1
|
Fan J, Wang J, Ning J, Wu S, Wang C, Wang YC. Genome-wide identification and expression analysis of the Sox gene family in bivalves. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 55:101489. [PMID: 40139063 DOI: 10.1016/j.cbd.2025.101489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/06/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Since the discovery of the Sox gene family in 1990, research on its distribution, classification, characterization, and function across various species has been significantly deepened. However, the Sox gene family has not yet been systematically and comprehensively analyzed in bivalves. In this study, 254 Sox genes were identified in 51 bivalves (covering 20 orders and 37 families). The Sox gene numbers ranged from 1 and 10 in most bivalves but no Sox gene was identified in the transcriptomes of Poromya illevis (Poromyoidea), Thracia phaseolina (Thracioidea), Solen vaginoides (Solenoidea), Lamychaena hians (Gastrochaenoidea), and Limopsis sp. and Solemya velesiana (Limopsoidea). The phylogenetic analyses revealed that Sox genes in bivalves are divided into 7 primary groups: SoxB1, SoxB2, SoxC, SoxD, SoxE, SoxF, and SoxH, with different groups exhibiting distinct conserved motif patterns. Notably, SoxA and SoxG found in most vertebrates were not identified in bivalves. Moreover, through spatiotemporal expression profiling in 6 distinct bivalve species, it was determined that the SoxH genes exhibit male-biased expression mainly in non-hermaphroditic bivalves, while SoxB1 and SoxC genes demonstrate female-biased expression, and these two Sox genes may serve a pivotal role in embryonic development stage and SoxB2, SoxC and SoxE may play a significant impact in neural development in bivalves. Sox family members also appear to possess disparate functions across different species and tissues. Overall, this study may provide a basis for future investigations into the functions and evolution of Sox genes in bivalves, and offer new perspectives on their roles in development in bivalves.
Collapse
Affiliation(s)
- Jiawei Fan
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinjing Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junhao Ning
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Shaoxuan Wu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Chunde Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Yin-Chu Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; National Basic Science Data Center, Beijing 100190, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
2
|
Ray L, Medeiros D. Linking Vertebrate Gene Duplications to the New Head Hypothesis. BIOLOGY 2023; 12:1213. [PMID: 37759612 PMCID: PMC10525774 DOI: 10.3390/biology12091213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/11/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
Vertebrates have diverse morphologies and various anatomical novelties that set them apart from their closest invertebrate relatives. A conspicuous head housing a large brain, paired sense organs, and protected by a skeleton of cartilage and bone is unique to vertebrates and is a defining feature of this taxon. Gans and Northcutt (1980s) proposed that the evolution of this "new head" was dependent on two key developmental innovations: neural crest cells (NCCs) and ectodermal placodes. NCCs are migratory embryonic cells that form bone, cartilage, and neurons in the new head. Based on genome size, Ohno (1970s) proposed a separate hypothesis, stating that vertebrate genome content was quadrupled via two rounds (2R) of whole genome duplications (WGDs), and the surplus of genetic material potentiated vertebrate morphological diversification. While both hypotheses offer explanations for vertebrate success, it is unclear if, and how, the "new head" and "2R" hypotheses are linked. Here, we consider both hypotheses and evaluate the experimental evidence connecting the two. Overall, evidence suggests that while the origin of the NC GRN predates the vertebrate WGDs, these genomic events may have potentiated the evolution of distinct genetic subnetworks in different neural crest subpopulations. We describe the general composition of the NC GRN and posit that its increased developmental modularity facilitated the independent evolution of NC derivatives and the diversification of the vertebrate head skeleton. Lastly, we discuss experimental strategies needed to test whether gene duplications drove the diversification of neural crest derivatives and the "new head".
Collapse
Affiliation(s)
- Lindsey Ray
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - Daniel Medeiros
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
3
|
Root ZD, Jandzik D, Gould C, Allen C, Brewer M, Medeiros DM. Cartilage diversification and modularity drove the evolution of the ancestral vertebrate head skeleton. EvoDevo 2023; 14:8. [PMID: 37147719 PMCID: PMC10161429 DOI: 10.1186/s13227-023-00211-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 04/04/2023] [Indexed: 05/07/2023] Open
Abstract
The vertebrate head skeleton has evolved a myriad of forms since their divergence from invertebrate chordates. The connection between novel gene expression and cell types is therefore of importance in this process. The transformation of the jawed vertebrate (gnathostome) head skeleton from oral cirri to jointed jaw elements required a diversity of cartilages as well as changes in the patterning of these tissues. Although lampreys are a sister clade to gnathostomes, they display skeletal diversity with distinct gene expression and histologies, a useful model for addressing joint evolution. Specifically, the lamprey tissue known as mucocartilage has noted similarities with the jointed elements of the mandibular arch in jawed vertebrates. We thus asked whether the cells in lamprey mucocartilage and gnathostome joint tissue could be considered homologous. To do this, we characterized new genes that are involved in gnathostome joint formation and characterized the histochemical properties of lamprey skeletal types. We find that most of these genes are minimally found in mucocartilage and are likely later innovations, but we do identify new activity for gdf5/6/7b in both hyaline and mucocartilage, supporting its role as a chondrogenic regulator. Contrary to previous works, our histological assays do not find any perichondrial fibroblasts surrounding mucocartilage, suggesting that mucocartilage is non-skeletogenic tissue that is partially chondrified. Interestingly, we also identify new histochemical features of the lamprey otic capsule that diverge from normal hyaline. Paired with our new insights into lamprey mucocartilage, we propose a broader framework for skeletal evolution in which an ancestral soxD/E and gdf5/6/7 network directs mesenchyme along a spectrum of cartilage-like features.
