1
|
Ito S, Graf DB, Katsumata Y, Moorleghen JJ, Zhang C, Li Y, LeMaire SA, Shen YH, Lu HS, Daugherty A, Sawada H. Smooth muscle cells and fibroblasts in the ascending aorta exhibit minor differences between embryonic origins in angiotensin II-driven transcriptional alterations. Sci Rep 2025; 15:16617. [PMID: 40360730 PMCID: PMC12075595 DOI: 10.1038/s41598-025-99862-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Thoracic aortopathy is influenced by angiotensin II (AngII) and exhibits regional heterogeneity with the ascending aorta being particularly susceptible. In this region, smooth muscle cells (SMCs) and selected fibroblasts originate from the second heart field (SHF) and cardiac neural crest (CNC). While our previous study revealed a critical role of SHF-derived cells in AngII-mediated aortopathy, the contribution of CNC-derived cells remains unclear. To investigate lineage-specific responses to AngII, Mef2c-Cre R26RmT/mG mice were infused with AngII. Ascending aortas were harvested at baseline or after 3 days of infusion, representing the prepathological phase. Cells were sorted based on their embryonic origins and single-cell RNA sequencing was performed. Transcriptomic analysis revealed significant changes in both SHF- and nSHF-derived SMCs following short-term AngII infusion, although differences between the origins were modest. Similarly, fibroblast transcriptomes exhibited notable changes, yet lineage-specific differences remained modest, except for a newly identified fibroblast subpopulation where extracellular matrix-related genes such as Eln and Col3a1 were downregulated in SHF-derived fibroblasts compared to nSHF-derived fibroblasts. These findings suggest that while fibroblasts in the new subcluster exhibit lineage-specific extracellular matrix-related differences, overall transcriptomic variations between SHF- and nSHF-derived cells in response to AngII remain modest during the prepathological phase of AngII-induced thoracic aortopathy.
Collapse
Affiliation(s)
- Sohei Ito
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, 741 South Limestone, BBSRB, Lexington, KY, 40536, USA
- Saha Aortic Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - David B Graf
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, 741 South Limestone, BBSRB, Lexington, KY, 40536, USA
- Saha Aortic Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Yuriko Katsumata
- Department of Biostatistics, College of Public Health, College of Medicine, University of Kentucky, Lexington, KY, USA
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Jessica J Moorleghen
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, 741 South Limestone, BBSRB, Lexington, KY, 40536, USA
- Saha Aortic Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Chen Zhang
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Yanming Li
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Scott A LeMaire
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
- Department of Cardiothoracic Surgery, Geisinger, Danville, PA, USA
| | - Ying H Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Hong S Lu
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, 741 South Limestone, BBSRB, Lexington, KY, 40536, USA
- Saha Aortic Center, College of Medicine, University of Kentucky, Lexington, KY, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Alan Daugherty
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, 741 South Limestone, BBSRB, Lexington, KY, 40536, USA
- Saha Aortic Center, College of Medicine, University of Kentucky, Lexington, KY, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Hisashi Sawada
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, 741 South Limestone, BBSRB, Lexington, KY, 40536, USA.
- Saha Aortic Center, College of Medicine, University of Kentucky, Lexington, KY, USA.
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
2
|
Fu M, Pang L, Wu Z, Wang M, Jin J, Ai S, Li X. Single-cell multi-omics delineates the dynamics of distinct epigenetic codes coordinating mouse gastrulation. BMC Genomics 2025; 26:454. [PMID: 40340740 PMCID: PMC12060302 DOI: 10.1186/s12864-025-11619-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 04/21/2025] [Indexed: 05/10/2025] Open
Abstract
Gastrulation represents a crucial stage in embryonic development and is tightly controlled by a complex network involving epigenetic reprogramming. However, the molecular coordination among distinct epigenetic layers entailing the progressive restriction of lineage potency remains unclear. Here, we present a multi-omics map of H3K27ac and H3K4me1 single-cell ChIP-seq profiles of mouse embryos collected at six sequential time points. Significant epigenetic priming, as reflected by H3K27ac signals, is evident, yet asynchronous cell fate commitment of each germ layer at distinct histone modification levels are observed. Integrated scRNA-seq and single-cell ChIP-seq analysis unveil a "time lag" transition pattern between enhancer activation and gene expression during germ-layer specification. Notably, by utilizing the H3K27ac and H3K4me1 co-marked active enhancers, we construct a gene regulatory network centered on pivotal transcription factors, highlighting the potential critical role of Cdkn1c in mesoderm lineage specification. Together, our study broadens the current understanding of intricate epigenetic regulatory networks governing mouse gastrulation and sheds light on their relevance to congenital diseases.
Collapse
Affiliation(s)
- Mingzhu Fu
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Long Pang
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhenwei Wu
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Mei Wang
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Jin Jin
- Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China.
| | - Shanshan Ai
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Department of Cardiology, Heart Center, First People's Hospital of Shunde, Southern Medical University, ShundeDistrict, Foshan, 528300, China.
| | - Xin Li
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China.
| |
Collapse
|
3
|
Goldsworthy S, Losa M, Bobola N, Griffiths-Jones S. High-throughput microRNA sequencing in the developing branchial arches suggests miR-92b-3p regulation of a cardiovascular gene network. Front Genet 2025; 16:1514925. [PMID: 40051700 PMCID: PMC11882518 DOI: 10.3389/fgene.2025.1514925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/24/2025] [Indexed: 03/09/2025] Open
Abstract
Vertebrate branchial arches (BAs) are a developmental paradigm, undergoing coordinated differentiation and morphogenesis to form various adult derivative tissues. MicroRNAs can strengthen gene regulatory networks (GRNs) to promote developmental stability. To investigate microRNA-mediated regulation in BA development, we generated a novel microRNA-sequencing dataset from mouse BAs. We identified 550 expressed microRNAs, of which approximately 20% demonstrate significant differential expression across BA domains. The three most posterior BAs and the connecting outflow tract (PBA/OFT) express genes important for cardiovascular development. We predicted microRNA-target interactions with PBA/OFT-expressed cardiovascular genes and found target sites for miR-92b-3p to be enriched. We used a dual luciferase assay to validate miR-92b-3p interactions with two transcripts encoding the fundamental cardiac transcription factors (TFs), Gata6 and Tbx20. Furthermore, we demonstrated that miR-92b-3p mimic can downregulate endogenous GATA6 and TBX20 in human embryonic stem cells (hESCs) undergoing cardiomyocyte differentiation, confirming microRNA-target binding can occur in a cardiac cell type. miR-92b-3p has previously been shown to target transcripts encoding for two other cardiac TFs, Hand2 and Mef2D. Therefore, we hypothesise that miR-92b-3p acts to stabilise cardiovascular GRNs during PBA/OFT development, through multiple microRNA-mediated regulatory networks.
Collapse
Affiliation(s)
| | | | - Nicoletta Bobola
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Sam Griffiths-Jones
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
4
|
Ito S, Graf DB, Katsumata Y, Moorleghen JJ, Zhang C, Li Y, LeMaire SA, Shen YH, Lu HS, Daugherty A, Sawada H. Smooth Muscle Cells and Fibroblasts in the Proximal Thoracic Aorta Exhibit Minor Differences Between Embryonic Origins in Angiotensin II-driven Transcriptional Alterations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.610985. [PMID: 39896657 PMCID: PMC11785212 DOI: 10.1101/2025.01.23.610985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Background Thoracic aortopathy is influenced by angiotensin II (AngII) and exhibits regional heterogeneity with the proximal region of the thoracic aorta being susceptible. Smooth muscle cells (SMCs) and selected fibroblasts in this region are derived from two embryonic origins: second heart field (SHF) and cardiac neural crest (CNC). While our previous study revealed a critical role of SHF-derived cells in AngII-mediated aortopathy formation, the contribution of CNC-derived cells remains unclear. Methods Mef2c-Cre R26R mT/mG mice were infused with AngII (1,000 ng/kg/min). Proximal thoracic aortas were harvested at baseline or after 3 days of infusion, representing the prepathological phase. Cells were sorted by origins using mGFP (SHF-derived) and mTomato (other origins, nSHF-derived) signals, respectively. After sorting cells by origin, single-cell RNA sequencing was performed and analyzed. Results Short-term AngII infusion induced significant transcriptomic changes in both SHF- and nSHF-derived SMCs, but differences between origins were modest. Fibroblast transcriptomes also underwent notable changes by AngII infusion, but differences between SHF and nSHF origins remained modest. Interestingly, AngII infusion resulted in the emergence of a new fibroblast sub-population. Several molecules related to the extracellular matrix, such as Eln and Col3a1 , were downregulated in SHF-derived fibroblasts compared to nSHF-derived fibroblasts in the new subcluster. Conclusion Fibroblasts in the new subcluster exhibited lineage-specific differences in extracellular matrix-related genes; however, overall transcriptomic differences between origins in SMCs and fibroblasts in response to AngII were modest in the pre-pathological phase of AngII-induced thoracic aortopathy. GRAPHIC ABSTRACT
Collapse
|
5
|
Prill K, Windsor Reid P, Pilgrim D. Heart Morphogenesis Requires Smyd1b for Proper Incorporation of the Second Heart Field in Zebrafish. Genes (Basel) 2025; 16:52. [PMID: 39858599 PMCID: PMC11764850 DOI: 10.3390/genes16010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Abnormal development of the second heart field significantly contributes to congenital heart defects, often caused by disruptions in tightly regulated molecular pathways. Smyd1, a gene encoding a protein with SET and MYND domains, is essential for heart and skeletal muscle development. Mutations in SMYD1 result in severe cardiac malformations and misregulation of Hand2 expression in mammals. This study examines the role of Smyd1b in zebrafish cardiac morphogenesis to elucidate its function and the mechanisms underlying congenital heart defects. Methods: Smyd1b (still heart) mutant embryos were analyzed for cardiac defects, and changes in gene expression related to heart development using live imaging, in situ hybridization, quantitative PCR and immunofluorescent comparisons and analysis. Results: Smyd1b mutants displayed severe cardiac defects, including failure to loop, severe edema, and an expansion of cardiac jelly linked to increased has2 expression. Additionally, the expression of key cardiac transcription factors, such as gata4, gata5, and nkx2.5, was notably reduced, indicating disrupted transcriptional regulation. The migration of cardiac progenitors was impaired and the absence of Islet-1-positive cells in the mutant hearts suggests a failed contribution of SHF progenitor cells. Conclusions: These findings underscore the essential role of Smyd1b in regulating cardiac morphogenesis and the development of the second heart field. This study highlights the potential of Smyd1b as a key factor in understanding the genetic and molecular mechanisms underlying congenital heart defects and cardiac development.
Collapse
Affiliation(s)
- Kendal Prill
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (K.P.); (P.W.R.)
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 1Y2, Canada
| | - Pamela Windsor Reid
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (K.P.); (P.W.R.)
- Department of Biological Science, MacEwan University, Edmonton, AB T5J 4S2, Canada
| | - Dave Pilgrim
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (K.P.); (P.W.R.)
| |
Collapse
|
6
|
Li Y, Du J, Deng S, Liu B, Jing X, Yan Y, Liu Y, Wang J, Zhou X, She Q. The molecular mechanisms of cardiac development and related diseases. Signal Transduct Target Ther 2024; 9:368. [PMID: 39715759 DOI: 10.1038/s41392-024-02069-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 12/25/2024] Open
Abstract
Cardiac development is a complex and intricate process involving numerous molecular signals and pathways. Researchers have explored cardiac development through a long journey, starting with early studies observing morphological changes and progressing to the exploration of molecular mechanisms using various molecular biology methods. Currently, advancements in stem cell technology and sequencing technology, such as the generation of human pluripotent stem cells and cardiac organoids, multi-omics sequencing, and artificial intelligence (AI) technology, have enabled researchers to understand the molecular mechanisms of cardiac development better. Many molecular signals regulate cardiac development, including various growth and transcription factors and signaling pathways, such as WNT signaling, retinoic acid signaling, and Notch signaling pathways. In addition, cilia, the extracellular matrix, epigenetic modifications, and hypoxia conditions also play important roles in cardiac development. These factors play crucial roles at one or even multiple stages of cardiac development. Recent studies have also identified roles for autophagy, metabolic transition, and macrophages in cardiac development. Deficiencies or abnormal expression of these factors can lead to various types of cardiac development abnormalities. Nowadays, congenital heart disease (CHD) management requires lifelong care, primarily involving surgical and pharmacological treatments. Advances in surgical techniques and the development of clinical genetic testing have enabled earlier diagnosis and treatment of CHD. However, these technologies still have significant limitations. The development of new technologies, such as sequencing and AI technologies, will help us better understand the molecular mechanisms of cardiac development and promote earlier prevention and treatment of CHD in the future.
