1
|
Radaszkiewicz KA, Sulcova M, Kohoutkova E, Harnos J. The role of prickle proteins in vertebrate development and pathology. Mol Cell Biochem 2024; 479:1199-1221. [PMID: 37358815 PMCID: PMC11116189 DOI: 10.1007/s11010-023-04787-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/09/2023] [Indexed: 06/27/2023]
Abstract
Prickle is an evolutionarily conserved family of proteins exclusively associated with planar cell polarity (PCP) signalling. This signalling pathway provides directional and positional cues to eukaryotic cells along the plane of an epithelial sheet, orthogonal to both apicobasal and left-right axes. Through studies in the fruit fly Drosophila, we have learned that PCP signalling is manifested by the spatial segregation of two protein complexes, namely Prickle/Vangl and Frizzled/Dishevelled. While Vangl, Frizzled, and Dishevelled proteins have been extensively studied, Prickle has been largely neglected. This is likely because its role in vertebrate development and pathologies is still being explored and is not yet fully understood. The current review aims to address this gap by summarizing our current knowledge on vertebrate Prickle proteins and to cover their broad versatility. Accumulating evidence suggests that Prickle is involved in many developmental events, contributes to homeostasis, and can cause diseases when its expression and signalling properties are deregulated. This review highlights the importance of Prickle in vertebrate development, discusses the implications of Prickle-dependent signalling in pathology, and points out the blind spots or potential links regarding Prickle, which could be studied further.
Collapse
Affiliation(s)
- K A Radaszkiewicz
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czechia
| | - M Sulcova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czechia
| | - E Kohoutkova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czechia
| | - J Harnos
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czechia.
| |
Collapse
|
2
|
Role of Wnt signaling in the maintenance and regeneration of the intestinal epithelium. Curr Top Dev Biol 2023; 153:281-326. [PMID: 36967198 DOI: 10.1016/bs.ctdb.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The intestinal epithelium plays a key role in digestion and protection against external pathogens. This tissue presents a high cellular turnover with the epithelium being completely renewed every 5days, driven by intestinal stem cells (ISCs) residing in the crypt bases. To sustain this dynamic renewal of the intestinal epithelium, the maintenance, proliferation, and differentiation of ISCs must be precisely controlled. One of the central pathways supporting ISC maintenance and dynamics is the Wnt pathway. In this chapter, we examine the role of Wnt signaling in intestinal epithelial homeostasis and tissue regeneration, including mechanisms regulating ISC identity and fine-tuning of Wnt pathway activation. We extensively discuss the contribution of the stem cell niche in maintaining Wnt signaling in the intestinal crypts that support ISC functions. The integration of these findings highlights the complex interplay of multiple niche signals and cellular components sustaining ISC behavior and maintenance, which together supports the immense plasticity of the intestinal epithelium.
Collapse
|
3
|
Feng Y, Wang Y, Guo K, Feng J, Shao C, Pan M, Ding P, Liu H, Duan H, Lu D, Wang Z, Zhang Y, Zhang Y, Han J, Li X, Yan X. The value of WNT5A as prognostic and immunological biomarker in pan-cancer. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:466. [PMID: 35571400 PMCID: PMC9096401 DOI: 10.21037/atm-22-1317] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/13/2022] [Indexed: 11/25/2022]
Abstract
Background Finding new immune-related biomarkers is one of the promising research directions for tumor immunotherapy. The WNT5A gene could stimulate the WNT pathway and regulate the progression of various tumors. Recent studies have partially revealed the relationship between WNT5A and tumor immunity, but the correlation and underlying mechanisms in pan-cancer remain obscure. Thus, we conducted this study aiming to characterize the prognostic value and immunological portrait of WNT5A in cancer. Methods The data obtained from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Cancer Cell Line Encyclopedia (CCLE) databases was utilized to analyze WNT5A expression levels by Kruskal-Wallis test and correlation to prognosis by Cox regression test and Kaplan-Meier test, while the data was also used to study the association between WNT5A expression and immune microenvironment, immune neoantigens, immune checkpoints, tumor mutational burden (TMB), and microsatellite instability (MSI) in pan-cancer. Gene set enrichment analysis (GSEA) was used to clarify the relevant signaling pathways. The R package was used for data analysis and to create the plots. Results The pan-cancer analysis revealed that the expression level of WNT5A is generally elevated in most tumors (19/34, 55.88%), and high WNT5A expression was correlated with poor prognosis in esophageal carcinoma (ESCA, P<0.05), low-grade glioma (LGG, P<0.01), adrenocortical carcinoma (ACC, P<0.01), pancreatic adenocarcinoma (PAAD, P<0.01), and head and neck squamous cell carcinoma (HNSC, P<0.05). In addition, WNT5A expression was positively associated with immune infiltration, stromal score, and immune checkpoints in most cancers, and correlated to immune neoantigens, TMB, and MSI. Finally, GSEA indicated that WNT5A is implicated in the transforming growth factor β (TGFβ), Notch, and Hedgehog signaling pathways, which may be related to tumor immunity. Conclusions The expression of WNT5A is elevated in most tumors and associated with tumor prognosis. Furthermore, WNT5A is associated with tumor immunity and may be an immunological biomarker in cancer.