Collapse
Affiliation(s)
- Zachary D. Root
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309 USA
| | - David Jandzik
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309 USA
- Department of Zoology, Comenius University in Bratislava, Bratislava, 84215 Slovakia
| | - Claire Gould
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309 USA
| | - Cara Allen
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309 USA
| | - Margaux Brewer
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309 USA
| | - Daniel M. Medeiros
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309 USA
| |
Collapse
|
4
|
Onai T, Aramaki T, Takai A, Kakiguchi K, Yonemura S. Cranial cartilages: Players in the evolution of the cranium during evolution of the chordates in general and of the vertebrates in particular. Evol Dev 2023; 25:197-208. [PMID: 36946416 DOI: 10.1111/ede.12433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/23/2023]
Abstract
The present contribution is chiefly a review, augmented by some new results on amphioxus and lamprey anatomy, that draws on paleontological and developmental data to suggest a scenario for cranial cartilage evolution in the phylum chordata. Consideration is given to the cartilage-related tissues of invertebrate chordates (amphioxus and some fossil groups like vetulicolians) as well as in the two major divisions of the subphylum Vertebrata (namely, agnathans, and gnathostomes). In the invertebrate chordates, which can be considered plausible proxy ancestors of the vertebrates, only a viscerocranium is present, whereas a neurocranium is absent. For this situation, we examine how cartilage-related tissues of this head region prefigure the cellular cartilage types in the vertebrates. We then focus on the vertebrate neurocranium, where cyclostomes evidently lack neural-crest derived trabecular cartilage (although this point needs to be established more firmly). In the more complex gnathostome, several neural-crest derived cartilage types are present: namely, the trabecular cartilages of the prechordal region and the parachordal cartilage the chordal region. In sum, we present an evolutionary framework for cranial cartilage evolution in chordates and suggest aspects of the subject that should profit from additional study.
Collapse
Affiliation(s)
- Takayuki Onai
- Department of Anatomy, School of Medical Sciences, University of Fukui, Fukui, Japan
- Life Science Innovation Center, University of Fukui, Fukui, Japan
| | - Toshihiro Aramaki
- Laboratory for Pattern Formation, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Akira Takai
- Department of Cell Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Laboratory for Cell Polarity Regulation, RIKEN Center for Biosystems Dynamics, Research, Osaka, Japan
| | - Kisa Kakiguchi
- Laboratory for Ultrastructural Research, RIKEN Center for Biosystems Dynamics, Research, Hyogo, Japan
| | - Shigenobu Yonemura
- Laboratory for Ultrastructural Research, RIKEN Center for Biosystems Dynamics, Research, Hyogo, Japan
- Department of Cell Biology, Tokushima University Graduate School of Medicine, Tokushima, Japan
| |
Collapse
|
5
|
Schock EN, LaBonne C. Sorting Sox: Diverse Roles for Sox Transcription Factors During Neural Crest and Craniofacial Development. Front Physiol 2020; 11:606889. [PMID: 33424631 PMCID: PMC7793875 DOI: 10.3389/fphys.2020.606889] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/09/2020] [Indexed: 12/31/2022] Open
Abstract
Sox transcription factors play many diverse roles during development, including regulating stem cell states, directing differentiation, and influencing the local chromatin landscape. Of the twenty vertebrate Sox factors, several play critical roles in the development the neural crest, a key vertebrate innovation, and the subsequent formation of neural crest-derived structures, including the craniofacial complex. Herein, we review the specific roles for individual Sox factors during neural crest cell formation and discuss how some factors may have been essential for the evolution of the neural crest. Additionally, we describe how Sox factors direct neural crest cell differentiation into diverse lineages such as melanocytes, glia, and cartilage and detail their involvement in the development of specific craniofacial structures. Finally, we highlight several SOXopathies associated with craniofacial phenotypes.
Collapse
Affiliation(s)
- Elizabeth N. Schock
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States
| | - Carole LaBonne
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL, United States
| |
Collapse
|
6
|
York JR, Yuan T, McCauley DW. Evolutionary and Developmental Associations of Neural Crest and Placodes in the Vertebrate Head: Insights From Jawless Vertebrates. Front Physiol 2020; 11:986. [PMID: 32903576 PMCID: PMC7438564 DOI: 10.3389/fphys.2020.00986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
Neural crest and placodes are key innovations of the vertebrate clade. These cells arise within the dorsal ectoderm of all vertebrate embryos and have the developmental potential to form many of the morphological novelties within the vertebrate head. Each cell population has its own distinct developmental features and generates unique cell types. However, it is essential that neural crest and placodes associate together throughout embryonic development to coordinate the emergence of several features in the head, including almost all of the cranial peripheral sensory nervous system and organs of special sense. Despite the significance of this developmental feat, its evolutionary origins have remained unclear, owing largely to the fact that there has been little comparative (evolutionary) work done on this topic between the jawed vertebrates and cyclostomes—the jawless lampreys and hagfishes. In this review, we briefly summarize the developmental mechanisms and genetics of neural crest and placodes in both jawed and jawless vertebrates. We then discuss recent studies on the role of neural crest and placodes—and their developmental association—in the head of lamprey embryos, and how comparisons with jawed vertebrates can provide insights into the causes and consequences of this event in early vertebrate evolution.
