 10.1002/stem.1923] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 10/29/2014] [Accepted: 11/08/2014] [Indexed: 12/31/2022]
Abstract
During cardiogenesis, most myocytes arise from cardiac progenitors expressing the transcription factors Isl1 and Nkx2-5. Here, we show that a direct repression of Isl1 by Nkx2-5 is necessary for proper development of the ventricular myocardial lineage. Overexpression of Nkx2-5 in mouse embryonic stem cells (ESCs) delayed specification of cardiac progenitors and inhibited expression of Isl1 and its downstream targets in Isl1(+) precursors. Embryos deficient for Nkx2-5 in the Isl1(+) lineage failed to downregulate Isl1 protein in cardiomyocytes of the heart tube. We demonstrated that Nkx2-5 directly binds to an Isl1 enhancer and represses Isl1 transcriptional activity. Furthermore, we showed that overexpression of Isl1 does not prevent cardiac differentiation of ESCs and in Xenopus laevis embryos. Instead, it leads to enhanced specification of cardiac progenitors, earlier cardiac differentiation, and increased cardiomyocyte number. Functional and molecular characterization of Isl1-overexpressing cardiomyocytes revealed higher beating frequencies in both ESC-derived contracting areas and Xenopus Isl1-gain-of-function hearts, which associated with upregulation of nodal-specific genes and downregulation of transcripts of working myocardium. Immunocytochemistry of cardiomyocyte lineage-specific markers demonstrated a reduction of ventricular cells and an increase of cells expressing the pacemaker channel Hcn4. Finally, optical action potential imaging of single cardiomyocytes combined with pharmacological approaches proved that Isl1 overexpression in ESCs resulted in normally electrophysiologically functional cells, highly enriched in the nodal subtype at the expense of the ventricular lineage. Our findings provide an Isl1/Nkx2-5-mediated mechanism that coordinately regulates the specification of cardiac progenitors toward the different myocardial lineages and ensures proper acquisition of myocyte subtype identity.
Collapse
Affiliation(s)
- Tatjana Dorn
- I. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Chromatin Dynamics in Lineage Commitment and Cellular Reprogramming. Genes (Basel) 2015; 6:641-61. [PMID: 26193323 PMCID: PMC4584322 DOI: 10.3390/genes6030641] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/08/2015] [Accepted: 07/10/2015] [Indexed: 12/15/2022] Open
Abstract
Dynamic structural properties of chromatin play an essential role in defining cell identity and function. Transcription factors and chromatin modifiers establish and maintain cell states through alteration of DNA accessibility and histone modifications. This activity is focused at both gene-proximal promoter regions and distally located regulatory elements. In the three-dimensional space of the nucleus, distal elements are localized in close physical proximity to the gene-proximal regulatory sequences through the formation of chromatin loops. These looping features in the genome are highly dynamic as embryonic stem cells differentiate and commit to specific lineages, and throughout reprogramming as differentiated cells reacquire pluripotency. Identifying these functional distal regulatory regions in the genome provides insight into the regulatory processes governing early mammalian development and guidance for improving the protocols that generate induced pluripotent cells.
Collapse
|
21
|
Kelly RG, Buckingham ME, Moorman AF. Heart fields and cardiac morphogenesis. Cold Spring Harb Perspect Med 2014; 4:4/10/a015750. [PMID: 25274757 DOI: 10.1101/cshperspect.a015750] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this review, we focus on two important steps in the formation of the embryonic heart: (i) the progressive addition of late differentiating progenitor cells from the second heart field that drives heart tube extension during looping morphogenesis, and (ii) the emergence of patterned proliferation within the embryonic myocardium that generates distinct cardiac chambers. During the transition between these steps, the major site of proliferation switches from progenitor cells outside the early heart to proliferation within the embryonic myocardium. The second heart field and ballooning morphogenesis concepts have major repercussions on our understanding of human heart development and disease. In particular, they provide a framework to dissect the origin of congenital heart defects and the regulation of myocardial proliferation and differentiation of relevance for cardiac repair.