Collapse
Affiliation(s)
- Yingrui Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Songbai Deng
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaodong Jing
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuling Yan
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yajie Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaobo Zhou
- Department of Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany; DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, Mannheim, Germany
| | - Qiang She
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
7
|
Xu Y, Gehlot R, Capon SJ, Albu M, Gretz J, Bloomekatz J, Mattonet K, Vucicevic D, Talyan S, Kikhi K, Günther S, Looso M, Firulli BA, Sanda M, Firulli AB, Lacadie SA, Yelon D, Stainier DYR. PDGFRA is a conserved HAND2 effector during early cardiac development. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1531-1548. [PMID: 39658721 PMCID: PMC11634778 DOI: 10.1038/s44161-024-00574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/29/2024] [Indexed: 12/12/2024]
Abstract
The basic helix-loop-helix transcription factor HAND2 has multiple roles during vertebrate organogenesis, including cardiogenesis. However, much remains to be uncovered about its mechanism of action. Here, we show the generation of several hand2 mutant alleles in zebrafish and demonstrate that dimerization-deficient mutants display the null phenotype but DNA-binding-deficient mutants do not. Rescue experiments with Hand2 variants using a newly identified hand2 enhancer confirmed these observations. To identify Hand2 effectors critical for cardiogenesis, we analyzed the transcriptomes of hand2 loss- and gain-of-function embryonic cardiomyocytes and tested the function of eight candidate genes in vivo; pdgfra was most effective in rescuing myocardial migration in hand2 mutants. Accordingly, we identified a putative Hand2-binding region in the zebrafish pdgfra locus that is important for its expression. In addition, Hand2 loss- and gain-of-function experiments in mouse embryonic stem cell-derived cardiac cells decreased and increased Pdgfra expression, respectively. Altogether, these results further our mechanistic understanding of HAND2 function during early cardiogenesis.
Collapse
Affiliation(s)
- Yanli Xu
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rupal Gehlot
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Samuel J Capon
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Marga Albu
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jonas Gretz
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Joshua Bloomekatz
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
- Department of Biology, University of Mississippi, University, MS, USA
| | - Kenny Mattonet
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Dubravka Vucicevic
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Sweta Talyan
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Khrievono Kikhi
- Flow Cytometry Service Group, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Günther
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mario Looso
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Beth A Firulli
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis, IN, USA
| | - Miloslav Sanda
- Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Anthony B Firulli
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis, IN, USA
| | - Scott Allen Lacadie
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Deborah Yelon
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
| |
Collapse
|
8
|
Holman AR, Tran S, Destici E, Farah EN, Li T, Nelson AC, Engler AJ, Chi NC. Single-cell multi-modal integrative analyses highlight functional dynamic gene regulatory networks directing human cardiac development. CELL GENOMICS 2024; 4:100680. [PMID: 39437788 PMCID: PMC11605693 DOI: 10.1016/j.xgen.2024.100680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/01/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Illuminating the precise stepwise genetic programs directing cardiac development provides insights into the mechanisms of congenital heart disease and strategies for cardiac regenerative therapies. Here, we integrate in vitro and in vivo human single-cell multi-omic studies with high-throughput functional genomic screening to reveal dynamic, cardiac-specific gene regulatory networks (GRNs) and transcriptional regulators during human cardiomyocyte development. Interrogating developmental trajectories reconstructed from single-cell data unexpectedly reveal divergent cardiomyocyte lineages with distinct gene programs based on developmental signaling pathways. High-throughput functional genomic screens identify key transcription factors from inferred GRNs that are functionally relevant for cardiomyocyte lineages derived from each pathway. Notably, we discover a critical heat shock transcription factor 1 (HSF1)-mediated cardiometabolic GRN controlling cardiac mitochondrial/metabolic function and cell survival, also observed in fetal human cardiomyocytes. Overall, these multi-modal genomic studies enable the systematic discovery and validation of coordinated GRNs and transcriptional regulators controlling the development of distinct human cardiomyocyte populations.
Collapse
Affiliation(s)
- Alyssa R Holman
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shaina Tran
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eugin Destici
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elie N Farah
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ting Li
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Aileena C Nelson
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Adam J Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Engineering Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92093, USA
| | - Neil C Chi
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Engineering Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
9
|
Feng H, Yang S, Zhang L, Zhu J, Li J, Yang Z. A new Prdm1-Cre line is suitable for studying the second heart field development. Dev Biol 2024; 514:78-86. [PMID: 38880275 DOI: 10.1016/j.ydbio.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
The second heart field (SHF) plays a pivotal role in heart development, particularly in outflow tract (OFT) morphogenesis and septation, as well as in the expansion of the right ventricle (RV). Two mouse Cre lines, the Mef2c-AHF-Cre (Mef2c-Cre) and Isl1-Cre, have been widely used to study the SHF development. However, Cre activity is triggered not only in the SHF but also in the RV in the Mef2c-Cre mice, and in the Isl1-Cre mice, Cre activation is not SHF-specific. Therefore, a more suitable SHF-Cre line is desirable for better understanding SHF development. Here, we generated and characterized the Prdm1-Cre knock-in mice. In comparison with Mef2c-Cre mice, the Cre activity is similar in the pharyngeal and splanchnic mesoderm, and in the OFT of the Prdm1-Cre mice. Nonetheless, it was noticed that Cre expression is largely reduced in the RV of Prdm1-Cre mice compared to the Mef2c-Cre mice. Furthermore, we deleted Hand2, Nkx2-5, Pdk1 and Tbx20 using both Mef2c-Cre and Prdm1-Cre mice to study OFT morphogenesis and septation, making a comparison between these two Cre lines. New insights were obtained in understanding SHF development including differentiation into cardiomyocytes in the OFT using Prdm1-Cre mice. In conclusion, we found that Prdm1-Cre mouse line is a more appropriate tool to monitor SHF development, while the Mef2c-Cre mice are excellent in studying the role and function of the SHF in OFT morphogenesis and septation.
Collapse
Affiliation(s)
- Haiyue Feng
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, China
| | - Suming Yang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Lijun Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, China
| | - Jingai Zhu
- Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Zhongzhou Yang
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
10
|
Wang F, Chen F, Song W, Li Y, Wu H, Tian T, Tian M, Tang D, Liu Y. Sodium Fluoride Exposure Induces Developmental Toxicity and Cardiotoxicity in Zebrafish Embryos. Biol Trace Elem Res 2024:10.1007/s12011-024-04381-4. [PMID: 39287768 DOI: 10.1007/s12011-024-04381-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/14/2024] [Indexed: 09/19/2024]
Abstract
Fluorosis is a worldwide public health problem, in which the heart is an important target organ. However, studies on its toxicological mechanism in embryonic development are limited. This study assessed the toxicity of sodium fluoride (NaF) toward zebrafish embryos. We determined the mortality, hatching rate, phenotypic malformation, heart function, and morphology of zebrafish embryos after exposure to NaF. Subsequently, the molecular mechanism was revealed using high-throughput RNA sequencing analysis. The expression levels of key genes for heart development were detected using quantitative real-time reverse transcription PCR. The 50% lethal concentration (LC50) value of NaF toward zebrafish embryos at 96 h post-fertilization was 335.75 mg/L. When the concentration of NaF was higher than 200 mg/L, severe deformities, such as pericardial edema, yolk sac edema, spine curvature, shortened body length, reduced head area, and eye area, were observed. The heart rate of the embryos exposed to NaF decreased in a dose-dependent fashion. The distance between the sinus venosus and bulbus arteriosus was significantly increased in the NaF-exposed group compared with that in the control group. The stroke volume and cardiac output decreased significantly in the NaF groups. Compared with the control group, the expression levels of Gata4, Tbx5a, Hand2, Tnnt2c, Nppa, and Myh6 were significantly increased in the NaF-treated group. Through transcriptome sequencing, 1354 differentially expressed genes (DEGs) were detected in the NaF (200 mg/L) treated groups, including 1253 upregulated genes and 101 downregulated genes. Gene ontology functional analysis and Kyoto Encyclopedia of Genes and Genomes pathway analyses of the DEGs showed that cardiac-related pathways, such as actin cytoskeleton regulation, Jak-Stat, PI3k-Akt, and Ras, were activated in the NaF-exposed group. This study revealed the underlying mechanism of fluoride-induced cardiac morphological and functional abnormalities and provides clues for the clinical prevention and treatment of fluorosis.
Collapse
Affiliation(s)
- Feiqing Wang
- Clinical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Bao Shan North Road, Yunyan District, Guiyang, 550001, Guizhou Province, China
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin City, 300072, China
| | - Fa Chen
- Clinical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Bao Shan North Road, Yunyan District, Guiyang, 550001, Guizhou Province, China
| | - Wen Song
- Clinical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Bao Shan North Road, Yunyan District, Guiyang, 550001, Guizhou Province, China
| | - Yanju Li
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, China
| | - Haiyan Wu
- Clinical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Bao Shan North Road, Yunyan District, Guiyang, 550001, Guizhou Province, China
| | - Tingting Tian
- Clinical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Bao Shan North Road, Yunyan District, Guiyang, 550001, Guizhou Province, China
| | - Mengxian Tian
- Clinical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Bao Shan North Road, Yunyan District, Guiyang, 550001, Guizhou Province, China
| | - Dongxin Tang
- Clinical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Bao Shan North Road, Yunyan District, Guiyang, 550001, Guizhou Province, China.
| | - Yang Liu
- Clinical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Bao Shan North Road, Yunyan District, Guiyang, 550001, Guizhou Province, China.
| |
Collapse
|
11
|
Ma Q, Zhang YH, Guo W, Feng K, Huang T, Cai YD. Machine Learning in Identifying Marker Genes for Congenital Heart Diseases of Different Cardiac Cell Types. Life (Basel) 2024; 14:1032. [PMID: 39202774 PMCID: PMC11355424 DOI: 10.3390/life14081032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/31/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Congenital heart disease (CHD) represents a spectrum of inborn heart defects influenced by genetic and environmental factors. This study advances the field by analyzing gene expression profiles in 21,034 cardiac fibroblasts, 73,296 cardiomyocytes, and 35,673 endothelial cells, utilizing single-cell level analysis and machine learning techniques. Six CHD conditions: dilated cardiomyopathy (DCM), donor hearts (used as healthy controls), hypertrophic cardiomyopathy (HCM), heart failure with hypoplastic left heart syndrome (HF_HLHS), Neonatal Hypoplastic Left Heart Syndrome (Neo_HLHS), and Tetralogy of Fallot (TOF), were investigated for each cardiac cell type. Each cell sample was represented by 29,266 gene features. These features were first analyzed by six feature-ranking algorithms, resulting in several feature lists. Then, these lists were fed into incremental feature selection, containing two classification algorithms, to extract essential gene features and classification rules and build efficient classifiers. The identified essential genes can be potential CHD markers in different cardiac cell types. For instance, the LASSO identified key genes specific to various heart cell types in CHD subtypes. FOXO3 was found to be up-regulated in cardiac fibroblasts for both Dilated and hypertrophic cardiomyopathy. In cardiomyocytes, distinct genes such as TMTC1, ART3, ARHGAP24, SHROOM3, and XIST were linked to dilated cardiomyopathy, Neo-Hypoplastic Left Heart Syndrome, hypertrophic cardiomyopathy, HF-Hypoplastic Left Heart Syndrome, and Tetralogy of Fallot, respectively. Endothelial cell analysis further revealed COL25A1, NFIB, and KLF7 as significant genes for dilated cardiomyopathy, hypertrophic cardiomyopathy, and Tetralogy of Fallot. LightGBM, Catboost, MCFS, RF, and XGBoost further delineated key genes for specific CHD subtypes, demonstrating the efficacy of machine learning in identifying CHD-specific genes. Additionally, this study developed quantitative rules for representing the gene expression patterns related to CHDs. This research underscores the potential of machine learning in unraveling the molecular complexities of CHD and establishes a foundation for future mechanism-based studies.
