1
|
Hadi AF, Arta RK, Kushima I, Egawa J, Watanabe Y, Ozaki N, Someya T. Association Analysis of Rare CNTN5 Variants With Autism Spectrum Disorder in a Japanese Population. Neuropsychopharmacol Rep 2025; 45:e12527. [PMID: 39887962 PMCID: PMC11781355 DOI: 10.1002/npr2.12527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Contactin-5 (CNTN5), a neural adhesion molecule involved in synaptogenesis and synaptic maturation in the auditory pathway, has been associated with the pathophysiology of autism spectrum disorder (ASD), particularly hyperacusis. To investigate the role of rare CNTN5 variants in ASD susceptibility, we performed resequencing and association analysis in a Japanese population. METHODS We resequenced the CNTN5 coding regions in 302 patients with ASD and prioritized rare putatively damaging variants. The prioritized variants were then genotyped in 313 patients with ASD and 1065 controls. Subsequently, we conducted an association study of selected variants with ASD in 614 patients with ASD and 61 057 controls. Clinical data were reviewed for patients carrying prioritized variants. RESULTS Through resequencing, we prioritized three rare putatively damaging missense variants (W69G, I227L, and L1000S) in patients with ASD. Although we found a nominally significant association between the I227L variant and ASD, it did not remain significant after post hoc correction. Hyperacusis was found in three out of nine patients carrying prioritized variants. CONCLUSION This study does not provide evidence for the contribution of rare CNTN5 variants to the genetic etiology of ASD in the Japanese population.
Collapse
Affiliation(s)
- Abdul Fuad Hadi
- Department of Psychiatry, School of Medicine, and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Reza K. Arta
- Department of Psychiatry, School of Medicine, and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Itaru Kushima
- Department of PsychiatryNagoya University Graduate School of MedicineNagoyaAichiJapan
- Medical Genomics CenterNagoya University HospitalNagoyaAichiJapan
| | - Jun Egawa
- Department of Psychiatry, School of Medicine, and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Yuichiro Watanabe
- Department of Psychiatry, School of Medicine, and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
- Department of PsychiatryUonuma Kikan HospitalNiigataJapan
| | - Norio Ozaki
- Pathophysiology of Mental DisordersNagoya University Graduate School of MedicineNagoyaAichiJapan
| | - Toshiyuki Someya
- Department of Psychiatry, School of Medicine, and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| |
Collapse
|
2
|
Jing J, Hu M, Ngodup T, Ma Q, Lau SNN, Ljungberg MC, McGinley MJ, Trussell LO, Jiang X. Molecular logic for cellular specializations that initiate the auditory parallel processing pathways. Nat Commun 2025; 16:489. [PMID: 39788966 PMCID: PMC11717940 DOI: 10.1038/s41467-024-55257-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025] Open
Abstract
The cochlear nuclear complex (CN), the starting point for all central auditory processing, encompasses a suite of neuronal cell types highly specialized for neural coding of acoustic signals. However, the molecular logic governing these specializations remains unknown. By combining single-nucleus RNA sequencing and Patch-seq analysis, we reveal a set of transcriptionally distinct cell populations encompassing all previously observed types and discover multiple hitherto unknown subtypes with anatomical and physiological identity. The resulting comprehensive cell-type taxonomy reconciles anatomical position, morphological, physiological, and molecular criteria, enabling the determination of the molecular basis of the specialized cellular phenotypes in the CN. In particular, CN cell-type identity is encoded in a transcriptional architecture that orchestrates functionally congruent expression across a small set of gene families to customize projection patterns, input-output synaptic communication, and biophysical features required for encoding distinct aspects of acoustic signals. This high-resolution account of cellular heterogeneity from the molecular to the circuit level reveals the molecular logic driving cellular specializations, thus enabling the genetic dissection of auditory processing and hearing disorders with a high specificity.
Collapse
Affiliation(s)
- Junzhan Jing
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Ming Hu
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Tenzin Ngodup
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, OR, USA
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-HNS, University of Washington, Seattle, WA, USA
| | - Qianqian Ma
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Shu-Ning Natalie Lau
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - M Cecilia Ljungberg
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Matthew J McGinley
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| | - Laurence O Trussell
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, OR, USA.
| | - Xiaolong Jiang
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
3
|
Krohs C, Körber C, Ebbers L, Altaf F, Hollje G, Hoppe S, Dörflinger Y, Prosser HM, Nothwang HG. Loss of miR-183/96 Alters Synaptic Strength via Presynaptic and Postsynaptic Mechanisms at a Central Synapse. J Neurosci 2021; 41:6796-6811. [PMID: 34193555 PMCID: PMC8360680 DOI: 10.1523/jneurosci.0139-20.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/03/2021] [Accepted: 05/09/2021] [Indexed: 12/27/2022] Open
Abstract
A point mutation in miR-96 causes non-syndromic progressive peripheral hearing loss and alters structure and physiology of the central auditory system. To gain further insight into the functions of microRNAs (miRNAs) within the central auditory system, we investigated constitutive Mir-183/96dko mice of both sexes. In this mouse model, the genomically clustered miR-183 and miR-96 are constitutively deleted. It shows significantly and specifically reduced volumes of auditory hindbrain nuclei, because of decreases in cell number and soma size. Electrophysiological analysis of the calyx of Held synapse in the medial nucleus of the trapezoid body (MNTB) demonstrated strongly altered synaptic transmission in young-adult mice. We observed an increase in quantal content and readily releasable vesicle pool size in the presynapse while the overall morphology of the calyx was unchanged. Detailed analysis of the active zones (AZs) revealed differences in its molecular composition and synaptic vesicle (SV) distribution. Postsynaptically, altered clustering and increased synaptic abundancy of the AMPA receptor subunit GluA1 was observed resulting in an increase in quantal amplitude. Together, these presynaptic and postsynaptic alterations led to a 2-fold increase of the evoked excitatory postsynaptic currents in MNTB neurons. None of these changes were observed in deaf Cldn14ko mice, confirming an on-site role of miR-183 and miR-96 in the auditory hindbrain. Our data suggest that the Mir-183/96 cluster plays a key role for proper synaptic transmission at the calyx of Held and for the development of the auditory hindbrain.SIGNIFICANCE STATEMENT The calyx of Held is the outstanding model system to study basic synaptic physiology. Yet, genetic factors driving its morphologic and functional maturation are largely unknown. Here, we identify the Mir-183/96 cluster as an important factor to regulate its synaptic strength. Presynaptically, Mir-183/96dko calyces show an increase in release-ready synaptic vesicles (SVs), quantal content and abundance of the proteins Bassoon and Piccolo. Postsynaptically, the quantal size as well as number and size of GluA1 puncta were increased. The two microRNAs (miRNAs) are thus attractive candidates for regulation of synaptic maturation and long-term adaptations to sound levels. Moreover, the different phenotypic outcomes of different types of mutations in the Mir-183 cluster corroborate the requirement of mutation-tailored therapies in patients with hearing loss.