Collapse
Affiliation(s)
- Joshua R York
- Department of Biology, University of Oklahoma, Norman, OK, United States
| | - Tian Yuan
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - David W McCauley
- Department of Biology, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
7
|
Dash S, Trainor PA. The development, patterning and evolution of neural crest cell differentiation into cartilage and bone. Bone 2020; 137:115409. [PMID: 32417535 DOI: 10.1016/j.bone.2020.115409] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022]
Abstract
Neural crest cells are a vertebrate-specific migratory, multipotent cell population that give rise to a diverse array of cells and tissues during development. Cranial neural crest cells, in particular, generate cartilage, bone, tendons and connective tissue in the head and face as well as neurons, glia and melanocytes. In this review, we focus on the chondrogenic and osteogenic potential of cranial neural crest cells and discuss the roles of Sox9, Runx2 and Msx1/2 transcription factors and WNT, FGF and TGFβ signaling pathways in regulating neural crest cell differentiation into cartilage and bone. We also describe cranioskeletal defects and disorders arising from gain or loss-of-function of genes that are required for patterning and differentiation of cranial neural crest cells. Finally, we discuss the evolution of skeletogenic potential in neural crest cells and their function as a conduit for intraspecies and interspecies variation, and the evolution of craniofacial novelties.
Collapse
Affiliation(s)
- Soma Dash
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
8
|
Yuan T, York JR, McCauley DW. Neural crest and placode roles in formation and patterning of cranial sensory ganglia in lamprey. Genesis 2020; 58:e23356. [PMID: 32049434 DOI: 10.1002/dvg.23356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 11/07/2022]
Abstract
Vertebrates possess paired cranial sensory ganglia derived from two embryonic cell populations, neural crest and placodes. Cranial sensory ganglia arose prior to the divergence of jawed and jawless vertebrates, but the developmental mechanisms that facilitated their evolution are unknown. Using gene expression and cell lineage tracing experiments in embryos of the sea lamprey, Petromyzon marinus, we find that in the cranial ganglia we targeted, development consists of placode-derived neuron clusters in the core of ganglia, with neural crest cells mostly surrounding these neuronal clusters. To dissect functional roles of neural crest and placode cell associations in these developing cranial ganglia, we used CRISPR/Cas9 gene editing experiments to target genes critical for the development of each population. Genetic ablation of SoxE2 and FoxD-A in neural crest cells resulted in differentiated cranial sensory neurons with abnormal morphologies, whereas deletion of DlxB in cranial placodes resulted in near-total loss of cranial sensory neurons. Taken together, our cell-lineage, gene expression, and gene editing results suggest that cranial neural crest cells may not be required for cranial ganglia specification but are essential for shaping the morphology of these sensory structures. We propose that the association of neural crest and placodes in the head of early vertebrates was a key step in the organization of neurons and glia into paired sensory ganglia.
Collapse
Affiliation(s)
- Tian Yuan
- Department of Biology, University of Oklahoma, Norman, Oklahoma
| | - Joshua R York
- Department of Biology, University of Oklahoma, Norman, Oklahoma
| | | |
Collapse
|
9
|
York JR, McCauley DW. Functional genetic analysis in a jawless vertebrate, the sea lamprey: insights into the developmental evolution of early vertebrates. J Exp Biol 2020; 223:223/Suppl_1/jeb206433. [DOI: 10.1242/jeb.206433] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ABSTRACT
Lampreys and hagfishes are the only surviving relicts of an ancient but ecologically dominant group of jawless fishes that evolved in the seas of the Cambrian era over half a billion years ago. Because of their phylogenetic position as the sister group to all other vertebrates (jawed vertebrates), comparisons of embryonic development between jawless and jawed vertebrates offers researchers in the field of evolutionary developmental biology the unique opportunity to address fundamental questions related to the nature of our earliest vertebrate ancestors. Here, we describe how genetic analysis of embryogenesis in the sea lamprey (Petromyzon marinus) has provided insight into the origin and evolution of developmental-genetic programs in vertebrates. We focus on recent work involving CRISPR/Cas9-mediated genome editing to study gene regulatory mechanisms involved in the development and evolution of neural crest cells and new cell types in the vertebrate nervous system, and transient transgenic assays that have been instrumental in dissecting the evolution of cis-regulatory control of gene expression in vertebrates. Finally, we discuss the broad potential for these functional genomic tools to address previously unanswerable questions related to the evolution of genomic regulatory mechanisms as well as issues related to invasive sea lamprey population control.
Collapse
Affiliation(s)
- Joshua R. York
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| | - David W. McCauley
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| |
Collapse
|
10
|
Cheung M, Tai A, Lu PJ, Cheah KS. Acquisition of multipotent and migratory neural crest cells in vertebrate evolution. Curr Opin Genet Dev 2019; 57:84-90. [PMID: 31470291 DOI: 10.1016/j.gde.2019.07.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 11/19/2022]
Abstract
The emergence of multipotent and migratory neural crest (NC) cells defines a key evolutionary transition from invertebrates to vertebrates. Studies in vertebrates have identified a complex gene regulatory network that governs sequential stages of NC ontogeny. Comparative analysis has revealed extensive conservation of the overall architecture of the NC gene regulatory network between jawless and jawed vertebrates. Among invertebrates, urochordates express putative NC gene homologs in the neural plate border region, but these NC-like cells do not have migratory capacity, whereas cephalochordates contain no NC cells but its genome contains most homologs of vertebrate NC genes. Whether the absence of migratory NC cells in invertebrates is due to differences in enhancer elements or an intrinsic limitation in potency remains unclear. We provide a brief overview of mechanisms that might explain how ancestral NC-like cells acquired the multipotency and migratory capacity seen in vertebrates.