Collapse
Affiliation(s)
- Qinglan Ma
- School of Life Sciences, Shanghai University, Shanghai 200444, China;
| | - Yu-Hang Zhang
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200030, China;
| | - Kaiyan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou 510507, China;
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, China;
| |
Collapse
|
12
|
Wu Y, Chen S, Huang G, Zhang L, Zhong L, Feng Y, Wen P, Liu J. Transcriptome analysis reveals EBF1 ablation-induced injuries in cardiac system. Theranostics 2024; 14:4894-4915. [PMID: 39239522 PMCID: PMC11373621 DOI: 10.7150/thno.92060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 07/29/2024] [Indexed: 09/07/2024] Open
Abstract
Rationale: Regulatory processes of transcription factors (TFs) shape heart development and influence the adult heart's response to stress, contributing to cardiac disorders. Despite their significance, the precise mechanisms underpinning TF-mediated regulation remain elusive. Here, we identify that EBF1, as a TF, is highly expressed in human heart tissues. EBF1 is reported to be associated with human cardiovascular disease, but its roles are unclear in heart. In this study, we investigated EBF1 function in cardiac system. Methods: RNA-seq was utilized to profile EBF1 expression patterns. CRISPR/Cas9 was utilized to knock out EBF1 to investigate its effects. Human pluripotent stem cells (hPSCs) differentiated into cardiac lineages were used to mimic cardiac development. Cardiac function was evaluated on mouse model with Ebf1 knockout by using techniques such as echocardiography. RNA-seq was conducted to analyze transcriptional perturbations. ChIP-seq was employed to elucidate EBF1-bound genes and the underlying regulatory mechanisms. Results: EBF1 was expressed in some human and mouse cardiomyocyte. Knockout of EBF1 inhibited cardiac development. ChIP-seq indicated EBF1's binding on promoters of cardiogenic TFs pivotal to cardiac development, facilitating their transcriptional expression and promoting cardiac development. In mouse, Ebf1 depletion triggered transcriptional perturbations of genes, resulting in cardiac remodeling. Mechanistically, we found that EBF1 directly bound to upstream chromatin regions of cardiac hypertrophy-inducing genes, contributing to cardiac hypertrophy. Conclusions: We uncover the mechanisms underlying EBF1-mediated regulatory processes, shedding light on cardiac development, and the pathogenesis of cardiac remodeling. These findings emphasize EBF1's critical role in orchestrating diverse aspects of cardiac processes and provide a promising therapeutic intervention for cardiomyopathy.
Collapse
Affiliation(s)
- Yueheng Wu
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China, 510080
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, Guangdong, China, 510080
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China, 510080
| | - Shaoxian Chen
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China, 510080
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, Guangdong, China, 510080
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China, 510080
| | - Guiping Huang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China, 510080
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Medical Research Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, Guangdong, China, 510080
| | - Lu Zhang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China, 510530
| | - Liying Zhong
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China, 510080
| | - Yi Feng
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China, 510080
| | - Pengju Wen
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China, 510080
| | - Juli Liu
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China, 510080
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, Guangdong, China, 510080
| |
Collapse
|
13
|
Plummer NW, Smith KG, Jensen P. A knock-in allele of Hand2 expressing Dre recombinase. Genesis 2024; 62:e23601. [PMID: 38703044 PMCID: PMC11088872 DOI: 10.1002/dvg.23601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/05/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024]
Abstract
HAND2 is a basic helix-loop-helix transcription factor with diverse functions during development. To facilitate the investigation of genetic and functional diversity among Hand2-expressing cells in the mouse, we have generated Hand2Dre, a knock-in allele expressing Dre recombinase. To avoid disrupting Hand2 function, the Dre cDNA is inserted at the 3' end of the Hand2 coding sequence following a viral 2A peptide. Hand2Dre homozygotes can therefore be used in complex crosses to increase the proportion of useful genotypes among offspring. Dre expression in mid-gestation Hand2Dre embryos is indistinguishable from wild-type Hand2 expression, and HandDre efficiently recombines rox target sites in vivo. In combination with existing Cre and Flp mouse lines, Hand2Dre will therefore extend the ability to perform genetic intersectional labeling, fate mapping, and functional manipulation of subpopulations of cells characterized by developmental expression of Hand2.
Collapse
Affiliation(s)
- Nicholas W. Plummer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709, USA
| | - Kathleen G. Smith
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709, USA
| | - Patricia Jensen
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
14
|
Rengel BD, Schuler-Faccini L, Fraga LR, Vianna FSL, Kowalski TW. Possible New Candidates Involved to Thalidomide-Related Limbs and Cardiac Defects: A Systems Biology Approach. Biochem Genet 2024:10.1007/s10528-024-10790-w. [PMID: 38689186 DOI: 10.1007/s10528-024-10790-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 03/19/2024] [Indexed: 05/02/2024]
Abstract
Thalidomide is a known teratogen that causes malformations especially in heart and limbs. Its mechanism of teratogenicity is still not fully elucidated. Recently, a new target of thalidomide was described, TBX5, and was observed a new interaction between HAND2 and TBX5 that is disrupted in the presence of thalidomide. Therefore, our study aimed to raise potential candidates for thalidomide teratogenesis, through systems biology, evaluating HAND2 and TBX5 interaction and heart and limbs malformations of thalidomide. Genes and proteins related to TBX5 and HAND2 were selected through TF2DNA, REACTOME, Human Phenotype Ontology, and InterPro databases. Networks were assembled using STRING © database. Network analysis were performed in Cytoscape © and R v3.6.2. Differential gene expression (DGE) analysis was performed through gene expression omnibus. We constructed a network for HAND2 and TBX5 interaction; a network for heart and limbs malformations of TE; and the two joined networks. We observed that EP300 protein seemed to be important in all networks. We also looked for proteins containing C2H2 domain in the assembled networks. ZIC3, GLI1, GLI3, ZNF148, and PRDM16 were the ones present in both heart and limbs malformations of TE networks. Furthermore, in the DGE analysis after treatment with thalidomide, we observed that FANCB, ESCO2, and XRCC2 were downregulated and present both in heart and limbs networks. Through systems biology, we were able to point to different new proteins and genes, and selected specially EP300, which was important in all the analyzed networks, to be further evaluated in the TE teratogenicity.
Collapse
Affiliation(s)
- Bruna Duarte Rengel
- Laboratory of Medical Genetics and Evolution, Genetics Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Brazilian Teratogen Information Service (SIAT), Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lavínia Schuler-Faccini
- Laboratory of Medical Genetics and Evolution, Genetics Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- National Institute of Population Medical Genetics (INAGEMP), Porto Alegre, Brazil
- Brazilian Teratogen Information Service (SIAT), Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Lucas Rosa Fraga
- National Institute of Population Medical Genetics (INAGEMP), Porto Alegre, Brazil
- Brazilian Teratogen Information Service (SIAT), Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Department of Morphological Sciences, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda Sales Luiz Vianna
- Laboratory of Medical Genetics and Evolution, Genetics Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
- National Institute of Population Medical Genetics (INAGEMP), Porto Alegre, Brazil.
- Brazilian Teratogen Information Service (SIAT), Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
- Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
- Genomic Medicine Laboratory, Hospital de Clínicas de Porto Alegre (HCPA), Ramiro Barcelos Street, 2350, Porto Alegre, CEP 90035-903, Brazil.
| | - Thayne Woycinck Kowalski
- Laboratory of Medical Genetics and Evolution, Genetics Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
- National Institute of Population Medical Genetics (INAGEMP), Porto Alegre, Brazil.
- Brazilian Teratogen Information Service (SIAT), Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
- Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
- Genomic Medicine Laboratory, Hospital de Clínicas de Porto Alegre (HCPA), Ramiro Barcelos Street, 2350, Porto Alegre, CEP 90035-903, Brazil.
- Bioinformatics Core, Hospital de Clínicas de Porto Alegre, HCPA, Porto Alegre, Brazil.
| |
Collapse
|
15
|
Chi C, Roland TJ, Song K. Differentiation of Pluripotent Stem Cells for Disease Modeling: Learning from Heart Development. Pharmaceuticals (Basel) 2024; 17:337. [PMID: 38543122 PMCID: PMC10975450 DOI: 10.3390/ph17030337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 04/01/2024] Open
Abstract
Heart disease is a pressing public health problem and the leading cause of death worldwide. The heart is the first organ to gain function during embryogenesis in mammals. Heart development involves cell determination, expansion, migration, and crosstalk, which are orchestrated by numerous signaling pathways, such as the Wnt, TGF-β, IGF, and Retinoic acid signaling pathways. Human-induced pluripotent stem cell-based platforms are emerging as promising approaches for modeling heart disease in vitro. Understanding the signaling pathways that are essential for cardiac development has shed light on the molecular mechanisms of congenital heart defects and postnatal heart diseases, significantly advancing stem cell-based platforms to model heart diseases. This review summarizes signaling pathways that are crucial for heart development and discusses how these findings improve the strategies for modeling human heart disease in vitro.
Collapse
Affiliation(s)
- Congwu Chi
- Heart Institute, University of South Florida, Tampa, FL 33602, USA; (C.C.); (T.J.R.)
- Department of Internal Medicine, University of South Florida, Tampa, FL 33602, USA
- Center for Regenerative Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Truman J. Roland
- Heart Institute, University of South Florida, Tampa, FL 33602, USA; (C.C.); (T.J.R.)
- Department of Internal Medicine, University of South Florida, Tampa, FL 33602, USA
- Center for Regenerative Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Kunhua Song
- Heart Institute, University of South Florida, Tampa, FL 33602, USA; (C.C.); (T.J.R.)
- Department of Internal Medicine, University of South Florida, Tampa, FL 33602, USA
- Center for Regenerative Medicine, University of South Florida, Tampa, FL 33602, USA
| |
Collapse
|
16
|
Guo H, Hang C, Lin B, Lin Z, Xiong H, Zhang M, Lu R, Liu J, Shi D, Xie D, Liu Y, Liang D, Yang J, Chen YH. HAND factors regulate cardiac lineage commitment and differentiation from human pluripotent stem cells. Stem Cell Res Ther 2024; 15:31. [PMID: 38317221 PMCID: PMC10845658 DOI: 10.1186/s13287-024-03649-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/25/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Transcription factors HAND1 and HAND2 (HAND1/2) play significant roles in cardiac organogenesis. Abnormal expression and deficiency of HAND1/2 result in severe cardiac defects. However, the function and mechanism of HAND1/2 in regulating human early cardiac lineage commitment and differentiation are still unclear. METHODS With NKX2.5eGFP H9 human embryonic stem cells (hESCs), we established single and double knockout cell lines for HAND1 and HAND2, respectively, whose cardiomyocyte differentiation efficiency could be monitored by assessing NKX2.5-eGFP+ cells with flow cytometry. The expression of specific markers for heart fields and cardiomyocyte subtypes was examined by quantitative PCR, western blot and immunofluorescence staining. Microelectrode array and whole-cell patch clamp were performed to determine the electrophysiological characteristics of differentiated cardiomyocytes. The transcriptomic changes of HAND knockout cells were revealed by RNA sequencing. The HAND1/2 target genes were identified and validated experimentally by integrating with HAND1/2 chromatin immunoprecipitation sequencing data. RESULTS Either HAND1 or HAND2 knockout did not affect the cardiomyocyte differentiation kinetics, whereas depletion of HAND1/2 resulted in delayed differentiation onset. HAND1 knockout biased cardiac mesoderm toward second heart field progenitors at the expense of first heart field progenitors, leading to increased expression of atrial and outflow tract cardiomyocyte markers, which was further confirmed by the appearance of atrial-like action potentials. By contrast, HAND2 knockout cardiomyocytes had reduced expression of atrial cardiomyocyte markers and displayed ventricular-like action potentials. HAND1/2-deficient hESCs were more inclined to second heart field lineage and its derived cardiomyocytes with atrial-like action potentials than HAND1 single knockout during differentiation. Further mechanistic investigations suggested TBX5 as one of the downstream targets of HAND1/2, whose overexpression partially restored the abnormal cardiomyocyte differentiation in HAND1/2-deficient hESCs. CONCLUSIONS HAND1/2 have specific and redundant roles in cardiac lineage commitment and differentiation. These findings not only reveal the essential function of HAND1/2 in cardiac organogenesis, but also provide important information on the pathogenesis of HAND1/2 deficiency-related congenital heart diseases, which could potentially lead to new therapeutic strategies.
Collapse
Affiliation(s)
- Huixin Guo
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Chengwen Hang
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
| | - Bowen Lin
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
| | - Zheyi Lin
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Hui Xiong
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Cell Biology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Mingshuai Zhang
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Cell Biology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Renhong Lu
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
| | - Junyang Liu
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Cell Biology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Dan Shi
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
| | - Duanyang Xie
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Yi Liu
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Dandan Liang
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, 200092, China
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, 200092, China
| | - Jian Yang
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China.