Collapse
Affiliation(s)
- Constanze Krohs
- Division of Neurogenetics, Department of Neuroscience, Carl von Ossietzky University Oldenburg, Oldenburg 26129, Germany
| | - Christoph Körber
- Institute of Anatomy und Cell Biology, Department of Functional Neuroanatomy, Heidelberg University, Heidelberg 69120, Germany
| | - Lena Ebbers
- Division of Neurogenetics, Department of Neuroscience, Carl von Ossietzky University Oldenburg, Oldenburg 26129, Germany
| | - Faiza Altaf
- Division of Neurogenetics, Department of Neuroscience, Carl von Ossietzky University Oldenburg, Oldenburg 26129, Germany
| | - Giulia Hollje
- Division of Neurogenetics, Department of Neuroscience, Carl von Ossietzky University Oldenburg, Oldenburg 26129, Germany
| | - Simone Hoppe
- Institute of Anatomy und Cell Biology, Department of Functional Neuroanatomy, Heidelberg University, Heidelberg 69120, Germany
| | - Yvette Dörflinger
- Institute of Anatomy und Cell Biology, Department of Functional Neuroanatomy, Heidelberg University, Heidelberg 69120, Germany
| | - Haydn M Prosser
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, United Kingdom
| | - Hans Gerd Nothwang
- Division of Neurogenetics, Department of Neuroscience, Carl von Ossietzky University Oldenburg, Oldenburg 26129, Germany
- Excellence Cluster Hearing4all, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
4
|
Williams ZJ, He JL, Cascio CJ, Woynaroski TG. A review of decreased sound tolerance in autism: Definitions, phenomenology, and potential mechanisms. Neurosci Biobehav Rev 2021; 121:1-17. [PMID: 33285160 PMCID: PMC7855558 DOI: 10.1016/j.neubiorev.2020.11.030] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/23/2022]
Abstract
Atypical behavioral responses to environmental sounds are common in autistic children and adults, with 50-70 % of this population exhibiting decreased sound tolerance (DST) at some point in their lives. This symptom is a source of significant distress and impairment across the lifespan, contributing to anxiety, challenging behaviors, reduced community participation, and school/workplace difficulties. However, relatively little is known about its phenomenology or neurocognitive underpinnings. The present article synthesizes a large body of literature on the phenomenology and pathophysiology of DST-related conditions to generate a comprehensive theoretical account of DST in autism. Notably, we argue against conceptualizing DST as a unified construct, suggesting that it be separated into three phenomenologically distinct conditions: hyperacusis (the perception of everyday sounds as excessively loud or painful), misophonia (an acquired aversive reaction to specific sounds), and phonophobia (a specific phobia of sound), each responsible for a portion of observed DST behaviors. We further elaborate our framework by proposing preliminary neurocognitive models of hyperacusis, misophonia, and phonophobia that incorporate neurophysiologic findings from studies of autism.
Collapse
Affiliation(s)
- Zachary J Williams
- Medical Scientist Training Program, Vanderbilt University School of Medicine, 221 Eskind Biomedical Library and Learning Center, 2209 Garland Ave., Nashville, TN, 37240, United States; Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, 1215 21st Avenue South, Medical Center East, Room 8310, Nashville, TN, 37232, United States; Vanderbilt Brain Institute, Vanderbilt University, 7203 Medical Research Building III, 465 21st Avenue South, Nashville, TN, 37232, United States; Frist Center for Autism and Innovation, Vanderbilt University, 2414 Highland Avenue, Suite 115, Nashville, TN, 37212, United States.
| | - Jason L He
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Strand Building, Strand Campus, Strand, London, WC2R 2LS, London, United Kingdom.
| | - Carissa J Cascio
- Vanderbilt Brain Institute, Vanderbilt University, 7203 Medical Research Building III, 465 21st Avenue South, Nashville, TN, 37232, United States; Frist Center for Autism and Innovation, Vanderbilt University, 2414 Highland Avenue, Suite 115, Nashville, TN, 37212, United States; Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, 2254 Village at Vanderbilt, 1500 21st Ave South, Nashville, TN, 37212, United States; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, 110 Magnolia Cir, Nashville, TN, 37203, United States.
| | - Tiffany G Woynaroski
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, 1215 21st Avenue South, Medical Center East, Room 8310, Nashville, TN, 37232, United States; Vanderbilt Brain Institute, Vanderbilt University, 7203 Medical Research Building III, 465 21st Avenue South, Nashville, TN, 37232, United States; Frist Center for Autism and Innovation, Vanderbilt University, 2414 Highland Avenue, Suite 115, Nashville, TN, 37212, United States; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, 110 Magnolia Cir, Nashville, TN, 37203, United States.
| |
Collapse
|
5
|
3D Genome of macaque fetal brain reveals evolutionary innovations during primate corticogenesis. Cell 2021; 184:723-740.e21. [PMID: 33508230 DOI: 10.1016/j.cell.2021.01.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 11/09/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023]
Abstract
Elucidating the regulatory mechanisms of human brain evolution is essential to understanding human cognition and mental disorders. We generated multi-omics profiles and constructed a high-resolution map of 3D genome architecture of rhesus macaque during corticogenesis. By comparing the 3D genomes of human, macaque, and mouse brains, we identified many human-specific chromatin structure changes, including 499 topologically associating domains (TADs) and 1,266 chromatin loops. The human-specific loops are significantly enriched in enhancer-enhancer interactions, and the regulated genes show human-specific expression changes in the subplate, a transient zone of the developing brain critical for neural circuit formation and plasticity. Notably, many human-specific sequence changes are located in the human-specific TAD boundaries and loop anchors, which may generate new transcription factor binding sites and chromatin structures in human. Collectively, the presented data highlight the value of comparative 3D genome analyses in dissecting the regulatory mechanisms of brain development and evolution.
Collapse
|
6
|
The Interaction Between Contactin and Amyloid Precursor Protein and Its Role in Alzheimer’s Disease. Neuroscience 2020; 424:184-202. [DOI: 10.1016/j.neuroscience.2019.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 01/06/2023]
|
7
|
Brandebura AN, Morehead M, Heller DT, Holcomb P, Kolson DR, Jones G, Mathers PH, Spirou GA. Glial Cell Expansion Coincides with Neural Circuit Formation in the Developing Auditory Brainstem. Dev Neurobiol 2018; 78:1097-1116. [PMID: 30136399 DOI: 10.1002/dneu.22633] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/24/2018] [Accepted: 07/24/2018] [Indexed: 02/01/2023]
Abstract
Neural circuit formation involves maturation of neuronal, glial and vascular cells, as well as cell proliferation and cell death. A fundamental understanding of cellular mechanisms is enhanced by quantification of cell types during key events in synapse formation and pruning and possessing qualified genetic tools for cell type-specific manipulation. Acquiring this information in turn requires validated cell markers and genetic tools. We quantified changing proportions of neurons, astrocytes, oligodendrocytes, and microglia in the medial nucleus of the trapezoid body (MNTB) during neural circuit development. Cell type-specific markers, light microscopy and 3D virtual reality software, the latter developed in our laboratory, were used to count cells within distinct cell populations at postnatal days (P)3 and P6, bracketing the period of nerve terminal growth and pruning in this system. These data revealed a change from roughly equal numbers of neurons and glia at P3 to a 1.5:1 ratio of glia to neurons at P6. PCNA and PH3 labeling revealed that proliferation of oligodendrocytes contributed to the increase in glial cell number during this timeframe. We next evaluated Cre driver lines for selectivity in labeling cell populations. En1-Cre was specific for MNTB neurons. PDGFRα-Cre and Aldh1L1-Cre, thought to be mostly specific for oligodendrocyte lineage cells and astrocytes, respectively, both labeled significant numbers of neurons, oligodendrocytes, and astrocytes and are non-specific genetic tools in this neural system.