Collapse
Affiliation(s)
- Robert G Kelly
- Aix Marseille University, CNRS, IBDM UMR 7288, 13288 Marseilles, France
| | - Margaret E Buckingham
- Department of Developmental and Stem Cell Biology, URA CNRS 2578, Pasteur Institute, 75015 Paris, France
| | - Antoon F Moorman
- Department of Anatomy, Embryology & Physiology, Academic Medical Centre, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
22
|
Clowes C, Boylan MGS, Ridge LA, Barnes E, Wright JA, Hentges KE. The functional diversity of essential genes required for mammalian cardiac development. Genesis 2014; 52:713-37. [PMID: 24866031 PMCID: PMC4141749 DOI: 10.1002/dvg.22794] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 01/04/2023]
Abstract
Genes required for an organism to develop to maturity (for which no other gene can compensate) are considered essential. The continuing functional annotation of the mouse genome has enabled the identification of many essential genes required for specific developmental processes including cardiac development. Patterns are now emerging regarding the functional nature of genes required at specific points throughout gestation. Essential genes required for development beyond cardiac progenitor cell migration and induction include a small and functionally homogenous group encoding transcription factors, ligands and receptors. Actions of core cardiogenic transcription factors from the Gata, Nkx, Mef, Hand, and Tbx families trigger a marked expansion in the functional diversity of essential genes from midgestation onwards. As the embryo grows in size and complexity, genes required to maintain a functional heartbeat and to provide muscular strength and regulate blood flow are well represented. These essential genes regulate further specialization and polarization of cell types along with proliferative, migratory, adhesive, contractile, and structural processes. The identification of patterns regarding the functional nature of essential genes across numerous developmental systems may aid prediction of further essential genes and those important to development and/or progression of disease. genesis 52:713–737, 2014.
Collapse
Affiliation(s)
- Christopher Clowes
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, United Kingdom
| | | | | | | | | | | |
Collapse
|
23
|
Wnt-promoted Isl1 expression through a novel TCF/LEF1 binding site and H3K9 acetylation in early stages of cardiomyocyte differentiation of P19CL6 cells. Mol Cell Biochem 2014; 391:183-92. [DOI: 10.1007/s11010-014-2001-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 02/21/2014] [Indexed: 11/26/2022]
|
24
|
Switching axial progenitors from producing trunk to tail tissues in vertebrate embryos. Dev Cell 2013; 25:451-62. [PMID: 23763947 DOI: 10.1016/j.devcel.2013.05.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/30/2013] [Accepted: 05/10/2013] [Indexed: 11/21/2022]
Abstract
The vertebrate body is made by progressive addition of new tissue from progenitors at the posterior embryonic end. Axial extension involves different mechanisms that produce internal organs in the trunk but not in the tail. We show that Gdf11 signaling is a major coordinator of the trunk-to-tail transition. Without Gdf11 signaling, the switch from trunk to tail is significantly delayed, and its premature activation brings the hindlimbs and cloaca next to the forelimbs, leaving extremely short trunks. Gdf11 activity includes activation of Isl1 to promote formation of the hindlimbs and cloaca-associated mesoderm as the most posterior derivatives of lateral mesoderm progenitors. Gdf11 also coordinates reallocation of bipotent neuromesodermal progenitors from the anterior primitive streak to the tail bud, in part by reducing the retinoic acid available to the progenitors. Our findings provide a perspective to understand the evolution of the vertebrate body plan.
Collapse
|
25
|
Lang J, Tian W, Sun X. Association Between ISL1 Variants and Susceptibility to Ventricular Septal Defect in a Chinese Cohort. Mol Diagn Ther 2013; 17:101-6. [DOI: 10.1007/s40291-013-0033-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Cresci M, Vecoli C, Foffa I, Pulignani S, Ait-Ali L, Andreassi MG. Lack of association of the 3'-UTR polymorphism (rs1017) in the ISL1 gene and risk of congenital heart disease in the white population. Pediatr Cardiol 2013; 34:938-41. [PMID: 23229290 DOI: 10.1007/s00246-012-0578-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/25/2012] [Indexed: 10/27/2022]
Abstract
Congenital heart defects (CHDs) are the most prevalent of all birth defects and the leading cause of death in the first year of life. The molecular causes of most CHDs remain largely unknown. The LIM homeodomain transcriptor factor ISL1 is a marker for undifferentiated cardiac progenitor cells that give rise to both the right ventricle and the inflow and outflow tracts, which are affected by several cardiovascular malformations. Contradictory findings about the role of the ISL1 rs1017 single-nucleotide polymorphism in increasing the risk of CHD have been reported. In this study, we aimed to investigate whether the ISL1 rs1017 genetic polymorphism conferred susceptibility to CHD in the white population. In a case-control study design, 309 patients with CHD (197 men [age 21.3 ± 25.2]) and 500 healthy controls (272 men [age 15.7 ± 21.3]) were genotyped for the ISL1 rs1017 polymorphism. No significant difference in the genotype and variant allele distributions was found between patients and controls. In addition, the ISL1 rs1017 polymorphism was not associated with the risk of CHD neither overall (p = 0.7) nor stratifying the population by sex and CHD classification. In conclusion, ISL1 common variant rs1017 is not associated with increased genetic risk of CHD in the white population.