Collapse
Affiliation(s)
- Martin Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Andrew Tai
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Peter Jianning Lu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kathryn Se Cheah
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
11
|
Wang Y, Yang W, Liu T, Bai G, Liu M, Wang W. Over-expression of SOX8 predicts poor prognosis in colorectal cancer: A retrospective study. Medicine (Baltimore) 2019; 98:e16237. [PMID: 31277140 PMCID: PMC6635174 DOI: 10.1097/md.0000000000016237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Aberrant expression of SRY-box 8 (SOX8) is closely correlated with the development and progression of many types of cancers in human. Limited studies report the relationship between SOX8 expression and overall survival in colorectal cancer (CRC). This study aimed to collect the pathological tissues and clinical data in order to analyze the relationship between SOX8 expression and clinicopathological parameters and prognosis of CRC patients. Tissue microarrays were constructed from 424 primary CRC patients with clinicopathological information and follow-up data. Immunohistochemistry (IHC) was performed on tissue microarrays to explore the relationship between SOX8 expression and clinicopathological information and patient's prognosis. The expression of SOX8 was higher in CRC tissues than that in non-tumor adjacent tissues (NATs, P <.001). High expression of SOX8 was associated with tumor stage (P = .04) and shorter overall survival (OS) after operation of patients (P = .004). Subsequently, univariate COX analysis identified that high expression of SOX8 (P = .004), differentiation (P = .006), distant metastasis (P <.001), tumor stage (P = .003), and higher rate of lymph node metastasis (P <.001), all significantly predicted decrease in OS. Multivariate analysis demonstrated that distant metastasis (P <.001), high SOX8 expression, (P = .013) and lymph node metastasis (P <.001) were independent poor prognostic factors in CRC patients. This study showed that SOX8 is over-expressed in patients with high T stage, which affects the outcome of prognosis in CRC patients. High expression of SOX8 usually has a poor independent prognostic factor for CRC.
Collapse
|
12
|
Yuan T, York JR, McCauley DW. Gliogenesis in lampreys shares gene regulatory interactions with oligodendrocyte development in jawed vertebrates. Dev Biol 2018; 441:176-190. [DOI: 10.1016/j.ydbio.2018.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/02/2018] [Accepted: 07/02/2018] [Indexed: 01/09/2023]
|
13
|
York JR, Yuan T, Lakiza O, McCauley DW. An ancestral role for Semaphorin3F-Neuropilin signaling in patterning neural crest within the new vertebrate head. Development 2018; 145:dev.164780. [PMID: 29980564 DOI: 10.1242/dev.164780] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/27/2018] [Indexed: 12/26/2022]
Abstract
The origin of the vertebrate head is one of the great unresolved issues in vertebrate evolutionary developmental biology. Although many of the novelties in the vertebrate head and pharynx derive from the neural crest, it is still unknown how early vertebrates patterned the neural crest within the ancestral body plan they inherited from invertebrate chordates. Here, using a basal vertebrate, the sea lamprey, we show that homologs of Semaphorin3F (Sema3F) ligand and its Neuropilin (Nrp) receptors show complementary and dynamic patterns of expression that correlate with key periods of neural crest development (migration and patterning of cranial neural crest-derived structures). Using CRISPR/Cas9-mediated mutagenesis, we demonstrate that lamprey Sema3F is essential for patterning of neural crest-derived melanocytes, cranial ganglia and the head skeleton, but is not required for neural crest migration or patterning of trunk neural crest derivatives. Based on comparisons with jawed vertebrates, our results suggest that the deployment of Nrp-Sema3F signaling, along with other intercellular guidance cues, was pivotal in allowing early vertebrates to organize and pattern cranial neural crest cells into many of the hallmark structures that define the vertebrate head.
Collapse
Affiliation(s)
- Joshua R York
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK, 73019, USA
| | - Tian Yuan
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK, 73019, USA
| | - Olga Lakiza
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK, 73019, USA
| | - David W McCauley
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK, 73019, USA
| |
Collapse
|
14
|
Functional constraints on SoxE proteins in neural crest development: The importance of differential expression for evolution of protein activity. Dev Biol 2016; 418:166-178. [DOI: 10.1016/j.ydbio.2016.07.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 07/28/2016] [Accepted: 07/30/2016] [Indexed: 10/21/2022]
|
15
|
Biallelic editing of a lamprey genome using the CRISPR/Cas9 system. Sci Rep 2016; 6:23496. [PMID: 27005311 PMCID: PMC4804306 DOI: 10.1038/srep23496] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/07/2016] [Indexed: 12/31/2022] Open
Abstract
Lampreys are extant representatives of agnathans. Descriptions of lamprey development, physiology and genome have provided critical insights into early evolution of vertebrate traits. However, efficient means for genetic manipulation in agnathan species have not been developed, hindering functional studies of genes in these important Evo-Devo models. Here, we report a CRISPR/Cas system optimized for lamprey genomes and use it to disrupt genomic loci in the Northeast Chinese lamprey (Lethenteron morii) with efficiencies ranging between 84~99%. The frequencies of indels observed in the target loci of golden (gol), kctd10, wee1, soxe2, and wnt7b, estimated from direct sequencing of genomic DNA samples of injected lamprey larvae, were 68/69, 47/56, 38/39, 36/37 and 36/42, respectively. These indels often occurred in both alleles. In the CRISPR/Cas9 treatment for gol or kctd10, 38.6% or 85.3% of the targeted larvae had the respective recessive null-like phenotypes, further confirming the disruption of both loci. The kctd10 gRNA, designed against an essential functional region of Kctd10, resulted in null-like phenotypes and in-frame mutations in alleles. We suggest that the CRISPR/Cas-based approach has the potential for efficient genetic perturbation in organisms less amenable to germ line transmission based approaches.