Collapse
Affiliation(s)
- Ashley N Brandebura
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia.,Sensory Neuroscience Research Center, West Virginia University, Morgantown, West Virginia.,Graduate program in Biochemistry and Molecular Biology, West Virginia University, Morgantown, West Virginia.,Department of Biochemistry, West Virginia University, Morgantown, West Virginia
| | - Michael Morehead
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia.,Sensory Neuroscience Research Center, West Virginia University, Morgantown, West Virginia.,Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, West Virginia
| | - Daniel T Heller
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia.,Sensory Neuroscience Research Center, West Virginia University, Morgantown, West Virginia
| | - Paul Holcomb
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia.,Sensory Neuroscience Research Center, West Virginia University, Morgantown, West Virginia
| | - Douglas R Kolson
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia.,Sensory Neuroscience Research Center, West Virginia University, Morgantown, West Virginia
| | - Garrett Jones
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia.,Sensory Neuroscience Research Center, West Virginia University, Morgantown, West Virginia
| | - Peter H Mathers
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia.,Sensory Neuroscience Research Center, West Virginia University, Morgantown, West Virginia.,Department of Biochemistry, West Virginia University, Morgantown, West Virginia.,Department of Otolaryngology HNS, West Virginia University, Morgantown, West Virginia.,Department of Ophthalmology, West Virginia University, Morgantown, West Virginia
| | - George A Spirou
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia.,Sensory Neuroscience Research Center, West Virginia University, Morgantown, West Virginia.,Department of Otolaryngology HNS, West Virginia University, Morgantown, West Virginia
| |
Collapse
|
8
|
An organotypic slice culture to study the formation of calyx of Held synapses in-vitro. PLoS One 2017; 12:e0175964. [PMID: 28419135 PMCID: PMC5395213 DOI: 10.1371/journal.pone.0175964] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 04/03/2017] [Indexed: 12/29/2022] Open
Abstract
The calyx of Held, a large axo-somatic relay synapse containing hundreds of presynaptic active zones, is possibly the largest nerve terminal in the mammalian CNS. Studying its initial growth in-vitro might provide insights into the specification of synaptic connection size in the developing brain. However, attempts to maintain calyces of Held in organotypic cultures have not been fruitful in past studies. Here, we describe an organotypic slice culture method in which calyces of Held form in-vitro. We made coronal brainstem slices with an optimized slice angle using newborn mice in which calyces have not yet formed; the presynaptic bushy cells were genetically labeled using the Math5 promoter. After six to nine days of culturing, we readily observed large Math5—positive nerve terminals in the medial nucleus of the trapezoid body (MNTB), but not in the neighboring lateral superior olive nucleus (LSO). These calyx—like synapses expressed the Ca2+- sensor Synaptotagmin-2 (Syt-2) and the Ca2+ binding protein Parvalbumin (PV), two markers of developing calyces of Held in vivo. Application of the BMP inhibitor LDN-193189 significantly inhibited the growth of calyx synapses, demonstrating the feasibility of long-term pharmacological manipulation using this organotypic culture method. These experiments provide a method for organotypic culturing of calyces of Held, and show that the formation of calyx—like synapses onto MNTB neurons can be preserved in-vitro. Furthermore, our study adds pharmacological evidence for a role of BMP-signaling in the formation of large calyx of Held synapses.
Collapse
|
9
|
Mercati O, Huguet G, Danckaert A, André-Leroux G, Maruani A, Bellinzoni M, Rolland T, Gouder L, Mathieu A, Buratti J, Amsellem F, Benabou M, Van-Gils J, Beggiato A, Konyukh M, Bourgeois JP, Gazzellone MJ, Yuen RKC, Walker S, Delépine M, Boland A, Régnault B, Francois M, Van Den Abbeele T, Mosca-Boidron AL, Faivre L, Shimoda Y, Watanabe K, Bonneau D, Rastam M, Leboyer M, Scherer SW, Gillberg C, Delorme R, Cloëz-Tayarani I, Bourgeron T. CNTN6 mutations are risk factors for abnormal auditory sensory perception in autism spectrum disorders. Mol Psychiatry 2017; 22:625-633. [PMID: 27166760 PMCID: PMC5378808 DOI: 10.1038/mp.2016.61] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 02/12/2016] [Accepted: 02/17/2016] [Indexed: 12/11/2022]
Abstract
Contactin genes CNTN5 and CNTN6 code for neuronal cell adhesion molecules that promote neurite outgrowth in sensory-motor neuronal pathways. Mutations of CNTN5 and CNTN6 have previously been reported in individuals with autism spectrum disorders (ASDs), but very little is known on their prevalence and clinical impact. In this study, we identified CNTN5 and CNTN6 deleterious variants in individuals with ASD. Among the carriers, a girl with ASD and attention-deficit/hyperactivity disorder was carrying five copies of CNTN5. For CNTN6, both deletions (6/1534 ASD vs 1/8936 controls; P=0.00006) and private coding sequence variants (18/501 ASD vs 535/33480 controls; P=0.0005) were enriched in individuals with ASD. Among the rare CNTN6 variants, two deletions were transmitted by fathers diagnosed with ASD, one stop mutation CNTN6W923X was transmitted by a mother to her two sons with ASD and one variant CNTN6P770L was found de novo in a boy with ASD. Clinical investigations of the patients carrying CNTN5 or CNTN6 variants showed that they were hypersensitive to sounds (a condition called hyperacusis) and displayed changes in wave latency within the auditory pathway. These results reinforce the hypothesis of abnormal neuronal connectivity in the pathophysiology of ASD and shed new light on the genes that increase risk for abnormal sensory perception in ASD.