Collapse
Affiliation(s)
- Monica Cresci
- National Research Council Institute of Clinical Physiology, via Aurelia Sud, 54100, Massa, Italy
| | | | | | | | | | | |
Collapse
|
27
|
Islet1 is a direct transcriptional target of the homeodomain transcription factor Shox2 and rescues the Shox2-mediated bradycardia. Basic Res Cardiol 2013; 108:339. [PMID: 23455426 PMCID: PMC3597335 DOI: 10.1007/s00395-013-0339-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/31/2013] [Accepted: 02/08/2013] [Indexed: 01/10/2023]
Abstract
The heart's rhythm is initiated and regulated by a group of specialized cells in the sinoatrial node (SAN), the primary pacemaker of the heart. Abnormalities in the development of the SAN can result in irregular heart rates (arrhythmias). Although several of the critical genes important for SAN formation have been identified, our understanding of the transcriptional network controlling SAN development remains at a relatively early stage. The homeodomain transcription factor Shox2 is involved in the specification and patterning of the SAN. While the Shox2 knockout in mice results in embryonic lethality due to severe cardiac defects including improper SAN development, Shox2 knockdown in zebrafish causes a reduced heart rate (bradycardia). In order to gain deeper insight into molecular pathways involving Shox2, we compared gene expression levels in right atria of wildtype and Shox2 (-/-) hearts using microarray experiments and identified the LIM homeodomain transcription factor Islet1 (Isl1) as one of its putative target genes. The downregulation of Isl1 expression in Shox2 (-/-) hearts was confirmed and the affected region narrowed down to the SAN by whole-mount in situ hybridization. Using luciferase reporter assays and EMSA studies, we identified two specific SHOX2 binding sites within intron 2 of the ISL1 locus. We also provide functional evidence for Isl1 as a transcriptional target of Shox2 by rescuing the Shox2-mediated bradycardia phenotype with Isl1 using zebrafish as a model system. Our findings demonstrate a novel epistatic relationship between Shox2 and Isl1 in the heart with important developmental consequences for SAN formation and heart beat.
Collapse
|
28
|
Neeb Z, Lajiness JD, Bolanis E, Conway SJ. Cardiac outflow tract anomalies. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2013; 2:499-530. [PMID: 24014420 DOI: 10.1002/wdev.98] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mature outflow tract (OFT) is, in basic terms, a short conduit. It is a simple, although vital, connection situated between contracting muscular heart chambers and a vast embryonic vascular network. Unfortunately, it is also a focal point underlying many multifactorial congenital heart defects (CHDs). Through the use of various animal models combined with human genetic investigations, we are beginning to comprehend the molecular and cellular framework that controls OFT morphogenesis. Clear roles of neural crest cells (NCC) and second heart field (SHF) derivatives have been established during OFT formation and remodeling. The challenge now is to determine how the SHF and cardiac NCC interact, the complex reciprocal signaling that appears to be occurring at various stages of OFT morphogenesis, and finally how endocardial progenitors and primary heart field (PHF) communicate with both these colonizing extra-cardiac lineages. Although we are beginning to understand that this dance of progenitor populations is wonderfully intricate, the underlying pathogenesis and the spatiotemporal cell lineage interactions remain to be fully elucidated. What is now clear is that OFT alignment and septation are independent processes, invested via separate SHF and cardiac neural crest (CNC) lineages. This review will focus on our current understanding of the respective contributions of the SHF and CNC lineage during OFT development and pathogenesis.