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, 200092, China.
- Department of Cell Biology, Tongji University School of Medicine, Shanghai, 200092, China.
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, 200092, China.
| | - Yi-Han Chen
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China.
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China.
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
17
|
Ferguson CA, Firulli BA, Zoia M, Osterwalder M, Firulli AB. Identification and characterization of Hand2 upstream genomic enhancers active in developing stomach and limbs. Dev Dyn 2024; 253:215-232. [PMID: 37551791 PMCID: PMC11365009 DOI: 10.1002/dvdy.646] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND The bHLH transcription factor HAND2 plays important roles in the development of the embryonic heart, face, limbs, and sympathetic and enteric nervous systems. To define how and when HAND2 regulates these developmental systems, requires understanding the transcriptional regulation of Hand2. RESULTS Remarkably, Hand2 is flanked by an extensive upstream gene desert containing a potentially diverse enhancer landscape. Here, we screened the regulatory interval 200 kb proximal to Hand2 for putative enhancers using evolutionary conservation and histone marks in Hand2-expressing tissues. H3K27ac signatures across embryonic tissues pointed to only two putative enhancer regions showing deep sequence conservation. Assessment of the transcriptional enhancer potential of these elements using transgenic reporter lines uncovered distinct in vivo enhancer activities in embryonic stomach and limb mesenchyme, respectively. Activity of the identified stomach enhancer was restricted to the developing antrum and showed expression within the smooth muscle and enteric neurons. Surprisingly, the activity pattern of the limb enhancer did not overlap Hand2 mRNA but consistently yielded a defined subectodermal anterior expression pattern within multiple transgenic lines. CONCLUSIONS Together, these results start to uncover the diverse regulatory potential inherent to the Hand2 upstream regulatory interval.
Collapse
Affiliation(s)
- Chloe A. Ferguson
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Beth A. Firulli
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Matteo Zoia
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Marco Osterwalder
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Cardiology, Bern University Hospital, Bern, Switzerland
| | - Anthony B. Firulli
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| |
Collapse
|
18
|
Grunert M, Dorn C, Rickert-Sperling S. Cardiac Transcription Factors and Regulatory Networks. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:295-311. [PMID: 38884718 DOI: 10.1007/978-3-031-44087-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Cardiac development is a fine-tuned process governed by complex transcriptional networks, in which transcription factors (TFs) interact with other regulatory layers. In this chapter, we introduce the core cardiac TFs including Gata, Hand, Nkx2, Mef2, Srf, and Tbx. These factors regulate each other's expression and can also act in a combinatorial manner on their downstream targets. Their disruption leads to various cardiac phenotypes in mice, and mutations in humans have been associated with congenital heart defects. In the second part of the chapter, we discuss different levels of regulation including cis-regulatory elements, chromatin structure, and microRNAs, which can interact with transcription factors, modulate their function, or are downstream targets. Finally, examples of disturbances of the cardiac regulatory network leading to congenital heart diseases in human are provided.
Collapse
Affiliation(s)
- Marcel Grunert
- Cardiovascular Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Cornelia Dorn
- Cardiovascular Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
19
|
Toro V, Jutras-Beaudoin N, Boucherat O, Bonnet S, Provencher S, Potus F. Right Ventricle and Epigenetics: A Systematic Review. Cells 2023; 12:2693. [PMID: 38067121 PMCID: PMC10705252 DOI: 10.3390/cells12232693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/08/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
There is an increasing recognition of the crucial role of the right ventricle (RV) in determining the functional status and prognosis in multiple conditions. In the past decade, the epigenetic regulation (DNA methylation, histone modification, and non-coding RNAs) of gene expression has been raised as a critical determinant of RV development, RV physiological function, and RV pathological dysfunction. We thus aimed to perform an up-to-date review of the literature, gathering knowledge on the epigenetic modifications associated with RV function/dysfunction. Therefore, we conducted a systematic review of studies assessing the contribution of epigenetic modifications to RV development and/or the progression of RV dysfunction regardless of the causal pathology. English literature published on PubMed, between the inception of the study and 1 January 2023, was evaluated. Two authors independently evaluated whether studies met eligibility criteria before study results were extracted. Amongst the 817 studies screened, 109 studies were included in this review, including 69 that used human samples (e.g., RV myocardium, blood). While 37 proposed an epigenetic-based therapeutic intervention to improve RV function, none involved a clinical trial and 70 are descriptive. Surprisingly, we observed a substantial discrepancy between studies investigating the expression (up or down) and/or the contribution of the same epigenetic modifications on RV function or development. This exhaustive review of the literature summarizes the relevant epigenetic studies focusing on RV in human or preclinical setting.
Collapse
Affiliation(s)
| | | | | | | | | | - François Potus
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC G1V 4G5, Canada; (V.T.); (N.J.-B.); (O.B.); (S.B.); (S.P.)
| |
Collapse
|
20
|
Li MK, Pang SC, Yan B. [Association of ventricular septal defect with rare variations of the HAND2 gene]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:388-393. [PMID: 37073844 PMCID: PMC10120330 DOI: 10.7499/j.issn.1008-8830.2212057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
OBJECTIVES To study the association of ventricular septal defect (VSD) with rare variations in the promoter region of HAND2 gene, as well as related molecular mechanisms. METHODS Blood samples were collected from 349 children with VSD and 345 healthy controls. The target fragments were amplified by polymerase chain reaction and sequenced to identify the rare variation sites in the promoter region of the HAND2 gene. Dual-luciferase reporter assay was used to perform a functional analysis of the variation sites. Electrophoretic mobility shift assay (EMSA) was used to investigate related molecular mechanisms. TRANSFAC and JASPAR databases were used to predict transcription factors. RESULTS Sequencing revealed that three variation sites (g.173530852A>G, g.173531173A>G, and g.173531213C>G) were only observed in the promoter region of the HAND2 gene in 10 children with VSD, among whom 4 children had only one variation site. The dual-luciferase reporter assay revealed that g.173531213C>G reduced the transcriptional activity of the HAND2 gene promoter. EMSA and transcription factor prediction revealed that g.173531213C>G created a binding site for transcription factor. CONCLUSIONS The rare variation, g.173531213C>G, in the promoter region of the HAND2 gene participates in the development and progression of VSD possibly by affecting the binding of transcription factors.
Collapse
Affiliation(s)
- Mei-Kun Li
- Cheeloo College of Medicine, Shandong University, Jinan 250012, China/Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272029, China
| | | | - Bo Yan
- Cheeloo College of Medicine, Shandong University, Jinan 250012, China/Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272029, China
| |
Collapse
|
21
|
The people behind the papers - Beth Firulli and Anthony Firulli. Development 2023; 150:dev201622. [PMID: 36745001 DOI: 10.1242/dev.201622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
HAND2 is an important regulator of cardiac morphogenesis and is expressed throughout the heart. A new paper in Development dissects the gene regulatory networks downstream of HAND2 in the endocardium. To find out more about this research, we caught up with co-first author Beth Firulli and corresponding author Anthony (Tony) Firulli, Professor at Indiana Medical School. Co-first author Rajani George has left the Firulli lab and was not available for our interview.
Collapse
|
22
|
The toxicity of 4-tert-butylphenol in early development of zebrafish: morphological abnormality, cardiotoxicity, and hypopigmentation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:45781-45795. [PMID: 36708478 DOI: 10.1007/s11356-023-25586-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 01/23/2023] [Indexed: 01/29/2023]
Abstract
Endocrine disrupting effects of 4-tert-butylphenol (4-t-BP) are well described in literature. However, the evidence regarding developmental toxic effect of 4-t-BP is still vague. The present study used zebrafish as a model organism to investigate the toxic effect of 4-t-BP. The results showed that 4-t-BP exposure at 3, 6, and 12 μM induced developmental toxicity in zebrafish, such as reduced embryo hatchability and abnormality morphological. Flow cytometry analysis showed that 4-t-BP also induced intracellular ROS production. 4-t-BP induced changes in the expression of genes related to cardiac development and melanin synthesis, resulting in cardiotoxicity and hypopigmentation. 4-t-BP also caused oxidative stress, and initiated apoptosis through p53-bcl-2/bax-capase3 pathway. Integrative biomarker response analysis showed time- and dose-dependent effects of 4-t-BP on oxidative damage and developmental toxicity in zebrafish embryos. Overall, this study contributed to a comprehensive evaluation of the toxicity of 4-t-BP, and the findings provided new evidence for early warning of residues in aquatic environments.
Collapse
|
23
|
Li M, Cai Y, Pang S, Yan B. Molecular Genetic Study on HAND2 Gene Promoter in Ventricular Septal Defect. Int Heart J 2023; 64:1140-1147. [PMID: 38030295 DOI: 10.1536/ihj.22-721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Ventricular septal defect (VSD), the most common type of congenital heart disease (CHD), is primarily caused by cardiac dysplasia. Heart and neural crest derivatives expressed 2 (HAND2) participates in developing the right heart. The loss of HAND2 expression in humans is closely connected with ventricular septal defects. We used a case-control study to analyze the genetic variations in the HAND2 promoter region in VSD patients and controls. Some statistical analysis methods were used to analyze the association of single nucleotide polymorphisms (SNPs) with VSD. The dual-luciferase reporter assay and electrophoretic mobility shift assay (EMSA) were used to conduct functional analysis and molecular mechanism study of genetic variations. Through sequencing, we identified nine genetic variants in patients with VSD. The SNP rs2276940 G>T and rs2276941 G>A were associated with an increased risk of VSD. The dual-luciferase reporter assay showed that SNP rs2276940 G>T and rs138531627 C>G decreased the transcriptional activity of the HAND2 promoter. Transcription factors (TFs) predicting suggested that all three SNPs may change the binding of TFs. The result of EMSA showed that rs138531627 C>G may create a new binding site for TFs while rs2276940 G>T enhanced the binding affinity for TFs. These results indicated that genetic variants of the HAND2 promoter may increase the risk of VSD, and the molecular mechanism may be the change of the binding affinity of TFs.
Collapse
Affiliation(s)
- Meikun Li
- Cheeloo College of Medicine, Shandong University
| | - Yahui Cai
- Institute of Precision Medicine, Jining Medical University
- College of Basic Medicine, Jining Medical University
| | - Shuchao Pang
- Shandong Provincial Sino-US Cooperation Research Center for Translational Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University
| | - Bo Yan
- Institute of Precision Medicine, Jining Medical University
| |
Collapse
|
24
|
Bai G, Jiang X, Qin J, Zou Y, Zhang W, Teng T, Shi B, Sun H. Perinatal exposure to glyphosate-based herbicides impairs progeny health and placental angiogenesis by disturbing mitochondrial function. ENVIRONMENT INTERNATIONAL 2022; 170:107579. [PMID: 36265358 DOI: 10.1016/j.envint.2022.107579] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Glyphosate-based herbicides (GBHs) are the most widely used pesticide worldwide and can provoke placental injury. However, whether and how GBHs damage angiogenesis in the placenta is not yet known. This work evaluated the safety of glyphosate on pregnant sows based on the limit level by governments and investigated the effects and mechanism of Low-GBHs (20 mg/kg) and High-GBHs (100 mg/kg) exposure on placental angiogenesis. Results showed that gestational exposure to GBHs decreased placental vessel density and cell multiplication by interfering with the expression of VEGFA, PLGF, VEGFr2 and Hand2 (indicators of angiogenesis), which may be in relation to oxidative stress-induced disorders of mitochondrial fission and fusion as well as the impaired function of the mitochondrial respiratory chain. Additionally, GBHs destroyed barrier function and nutrient transport in the placenta, and was accompanied by jejunum oxidative stress in newborn piglets. However, GBHs exposure had no significant differences on sow reproductive performance. As a natural antioxidant, betaine treatment protected placenta and newborn piglets against GBHs-induced damage. In conclusion, GBHs impaired placental angiogenesis and function and further damaged the health of postnatal progeny, these effects may be linked to mitochondrial dysfunction. Betaine treatment following glyphosate exposure provided modest relief.