Collapse
Affiliation(s)
- O Mercati
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - G Huguet
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - A Danckaert
- Imagopole, Citech, Institut Pasteur, Paris, France
| | - G André-Leroux
- Institut Pasteur, Unité de Microbiologie Structurale, Paris, France
- CNRS UMR 3528, Paris, France
- INRA, Unité MaIAGE, UR1404, Jouy-en-Josas, France
| | - A Maruani
- Assistance Publique-Hôpitaux de Paris, Child and Adolescent Psychiatry Department, Robert Debré Hospital, Paris, France
| | - M Bellinzoni
- Institut Pasteur, Unité de Microbiologie Structurale, Paris, France
- CNRS UMR 3528, Paris, France
| | - T Rolland
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - L Gouder
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - A Mathieu
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - J Buratti
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - F Amsellem
- Assistance Publique-Hôpitaux de Paris, Child and Adolescent Psychiatry Department, Robert Debré Hospital, Paris, France
| | - M Benabou
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - J Van-Gils
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - A Beggiato
- Assistance Publique-Hôpitaux de Paris, Child and Adolescent Psychiatry Department, Robert Debré Hospital, Paris, France
| | - M Konyukh
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - J-P Bourgeois
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - M J Gazzellone
- Centre for Applied Genomics, Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - R K C Yuen
- Centre for Applied Genomics, Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - S Walker
- Centre for Applied Genomics, Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - M Delépine
- Centre National de Génotypage, Evry, France
| | - A Boland
- Centre National de Génotypage, Evry, France
| | - B Régnault
- Eukaryote Genotyping Platform, Genopole, Institut Pasteur, Paris, France
| | - M Francois
- Assistance Publique-Hôpitaux de Paris, ENT and Head and Neck Surgery Department, Robert Debré Hospital, Paris-VII University, Paris, France
| | - T Van Den Abbeele
- Assistance Publique-Hôpitaux de Paris, ENT and Head and Neck Surgery Department, Robert Debré Hospital, Paris-VII University, Paris, France
| | - A L Mosca-Boidron
- Département de Génétique, CHU Dijon et Université de Bourgogne, Dijon, France
| | - L Faivre
- Département de Génétique, CHU Dijon et Université de Bourgogne, Dijon, France
| | - Y Shimoda
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| | - K Watanabe
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| | - D Bonneau
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France
| | - M Rastam
- Department of Clinical Sciences in Lund, Lund University, Lund, Sweden
- Gillberg Neuropsychiatry Centre, University of Gothenburg, Gothenburg, Sweden
| | - M Leboyer
- INSERM U955, Psychiatrie Translationnelle, Créteil, France
- Université Paris Est, Faculté de Médecine, Créteil, France
- Assistance Publique-Hôpitaux de Paris, DHU Pe-PSY, H. Mondor Hospital, Department of Psychiatry, Créteil, France
- FondaMental Foundation, Créteil, France
| | - S W Scherer
- Centre for Applied Genomics, Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
- McLaughlin Centre, Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - C Gillberg
- Gillberg Neuropsychiatry Centre, University of Gothenburg, Gothenburg, Sweden
| | - R Delorme
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
- Assistance Publique-Hôpitaux de Paris, Child and Adolescent Psychiatry Department, Robert Debré Hospital, Paris, France
| | - I Cloëz-Tayarani
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - T Bourgeron
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
- Gillberg Neuropsychiatry Centre, University of Gothenburg, Gothenburg, Sweden
- FondaMental Foundation, Créteil, France
| |
Collapse
|
10
|
Kleijer KTE, van Nieuwenhuize D, Spierenburg HA, Gregorio-Jordan S, Kas MJH, Burbach JPH. Structural abnormalities in the primary somatosensory cortex and a normal behavioral profile in Contactin-5 deficient mice. Cell Adh Migr 2017; 12:5-18. [PMID: 28346043 PMCID: PMC5810773 DOI: 10.1080/19336918.2017.1288788] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Contactin-5 (Cntn5) is an immunoglobulin cell adhesion molecule that is exclusively expressed in the central nervous system. In view of its association with neurodevelopmental disorders, particularly autism spectrum disorder (ASD), this study focused on Cntn5-positive areas in the forebrain and aimed to explore the morphological and behavioral phenotypes of the Cntn5 null mutant (Cntn5−/−) mouse in relation to these areas and ASD symptomatology. A newly generated antibody enabled us to elaborately describe the spatial expression pattern of Cntn5 in P7 wild type (Cntn5+/+) mice. The Cntn5 expression pattern included strong expression in the cerebral cortex, hippocampus and mammillary bodies in addition to described previously brain nuclei of the auditory pathway and the dorsal thalamus. Thinning of the primary somatosensory (S1) cortex was found in Cntn5−/− mice and ascribed to a misplacement of Cntn5-ablated cells. This phenotype was accompanied by a reduction in the barrel/septa ratio of the S1 barrel field. The structure and morphology of the hippocampus was intact in Cntn5−/− mice. A set of behavioral experiments including social, exploratory and repetitive behaviors showed that these were unaffected in Cntn5−/− mice. Taken together, these data demonstrate a selective role of Cntn5 in development of the cerebral cortex without overt behavioral phenotypes.
Collapse
Affiliation(s)
- Kristel T E Kleijer
- a Department of Translational Neuroscience , Brain Centre Rudolf Magnus, University Medical Centre Utrecht , Utrecht , the Netherlands
| | - Denise van Nieuwenhuize
- a Department of Translational Neuroscience , Brain Centre Rudolf Magnus, University Medical Centre Utrecht , Utrecht , the Netherlands
| | - Henk A Spierenburg
- a Department of Translational Neuroscience , Brain Centre Rudolf Magnus, University Medical Centre Utrecht , Utrecht , the Netherlands
| | - Sara Gregorio-Jordan
- a Department of Translational Neuroscience , Brain Centre Rudolf Magnus, University Medical Centre Utrecht , Utrecht , the Netherlands
| | - Martien J H Kas
- a Department of Translational Neuroscience , Brain Centre Rudolf Magnus, University Medical Centre Utrecht , Utrecht , the Netherlands
| | - J Peter H Burbach
- a Department of Translational Neuroscience , Brain Centre Rudolf Magnus, University Medical Centre Utrecht , Utrecht , the Netherlands
| |
Collapse
|
11
|
A current view on contactin-4, -5, and -6: Implications in neurodevelopmental disorders. Mol Cell Neurosci 2017; 81:72-83. [PMID: 28064060 DOI: 10.1016/j.mcn.2016.12.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/23/2016] [Accepted: 12/25/2016] [Indexed: 12/30/2022] Open
Abstract
Contactins (Cntns) are a six-member subgroup of the immunoglobulin cell adhesion molecule superfamily (IgCAMs) with pronounced brain expression and function. Recent genetic studies of neuropsychiatric disorders have pinpointed contactin-4 (CNTN4), contactin-5 (CNTN5) and contactin-6 (CNTN6) as candidate genes in neurodevelopmental disorders, particularly in autism spectrum disorders (ASDs), but also in intellectual disability, schizophrenia (SCZ), attention-deficit hyperactivity disorder (ADHD), bipolar disorder (BD), alcohol use disorder (AUD) and anorexia nervosa (AN). This suggests that they have important functions during neurodevelopment. This suggestion is supported by data showing that neurite outgrowth, cell survival and neural circuit formation can be affected by disruption of these genes. Here, we review the current genetic data about their involvement in neuropsychiatric disorders and explore studies on how null mutations affect mouse behavior. Finally, we highlight to role of protein-protein interactions in the potential mechanism of action of Cntn4, -5 and -6 and emphasize that complexes with other membrane proteins may play a role in neuronal developmental functions.
Collapse
|
12
|
Lin YC, Frei JA, Kilander MBC, Shen W, Blatt GJ. A Subset of Autism-Associated Genes Regulate the Structural Stability of Neurons. Front Cell Neurosci 2016; 10:263. [PMID: 27909399 PMCID: PMC5112273 DOI: 10.3389/fncel.2016.00263] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/28/2016] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) comprises a range of neurological conditions that affect individuals’ ability to communicate and interact with others. People with ASD often exhibit marked qualitative difficulties in social interaction, communication, and behavior. Alterations in neurite arborization and dendritic spine morphology, including size, shape, and number, are hallmarks of almost all neurological conditions, including ASD. As experimental evidence emerges in recent years, it becomes clear that although there is broad heterogeneity of identified autism risk genes, many of them converge into similar cellular pathways, including those regulating neurite outgrowth, synapse formation and spine stability, and synaptic plasticity. These mechanisms together regulate the structural stability of neurons and are vulnerable targets in ASD. In this review, we discuss the current understanding of those autism risk genes that affect the structural connectivity of neurons. We sub-categorize them into (1) cytoskeletal regulators, e.g., motors and small RhoGTPase regulators; (2) adhesion molecules, e.g., cadherins, NCAM, and neurexin superfamily; (3) cell surface receptors, e.g., glutamatergic receptors and receptor tyrosine kinases; (4) signaling molecules, e.g., protein kinases and phosphatases; and (5) synaptic proteins, e.g., vesicle and scaffolding proteins. Although the roles of some of these genes in maintaining neuronal structural stability are well studied, how mutations contribute to the autism phenotype is still largely unknown. Investigating whether and how the neuronal structure and function are affected when these genes are mutated will provide insights toward developing effective interventions aimed at improving the lives of people with autism and their families.