Collapse
|
16
|
Square T, Romášek M, Jandzik D, Cattell MV, Klymkowsky M, Medeiros DM. CRISPR/Cas9-mediated mutagenesis in the sea lamprey Petromyzon marinus: a powerful tool for understanding ancestral gene functions in vertebrates. DEVELOPMENT (CAMBRIDGE, ENGLAND) 2015. [PMID: 26511928 DOI: 10.1242/dev.125609.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lamprey is one of only two living jawless vertebrates, a group that includes the first vertebrates. Comparisons between lamprey and jawed vertebrates have yielded important insights into the origin and evolution of vertebrate physiology, morphology and development. Despite its key phylogenetic position, studies of lamprey have been limited by their complex life history, which makes traditional genetic approaches impossible. The CRISPR/Cas9 system is a bacterial defense mechanism that was recently adapted to achieve high-efficiency targeted mutagenesis in eukaryotes. Here we report CRISPR/Cas9-mediated disruption of the genes Tyrosinase and FGF8/17/18 in the sea lamprey Petromyzon marinus, and detail optimized parameters for producing mutant F0 embryos. Using phenotype and genotype analyses, we show that CRISPR/Cas9 is highly effective in the sea lamprey, with a majority of injected embryos developing into complete or partial mutants. The ability to create large numbers of mutant embryos without inbred lines opens exciting new possibilities for studying development in lamprey and other non-traditional model organisms with life histories that prohibit the generation of mutant lines.
Collapse
Affiliation(s)
- Tyler Square
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Boulder, CO 80309, USA
| | - Marek Romášek
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Boulder, CO 80309, USA
| | - David Jandzik
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Boulder, CO 80309, USA Department of Zoology, Comenius University in Bratislava, Bratislava 84215, Slovakia
| | - Maria V Cattell
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Boulder, CO 80309, USA Department of Pediatrics, University of Colorado, Denver, Aurora, CO 80045, USA
| | - Michael Klymkowsky
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, CO 80309, USA
| | - Daniel M Medeiros
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Boulder, CO 80309, USA
| |
Collapse
|
17
|
Abstract
Lampreys, one of the two surviving groups of ancient vertebrates, have become important models for study in diverse fields of biology. Lampreys (of which there are approximately 40 species) are being studied, for example, (a) to control pest sea lamprey in the North American Great Lakes and to restore declining populations of native species elsewhere; (b) in biomedical research, focusing particularly on the regenerative capability of lampreys; and (c) by developmental biologists studying the evolution of key vertebrate characters. Although a lack of genetic resources has hindered research on the mechanisms regulating many aspects of lamprey life history and development, formerly intractable questions are now amenable to investigation following the recent publication of the sea lamprey genome. Here, we provide an overview of the ways in which genomic tools are currently being deployed to tackle diverse research questions and suggest several areas that may benefit from the availability of the sea lamprey genome.
Collapse
Affiliation(s)
- David W McCauley
- David W. McCauley ( ) is affiliated with the Department of Biology at the University of Oklahoma, in Norman. Margaret F. Docker and Steve Whyard are affiliated with the Department of Biological Sciences at the University of Manitoba, in Winnipeg, Canada. Weiming Li is affiliated with the Department of Fisheries and Wildlife at Michigan State University, in East Lansing
| | - Margaret F Docker
- David W. McCauley ( ) is affiliated with the Department of Biology at the University of Oklahoma, in Norman. Margaret F. Docker and Steve Whyard are affiliated with the Department of Biological Sciences at the University of Manitoba, in Winnipeg, Canada. Weiming Li is affiliated with the Department of Fisheries and Wildlife at Michigan State University, in East Lansing
| | - Steve Whyard
- David W. McCauley ( ) is affiliated with the Department of Biology at the University of Oklahoma, in Norman. Margaret F. Docker and Steve Whyard are affiliated with the Department of Biological Sciences at the University of Manitoba, in Winnipeg, Canada. Weiming Li is affiliated with the Department of Fisheries and Wildlife at Michigan State University, in East Lansing
| | - Weiming Li
- David W. McCauley ( ) is affiliated with the Department of Biology at the University of Oklahoma, in Norman. Margaret F. Docker and Steve Whyard are affiliated with the Department of Biological Sciences at the University of Manitoba, in Winnipeg, Canada. Weiming Li is affiliated with the Department of Fisheries and Wildlife at Michigan State University, in East Lansing
| |
Collapse
|
18
|
Square T, Romášek M, Jandzik D, Cattell MV, Klymkowsky M, Medeiros DM. CRISPR/Cas9-mediated mutagenesis in the sea lamprey Petromyzon marinus: a powerful tool for understanding ancestral gene functions in vertebrates. Development 2015; 142:4180-7. [PMID: 26511928 DOI: 10.1242/dev.125609] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 10/19/2015] [Indexed: 12/24/2022]
Abstract
Lamprey is one of only two living jawless vertebrates, a group that includes the first vertebrates. Comparisons between lamprey and jawed vertebrates have yielded important insights into the origin and evolution of vertebrate physiology, morphology and development. Despite its key phylogenetic position, studies of lamprey have been limited by their complex life history, which makes traditional genetic approaches impossible. The CRISPR/Cas9 system is a bacterial defense mechanism that was recently adapted to achieve high-efficiency targeted mutagenesis in eukaryotes. Here we report CRISPR/Cas9-mediated disruption of the genes Tyrosinase and FGF8/17/18 in the sea lamprey Petromyzon marinus, and detail optimized parameters for producing mutant F0 embryos. Using phenotype and genotype analyses, we show that CRISPR/Cas9 is highly effective in the sea lamprey, with a majority of injected embryos developing into complete or partial mutants. The ability to create large numbers of mutant embryos without inbred lines opens exciting new possibilities for studying development in lamprey and other non-traditional model organisms with life histories that prohibit the generation of mutant lines.