Collapse
Affiliation(s)
- Guangdong Bai
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Xu Jiang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Jianwei Qin
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Yingbin Zou
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Wentao Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Teng Teng
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Baoming Shi
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China.
| | - Haoyang Sun
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
25
|
Mansour F, Hinze C, Telugu NS, Kresoja J, Shaheed IB, Mosimann C, Diecke S, Schmidt-Ott KM. The centrosomal protein 83 (CEP83) regulates human pluripotent stem cell differentiation toward the kidney lineage. eLife 2022; 11:e80165. [PMID: 36222666 PMCID: PMC9629839 DOI: 10.7554/elife.80165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
During embryonic development, the mesoderm undergoes patterning into diverse lineages including axial, paraxial, and lateral plate mesoderm (LPM). Within the LPM, the so-called intermediate mesoderm (IM) forms kidney and urogenital tract progenitor cells, while the remaining LPM forms cardiovascular, hematopoietic, mesothelial, and additional progenitor cells. The signals that regulate these early lineage decisions are incompletely understood. Here, we found that the centrosomal protein 83 (CEP83), a centriolar component necessary for primary cilia formation and mutated in pediatric kidney disease, influences the differentiation of human-induced pluripotent stem cells (hiPSCs) toward IM. We induced inactivating deletions of CEP83 in hiPSCs and applied a 7-day in vitro protocol of IM kidney progenitor differentiation, based on timed application of WNT and FGF agonists. We characterized induced mesodermal cell populations using single-cell and bulk transcriptomics and tested their ability to form kidney structures in subsequent organoid culture. While hiPSCs with homozygous CEP83 inactivation were normal regarding morphology and transcriptome, their induced differentiation into IM progenitor cells was perturbed. Mesodermal cells induced after 7 days of monolayer culture of CEP83-deficient hiPCS exhibited absent or elongated primary cilia, displayed decreased expression of critical IM genes (PAX8, EYA1, HOXB7), and an aberrant induction of LPM markers (e.g. FOXF1, FOXF2, FENDRR, HAND1, HAND2). Upon subsequent organoid culture, wildtype cells differentiated to form kidney tubules and glomerular-like structures, whereas CEP83-deficient cells failed to generate kidney cell types, instead upregulating cardiomyocyte, vascular, and more general LPM progenitor markers. Our data suggest that CEP83 regulates the balance of IM and LPM formation from human pluripotent stem cells, identifying a potential link between centriolar or ciliary function and mesodermal lineage induction.
Collapse
Affiliation(s)
- Fatma Mansour
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin BerlinBerlinGermany
- Molecular and Translational Kidney Research, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Department of Pathology, Faculty of Veterinary Medicine, Cairo UniversityCairoEgypt
| | - Christian Hinze
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin BerlinBerlinGermany
- Molecular and Translational Kidney Research, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Berlin Institute of HealthBerlinGermany
- Department of Nephrology and Hypertension, Hannover Medical SchoolHannoverGermany
| | - Narasimha Swamy Telugu
- Berlin Institute of HealthBerlinGermany
- Technology Platform Pluripotent Stem Cells, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
| | - Jelena Kresoja
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical CampusAuroraUnited States
| | - Iman B Shaheed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo UniversityCairoEgypt
| | - Christian Mosimann
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical CampusAuroraUnited States
| | - Sebastian Diecke
- Berlin Institute of HealthBerlinGermany
- Technology Platform Pluripotent Stem Cells, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
| | - Kai M Schmidt-Ott
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin BerlinBerlinGermany
- Molecular and Translational Kidney Research, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Department of Nephrology and Hypertension, Hannover Medical SchoolHannoverGermany
| |
Collapse
|
26
|
Deciphering Cardiac Biology and Disease by Single-Cell Transcriptomic Profiling. Biomolecules 2022; 12:biom12040566. [PMID: 35454155 PMCID: PMC9032111 DOI: 10.3390/biom12040566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 11/29/2022] Open
Abstract
By detecting minute molecular changes in hundreds to millions of single cells, single-cell RNA sequencing allows for the comprehensive characterization of the diversity and dynamics of cells in the heart. Our understanding of the heart has been transformed through the recognition of cellular heterogeneity, the construction of regulatory networks, the building of lineage trajectories, and the mapping of intercellular crosstalk. In this review, we introduce cardiac progenitors and their transcriptional regulation during embryonic development, highlight cellular heterogeneity and cell subtype functions in cardiac health and disease, and discuss insights gained from the study of pluripotent stem-cell-derived cardiomyocytes.
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Given a general lack of emphasis on the molecular underpinnings of single ventricle (SV) congenital heart diseases (CHD), our review highlights and summarizes recent advances in uncovering the genetic and molecular mechanisms in SV CHD etiology. RECENT FINDINGS While common SV-associated genetic mutations were found in key cardiac transcription factors, other mutations were sporadic. With advances in genetic sequencing technologies and animal models, more disease-associated factors have been identified to act in critical cardiac signaling pathways such as NOTCH, Wnt, and TGF signaling. Recent studies have also revealed that different cardiac lineages play different roles in disease pathogenesis. SV defects are attributed to complex combinations of genetic mutations, indicating that sophisticated spatiotemporal regulation of gene transcription networks and functional cellular pathways govern disease progression. Future studies will warrant in-depth investigations into better understanding how different genetic factors converge to influence common downstream cellular pathways, resulting in SV abnormalities.
Collapse
|
28
|
Dong Z, Fan C, Hou W, Rui C, Wang X, Fan Y, Zhao L, Wang Q, Wang Z, Zeng X, Feng S, Li P. Vaginal Exposure to Candida albicans During Early Gestation Results in Adverse Pregnancy Outcomes via Inhibiting Placental Development. Front Microbiol 2022; 12:816161. [PMID: 35281308 PMCID: PMC8908259 DOI: 10.3389/fmicb.2021.816161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/31/2021] [Indexed: 11/13/2022] Open
Abstract
Vulvovaginal candidiasis (VVC) is considered the second most common cause of vaginitis after bacterial vaginosis and the most common lower genital tract infection during pregnancy. Candida albicans (C. albicans), an opportunistic pathogen, is the major species causing VVC. Recently, increasing researches have shown that lower reproductive tract infection during pregnancy can lead to various adverse pregnancy outcomes. However, the underlying mechanisms are not fully understood. Hence, we successfully established a mouse model of vaginal C. albicans infection and characterized the adverse pregnancy outcomes. C. albicans infection strikingly increased abortion rate and decreased litter size. Further analysis of placental development demonstrated that placental structure was abnormal, including that the area of spongiotrophoblast (Spo) and labyrinth (Lab) was reduced, and the formation of placental vessel was decreased in Lab zone. Accordingly, the expression of marker genes during placental development was downregulated. Collectively, the above findings revealed that vaginal C. albicans infection during pregnancy can inhibit placental development and ultimately lead to adverse pregnancy outcomes. This study enhances our comprehension of the effect of VVC on pregnancy, and placental dysplasia as a feasible orientation to explore VVC during pregnancy.
Collapse
Affiliation(s)
- Zhiyong Dong
- Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Chong Fan
- Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
| | - Wenwen Hou
- Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Can Rui
- Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyan Wang
- Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yuru Fan
- Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
| | - Ling Zhao
- Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Qing Wang
- Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Zhichong Wang
- Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Zeng
- Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- *Correspondence: Xin Zeng,
| | - Shanwu Feng
- Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
- Shanwu Feng,
| | - Ping Li
- Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
- Ping Li,
| |
Collapse
|
29
|
JNK-dependent phosphorylation and nuclear translocation of EGR-1 promotes cardiomyocyte apoptosis. Apoptosis 2022; 27:246-260. [PMID: 35103892 DOI: 10.1007/s10495-022-01714-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 01/27/2023]
Abstract
Myocardial apoptosis induced by myocardial ischemia and hyperlipemia are the main causes of high mortality of cardiovascular diseases. It is not clear whether there is a common mechanism responsible for these two kinds of cardiomyocyte apoptosis. Previous studies demonstrated that early growth response protein 1 (EGR-1) has a pro-apoptotic effect on cardiomyocytes under various stress conditions. Here, we found that EGR-1 is also involved in cardiomyocyte apoptosis induced by both ischemia and high-fat, but how EGR-1 enters the nucleus and whether nuclear EGR-1 (nEGR-1) has a universal effect on cardiomyocyte apoptosis are still unknown. By analyzing the phosphorylation sites and nucleation information of EGR-1, we constructed different mutant plasmids to confirm that the nucleus location of EGR-1 requires Ser501 phosphorylation and regulated by JNK. Furthermore, the pro-apoptotic effect of nEGR-1 was further explored through genetic methods. The results showed that EGR-1 positively regulates the mRNA levels of apoptosis-related proteins (ATF2, CTCF, HAND2, ELK1), which may be the downstream targets of EGR-1 to promote the cardiomyocyte apoptosis. Our research announced the universal pro-apoptotic function of nEGR-1 and explored the mechanism of its nucleus location in cardiomyocytes, providing a new target for the "homotherapy for heteropathy" to cardiovascular diseases.
Collapse
|
30
|
Wang E, Fan X, Nie Y, Zheng Z, Hu S. Single-Nucleotide Polymorphisms in Exonic and Promoter Regions of Transcription Factors of Second Heart Field Associated with Sporadic Congenital Cardiac Anomalies. Balkan J Med Genet 2021; 24:39-47. [PMID: 36249516 PMCID: PMC9524169 DOI: 10.2478/bjmg-2021-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multiple second heart field (SHF) transcription factors are involved in cardiac development. In this article we evaluate the relationship between SHF transcription factor polymorphisms and congenital heart disease (CHD). Ten polymorphisms were used for genotyping, and three of these were used for the luciferase assay. The risk of CHD was increased 4.31 times and 1.54 times in the C allele of GATA5: rs6061243 G>C and G allele of TBX20: rs336283 A>G, respectively. The minor alleles of SMYD1: rs1542088 T>G, MEF2C: rs80043958 A>G and GATA5: rs6587239 T>C increased the risk of the simple types of CHD. The minor alleles of GATA5: rs41305803 G>A and MEF2C: rs304154 A>G increased the risk of tetralogy of Fallot (TOF). The minor alleles of TBX20: rs336284 A>G and SMYD1: rs88387557 T>G only increased the risk of a single ventricle (SV). Luciferase assays revealed that the minor alleles of rs304154 and rs336284 decreased the transcriptional levels of MEF2C and TBX20, respectively (p<0.01). When combined with HLTF, the G promoter showed a higher expression level than the A promoter in rs80043958 (p<0.01). Our findings suggest that minor alleles of SNPs in the exonic and promoter regions of transcription factors in the SHF can increase the risks of sporadic CHD.
Collapse
Affiliation(s)
- E Wang
- Cardiac Surgery Department, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - X Fan
- Clinical Laboratory Center, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel DiseasesBeijing, 100029, China
| | - Y Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - Z Zheng
- Cardiac Surgery Department, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - S Hu
- Cardiac Surgery Department, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| |
Collapse
|
31
|
Videira RF, Koop AMC, Ottaviani L, Poels EM, Kocken JMM, Dos Remedios C, Mendes-Ferreira P, Van De Kolk KW, Du Marchie Sarvaas GJ, Lourenço A, Llucià-Valldeperas A, Nascimento DS, de Windt LJ, De Man FS, Falcão-Pires I, Berger RMF, da Costa Martins P. The adult heart requires baseline expression of the transcription factor Hand2 to withstand RV pressure overload. Cardiovasc Res 2021; 118:2688-2702. [PMID: 34550326 PMCID: PMC9491876 DOI: 10.1093/cvr/cvab299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Indexed: 11/14/2022] Open
Abstract
AIMS Research on the pathophysiology of right ventricular (RV) failure has, in spite of the associated high mortality and morbidity, lagged behind compared to the left ventricle (LV).Previous work from our lab revealed that the embryonic basic helix-loop-helix transcription factor heart and neural crest derivatives expressed-2 (Hand2) is re-expressed in the adult heart and activates a 'fetal gene program' contributing to pathological cardiac remodeling under conditions of LV pressure overload. As such, ablation of cardiac expression of Hand2 conferred protection to cardiac stress and abrogated the maladaptive effects that were observed upon increased expression levels. In this study, we aimed to understand the contribution of Hand2 to RV remodeling in response to pressure overload induced by pulmonary artery banding (PAB). METHODS AND RESULTS In the present study, Hand2F/F and MCM- Hand2F/F mice were treated with tamoxifen (control and knockout, respectively) and subjected to six weeks of RV pressure overload induced by PAB. Echocardiographic- and MRI-derived hemodynamic parameters as well as molecular remodeling were assessed for all experimental groups and compared to sham-operated controls. Six weeks after PAB, levels of Hand2 expression increased in the control banded animals but, as expected, remained absent in the knockout hearts. Despite the dramatic differences in Hand2 expression, pressure overload resulted in impaired cardiac function independently of the genotype. In fact, Hand2 depletion seems to sensitize the RV to pressure overload as these mice develop more hypertrophy and more severe cardiac dysfunction. Higher expression levels of HAND2 were also observed in RV samples of human hearts from patients with pulmonary hypertension. In turn, the LV of RV-pressure overloaded hearts was also dramatically affected as reflected by changes in shape, decreased LV mass and impaired cardiac function. RNA sequencing revealed a distinct set of genes that are dysregulated in the pressure-overloaded RV, compared to the previously described pressure-overloaded LV. CONCLUSIONS Cardiac-specific depletion of Hand2 is associated with severe cardiac dysfunction in conditions of RV pressure overload. While inhibiting Hand2 expression can prevent cardiac dysfunction in conditions of LV pressure overload, the same does not hold true for conditions of RV pressure overload. This study highlights the need to better understand the molecular mechanisms driving pathological remodeling of the RV in contrast to the LV, in order to better diagnose and treat patients with RV or LV failure. TRANSLATIONAL PERSPECTIVE RV failure associated with pulmonary hypertension reduces long-term survival rate to 55% within 3 years, suggesting that 3 years after diagnosis almost half of the patients will die. To revert these numbers an adequate RV-specific and, therefore, more efficient treatment is needed. Our work suggests that current therapies and potential mechanisms underlying LV failure may not be suitable for RV failure. While Hand2 deletion is favorable in LV response to stress, it is particularly detrimental in the RV under similar conditions, and thus, highlighting potential severe consequences of not differentiating therapeutic targets or treatment for RV or LV failure.