Collapse
Affiliation(s)
- Yu-Chih Lin
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Jeannine A Frei
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Michaela B C Kilander
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Wenjuan Shen
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Gene J Blatt
- Laboratory of Autism Neurocircuitry, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| |
Collapse
|
13
|
Nikolaienko RM, Hammel M, Dubreuil V, Zalmai R, Hall DR, Mehzabeen N, Karuppan SJ, Harroch S, Stella SL, Bouyain S. Structural Basis for Interactions Between Contactin Family Members and Protein-tyrosine Phosphatase Receptor Type G in Neural Tissues. J Biol Chem 2016; 291:21335-21349. [PMID: 27539848 DOI: 10.1074/jbc.m116.742163] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/10/2016] [Indexed: 01/06/2023] Open
Abstract
Protein-tyrosine phosphatase receptor type G (RPTPγ/PTPRG) interacts in vitro with contactin-3-6 (CNTN3-6), a group of glycophosphatidylinositol-anchored cell adhesion molecules involved in the wiring of the nervous system. In addition to PTPRG, CNTNs associate with multiple transmembrane proteins and signal inside the cell via cis-binding partners to alleviate the absence of an intracellular region. Here, we use comprehensive biochemical and structural analyses to demonstrate that PTPRG·CNTN3-6 complexes share similar binding affinities and a conserved arrangement. Furthermore, as a first step to identifying PTPRG·CNTN complexes in vivo, we found that PTPRG and CNTN3 associate in the outer segments of mouse rod photoreceptor cells. In particular, PTPRG and CNTN3 form cis-complexes at the surface of photoreceptors yet interact in trans when expressed on the surfaces of apposing cells. Further structural analyses suggest that all CNTN ectodomains adopt a bent conformation and might lie parallel to the cell surface to accommodate these cis and trans binding modes. Taken together, these studies identify a PTPRG·CNTN complex in vivo and provide novel insights into PTPRG- and CNTN-mediated signaling.
Collapse
Affiliation(s)
- Roman M Nikolaienko
- From the Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110
| | - Michal Hammel
- the Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Véronique Dubreuil
- the Départment de Neuroscience, Institut Pasteur de Paris, 25-28 Rue du Dr. Roux, 75624 Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216, CNRS, Paris, France, and
| | - Rana Zalmai
- From the Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110
| | - David R Hall
- From the Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110
| | - Nurjahan Mehzabeen
- From the Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110
| | - Sebastian J Karuppan
- From the Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110
| | - Sheila Harroch
- Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216, CNRS, Paris, France, and
| | - Salvatore L Stella
- the Department of Basic Medical Science, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri 64108
| | - Samuel Bouyain
- From the Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110,
| |
Collapse
|
14
|
Hartwich H, Rosengauer E, Rüttiger L, Wilms V, Waterholter SK, Nothwang HG. Functional Role of γ-Crystallin N in the Auditory Hindbrain. PLoS One 2016; 11:e0161140. [PMID: 27517863 PMCID: PMC4982622 DOI: 10.1371/journal.pone.0161140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/30/2016] [Indexed: 12/20/2022] Open
Abstract
γ-crystallins are major components of the vertebrate lens but show expression in other tissues as well. Their extralenticular functions remain so far unclear. Here, we explored such roles in the rodent superior olivary complex in which previous analysis demonstrated developmentally regulated expression of Crygd, Cryge and Crygn. Immunohistochemistry with novel antibodies against Crygd/e and Crygn indicate that expression of Crygd/e was moderate and varied between the perinatal superior olivary complex of mice, rats, and gerbils. Crygn-immunoreactivity was more robust and consistently highest in the medial nucleus of the trapezoid body, but also present in other nuclei of the superior olivary complex. To analyze the function of Crygn in the auditory hindbrain, we used a Crygn allele with a floxed exon 2. Upon pairing with Egr2::Cre mice, exon 2, encoding the first two greek key motifs of Crygn, was deleted in the developing auditory hindbrain. Anatomical analysis of these mice revealed a 20% volume reduction in the medial nucleus of the trapezoid body and a 7% reduction in the lateral superior olive at postnatal day 25. This was due to cell loss between postnatal days 4 and 25, whereas cell size was unaffected. Auditory brainstem responses showed normal threshold but a significant increase in the amplitude of wave IV. Crygn is hence required for postmigratory survival and proper function of auditory hindbrain neurons. These results ascertain for the first time an essential extralenticular role for γ-crystallins in vivo.
Collapse
Affiliation(s)
- Heiner Hartwich
- Neurogenetics group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
| | - Elena Rosengauer
- Neurogenetics group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
| | - Lukas Rüttiger
- University of Tübingen, Department of Otolaryngology, Hearing Research Centre Tübingen (THRC), Molecular Physiology of Hearing, Elfriede Aulhorn Str. 5, 72076, Tübingen, Germany
| | - Viviane Wilms
- Neurogenetics group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
| | - Sarah-Kristin Waterholter
- Neurogenetics group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
| | - Hans Gerd Nothwang
- Neurogenetics group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
- Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
- * E-mail:
| |
Collapse
|
15
|
Caspr3-Deficient Mice Exhibit Low Motor Learning during the Early Phase of the Accelerated Rotarod Task. PLoS One 2016; 11:e0147887. [PMID: 26807827 PMCID: PMC4726695 DOI: 10.1371/journal.pone.0147887] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/08/2016] [Indexed: 11/19/2022] Open
Abstract
Caspr3 (Contactin-associated protein-like 3, Cntnap3) is a neural cell adhesion molecule belonging to the Caspr family. We have recently shown that Caspr3 is expressed abundantly between the first and second postnatal weeks in the mouse basal ganglia, including the striatum, external segment of the globus pallidus, subthalamic nucleus, and substantia nigra. However, its physiological role remains largely unknown. In this study, we conducted a series of behavioral analyses on Capsr3-knockout (KO) mice and equivalent wild-type (WT) mice to investigate the role of Caspr3 in brain function. No significant differences were observed in most behavioral traits between Caspr3-KO and WT mice, but we found that Caspr3-KO mice performed poorly during the early phase of the accelerated rotarod task in which latency to falling off a rod rotating with increasing velocity was examined. In the late phase, the performance of the Caspr3-KO mice caught up to the level of WT mice, suggesting that the deletion of Caspr3 caused a delay in motor learning. We then examined changes in neural activity after training on the accelerated rotarod by conducting immunohistochemistry using antibody to c-Fos, an indirect marker for neuronal activity. Experience of the accelerated rotarod task caused increases in the number of c-Fos-positive cells in the dorsal striatum, cerebellum, and motor cortex in both Caspr3-KO and WT mice, but the number of c-Fos-positive cells was significantly lower in the dorsal striatum of Caspr3-KO mice than in that of WT mice. The expression of c-Fos in the ventral striatum of Caspr3-KO and WT mice was not altered by the training. Our findings suggest that reduced activation of neural cells in the dorsal striatum in Caspr3-KO mice leads to a decline in motor learning in the accelerated rotarod task.