Collapse
Affiliation(s)
- Tyler Square
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Boulder, CO 80309, USA
| | - Marek Romášek
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Boulder, CO 80309, USA
| | - David Jandzik
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Boulder, CO 80309, USA Department of Zoology, Comenius University in Bratislava, Bratislava 84215, Slovakia
| | - Maria V Cattell
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Boulder, CO 80309, USA Department of Pediatrics, University of Colorado, Denver, Aurora, CO 80045, USA
| | - Michael Klymkowsky
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, CO 80309, USA
| | - Daniel M Medeiros
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Boulder, CO 80309, USA
| |
Collapse
|
19
|
Miyashita T. Fishing for jaws in early vertebrate evolution: a new hypothesis of mandibular confinement. Biol Rev Camb Philos Soc 2015; 91:611-57. [DOI: 10.1111/brv.12187] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Tetsuto Miyashita
- Department of Biological Sciences; University of Alberta; Edmonton Alberta T6G 2E9 Canada
| |
Collapse
|
20
|
Merkes C, Turkalo TK, Wilder N, Park H, Wenger LW, Lewin SJ, Azuma M. Ewing sarcoma ewsa protein regulates chondrogenesis of Meckel's cartilage through modulation of Sox9 in zebrafish. PLoS One 2015; 10:e0116627. [PMID: 25617839 PMCID: PMC4305327 DOI: 10.1371/journal.pone.0116627] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 12/11/2014] [Indexed: 11/19/2022] Open
Abstract
Ewing sarcoma is the second most common skeletal (bone and cartilage) cancer in adolescents, and it is characterized by the expression of the aberrant chimeric fusion gene EWS/FLI1. Wild-type EWS has been proposed to play a role in mitosis, splicing and transcription. We have previously shown that EWS/FLI1 interacts with EWS, and it inhibits EWS activity in a dominant manner. Ewing sarcoma is a cancer that specifically develops in skeletal tissues, and although the above data suggests the significance of EWS, its role in chondrogenesis/skeletogenesis is not understood. To elucidate the function of EWS in skeletal development, we generated and analyzed a maternal zygotic (MZ) ewsa/ewsa line because the ewsa/wt and ewsa/ewsa zebrafish appeared to be normal and fertile. Compared with wt/wt, the Meckel's cartilage of MZ ewsa/ewsa mutants had a higher number of craniofacial prehypertrophic chondrocytes that failed to mature into hypertrophic chondrocytes at 4 days post-fertilization (dpf). Ewsa interacted with Sox9, which is the master transcription factor for chondrogenesis. Sox9 target genes were either upregulated (ctgfa, ctgfb, col2a1a, and col2a1b) or downregulated (sox5, nog1, nog2, and bmp4) in MZ ewsa/ewsa embryos compared with the wt/wt zebrafish embryos. Among these Sox9 target genes, the chromatin immunoprecipitation (ChIP) experiment demonstrated that Ewsa directly binds to ctgfa and ctgfb loci. Consistently, immunohistochemistry showed that the Ctgf protein is upregulated in the Meckel's cartilage of MZ ewsa/ewsa mutants. Together, we propose that Ewsa promotes the differentiation from prehypertrophic chondrocytes to hypertrophic chondrocytes of Meckel's cartilage through inhibiting Sox9 binding site of the ctgf gene promoter. Because Ewing sarcoma specifically develops in skeletal tissue that is originating from chondrocytes, this new role of EWS may provide a potential molecular basis of its pathogenesis.