Collapse
Affiliation(s)
- R F Videira
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands.,Department of Molecular Genetics, Faculty of Sciences and Engineering, Maastricht University, Maastricht, The Netherlands.,Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portuga
| | - A M C Koop
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Center for Congenital Heart Diseases, Groningen, Netherlands
| | - L Ottaviani
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands.,Department of Molecular Genetics, Faculty of Sciences and Engineering, Maastricht University, Maastricht, The Netherlands
| | - E M Poels
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - J M M Kocken
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands.,Department of Molecular Genetics, Faculty of Sciences and Engineering, Maastricht University, Maastricht, The Netherlands
| | - C Dos Remedios
- University of Sidney, Sidney, and Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - P Mendes-Ferreira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portuga
| | - K W Van De Kolk
- University Medical Center Groningen, The Central Animal Facility, Groningen, Netherlands.,University Medical Center Groningen, Gronsai (Groningen Small Animal Imaging Facility), Groningen, Netherlands
| | - G J Du Marchie Sarvaas
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Center for Congenital Heart Diseases, Groningen, Netherlands
| | - A Lourenço
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portuga
| | - A Llucià-Valldeperas
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pulmonary Medicine, PHEniX laboratory, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - D S Nascimento
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - L J de Windt
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands.,Department of Molecular Genetics, Faculty of Sciences and Engineering, Maastricht University, Maastricht, The Netherlands
| | - F S De Man
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pulmonary Medicine, PHEniX laboratory, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - I Falcão-Pires
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portuga
| | - R M F Berger
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Center for Congenital Heart Diseases, Groningen, Netherlands
| | - Paula da Costa Martins
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands.,Department of Molecular Genetics, Faculty of Sciences and Engineering, Maastricht University, Maastricht, The Netherlands.,Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portuga
| |
Collapse
|
32
|
Wang W, Lu G, Liu H, Xiong Z, Leung H, Cao R, Pang AL, Su X, Law PWN, Zhao Z, Chen Z, Chan W. Pten Regulates Cardiomyocyte Differentiation by Modulating Non-CG Methylation via Dnmt3. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100849. [PMID: 34247447 PMCID: PMC8425920 DOI: 10.1002/advs.202100849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/04/2021] [Indexed: 06/13/2023]
Abstract
The regulation of cardiomyocyte differentiation is a fundamental aspect of cardiac development and regenerative medicine. PTEN plays important roles during embryonic development. However, its role in cardiomyocyte differentiation remains unknown. In this study, a low-cost protocol for cardiomyocyte differentiation from mouse embryonic stem cells (ESCs) is presented and it is shown that Pten deletion potently suppresses cardiomyocyte differentiation. Transcriptome analysis shows that the expression of a series of cardiomyocyte marker genes is downregulated in Pten-/- cardiomyocytes. Pten ablation induces Dnmt3b expression via the AKT/FoxO3a pathway and regulates the expression of a series of imprinted genes, including Igf2. Double knockout of Dnmt3l and Dnmt3b rescues the deficiency of cardiomyocyte differentiation of Pten-/- ESCs. The DNA methylomes from wild-type and Pten-/- embryoid bodies and cardiomyocytes are analyzed by whole-genome bisulfite sequencing. Pten deletion significantly promotes the non-CG (CHG and CHH) methylation levels of genomic DNA during cardiomyocyte differentiation, and the non-CG methylation levels of cardiomyocyte genes and Igf2 are increased in Pten-/- cardiomyocytes. Igf2 or Igf1r deletion also suppresses cardiomyocyte differentiation through the MAPK/ERK signaling pathway, and IGF2 supplementation partially rescues the cardiomyocyte differentiation. Finally, Pten conditional knockout mice are generated and the role of PTEN in cardiomyocyte differentiation is verified in vivo.
Collapse
Affiliation(s)
- Wuming Wang
- CUHK‐SDU Joint Laboratory on Reproductive GeneticsSchool of Biomedical SciencesThe Chinese University of Hong KongHong KongChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticsJinan250001China
| | - Gang Lu
- CUHK‐SDU Joint Laboratory on Reproductive GeneticsSchool of Biomedical SciencesThe Chinese University of Hong KongHong KongChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticsJinan250001China
| | - Hong‐Bin Liu
- CUHK‐SDU Joint Laboratory on Reproductive GeneticsSchool of Biomedical SciencesThe Chinese University of Hong KongHong KongChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticsJinan250001China
| | - Zhiqiang Xiong
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticsJinan250001China
- SDIVF R&D Centre12W, Hong Kong Science ParkShatinHong KongChina
| | - Ho‐Duen Leung
- SDIVF R&D Centre12W, Hong Kong Science ParkShatinHong KongChina
| | - Ruican Cao
- CUHK‐SDU Joint Laboratory on Reproductive GeneticsSchool of Biomedical SciencesThe Chinese University of Hong KongHong KongChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticsJinan250001China
| | - Alan Lap‐Yin Pang
- R&D DivisionTGD Life Company Limited15W, Hong Kong Science ParkShatinHong KongChina
| | - Xianwei Su
- CUHK‐SDU Joint Laboratory on Reproductive GeneticsSchool of Biomedical SciencesThe Chinese University of Hong KongHong KongChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticsJinan250001China
- SDIVF R&D Centre12W, Hong Kong Science ParkShatinHong KongChina
| | - Patrick Wai Nok Law
- CUHK‐SDU Joint Laboratory on Reproductive GeneticsSchool of Biomedical SciencesThe Chinese University of Hong KongHong KongChina
| | - Zhiju Zhao
- CUHK‐SDU Joint Laboratory on Reproductive GeneticsSchool of Biomedical SciencesThe Chinese University of Hong KongHong KongChina
| | - Zi‐Jiang Chen
- CUHK‐SDU Joint Laboratory on Reproductive GeneticsSchool of Biomedical SciencesThe Chinese University of Hong KongHong KongChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticsJinan250001China
| | - Wai‐Yee Chan
- CUHK‐SDU Joint Laboratory on Reproductive GeneticsSchool of Biomedical SciencesThe Chinese University of Hong KongHong KongChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticsJinan250001China
| |
Collapse
|
33
|
Lewis-Israeli YR, Wasserman AH, Gabalski MA, Volmert BD, Ming Y, Ball KA, Yang W, Zou J, Ni G, Pajares N, Chatzistavrou X, Li W, Zhou C, Aguirre A. Self-assembling human heart organoids for the modeling of cardiac development and congenital heart disease. Nat Commun 2021; 12:5142. [PMID: 34446706 PMCID: PMC8390749 DOI: 10.1038/s41467-021-25329-5] [Citation(s) in RCA: 257] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023] Open
Abstract
Congenital heart defects constitute the most common human birth defect, however understanding of how these disorders originate is limited by our ability to model the human heart accurately in vitro. Here we report a method to generate developmentally relevant human heart organoids by self-assembly using human pluripotent stem cells. Our procedure is fully defined, efficient, reproducible, and compatible with high-content approaches. Organoids are generated through a three-step Wnt signaling modulation strategy using chemical inhibitors and growth factors. Heart organoids are comparable to age-matched human fetal cardiac tissues at the transcriptomic, structural, and cellular level. They develop sophisticated internal chambers with well-organized multi-lineage cardiac cell types, recapitulate heart field formation and atrioventricular specification, develop a complex vasculature, and exhibit robust functional activity. We also show that our organoid platform can recreate complex metabolic disorders associated with congenital heart defects, as demonstrated by an in vitro model of pregestational diabetes-induced congenital heart defects.
Collapse
Affiliation(s)
- Yonatan R Lewis-Israeli
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Aaron H Wasserman
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Mitchell A Gabalski
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Brett D Volmert
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Yixuan Ming
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO, USA
| | - Kristen A Ball
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Weiyang Yang
- Division of Biomedical Devices, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Electrical and Computer Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Jinyun Zou
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO, USA
| | - Guangming Ni
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO, USA
| | - Natalia Pajares
- Department of Chemical Engineering and Material Science, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Xanthippi Chatzistavrou
- Department of Chemical Engineering and Material Science, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Wen Li
- Division of Biomedical Devices, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Electrical and Computer Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Chao Zhou
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO, USA
| | - Aitor Aguirre
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
34
|
Tessadori F, Tsingos E, Colizzi ES, Kruse F, van den Brink SC, van den Boogaard M, Christoffels VM, Merks RM, Bakkers J. Twisting of the zebrafish heart tube during cardiac looping is a tbx5-dependent and tissue-intrinsic process. eLife 2021; 10:61733. [PMID: 34372968 PMCID: PMC8354640 DOI: 10.7554/elife.61733] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
Organ laterality refers to the left-right asymmetry in disposition and conformation of internal organs and is established during embryogenesis. The heart is the first organ to display visible left-right asymmetries through its left-sided positioning and rightward looping. Here, we present a new zebrafish loss-of-function allele for tbx5a, which displays defective rightward cardiac looping morphogenesis. By mapping individual cardiomyocyte behavior during cardiac looping, we establish that ventricular and atrial cardiomyocytes rearrange in distinct directions. As a consequence, the cardiac chambers twist around the atrioventricular canal resulting in torsion of the heart tube, which is compromised in tbx5a mutants. Pharmacological treatment and ex vivo culture establishes that the cardiac twisting depends on intrinsic mechanisms and is independent from cardiac growth. Furthermore, genetic experiments indicate that looping requires proper tissue patterning. We conclude that cardiac looping involves twisting of the chambers around the atrioventricular canal, which requires correct tissue patterning by Tbx5a.