Collapse
|
16
|
Kolson DR, Wan J, Wu J, Dehoff M, Brandebura AN, Qian J, Mathers PH, Spirou GA. Temporal patterns of gene expression during calyx of held development. Dev Neurobiol 2015; 76:166-89. [PMID: 26014473 DOI: 10.1002/dneu.22306] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/25/2015] [Accepted: 05/19/2015] [Indexed: 01/06/2023]
Abstract
Relating changes in gene expression to discrete developmental events remains an elusive challenge in neuroscience, in part because most neural territories are comprised of multiple cell types that mature over extended periods of time. The medial nucleus of the trapezoid body (MNTB) is an attractive vertebrate model system that contains a nearly homogeneous population of neurons, which are innervated by large glutamatergic nerve terminals called calyces of Held (CH). Key steps in maturation of CHs and MNTB neurons, including CH growth and competition, occur very quickly for most cells between postnatal days (P)2 and P6. Therefore, we characterized genome-wide changes in this system, with dense temporal sampling during the first postnatal week. We identified 541 genes whose expression changed significantly between P0-6 and clustered them into eight groups based on temporal expression profiles. Candidate genes from each of the eight profile groups were validated in separate samples by qPCR. Our tissue sample permitted comparison of known glial and neuronal transcripts and revealed that monotonically increasing or decreasing expression profiles tended to be associated with glia and neurons, respectively. Gene ontology revealed enrichment of genes involved in axon pathfinding, cell differentiation, cell adhesion and extracellular matrix. The latter category included elements of perineuronal nets, a prominent feature of MNTB neurons that is morphologically distinct by P6, when CH growth and competition are resolved onto nearly all MNTB neurons. These results provide a genetic framework for investigation of general mechanisms responsible for nerve terminal growth and maturation.
Collapse
Affiliation(s)
- Douglas R Kolson
- Sensory Neuroscience Research Center, West Virginia University School of Medicine, Morgantown, West Virginia.,Center for Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Jun Wan
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jonathan Wu
- Sensory Neuroscience Research Center, West Virginia University School of Medicine, Morgantown, West Virginia.,Center for Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia.,Department of Otolaryngology HNS, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Marlin Dehoff
- Sensory Neuroscience Research Center, West Virginia University School of Medicine, Morgantown, West Virginia.,Center for Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Ashley N Brandebura
- Sensory Neuroscience Research Center, West Virginia University School of Medicine, Morgantown, West Virginia.,Center for Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Jiang Qian
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Peter H Mathers
- Sensory Neuroscience Research Center, West Virginia University School of Medicine, Morgantown, West Virginia.,Center for Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia.,Department of Otolaryngology HNS, West Virginia University School of Medicine, Morgantown, West Virginia.,Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia
| | - George A Spirou
- Sensory Neuroscience Research Center, West Virginia University School of Medicine, Morgantown, West Virginia.,Center for Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia.,Department of Otolaryngology HNS, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
17
|
Ashrafi S, Betley JN, Comer JD, Brenner-Morton S, Bar V, Shimoda Y, Watanabe K, Peles E, Jessell TM, Kaltschmidt JA. Neuronal Ig/Caspr recognition promotes the formation of axoaxonic synapses in mouse spinal cord. Neuron 2014; 81:120-9. [PMID: 24411736 PMCID: PMC3898991 DOI: 10.1016/j.neuron.2013.10.060] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2013] [Indexed: 01/06/2023]
Abstract
Inhibitory microcircuits are wired with a precision that underlies their complex regulatory roles in neural information processing. In the spinal cord, one specialized class of GABAergic interneurons (GABApre) mediates presynaptic inhibitory control of sensory-motor synapses. The synaptic targeting of these GABAergic neurons exhibits an absolute dependence on proprioceptive sensory terminals, yet the molecular underpinnings of this specialized axoaxonic organization remain unclear. Here, we show that sensory expression of an NB2 (Contactin5)/Caspr4 coreceptor complex, together with spinal interneuron expression of NrCAM/CHL1, directs the high-density accumulation of GABAergic boutons on sensory terminals. Moreover, genetic elimination of NB2 results in a disproportionate stripping of inhibitory boutons from high-density GABApre-sensory synapses, suggesting that the preterminal axons of GABApre neurons compete for access to individual sensory terminals. Our findings define a recognition complex that contributes to the assembly and organization of a specialized GABAergic microcircuit. Sensory Ig/Caspr4 complex directs inhibitory synapse formation in mouse spinal cord Eliminating NB2 results in a reduced number of GABApre-sensory synapses Quantitative modeling suggests competition for formation of axoaxonic synapses Role for a contactin/Caspr complex in central synapse formation
Collapse
Affiliation(s)
- Soha Ashrafi
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA; Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - J Nicholas Betley
- Howard Hughes Medical Institute, Kavli Institute of Brain Science, Departments of Neuroscience, Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - John D Comer
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA; Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA; Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA
| | - Susan Brenner-Morton
- Howard Hughes Medical Institute, Kavli Institute of Brain Science, Departments of Neuroscience, Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Vered Bar
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yasushi Shimoda
- Department of Bioengineering, Nagaoka University of Technology, 1603-1, Kamitomiokamachi, Nagaoka, Niigata 940-2188, Japan
| | - Kazutada Watanabe
- Department of Bioengineering, Nagaoka University of Technology, 1603-1, Kamitomiokamachi, Nagaoka, Niigata 940-2188, Japan; Nagaoka National College of Technology, 888, Nishikatakaimachi, Nagaoka, Niigata 940-8532, Japan
| | - Elior Peles
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Thomas M Jessell
- Howard Hughes Medical Institute, Kavli Institute of Brain Science, Departments of Neuroscience, Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| | - Julia A Kaltschmidt
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA; Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA.
| |
Collapse
|
18
|
Morphological and physiological development of auditory synapses. Hear Res 2014; 311:3-16. [PMID: 24508369 DOI: 10.1016/j.heares.2014.01.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 01/13/2014] [Accepted: 01/20/2014] [Indexed: 02/07/2023]
Abstract
Acoustic communication requires gathering, transforming, and interpreting diverse sound cues. To achieve this, all the spatial and temporal features of complex sound stimuli must be captured in the firing patterns of the primary sensory neurons and then accurately transmitted along auditory pathways for additional processing. The mammalian auditory system relies on several synapses with unique properties in order to meet this task: the auditory ribbon synapses, the endbulb of Held, and the calyx of Held. Each of these synapses develops morphological and electrophysiological characteristics that enable the remarkably precise signal transmission necessary for conveying the miniscule differences in timing that underly sound localization. In this article, we review the current knowledge of how these synapses develop and mature to acquire the specialized features necessary for the sense of hearing.
Collapse
|
19
|
New insights into the roles of the contactin cell adhesion molecules in neural development. ADVANCES IN NEUROBIOLOGY 2014; 8:165-94. [PMID: 25300137 DOI: 10.1007/978-1-4614-8090-7_8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In vertebrates, the contactin (CNTN) family of neural cell recognition molecules includes six related cell adhesion molecules that play non-overlapping roles in the formation and maintenance of the nervous system. CNTN1 and CNTN2 are the prototypical members of the family and have been involved, through cis- and trans-interactions with distinct cell adhesion molecules, in neural cell migration, axon guidance, and the organization of myelin subdomains. In contrast, the roles of CNTN3-6 are less well characterized although the generation of null mice and the recent identification of a common extracellular binding partner have considerably advanced our grasp of their physiological roles in particular as they relate to the wiring of sensory tissues. In this review, we aim to present a summary of our current understanding of CNTN functions and give an overview of the challenges that lie ahead in understanding the roles these proteins play in nervous system development and maintenance.