Collapse
Affiliation(s)
- Zachary Neeb
- Developmental Biology and Neonatal Medicine Program, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
29
|
Davis J, Maillet M, Miano JM, Molkentin JD. Lost in transgenesis: a user's guide for genetically manipulating the mouse in cardiac research. Circ Res 2012; 111:761-77. [PMID: 22935533 DOI: 10.1161/circresaha.111.262717] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The advent of modern mouse genetics has benefited many fields of diseased-based research over the past 20 years, none perhaps more profoundly than cardiac biology. Indeed, the heart is now arguably one of the easiest tissues to genetically manipulate, given the availability of an ever-growing tool chest of molecular reagents/promoters and "facilitator" mouse lines. It is now possible to modify the expression of essentially any gene or partial gene product in the mouse heart at any time, either gain or loss of function. This review is designed as a handbook for the nonmouse geneticist and/or junior investigator to permit the successful manipulation of any gene or RNA product in the heart, while avoiding artifacts. In the present review, guidelines, pitfalls, and limitations are presented so that rigorous and appropriate examination of cardiac genotype-phenotype relationships can be performed. This review uses examples from the field to illustrate the vast spectrum of experimental and design details that must be considered when using genetically modified mouse models to study cardiac biology.
Collapse
Affiliation(s)
- Jennifer Davis
- Department of Pediatrics, University of Cincinnati, Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, 240 Albert Sabin Way, S4.409, Cincinnati, OH 45229, USA
| | | | | | | |
Collapse
|
30
|
Witzel HR, Jungblut B, Choe CP, Crump JG, Braun T, Dobreva G. The LIM protein Ajuba restricts the second heart field progenitor pool by regulating Isl1 activity. Dev Cell 2012; 23:58-70. [PMID: 22771034 DOI: 10.1016/j.devcel.2012.06.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 03/16/2012] [Accepted: 06/04/2012] [Indexed: 11/26/2022]
Abstract
Morphogenesis of the heart requires tight control of cardiac progenitor cell specification, expansion, and differentiation. Retinoic acid (RA) signaling restricts expansion of the second heart field (SHF), serving as an important morphogen in heart development. Here, we identify the LIM domain protein Ajuba as a crucial regulator of the SHF progenitor cell specification and expansion. Ajuba-deficient zebrafish embryos show an increased pool of Isl1(+) cardiac progenitors and, subsequently, dramatically increased numbers of cardiomyocytes at the arterial and venous poles. Furthermore, we show that Ajuba binds Isl1, represses its transcriptional activity, and is also required for autorepression of Isl1 expression in an RA-dependent manner. Lack of Ajuba abrogates the RA-dependent restriction of Isl1(+) cardiac cells. We conclude that Ajuba plays a central role in regulating the SHF during heart development by linking RA signaling to the function of Isl1, a key transcription factor in cardiac progenitor cells.
Collapse
Affiliation(s)
- Hagen R Witzel
- Origin of Cardiac Cell Lineages Group, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, Bad Nauheim, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Xue L, Wang X, Xu J, Xu X, Liu X, Hu Z, Shen H, Chen Y. ISL1 common variant rs1017 is not associated with susceptibility to congenital heart disease in a Chinese population. Genet Test Mol Biomarkers 2012; 16:679-83. [PMID: 22480195 DOI: 10.1089/gtmb.2011.0249] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND ISL1, as a member of the LIM homeodomain transcription factor family, is expressed in a distinct population of undifferentiated cardiac progenitors and plays a pivotal role in cardiogenesis. Lacking ISL1 expression results in growth arrest or displays profound defects in heart development, including atria, ventricle, and the inflow and outflow tracts, which constitute a major form of congenital heart disease (CHD). Recently, an important study by Stevens et al. found that genetic variation in ISL1 is associated with risk of CHD in white and black/African American populations; this observation led us to hypothesize that ISL1 common variants might influence susceptibility to sporadic CHD in our Chinese population. METHODS We conducted a case-control study of CHD in Chinese to test our hypothesis by genotyping ISL1 common variant rs1017 in 1003 CHD cases and 1012 non-CHD controls. RESULTS We found that rs1017 was not associated with the risk of CHD (p=0.213). When we performed stratified analyses according to subjects' age, sex, and CHD classifications, we found no overall heterogeneity of risk in different subgroups. CONCLUSIONS This is the first study which indicates that ISL1 common variant rs1017 may not play a role in sporadic CHD susceptibility in the Chinese population.