Collapse
Affiliation(s)
- Chris Merkes
- Molecular Biosciences, University of Kansas, 7031 Haworth, 1200 Sunnyside Avenue, Lawrence, KS 66045, United States of America
| | - Timothy K. Turkalo
- Molecular Biosciences, University of Kansas, 7031 Haworth, 1200 Sunnyside Avenue, Lawrence, KS 66045, United States of America
| | - Nicole Wilder
- Molecular Biosciences, University of Kansas, 7031 Haworth, 1200 Sunnyside Avenue, Lawrence, KS 66045, United States of America
| | - Hyewon Park
- Molecular Biosciences, University of Kansas, 7031 Haworth, 1200 Sunnyside Avenue, Lawrence, KS 66045, United States of America
| | - Luke W. Wenger
- Molecular Biosciences, University of Kansas, 7031 Haworth, 1200 Sunnyside Avenue, Lawrence, KS 66045, United States of America
| | - Seth J. Lewin
- Molecular Biosciences, University of Kansas, 7031 Haworth, 1200 Sunnyside Avenue, Lawrence, KS 66045, United States of America
| | - Mizuki Azuma
- Molecular Biosciences, University of Kansas, 7031 Haworth, 1200 Sunnyside Avenue, Lawrence, KS 66045, United States of America
- * E-mail:
| |
Collapse
|
21
|
Jandzik D, Garnett AT, Square TA, Cattell MV, Yu JK, Medeiros DM. Evolution of the new vertebrate head by co-option of an ancient chordate skeletal tissue. Nature 2014; 518:534-7. [PMID: 25487155 DOI: 10.1038/nature14000] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 10/24/2014] [Indexed: 02/01/2023]
Abstract
A defining feature of vertebrates (craniates) is a pronounced head that is supported and protected by a robust cellular endoskeleton. In the first vertebrates, this skeleton probably consisted of collagenous cellular cartilage, which forms the embryonic skeleton of all vertebrates and the adult skeleton of modern jawless and cartilaginous fish. In the head, most cellular cartilage is derived from a migratory cell population called the neural crest, which arises from the edges of the central nervous system. Because collagenous cellular cartilage and neural crest cells have not been described in invertebrates, the appearance of cellular cartilage derived from neural crest cells is considered a turning point in vertebrate evolution. Here we show that a tissue with many of the defining features of vertebrate cellular cartilage transiently forms in the larvae of the invertebrate chordate Branchiostoma floridae (Florida amphioxus). We also present evidence that during evolution, a key regulator of vertebrate cartilage development, SoxE, gained new cis-regulatory sequences that subsequently directed its novel expression in neural crest cells. Together, these results suggest that the origin of the vertebrate head skeleton did not depend on the evolution of a new skeletal tissue, as is commonly thought, but on the spread of this tissue throughout the head. We further propose that the evolution of cis-regulatory elements near an ancient regulator of cartilage differentiation was a major factor in the evolution of the vertebrate head skeleton.
Collapse
Affiliation(s)
- David Jandzik
- 1] Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309, USA [2] Department of Zoology, Comenius University, Bratislava 84215, Slovakia
| | - Aaron T Garnett
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309, USA
| | - Tyler A Square
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309, USA
| | - Maria V Cattell
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309, USA
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Daniel M Medeiros
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
22
|
Jandzik D, Hawkins MB, Cattell MV, Cerny R, Square TA, Medeiros DM. Roles for FGF in lamprey pharyngeal pouch formation and skeletogenesis highlight ancestral functions in the vertebrate head. Development 2014; 141:629-38. [PMID: 24449839 DOI: 10.1242/dev.097261] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A defining feature of vertebrates (craniates) is a pronounced head supported and protected by a cellularized endoskeleton. In jawed vertebrates (gnathostomes), the head skeleton is made of rigid three-dimensional elements connected by joints. By contrast, the head skeleton of modern jawless vertebrates (agnathans) consists of thin rods of flexible cellular cartilage, a condition thought to reflect the ancestral vertebrate state. To better understand the origin and evolution of the gnathostome head skeleton, we have been analyzing head skeleton development in the agnathan, lamprey. The fibroblast growth factors FGF3 and FGF8 have various roles during head development in jawed vertebrates, including pharyngeal pouch morphogenesis, patterning of the oral skeleton and chondrogenesis. We isolated lamprey homologs of FGF3, FGF8 and FGF receptors and asked whether these functions are ancestral features of vertebrate development or gnathostome novelties. Using gene expression and pharmacological agents, we found that proper formation of the lamprey head skeleton requires two phases of FGF signaling: an early phase during which FGFs drive pharyngeal pouch formation, and a later phase when they directly regulate skeletal differentiation and patterning. In the context of gene expression and functional studies in gnathostomes, our results suggest that these roles for FGFs arose in the first vertebrates and that the evolution of the jaw and gnathostome cellular cartilage was driven by changes developmentally downstream from pharyngeal FGF signaling.
Collapse
Affiliation(s)
- David Jandzik
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Boulder, CO 80309, USA
| | | | | | | | | | | |
Collapse
|
23
|
Oncogenicity of the transcription factor SOX8 in hepatocellular carcinoma. Med Oncol 2014; 31:918. [DOI: 10.1007/s12032-014-0918-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/07/2014] [Indexed: 10/25/2022]
|
24
|
Juarez M, Reyes M, Coleman T, Rotenstein L, Sao S, Martinez D, Jones M, Mackelprang R, De Bellard ME. Characterization of the trunk neural crest in the bamboo shark, Chiloscyllium punctatum. J Comp Neurol 2014; 521:3303-20. [PMID: 23640803 DOI: 10.1002/cne.23351] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 04/15/2013] [Accepted: 04/25/2013] [Indexed: 12/12/2022]
Abstract
The neural crest is a population of mesenchymal cells that after migrating from the neural tube gives rise to structure and cell types: the jaw, part of the peripheral ganglia, and melanocytes. Although much is known about neural crest development in jawed vertebrates, a clear picture of trunk neural crest development for elasmobranchs is yet to be developed. Here we present a detailed study of trunk neural crest development in the bamboo shark, Chiloscyllium punctatum. Vital labeling with dioctadecyl tetramethylindocarbocyanine perchlorate (DiI) and in situ hybridization using cloned Sox8 and Sox9 probes demonstrated that trunk neural crest cells follow a pattern similar to the migratory paths already described in zebrafish and amphibians. We found shark trunk neural crest along the rostral side of the somites, the ventromedial pathway, the branchial arches, the gut, the sensory ganglia, and the nerves. Interestingly, C. punctatum Sox8 and Sox9 sequences aligned with vertebrate SoxE genes, but appeared to be more ancient than the corresponding vertebrate paralogs. The expression of these two SoxE genes in trunk neural crest cells, especially Sox9, matched the Sox10 migratory patterns observed in teleosts. Also of interest, we observed DiI cells and Sox9 labeling along the lateral line, suggesting that in C. punctatum, glial cells in the lateral line are likely of neural crest origin. Although this has been observed in other vertebrates, we are the first to show that the pattern is present in cartilaginous fishes. These findings demonstrate that trunk neural crest cell development in C. punctatum follows the same highly conserved migratory pattern observed in jawed vertebrates.