Collapse
|
20
|
Zuko A, Kleijer KTE, Oguro-Ando A, Kas MJH, van Daalen E, van der Zwaag B, Burbach JPH. Contactins in the neurobiology of autism. Eur J Pharmacol 2013; 719:63-74. [PMID: 23872404 DOI: 10.1016/j.ejphar.2013.07.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 06/18/2013] [Accepted: 07/01/2013] [Indexed: 12/21/2022]
Abstract
Autism is a disease of brain plasticity. Inspiring work of Willem Hendrik Gispen on neuronal plasticity has stimulated us to investigate gene defects in autism and the consequences for brain development. The central process in the pathogenesis of autism is local dendritic mRNA translation which is dependent on axodendritic communication. Hence, most autism-related gene products (i) are part of the protein synthesis machinery itself, (ii) are components of the mTOR signal transduction pathway, or (iii) shape synaptic activity and plasticity. Accordingly, prototype drugs have been recognized that interfere with these pathways. The contactin (CNTN) family of Ig cell adhesion molecules (IgCAMs) harbours at least three members that have genetically been implicated in autism: CNTN4, CNTN5, and CNTN6. In this chapter we review the genetic and neurobiological data underpinning their role in normal and abnormal development of brain systems, and the consequences for behavior. Although data on each of these CNTNs are far from complete, we tentatively conclude that these three contactins play roles in brain development in a critical phase of establishing brain systems and their plasticity. They modulate neuronal activities, such as neurite outgrowth, synaptogenesis, survival, guidance of projections and terminal branching of axons in forming neural circuits. Current research on these CNTNs concentrate on the neurobiological mechanism of their developmental functions. A future task will be to establish if proposed pharmacological strategies to counteract ASD-related symptomes can also be applied to reversal of phenotypes caused by genetic defects in these CNTN genes.
Collapse
Affiliation(s)
- Amila Zuko
- Department of Neuroscience and Pharmacology, Brain Center Rudolf Magnus, UMC Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Kristel T E Kleijer
- Department of Neuroscience and Pharmacology, Brain Center Rudolf Magnus, UMC Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Asami Oguro-Ando
- Department of Neuroscience and Pharmacology, Brain Center Rudolf Magnus, UMC Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Martien J H Kas
- Department of Neuroscience and Pharmacology, Brain Center Rudolf Magnus, UMC Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Emma van Daalen
- Department of Psychiatry, Brain Center Rudolf Magnus, UMC Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Bert van der Zwaag
- Department of Medical Genetics, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - J Peter H Burbach
- Department of Neuroscience and Pharmacology, Brain Center Rudolf Magnus, UMC Medical Center Utrecht, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
21
|
Xiao L, Michalski N, Kronander E, Gjoni E, Genoud C, Knott G, Schneggenburger R. BMP signaling specifies the development of a large and fast CNS synapse. Nat Neurosci 2013; 16:856-64. [PMID: 23708139 DOI: 10.1038/nn.3414] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 05/02/2013] [Indexed: 11/09/2022]
Abstract
Large excitatory synapses with multiple active zones ensure reliable and fast information transfer at specific points in neuronal circuits. However, the mechanisms that determine synapse size in CNS circuits are largely unknown. Here we use the calyx of Held synapse, a major relay in the auditory system, to identify and study signaling pathways that specify large nerve terminal size and fast synaptic transmission. Using genome-wide screening, we identified bone morphogenetic proteins (BMPs) as candidate signaling molecules in the area of calyx synapses. Conditional deletion of BMP receptors in the auditory system of mice led to aberrations of synapse morphology and function specifically at the calyx of Held, with impaired nerve terminal growth, loss of monoinnervation and less mature transmitter release properties. Thus, BMP signaling specifies large and fast-transmitting synapses in the auditory system in a process that shares homologies with, but also extends beyond, retrograde BMP signaling at Drosophila neuromuscular synapses.
Collapse
Affiliation(s)
- Le Xiao
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
22
|
Mercati O, Danckaert A, André-Leroux G, Bellinzoni M, Gouder L, Watanabe K, Shimoda Y, Grailhe R, De Chaumont F, Bourgeron T, Cloëz-Tayarani I. Contactin 4, -5 and -6 differentially regulate neuritogenesis while they display identical PTPRG binding sites. Biol Open 2013; 2:324-34. [PMID: 23519440 PMCID: PMC3603414 DOI: 10.1242/bio.20133343] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 11/28/2012] [Indexed: 12/22/2022] Open
Abstract
The neural cell-adhesion molecules contactin 4, contactin 5 and contactin 6 are involved in brain development, and disruptions in contactin genes may confer increased risk for autism spectrum disorders (ASD). We describe a co-culture of rat cortical neurons and HEK293 cells overexpressing and delivering the secreted forms of rat contactin 4-6. We quantified their effects on the length and branching of neurites. Contactin 4-6 effects were different depending on the contactin member and duration of co-culture. At 4 days in culture, contactin 4 and -6 increased the length of neurites, while contactin 5 increased the number of roots. Up to 8 days in culture, contactin 6 progressively increased the length of neurites while contactin 5 was more efficient on neurite branching. We studied the molecular sites of interaction between human contactin 4, -5 or -6 and the human Protein Tyrosine Phosphatase Receptor Gamma (PTPRG), a contactin partner, by modeling their 3D structures. As compared to contactin 4, we observed differences in the Ig2 and Ig3 domains of contactin 5 and -6 with the appearance of an omega loop that could adopt three distinct conformations. However, interactive residues between human contactin 4-6 and PTPRG were strictly conserved. We did not observe any differences in PTPRG binding on contactin 5 and -6 either. Our data suggest that the differential contactin effects on neurite outgrowth do not result from distinct interactions with PTPRG. A better understanding of the contactin cellular properties should help elucidate their roles in ASD.
Collapse
Affiliation(s)
- Oriane Mercati
- Human Genetics and Cognitive Functions, Institut Pasteur , 75015 Paris , France ; CNRS URA 2182 'Genes, synapses and cognition', Institut Pasteur , 75015 Paris , France ; Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions , 75013 Paris , France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Expanding the Ig superfamily code for laminar specificity in retina: expression and role of contactins. J Neurosci 2013; 32:14402-14. [PMID: 23055510 DOI: 10.1523/jneurosci.3193-12.2012] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bipolar, amacrine, and retinal ganglion cells elaborate arbors and form synapses within the inner plexiform layer (IPL) of the vertebrate retina. Specific subsets of these neuronal types synapse in one or a few of the ≥10 sublaminae of the IPL. Four closely related Ig superfamily transmembrane adhesion molecules--Sidekick1 (Sdk1), Sdk2, Dscam, and DscamL--are expressed by non-overlapping subsets of chick retinal neurons and promote their lamina-specific arborization (Yamagata and Sanes, 2008). Here, we asked whether contactins (Cntns), six homologs of Sdks and Dscams, are expressed by and play roles in other subsets. In situ hybridization showed that cntn1-5 were differentially expressed by subsets of amacrine cells. Immunohistochemistry showed that each Cntn protein was concentrated in a subset of IPL sublaminae. To assess roles of Cntns in retinal development, we focused on Cntn2. Depletion of Cntn2 by RNA interference markedly reduced the ability of Cntn2-positive cells to restrict their arbors to appropriate sublaminae. Conversely, ectopic expression of cntn2 redirected neurites of transduced neurons to the Cntn2-positive sublaminae. Thus, both loss- and gain-of-function strategies implicate Cntn2 in lamina-specific neurite targeting. Studies in heterologous cells showed that Cntn2 mediates homophilic adhesion, but does not bind detectably to Sdks, Dscams, or other Cntns. Overexpression analysis showed that Cntns1 and 3 can also redirect neurites to appropriate sublaminae. We propose that Cntns, Sdks, and Dscams comprise an Ig superfamily code that uses homophilic interactions to promote lamina-specific targeting of retinal dendrites in IPL.