Collapse
Affiliation(s)
- Federico Tessadori
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands
| | - Erika Tsingos
- Mathematical Institute, Leiden University, Leiden, Netherlands
| | - Enrico Sandro Colizzi
- Mathematical Institute, Leiden University, Leiden, Netherlands.,Origins Center, Leiden University, Leiden, Netherlands
| | - Fabian Kruse
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Malou van den Boogaard
- Amsterdam UMC, University of Amsterdam, Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Vincent M Christoffels
- Amsterdam UMC, University of Amsterdam, Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Roeland Mh Merks
- Mathematical Institute, Leiden University, Leiden, Netherlands.,Origins Center, Leiden University, Leiden, Netherlands.,Institute of Biology, Leiden University, Leiden, Netherlands
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands.,Department of Pediatric Cardiology, Division of Pediatrics, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
35
|
Okubo C, Narita M, Inagaki A, Nishikawa M, Hotta A, Yamanaka S, Yoshida Y. Expression dynamics of HAND1/2 in in vitro human cardiomyocyte differentiation. Stem Cell Reports 2021; 16:1906-1922. [PMID: 34297940 PMCID: PMC8365100 DOI: 10.1016/j.stemcr.2021.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 01/02/2023] Open
Abstract
Hand1 and Hand2 are transcriptional factors, and knockout mice of these genes show left and right ventricular hypoplasia, respectively. However, their function and expression in human cardiogenesis are not well studied. To delineate their expressions and assess their functions in human cardiomyocytes (CMs) in vitro, we established two triple-reporter human induced pluripotent stem cell lines that express HAND1mCherry, HAND2EGFP and either MYH6-driven iRFP670 or tagBFP constitutively and investigated their expression dynamics during cardiac differentiation. On day 5 of the differentiation, HAND1 expression marked cardiac progenitor cells. We profiled the CM subpopulations on day 20 with RNA sequencing and found that mCherry+ CMs showed higher proliferative ability than mCherry− CMs and identified a gene network of LEF1, HAND1, and HAND2 to regulate proliferation in CMs. Finally, we identified CD105 as a surface marker of highly proliferative CMs. Expression of HAND1 marks cardiovascular progenitor cells LEF1 is a key regulator of proliferating cardiomyocytes CD105 expression marks highly proliferative cardiomyocytes
Collapse
Affiliation(s)
- Chikako Okubo
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Megumi Narita
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Azusa Inagaki
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Misato Nishikawa
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Akitsu Hotta
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Shinya Yamanaka
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Yoshinori Yoshida
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
36
|
Verma U, Khaire K, Desai I, Sharma S, Balakrishnan S. Early embryonic exposure to chlorpyrifos-cypermethrin combination induces pattern deficits in the heart of domestic hen. ENVIRONMENTAL TOXICOLOGY 2021; 36:707-721. [PMID: 33270332 DOI: 10.1002/tox.23074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
Exposure to chlorpyrifos-cypermethrin combination during early development resulted in defective looping and ventricular noncompaction of heart in domestic chicken. The study was extended to elucidate the molecular basis of this novel observation. The primary culture of chicken embryonic heart cells showed a concentration-dependent loss of viability when challenged with this combination of technical-grade insecticides. Comet assay, DNA ladder assay, and analyses of appropriate markers at transcript and protein levels, revealed that chlorpyrifos-cypermethrin combination induced cell death by activating apoptosis. Parallelly, the tissues derived from control and experimental group hearts were checked for apoptotic markers, and the result was much similar to that of the in-vitro study. Further analysis showed that chlorpyrifos-cypermethrin combination deranged the expression pattern of the transcriptional regulators of cardiogenesis, namely TBX20, GATA5, HAND2, and MYOCD. This, together with heightened apoptosis, could well be the reason behind the observed structural anomalies in the heart of chlorpyrifos-cypermethrin poisoned embryos.
Collapse
Affiliation(s)
- Urja Verma
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Kashmira Khaire
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Isha Desai
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Shashikant Sharma
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Suresh Balakrishnan
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|
37
|
Vincentz JW, Firulli BA, Toolan KP, Osterwalder M, Pennacchio LA, Firulli AB. HAND transcription factors cooperatively specify the aorta and pulmonary trunk. Dev Biol 2021; 476:1-10. [PMID: 33757801 DOI: 10.1016/j.ydbio.2021.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 01/11/2023]
Abstract
Congenital heart defects (CHDs) affecting the cardiac outflow tract (OFT) constitute a significant cause of morbidity and mortality. The OFT develops from migratory cell populations which include the cardiac neural crest cells (cNCCs) and secondary heart field (SHF) derived myocardium and endocardium. The related transcription factors HAND1 and HAND2 have been implicated in human CHDs involving the OFT. Although Hand1 is expressed within the OFT, Hand1 NCC-specific conditional knockout mice (H1CKOs) are viable. Here we show that these H1CKOs present a low penetrance of OFT phenotypes, whereas SHF-specific Hand1 ablation does not reveal any cardiac phenotypes. Further, HAND1 and HAND2 appear functionally redundant within the cNCCs, as a reduction/ablation of Hand2 on an NCC-specific H1CKO background causes pronounced OFT defects. Double conditional Hand1 and Hand2 NCC knockouts exhibit persistent truncus arteriosus (PTA) with 100% penetrance. NCC lineage-tracing and Sema3c in situ mRNA expression reveal that Sema3c-expressing cells are mis-localized, resulting in a malformed septal bridge within the OFTs of H1CKO;H2CKO embryos. Interestingly, Hand1 and Hand2 also genetically interact within the SHF, as SHF H1CKOs on a heterozygous Hand2 background exhibit Ventricular Septal Defects (VSDs) with incomplete penetrance. Previously, we identified a BMP, HAND2, and GATA-dependent Hand1 OFT enhancer sufficient to drive reporter gene expression within the nascent OFT and aorta. Using these transcription inputs as a probe, we identify a novel Hand2 OFT enhancer, suggesting that a conserved BMP-GATA dependent mechanism transcriptionally regulates both HAND factors. These findings support the hypothesis that HAND factors interpret BMP signaling within the cNCCs to cooperatively coordinate OFT morphogenesis.
Collapse
Affiliation(s)
- Joshua W Vincentz
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN, 46202-5225, USA.
| | - Beth A Firulli
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN, 46202-5225, USA
| | - Kevin P Toolan
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN, 46202-5225, USA
| | - Marco Osterwalder
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Department for BioMedical Research (DBMR), University of Bern, Murtenstrasse 35, 3008, Bern, Switzerland
| | - Len A Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; U.S. Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA; Comparative Biochemistry Program, University of California, Berkeley, CA, 94720, USA
| | - Anthony B Firulli
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN, 46202-5225, USA.
| |
Collapse
|
38
|
Transcriptional Regulation of Postnatal Cardiomyocyte Maturation and Regeneration. Int J Mol Sci 2021; 22:ijms22063288. [PMID: 33807107 PMCID: PMC8004589 DOI: 10.3390/ijms22063288] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/17/2022] Open
Abstract
During the postnatal period, mammalian cardiomyocytes undergo numerous maturational changes associated with increased cardiac function and output, including hypertrophic growth, cell cycle exit, sarcomeric protein isoform switching, and mitochondrial maturation. These changes come at the expense of loss of regenerative capacity of the heart, contributing to heart failure after cardiac injury in adults. While most studies focus on the transcriptional regulation of embryonic or adult cardiomyocytes, the transcriptional changes that occur during the postnatal period are relatively unknown. In this review, we focus on the transcriptional regulators responsible for these aspects of cardiomyocyte maturation during the postnatal period in mammals. By specifically highlighting this transitional period, we draw attention to critical processes in cardiomyocyte maturation with potential therapeutic implications in cardiovascular disease.
Collapse
|
39
|
Miyamoto M, Gangrade H, Tampakakis E. Understanding Heart Field Progenitor Cells for Modeling Congenital Heart Diseases. Curr Cardiol Rep 2021; 23:38. [PMID: 33694131 DOI: 10.1007/s11886-021-01468-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/11/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW Heart development is a meticulously coordinated process that involves the specification of two distinct populations of cardiac progenitor cells, namely the first and the second heart field. Disruption of heart field progenitors can result in congenital heart defects. In this review, we aim to describe the signaling pathways and transcription factors that link heart field development and congenital heart disease. RECENT FINDINGS Single-cell transcriptomics, lineage-tracing mouse models, and stem cell-based in vitro modeling of cardiogenesis have significantly improved the spatiotemporal characterization of cardiac progenitors. Additionally, novel functional genomic studies have now linked more genetic variants with congenital heart disease. Dysregulation of cardiac progenitor cells causes malformations that can be lethal. Ongoing research will continue to shed light on cardiac morphogenesis and help us better understand and treat patients with congenital heart disease.
Collapse
Affiliation(s)
- Matthew Miyamoto
- Department of Medicine, Division of Cardiology, Johns Hopkins University, 720 Rutland Avenue, Ross 835, Baltimore, MD, 21205, USA
| | - Harshi Gangrade
- Department of Medicine, Division of Cardiology, Johns Hopkins University, 720 Rutland Avenue, Ross 835, Baltimore, MD, 21205, USA
| | - Emmanouil Tampakakis
- Department of Medicine, Division of Cardiology, Johns Hopkins University, 720 Rutland Avenue, Ross 835, Baltimore, MD, 21205, USA.
| |
Collapse
|
40
|
Seya D, Ihara D, Shirai M, Kawamura T, Watanabe Y, Nakagawa O. A role of Hey2 transcription factor for right ventricle development through regulation of Tbx2-Mycn pathway during cardiac morphogenesis. Dev Growth Differ 2021; 63:82-92. [PMID: 33410138 DOI: 10.1111/dgd.12707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/29/2020] [Accepted: 12/19/2020] [Indexed: 01/01/2023]
Abstract
A basic helix-loop-helix transcription factor Hey2 is expressed in the ventricular myocardium and endocardium of mouse embryos, and Hey2 null mice die perinatally showing ventricular septal defect, dysplastic tricuspid valve and hypoplastic right ventricle. In order to understand region-specific roles of Hey2 during cardiac morphogenesis, we generated Hey2 conditional knockout (cKO) mice using Mef2c-AHF-Cre, which was active in the anterior part of the second heart field and the right ventricle and outflow tract of the heart. Hey2 cKO neonates reproduced three anomalies commonly observed in Hey2 null mice. An earliest morphological defect was the lack of right ventricular extension along the apico-basal axis at midgestational stages. Underdevelopment of the right ventricle was present in all cKO neonates including those without apparent atresia of right-sided atrioventricular connection. RNA sequencing analysis of cKO embryos identified that the gene expression of a non-chamber T-box factor Tbx2 was ectopically induced in the chamber myocardium of the right ventricle. Consistently, mRNA expression of the Mycn transcription factor, which was a cell cycle regulator transcriptionally repressed by Tbx2, was down regulated, and the number of S-phase cells was significantly decreased in the right ventricle of cKO heart. These results suggest that Hey2 plays an important role in right ventricle development during cardiac morphogenesis, at least in part, through mitigating Tbx2-dependent inhibition of Mycn expression.
Collapse
Affiliation(s)
- Daiki Seya
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan.,Department of Cell Physiology, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Dai Ihara
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan.,Laboratory of Stem Cell & Regenerative Medicine, Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Manabu Shirai
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Teruhisa Kawamura
- Laboratory of Stem Cell & Regenerative Medicine, Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Yusuke Watanabe
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Osamu Nakagawa
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| |
Collapse
|
41
|
Varshney A, Chahal G, Santos L, Stolper J, Hallab JC, Nim HT, Nikolov M, Yip A, Ramialison M. Human Cardiac Transcription Factor Networks. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11597-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
42
|
De Zoysa P, Liu J, Toubat O, Choi J, Moon A, Gill PS, Duarte A, Sucov HM, Kumar SR. Delta-like ligand 4-mediated Notch signaling controls proliferation of second heart field progenitor cells by regulating Fgf8 expression. Development 2020; 147:dev185249. [PMID: 32778568 PMCID: PMC7502602 DOI: 10.1242/dev.185249] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 07/27/2020] [Indexed: 12/15/2022]
Abstract
The role played by the Notch pathway in cardiac progenitor cell biology remains to be elucidated. Delta-like ligand 4 (Dll4), the arterial-specific Notch ligand, is expressed by second heart field (SHF) progenitors at time-points that are crucial in SHF biology. Dll4-mediated Notch signaling is required for maintaining an adequate pool of SHF progenitors, such that Dll4 knockout results in a reduction in proliferation and an increase in apoptosis. A reduced SHF progenitor pool leads to an underdeveloped right ventricle (RV) and outflow tract (OFT). In its most severe form, there is severe RV hypoplasia and poorly developed OFT resulting in early embryonic lethality. In its milder form, the OFT is foreshortened and misaligned, resulting in a double outlet right ventricle. Dll4-mediated Notch signaling maintains Fgf8 expression by transcriptional regulation at the promoter level. Combined heterozygous knockout of Dll4 and Fgf8 demonstrates genetic synergy in OFT alignment. Exogenous supplemental Fgf8 rescues proliferation in Dll4 mutants in ex-vivo culture. Our results establish a novel role for Dll4-mediated Notch signaling in SHF biology. More broadly, our model provides a platform for understanding oligogenic inheritance that results in clinically relevant OFT malformations.