Collapse
Affiliation(s)
- Marilyn Juarez
- Biology Department, California State University Northridge, Northridge, California 91330, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Heath G, Childs D, Docker MF, McCauley DW, Whyard S. RNA interference technology to control pest sea lampreys--a proof-of-concept. PLoS One 2014; 9:e88387. [PMID: 24505485 PMCID: PMC3914985 DOI: 10.1371/journal.pone.0088387] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 01/06/2014] [Indexed: 11/18/2022] Open
Abstract
The parasitic sea lamprey (Petromyzon marinus) has caused extensive losses to commercial fish stocks of the upper Great Lakes of North America. Methods of controlling the sea lamprey include trapping, barriers to prevent migration, and use of a chemical lampricide (3-trifluoromethyl-4-nitrophenol) to kill the filter-feeding larvae. Concerns about the non-specificity of these methods have prompted continued development of species-specific methods to control lampreys outside their native range. In this study, we considered the utility of RNA interference to develop a sea lamprey-specific lampricide. Injection of six different short interfering, double-stranded RNAs (siRNAs) into lamprey embryos first confirmed that the siRNAs could reduce the targeted transcript levels by more than 50%. Two size classes of lamprey larvae were then fed the siRNAs complexed with liposomes, and three of the siRNAs (targeting elongation factor 1α, calmodulin, and α-actinin) reduced transcript levels 2.5, 3.6, and 5.0–fold, respectively, within the lamprey midsections. This is not only the first demonstration of RNAi in lampreys, but it is also the first example of delivery of siRNAs to a non-mammalian vertebrate through feeding formulations. One of the siRNA treatments also caused increased mortality of the larvae following a single feeding of siRNAs, which suggests that prolonged or multiple feedings of siRNAs could be used to kill filter-feeding larvae within streams, following development of a slow-release formulation. The genes targeted in this study are highly conserved across many species, and only serve as a proof-of-concept demonstration that siRNAs can be used in lampreys. Given that RNA interference is a sequence-specific phenomenon, it should be possible to design siRNAs that selectively target gene sequences that are unique to sea lampreys, and thus develop a technology to control these pests without adversely affecting non-target species.
Collapse
Affiliation(s)
- George Heath
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Darcy Childs
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Margaret F. Docker
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - David W. McCauley
- Department of Biology, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Steven Whyard
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
26
|
Van Otterloo E, Cornell RA, Medeiros DM, Garnett AT. Gene regulatory evolution and the origin of macroevolutionary novelties: insights from the neural crest. Genesis 2013; 51:457-70. [PMID: 23712931 DOI: 10.1002/dvg.22403] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 05/10/2013] [Accepted: 05/14/2013] [Indexed: 11/07/2022]
Abstract
The appearance of novel anatomic structures during evolution is driven by changes to the networks of transcription factors, signaling pathways, and downstream effector genes controlling development. The nature of the changes to these developmental gene regulatory networks (GRNs) is poorly understood. A striking test case is the evolution of the GRN controlling development of the neural crest (NC). NC cells emerge from the neural plate border (NPB) and contribute to multiple adult structures. While all chordates have a NPB, only in vertebrates do NPB cells express all the genes constituting the neural crest GRN (NC-GRN). Interestingly, invertebrate chordates express orthologs of NC-GRN components in other tissues, revealing that during vertebrate evolution new regulatory connections emerged between transcription factors primitively expressed in the NPB and genes primitively expressed in other tissues. Such interactions could have evolved by two mechanisms. First, transcription factors primitively expressed in the NPB may have evolved new DNA and/or cofactor binding properties (protein neofunctionalization). Alternately, cis-regulatory elements driving NPB expression may have evolved near genes primitively expressed in other tissues (cis-regulatory neofunctionalization). Here we discuss how gene duplication can, in principle, promote either form of neofunctionalization. We review recent published examples of interspecies gene-swap, or regulatory-element-swap, experiments that test both models. Such experiments have yielded little evidence to support the importance of protein neofunctionalization in the emergence of the NC-GRN, but do support the importance of novel cis-regulatory elements in this process. The NC-GRN is an excellent model for the study of gene regulatory and macroevolutionary innovation.
Collapse
Affiliation(s)
- Eric Van Otterloo
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
| | | | | | | |
Collapse
|