Collapse
|
24
|
A cis-complex of NB-2/contactin-5 with amyloid precursor-like protein 1 is localized on the presynaptic membrane. Neurosci Lett 2012; 510:148-53. [DOI: 10.1016/j.neulet.2012.01.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Revised: 01/10/2012] [Accepted: 01/11/2012] [Indexed: 01/06/2023]
|
25
|
Abstract
The calyx of Held is an axosomatic terminal in the auditory brainstem that has attracted anatomists because of its giant size and physiologists because of its accessibility to patch-clamp recordings. The calyx allows the principal neurons in the medial nucleus of the trapezoid body (MNTB) to provide inhibition that is both well timed and sustained to many other auditory nuclei. The special adaptations that allow the calyx to drive its principal neuron even when frequencies are high include a large number of release sites with low release probability, a large readily releasable pool, fast presynaptic calcium clearance and little delayed release, a large quantal size, and fast AMPA-type glutamate receptors. The transformation from a synapse that is unremarkable except for its giant size into a fast and reliable auditory relay happens in just a few days. In rodents this transformation is essentially ready when hearing starts.
Collapse
Affiliation(s)
- J Gerard G Borst
- Department of Neuroscience, Erasmus MC, University Medical Center, 3015 GE Rotterdam, The Netherlands.
| | | |
Collapse
|
26
|
Cottrell CE, Bir N, Varga E, Alvarez CE, Bouyain S, Zernzach R, LambThrush D, Evans J, Trimarchi M, Butter EM, Cunningham D, Gastier-Foster JM, McBride K, Herman GE. Contactin 4 as an autism susceptibility locus. Autism Res 2011; 4:189-99. [PMID: 21308999 PMCID: PMC3209658 DOI: 10.1002/aur.184] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 12/15/2010] [Indexed: 01/05/2023]
Abstract
Structural and sequence variation have been described in several members of the contactin (CNTN) and contactin-associated protein (CNTNAP) gene families in association with neurodevelopmental disorders, including autism. Using array comparative genome hybridization (CGH), we identified a maternally inherited ∼535 kb deletion at 3p26.3 encompassing the 5' end of the contactin 4 gene (CNTN4) in a patient with autism. Based on this finding and previous reports implicating genomic rearrangements of CNTN4 in autism spectrum disorders (ASDs) and 3p- microdeletion syndrome, we undertook sequencing of the coding regions of the gene in a local ASD cohort in comparison with a set of controls. Unique missense variants were identified in 4 of 75 unrelated individuals with ASD, as well as in 1 of 107 controls. All of the amino acid substitutions were nonsynonomous, occurred at evolutionarily conserved positions, and were, thus, felt likely to be deleterious. However, these data did not reach statistical significance, nor did the variants segregate with disease within all of the ASD families. Finally, there was no detectable difference in binding of two of the variants to the interacting protein PTPRG in vitro. Thus, additional larger studies will be necessary to determine whether CNTN4 functions as an autism susceptibility locus in combination with other genetic and/or environmental factors.
Collapse
Affiliation(s)
| | - Natalie Bir
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital
| | - Elizabeth Varga
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital
| | - Carlos E. Alvarez
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital
- Department of Pediatrics, The Ohio State University, Columbus, OH
| | - Samuel Bouyain
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO
| | | | - Devon LambThrush
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital
- Department of Pediatrics, The Ohio State University, Columbus, OH
| | - Johnna Evans
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital
| | - Michael Trimarchi
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital
| | - Eric M. Butter
- Department of Pediatrics, The Ohio State University, Columbus, OH
| | - David Cunningham
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital
- Department of Pediatrics, The Ohio State University, Columbus, OH
| | - Julie M. Gastier-Foster
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital
- Department of Pediatrics, The Ohio State University, Columbus, OH
- Department of Pathology, The Ohio State University, Columbus, OH
| | - Kim McBride
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital
- Department of Pediatrics, The Ohio State University, Columbus, OH
| | - Gail E. Herman
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital
- Department of Pediatrics, The Ohio State University, Columbus, OH
| |
Collapse
|
27
|
Nakamura PA, Cramer KS. Formation and maturation of the calyx of Held. Hear Res 2011; 276:70-8. [PMID: 21093567 PMCID: PMC3109188 DOI: 10.1016/j.heares.2010.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Revised: 11/03/2010] [Accepted: 11/10/2010] [Indexed: 11/24/2022]
Abstract
Sound localization requires precise and specialized neural circuitry. A prominent and well-studied specialization is found in the mammalian auditory brainstem. Globular bushy cells of the ventral cochlear nucleus (VCN) project contralaterally to neurons of the medial nucleus of the trapezoid body (MNTB), where their large axons terminate on cell bodies of MNTB principal neurons, forming the calyces of Held. The VCN-MNTB pathway is necessary for the accurate computation of interaural intensity and time differences; MNTB neurons provide inhibitory input to the lateral superior olive, which compares levels of excitation from the ipsilateral ear to levels of tonotopically matched inhibition from the contralateral ear, and to the medial superior olive, where precise inhibition from MNTB neurons tunes the delays of binaural excitation. Here we review the morphological and physiological aspects of the development of the VCN-MNTB pathway and its calyceal termination, along with potential mechanisms that give rise to its precision. During embryonic development, VCN axons grow towards the midline, cross the midline into the region of the presumptive MNTB and then form collateral branches that will terminate in calyces of Held. In rodents, immature calyces of Held appear in MNTB during the first few days of postnatal life. These calyces mature morphologically and physiologically over the next three postnatal weeks, enabling fast, high fidelity transmission in the VCN-MNTB pathway.
Collapse
Affiliation(s)
- Paul A. Nakamura
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697
| | - Karina S. Cramer
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697
| |
Collapse
|
28
|
ZUKO AMILA, BOUYAIN SAMUEL, VAN DER ZWAAG BERT, BURBACH JPETERH. Contactins: structural aspects in relation to developmental functions in brain disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2011; 84:143-80. [PMID: 21846565 PMCID: PMC9921585 DOI: 10.1016/b978-0-12-386483-3.00001-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The contactins are members of a protein subfamily of neural immunoglobulin (Ig) domain-containing cell adhesion molecules. Their architecture is based on six N-terminal Ig domains, four fibronectin type III domains, and a C-terminal glycophosphatidylinositol (GPI)-anchor to the extracellular part of the cell membrane. Genetics of neuropsychiatric disorders, particularly autism spectrum disorders, have pinpointed contactin-4, -5, and -6 (CNTN4, -5, and -6) as potential disease genes in neurodevelopmental disorders and suggested that they participate in pathways important for appropriate brain development. These contactins have distinct but overlapping patterns of brain expression, and null-mutation causes subtle morphological and functional defects in the brain. The molecular basis of their neurodevelopmental functions is likely conferred by heterophilic protein interactions. Cntn4, -5, and -6 interact with protein tyrosine phosphatase receptor gamma (Ptptg) using a shared binding site that spans their second and third Ig repeats. Interactions with amyloid precursor protein (APP), Notch, and other IgCAMs have also been indicated. The present data indicate that Cntn4, -5, and -6 proteins may be part of heteromeric receptor complexes as well as serve as ligands themselves.
Collapse
Affiliation(s)
- AMILA ZUKO
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - SAMUEL BOUYAIN
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - BERT VAN DER ZWAAG
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J. PETER H. BURBACH
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|