Collapse
Affiliation(s)
- Lei Xue
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Taubenschmid J, Weitzer G. Mechanisms of cardiogenesis in cardiovascular progenitor cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 293:195-267. [PMID: 22251563 PMCID: PMC7615846 DOI: 10.1016/b978-0-12-394304-0.00012-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Self-renewing cells of the vertebrate heart have become a major subject of interest in the past decade. However, many researchers had a hard time to argue against the orthodox textbook view that defines the heart as a postmitotic organ. Once the scientific community agreed on the existence of self-renewing cells in the vertebrate heart, their origin was again put on trial when transdifferentiation, dedifferentiation, and reprogramming could no longer be excluded as potential sources of self-renewal in the adult organ. Additionally, the presence of self-renewing pluripotent cells in the peripheral blood challenges the concept of tissue-specific stem and progenitor cells. Leaving these unsolved problems aside, it seems very desirable to learn about the basic biology of this unique cell type. Thus, we shall here paint a picture of cardiovascular progenitor cells including the current knowledge about their origin, basic nature, and the molecular mechanisms guiding proliferation and differentiation into somatic cells of the heart.
Collapse
Affiliation(s)
- Jasmin Taubenschmid
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
33
|
Abstract
Ten years ago, a population of cardiac progenitor cells was identified in pharyngeal mesoderm that gives rise to a major part of the amniote heart. These multipotent progenitor cells, termed the second heart field (SHF), contribute progressively to the poles of the elongating heart tube during looping morphogenesis, giving rise to myocardium, smooth muscle, and endothelial cells. Research into the mechanisms of SHF development has contributed significantly to our understanding of the properties of cardiac progenitor cells and the origins of congenital heart defects. Here recent data concerning the regulation, clinically relevant subpopulations, evolution and lineage relationships of the SHF are reviewed. Proliferation and differentiation of SHF cells are controlled by multiple intercellular signaling pathways and a transcriptional regulatory network that is beginning to be elucidated. Perturbation of SHF development results in common forms of congenital heart defects and particular progenitor cell subpopulations are highly relevant clinically, including cells giving rise to myocardium at the base of the pulmonary trunk and the interatrial septum. A SHF has recently been identified in amphibian, fish, and agnathan embryos, highlighting the important contribution of these cells to the evolution of the vertebrate heart. Finally, SHF-derived parts of the heart share a lineage relationship with craniofacial skeletal muscles revealing that these progenitor cells belong to a broad cardiocraniofacial field of pharyngeal mesoderm. Investigation of the mechanisms underlying the dynamic process of SHF deployment is likely to yield further insights into cardiac development and pathology.
Collapse
Affiliation(s)
- Robert G Kelly
- Developmental Biology Institute of Marseilles-Luminy, Aix-Marseille Université, CNRS UMR 7288, Marseilles, France
| |
Collapse
|
34
|
Liu Y, Li Y, Li T, Lu H, Jia Z, Wang W, Chen P, Ma K, Zhou C. POU homeodomain protein OCT1 modulates islet 1 expression during cardiac differentiation of P19CL6 cells. Cell Mol Life Sci 2011; 68:1969-82. [PMID: 20960024 PMCID: PMC11115038 DOI: 10.1007/s00018-010-0544-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 09/02/2010] [Accepted: 09/28/2010] [Indexed: 11/30/2022]
Abstract
Islet 1 (ISL1), a marker of cardiac progenitors, plays a crucial role in cardiogenesis. However, the precise mechanism underlying the activation of its expression is not fully understood. Using the cardiac differentiation model of P19CL6 cells, we show that POU homeodomain protein, OCT1, modulates Isl1 expression in the process of cardiac differentiation. Oct1 knock-down resulted in reduction of Isl1 expression and downregulated mesodermal, cardiac-specific, and signal pathway gene expression. Additionally, the octamer motif located in the proximal region of Isl1 promoter is essential to Isl1 transcriptional activation. Mutation of this motif remarkably decreased Isl1 transcription. Although both OCT1 and OCT4 bound to this motif, it was OCT1 rather than OCT4 that modulated Isl1 expression. Furthermore, the correlation of OCT1 in regulation of Isl1 was revealed by in situ hybridization in early embryos. Collectively, our data highlight a novel role of OCT1 in the regulation of Isl1 expression.