Collapse
Affiliation(s)
- Prashan De Zoysa
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Jiang Liu
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Omar Toubat
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Jongkyu Choi
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Anne Moon
- Department of Molecular and Functional Genomics, Geisinger Clinic, PA 17822, USA
| | - Parkash S Gill
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Antonio Duarte
- Centro Interdisciplinar de Investigação em Sanidade Animal, University of Lisbon, Department of Physiology, 1300-477 Lisboa, Portugal
| | - Henry M Sucov
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29403, USA
| | - S Ram Kumar
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| |
Collapse
|
43
|
De Koninck M, Lapi E, Badía-Careaga C, Cossío I, Giménez-Llorente D, Rodríguez-Corsino M, Andrada E, Hidalgo A, Manzanares M, Real FX, Losada A. Essential Roles of Cohesin STAG2 in Mouse Embryonic Development and Adult Tissue Homeostasis. Cell Rep 2020; 32:108014. [PMID: 32783938 DOI: 10.1016/j.celrep.2020.108014] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/15/2020] [Accepted: 07/17/2020] [Indexed: 01/26/2023] Open
Abstract
Cohesin mediates sister chromatid cohesion and 3D genome folding. Two versions of the complex carrying STAG1 or STAG2 coexist in somatic vertebrate cells. STAG2 is commonly mutated in cancer, and germline mutations have been identified in cohesinopathy patients. To better understand the underlying pathogenic mechanisms, we report the consequences of Stag2 ablation in mice. STAG2 is largely dispensable in adults, and its tissue-wide inactivation does not lead to tumors but reduces fitness and affects both hematopoiesis and intestinal homeostasis. STAG2 is also dispensable for murine embryonic fibroblasts in vitro. In contrast, Stag2-null embryos die by mid-gestation and show global developmental delay and defective heart morphogenesis, most prominently in structures derived from secondary heart field progenitors. Both decreased proliferation and altered transcription of tissue-specific genes contribute to these defects. Our results provide compelling evidence on cell- and tissue-specific roles of different cohesin complexes and how their dysfunction contributes to disease.
Collapse
Affiliation(s)
- Magali De Koninck
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Eleonora Lapi
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; CIBERONC, Madrid, Spain
| | | | - Itziar Cossío
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Daniel Giménez-Llorente
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Miriam Rodríguez-Corsino
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Elena Andrada
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Andrés Hidalgo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Miguel Manzanares
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; Centro de Biología Molecular "Severo Ochoa" (CBMSO), CSIC-UAM, 28049 Madrid, Spain
| | - Francisco X Real
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; CIBERONC, Madrid, Spain; Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Ana Losada
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain.
| |
Collapse
|
44
|
Stadiotti I, Piacentini L, Vavassori C, Chiesa M, Scopece A, Guarino A, Micheli B, Polvani G, Colombo GI, Pompilio G, Sommariva E. Human Cardiac Mesenchymal Stromal Cells From Right and Left Ventricles Display Differences in Number, Function, and Transcriptomic Profile. Front Physiol 2020; 11:604. [PMID: 32670081 PMCID: PMC7327120 DOI: 10.3389/fphys.2020.00604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/14/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Left ventricle (LV) and right ventricle (RV) are characterized by well-known physiological differences, mainly related to their different embryological origin, hemodynamic environment, function, structure, and cellular composition. Nevertheless, scarce information is available about cellular peculiarities between left and right ventricular chambers in physiological and pathological contexts. Cardiac mesenchymal stromal cells (C-MSC) are key cells affecting many functions of the heart. Differential features that distinguish LV from RV C-MSC are still underappreciated. AIM To analyze the physiological differential amount, function, and transcriptome of human C-MSC in LV versus (vs.) RV. METHODS Human cardiac specimens of LV and RV from healthy donors were used for tissue analysis of C-MSC number, and for C-MSC isolation. Paired LV and RV C-MSC were compared as for surface marker expression, cell proliferation/death ratio, migration, differentiation capabilities, and transcriptome profile. RESULTS Histological analysis showed a greater percentage of C-MSC in RV vs. LV tissue. Moreover, a higher C-MSC amount was obtained from RV than from LV after isolation procedures. LV and RV C-MSC are characterized by a similar proportion of surface markers. Functional studies revealed comparable cell growth curves in cells from both ventricles. Conversely, LV C-MSC displayed a higher apoptosis rate and RV C-MSC were characterized by a higher migration speed and collagen deposition. Consistently, transcriptome analysis showed that genes related to apoptosis regulation or extracellular matrix organization and integrins were over-expressed in LV and RV, respectively. Besides, we revealed additional pathways specifically associated with LV or RV C-MSC, including energy metabolism, inflammatory response, cardiac conduction, and pluripotency. CONCLUSION Taken together, these results contribute to the functional characterization of RV and LV C-MSC in physiological conditions. This information suggests a possible differential role of the stromal compartment in chamber-specific pathologic scenarios.
Collapse
Affiliation(s)
- Ilaria Stadiotti
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Luca Piacentini
- Unit of Immunology and Functional Genomics, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Chiara Vavassori
- Unit of Immunology and Functional Genomics, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Mattia Chiesa
- Unit of Immunology and Functional Genomics, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Alessandro Scopece
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Anna Guarino
- Cardiovascular Tissue Bank, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Barbara Micheli
- Cardiovascular Tissue Bank, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Gianluca Polvani
- Cardiovascular Tissue Bank, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | | | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Elena Sommariva
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
| |
Collapse
|
45
|
Vincentz JW, Clouthier DE, Firulli AB. Mis-Expression of a Cranial Neural Crest Cell-Specific Gene Program in Cardiac Neural Crest Cells Modulates HAND Factor Expression, Causing Cardiac Outflow Tract Phenotypes. J Cardiovasc Dev Dis 2020; 7:jcdd7020013. [PMID: 32325975 PMCID: PMC7344951 DOI: 10.3390/jcdd7020013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/14/2020] [Indexed: 12/22/2022] Open
Abstract
Congenital heart defects (CHDs) occur with such a frequency that they constitute a significant cause of morbidity and mortality in both children and adults. A significant portion of CHDs can be attributed to aberrant development of the cardiac outflow tract (OFT), and of one of its cellular progenitors known as the cardiac neural crest cells (NCCs). The gene regulatory networks that identify cardiac NCCs as a distinct NCC population are not completely understood. Heart and neural crest derivatives (HAND) bHLH transcription factors play essential roles in NCC morphogenesis. The Hand1PA/OFT enhancer is dependent upon bone morphogenic protein (BMP) signaling in both cranial and cardiac NCCs. The Hand1PA/OFT enhancer is directly repressed by the endothelin-induced transcription factors DLX5 and DLX6 in cranial but not cardiac NCCs. This transcriptional distinction offers the unique opportunity to interrogate NCC specification, and to understand why, despite similarities, cranial NCC fate determination is so diverse. We generated a conditionally active transgene that can ectopically express DLX5 within the developing mouse embryo in a Cre-recombinase-dependent manner. Ectopic DLX5 expression represses cranial NCC Hand1PA/OFT-lacZ reporter expression more effectively than cardiac NCC reporter expression. Ectopic DLX5 expression induces broad domains of NCC cell death within the cranial pharyngeal arches, but minimal cell death in cardiac NCC populations. This study shows that transcription control of NCC gene regulatory programs is influenced by their initial specification at the dorsal neural tube.
Collapse
Affiliation(s)
- Joshua W. Vincentz
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis, IN 46202, USA
- Correspondence: (J.W.V.); (A.B.F.)
| | - David E. Clouthier
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Anthony B. Firulli
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis, IN 46202, USA
- Correspondence: (J.W.V.); (A.B.F.)
| |
Collapse
|
46
|
Comprehensive Overview of Non-coding RNAs in Cardiac Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:197-211. [PMID: 32285413 DOI: 10.1007/978-981-15-1671-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Cardiac development in the human embryo is characterized by the interactions of several transcription and growth factors leading the heart from a primordial linear tube into a synchronous contractile four-chamber organ. Studies on cardiogenesis showed that cell proliferation, differentiation, fate specification and morphogenesis are spatiotemporally coordinated by cell-cell interactions and intracellular signalling cross-talks. In recent years, research has focused on a class of inter- and intra-cellular modulators called non-coding RNAs (ncRNAs), transcribed from the noncoding portion of the DNA and involved in the proper formation of the heart. In this chapter, we will summarize the current state of the art on the roles of three major forms of ncRNAs [microRNAs (miRNAs), long ncRNAs (lncRNAs) and circular RNAs (circRNAs)] in orchestrating the four sequential phases of cardiac organogenesis.
Collapse
|
47
|
Kim CW, Go RE, Ko EB, Jeung EB, Kim MS, Choi KC. Effects of cigarette smoke components on myocardial differentiation of mouse embryonic stem cells. ENVIRONMENTAL TOXICOLOGY 2020; 35:66-77. [PMID: 31507073 DOI: 10.1002/tox.22843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
The heart is the first organ formed in the developing fetus, and abnormal development of the heart is a major cause of fetal death. The adverse effects of cigarette smoke on the heart have been well established, but it is not well understood how cigarette smoke components regulate signaling molecules and cardiac specific functions during the early differentiation stage of the embryonic heart. In this study, we identified changes in the size of mouse embryoid bodies (mEBs) in response to treatment with cigarette smoke extract (CSE) via regulation of HDAC2, p53, p21, and cyclin D1 protein expression, which are cardiac differentiation and cell-cycle markers, respectively. In addition, exposure of mouse embryonic stem cells (mESCs) to cigarette smoke components inhibited myocardial differentiation and development through the expression of HDAC1, HDAC2, GATA4, NKX2-5, TBX5, HAND1, and Troponin I. Long-term exposure studies showed that CSE and nicotine may delay the development of mouse cardiomyocytes from mESCs and inhibit the contractibility, which is a fundamental function of the heart. Taken together, these findings suggest that cigarette smoke components, including nicotine, may affect abnormal myocardial differentiation and development.
Collapse
Affiliation(s)
- Cho-Won Kim
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Ryeo-Eun Go
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Eul Bee Ko
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Eui-Bae Jeung
- Laboratory of Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Min-Seok Kim
- Inhalation Toxicology Research Group, Jeonbuk Department of Inhalation Research, Jeongeup, Korea Institute of Toxicology, Jeonbuk, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
48
|
HAND2 loss-of-function mutation causes familial dilated cardiomyopathy. Eur J Med Genet 2019; 62:103540. [DOI: 10.1016/j.ejmg.2018.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 07/29/2018] [Accepted: 09/10/2018] [Indexed: 12/29/2022]
|
49
|
Protection role of resveratrol against alcohol-induced heart defect in zebrafish embryos. Chin Med J (Engl) 2019; 132:990-993. [PMID: 30958444 PMCID: PMC6595755 DOI: 10.1097/cm9.0000000000000194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
50
|
de Soysa TY, Ranade SS, Okawa S, Ravichandran S, Huang Y, Salunga HT, Schricker A, Del Sol A, Gifford CA, Srivastava D. Single-cell analysis of cardiogenesis reveals basis for organ-level developmental defects. Nature 2019; 572:120-124. [PMID: 31341279 PMCID: PMC6719697 DOI: 10.1038/s41586-019-1414-x] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 06/19/2019] [Indexed: 12/22/2022]
Abstract
Organogenesis involves integration of myriad cell types, and dysregulation of cellular gene networks results in birth defects, affecting 5 per cent of live births. Congenital heart defects (CHD) are the most common malformations and result from disruption of discrete subsets of cardiac progenitor cells1, yet the transcriptional changes in individual progenitors that lead to organ-level defects remain unknown. Here, we employed single-cell RNA sequencing (scRNA-seq) to interrogate early cardiac progenitor cells as they become specified during normal and abnormal cardiogenesis, revealing how dysregulation of specific cellular sub-populations has catastrophic consequences. A network-based computational method for scRNA-seq that predicts lineage-specifying transcription factors2,3 identified Hand2 as a specifier of outflow tract cells but not right ventricular cells, despite failure of right ventricular formation in Hand2-null mice4. Temporal single-cell transcriptome analysis of Hand2-null embryos revealed failure of outflow tract myocardium specification, whereas right ventricular myocardium was specified but failed to properly differentiate and migrate. Loss of Hand2 also led to dysregulation of retinoic acid signaling and disruption of anterior-posterior patterning of cardiac progenitors. This work reveals transcriptional determinants that specify fate and differentiation in individual cardiac progenitor cells, and exposes mechanisms of disrupted cardiac development at single-cell resolution, providing a framework to investigate congenital heart defects.
Collapse
Affiliation(s)
- T Yvanka de Soysa
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA.,Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA.,Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Sanjeev S Ranade
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA.,Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Satoshi Okawa
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg, Luxembourg.,Integrated BioBank of Luxembourg, Dudelange, Luxembourg
| | - Srikanth Ravichandran
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg, Luxembourg
| | - Yu Huang
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA.,Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Hazel T Salunga
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA.,Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Amelia Schricker
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA.,Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Antonio Del Sol
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg, Luxembourg.,CIC bioGUNE, Derio, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Casey A Gifford
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA. .,Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA.
| | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA. .,Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA. .,Department of Pediatrics, University of California, San Francisco, CA, USA. .,Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA.
| |
Collapse
|