Collapse
Affiliation(s)
- Yinan Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Haidian District Beijing, 100191 China
| | - Yanming Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Haidian District Beijing, 100191 China
| | - Tao Li
- Department of Biology, College of Chemistry and Life Science, Zhejiang Normal University, 688 Yingbing Road, Jinhua, 321004 Zhejiang Province China
| | - Huafei Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Haidian District Beijing, 100191 China
| | - Zhuqing Jia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Haidian District Beijing, 100191 China
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing, 100191 China
| | - Weiping Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Haidian District Beijing, 100191 China
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing, 100191 China
| | - Ping Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Haidian District Beijing, 100191 China
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing, 100191 China
| | - Kangtao Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Haidian District Beijing, 100191 China
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing, 100191 China
| | - Chunyan Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Haidian District Beijing, 100191 China
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing, 100191 China
| |
Collapse
|
35
|
Zhou Y, Cashman TJ, Nevis KR, Obregon P, Carney SA, Liu Y, Gu A, Mosimann C, Sondalle S, Peterson RE, Heideman W, Burns CE, Burns CG. Latent TGF-β binding protein 3 identifies a second heart field in zebrafish. Nature 2011; 474:645-8. [PMID: 21623370 PMCID: PMC3319150 DOI: 10.1038/nature10094] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 04/01/2011] [Indexed: 01/31/2023]
Abstract
The four-chambered mammalian heart develops from two fields of cardiac progenitor cells (CPCs) distinguished by their spatiotemporal patterns of differentiation and contributions to the definitive heart [1–3]. The first heart field differentiates earlier in lateral plate mesoderm, generates the linear heart tube and ultimately gives rise to the left ventricle. The second heart field (SHF) differentiates later in pharyngeal mesoderm, elongates the heart tube, and gives rise to the outflow tract (OFT) and much of the right ventricle. Because hearts in lower vertebrates contain a rudimentary OFT but not a right ventricle [4], the existence and function of SHF-like cells in these species has remained a topic of speculation [4–10]. Here we provide direct evidence from Cre/Lox-mediated lineage tracing and loss of function studies in zebrafish, a lower vertebrate with a single ventricle, that latent-TGFβ binding protein 3 (ltbp3) transcripts mark a field of CPCs with defining characteristics of the anterior SHF in mammals. Specifically, ltbp3+ cells differentiate in pharyngeal mesoderm after formation of the heart tube, elongate the heart tube at the outflow pole, and give rise to three cardiovascular lineages in the OFT and myocardium in the distal ventricle. In addition to expressing Ltbp3, a protein that regulates the bioavailability of TGFβ ligands [11], zebrafish SHF cells co-express nkx2.5, an evolutionarily conserved marker of CPCs in both fields [4]. Embryos devoid of ltbp3 lack the same cardiac structures derived from ltbp3+ cells due to compromised progenitor proliferation. Additionally, small-molecule inhibition of TGFβ signaling phenocopies the ltbp3-morphant phenotype whereas expression of a constitutively active TGFβ type I receptor rescues it. Taken together, our findings uncover a requirement for ltbp3-TGFβ signaling during zebrafish SHF development, a process that serves to enlarge the single ventricular chamber in this species.
Collapse
Affiliation(s)
- Yong Zhou
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Parisot P, Mesbah K, Théveniau-Ruissy M, Kelly RG. Tbx1, subpulmonary myocardium and conotruncal congenital heart defects. ACTA ACUST UNITED AC 2011; 91:477-84. [PMID: 21591244 DOI: 10.1002/bdra.20803] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 01/25/2011] [Accepted: 02/09/2011] [Indexed: 12/22/2022]
Abstract
Conotruncal congenital heart defects, including defects in septation and alignment of the ventricular outlets, account for approximately a third of all congenital heart defects. Failure of the left ventricle to obtain an independent outlet results in incomplete separation of systemic and pulmonary circulation at birth. The embryonic outflow tract, a transient cylinder of myocardium connecting the embryonic ventricles to the aortic sac, plays a critical role in this process during normal development. The outflow tract (OFT) is derived from a population of cardiac progenitor cells called the second heart field that contributes to the arterial pole of the heart tube during cardiac looping. During septation, the OFT is remodeled to form the base of the ascending aorta and pulmonary trunk. Tbx1, the major candidate gene for DiGeorge syndrome, is a critical transcriptional regulator of second heart field development. DiGeorge syndrome patients are haploinsufficient for Tbx1 and present a spectrum of conotruncal anomalies including tetralogy of Fallot, pulmonary atresia, and common arterial trunk. In this review, we focus on the role of Tbx1 in the regulation of second heart field deployment and, in particular, in the development of a specific population of myocardial cells at the base of the pulmonary trunk. Recent data characterizing additional properties and regulators of development of this region of the heart, including the retinoic acid, hedgehog, and semaphorin signaling pathways, are discussed. These findings identify future subpulmonary myocardium as the clinically relevant component of the second heart field and provide new mechanistic insight into a spectrum of common conotruncal congenital heart defects.
Collapse
Affiliation(s)
- Pauline Parisot
- Developmental Biology Institute of Marseilles-Luminy, UMR 6216/CNRS, Université de la Méditerranée, Marseilles, France
| | | | | | | |
Collapse
|
37
|
Jang JW, Lee WY, Lee JH, Moon SH, Kim CH, Chung HM. A novel Fbxo25 acts as an E3 ligase for destructing cardiac specific transcription factors. Biochem Biophys Res Commun 2011; 410:183-8. [PMID: 21596019 DOI: 10.1016/j.bbrc.2011.05.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 05/02/2011] [Indexed: 01/05/2023]
Abstract
Alterations in ubiquitin-proteasome system (UPS) have been implicated in the etiology of human cardiovascular diseases. Skp1/Cul1/F-box (SCF) ubiquitin E3 ligase complex plays a pivotal role in ubiquitination of cardiac proteins. However, a specific ubiquitin E3 ligase responsible for the destruction of cardiac transcription factors such as Nkx2-5, Isl1, Mef2C, and Tbx5 remains elusive to date. Here, we show that a novel F-box containing Fbxo25 is cardiac-specific and acts as an ubiquitin E3 ligase for cardiac transcription factors. Fbxo25 expression was nuclei-specific in vitro and cardiomyocytes. Expression level of Fbxo25 was higher in a fetal heart than an adult. Moreover, Fbxo25 expression was increased along with those of cardiac-specific genes during cardiomyocyte development from ESCs. Fbxo25 expression facilitated protein degradation of Nkx2-5, Isl1, Hand1, and Mef2C. Especially, Fbxo25 ubiquitinated Nkx2-5, Isl1, and Hand1. Altogether, Fbxo25 acts as an ubiquitin E3 ligase to target cardiac transcription factors including Nkx2-5, Isl1, and Hand1, indicating that cardiac protein homeostasis through Fbxo25 has a pivotal impact on cardiac development.
Collapse
Affiliation(s)
- Jae-Woo Jang
- Stem Cell Research Laboratory, Department of Developmental Biology, CHA University, Seoul 135-907, Republic of Korea
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
The myocardium of the heart is composed of multiple highly specialized myocardial lineages, including those of the ventricular and atrial myocardium, and the specialized conduction system. Specification and maturation of each of these lineages during heart development is a highly ordered, ongoing process involving multiple signaling pathways and their intersection with transcriptional regulatory networks. Here, we attempt to summarize and compare much of what we know about specification and maturation of myocardial lineages from studies in several different vertebrate model systems. To date, most research has focused on early specification, and although there is still more to learn about early specification, less is known about factors that promote subsequent maturation of myocardial lineages required to build the functioning adult heart.
Collapse
Affiliation(s)
- Sylvia M Evans
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla CA 92093, USA.
| | | | | | | |
Collapse
|
39
|
Stolfi A, Gainous TB, Young JJ, Mori A, Levine M, Christiaen L. Early chordate origins of the vertebrate second heart field. Science 2010; 329:565-8. [PMID: 20671188 DOI: 10.1126/science.1190181] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The vertebrate heart is formed from diverse embryonic territories, including the first and second heart fields. The second heart field (SHF) gives rise to the right ventricle and outflow tract, yet its evolutionary origins are unclear. We found that heart progenitor cells of the simple chordate Ciona intestinalis also generate precursors of the atrial siphon muscles (ASMs). These precursors express Islet and Tbx1/10, evocative of the splanchnic mesoderm that produces the lower jaw muscles and SHF of vertebrates. Evidence is presented that the transcription factor COE is a critical determinant of ASM fate. We propose that the last common ancestor of tunicates and vertebrates possessed multipotent cardiopharyngeal muscle precursors, and that their reallocation might have contributed to the emergence of the SHF.
Collapse
Affiliation(s)
- Alberto Stolfi
- Center for Integrative Genomics, Division of Genetics, Genomics and Development, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
40
|
Gittenberger-de Groot AC, Jongbloed MR, Wisse LJ, Poelmann RE. Pulmonary atresia with intact ventricular septum: Second heart field derived myocardial and epicardial developmental clues. PROGRESS IN PEDIATRIC CARDIOLOGY 2010. [DOI: 10.1016/j.ppedcard.2010.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
41
|
|