Collapse
Affiliation(s)
- Yingtong Feng
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, China.,Department of Cardiothoracic Surgery, The 71st Group Army Hospital of PLA/The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yuanyong Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, China
| | - Kai Guo
- Department of Thoracic Surgery, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Junjun Feng
- Department of Human Resource Management, The 71st Group Army Hospital of PLA/The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, China
| | - Changjian Shao
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, China
| | - Minghong Pan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, China
| | - Peng Ding
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, China
| | - Honggang Liu
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, China
| | - Hongtao Duan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, China
| | - Di Lu
- Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Zhaoyang Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, China
| | - Yimeng Zhang
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an, China
| | - Yujing Zhang
- Department of Cardiothoracic Surgery, The 71st Group Army Hospital of PLA/The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an, China
| | - Xiaofei Li
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, China
| |
Collapse
|
4
|
Abstract
Glypicans are proteoglycans that are bound to the outer surface of the plasma membrane by a glycosylphosphatidylinositol anchor. The mammalian genome contains six members of the glypican family (GPC1 to GPC6). Although the degree of sequence homology within the family is rather low, the three-dimensional structure of these proteoglycans is highly conserved. Glypicans are predominantly expressed during embryonic development. Genetic and biochemical studies have shown that glypicans can stimulate or inhibit the signaling pathways triggered by Wnts, Hedgehogs, Fibroblast Growth Factors, and Bone Morphogenetic Proteins. The study of mutant mouse strains demonstrated that glypicans have important functions in the developmental morphogenesis of various organs. In addition, a role of glypicans in synapsis formation has been established. Notably, glypican loss-of-function mutations are the cause of three human inherited syndromes. Recent analysis of glypican compound mutant mice have demonstrated that members of this protein family display redundant functions during embryonic development.
Collapse
Affiliation(s)
- Jorge Filmus
- Biological Sciences, Sunnybrook Research Institute, and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
García García CJ, Acevedo Diaz AC, Kumari N, Govindaraju S, de la Cruz Bonilla M, San Lucas FA, Nguyen ND, Jiménez Sacarello I, Piwnica-Worms H, Maitra A, Taniguchi CM. HIF2 Regulates Intestinal Wnt5a Expression. Front Oncol 2021; 11:769385. [PMID: 34900719 PMCID: PMC8656274 DOI: 10.3389/fonc.2021.769385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/29/2021] [Indexed: 12/11/2022] Open
Abstract
Radiation therapy for abdominal tumors is challenging because the small intestine is exquisitely radiosensitive. Unfortunately, there are no FDA-approved therapies to prevent or mitigate GI radiotoxicity. The EGLN protein family are oxygen sensors that regulate cell survival and metabolism through the degradation of hypoxia-inducible factors (HIFs). Our group has previously shown that stabilization of HIF2 through genetic deletion or pharmacologic inhibition of the EGLNs mitigates and protects against GI radiotoxicity in mice by improving intestinal crypt stem cell survival. Here we aimed to elucidate the molecular mechanisms by which HIF2 confers GI radioprotection. We developed duodenal organoids from mice, transiently overexpressed non-degradable HIF2, and performed bulk RNA sequencing. Interestingly, HIF2 upregulated known radiation modulators and genes involved in GI homeostasis, including Wnt5a. Non-canonical Wnt5a signaling has been shown by other groups to improve intestinal crypt regeneration in response to injury. Here we show that HIF2 drives Wnt5a expression in multiple duodenal organoid models. Luciferase reporter assays performed in human cells showed that HIF2 directly activates the WNT5A promoter via a hypoxia response element. We then evaluated crypt regeneration using spheroid formation assays. Duodenal organoids that were pre-treated with recombinant Wnt5a had a higher cryptogenic capacity after irradiation, compared to vehicle-treated organoids. Conversely, we found that Wnt5a knockout decreased the cryptogenic potential of intestinal stem cells following irradiation. Treatment with recombinant Wnt5a prior to irradiation rescued the cryptogenic capacity of Wnt5a knockout organoids, indicating that Wnt5a is necessary and sufficient for duodenal radioprotection. Taken together, our results suggest that HIF2 radioprotects the GI tract by inducing Wnt5a expression.
Collapse
Affiliation(s)
- Carolina J. García García
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- School of Medicine, University of Puerto Rico, Rio Piedras, PR, United States
| | | | - Neeraj Kumari
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Suman Govindaraju
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Marimar de la Cruz Bonilla
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- School of Medicine, University of Puerto Rico, Rio Piedras, PR, United States
| | - F. Anthony San Lucas
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nicholas D. Nguyen
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | - Helen Piwnica-Worms
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anirban Maitra
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Cullen M. Taniguchi
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
6
|
Astudillo P. An emergent Wnt5a/YAP/TAZ regulatory circuit and its possible role in cancer. Semin Cell Dev Biol 2021; 125:45-54. [PMID: 34764023 DOI: 10.1016/j.semcdb.2021.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 12/29/2022]
Abstract
Wnt5a is a ligand that plays several roles in development, homeostasis, and disease. A growing body of evidence indicates that Wnt5a is involved in cancer progression. Despite extensive research in this field, our knowledge about how Wnt5a is precisely involved in cancer is still incomplete. It is usually thought that certain combinations of Frizzled receptors and co-receptors might explain the observed effects of Wnt5a either as a tumor suppressor or by promoting migration and invasion. While accepting this 'receptor context' model, this review proposes that Wnt5a is integrated within a larger regulatory circuit involving β-catenin, YAP/TAZ, and LATS1/2. Remarkably, WNT5A and YAP1 are transcriptionally regulated by the Hippo and Wnt pathways, respectively, and might form a regulatory circuit acting through LATS kinases and secreted Wnt/β-catenin inhibitors, including Wnt5a itself. Therefore, understanding the precise role of Wnt5a and YAP in cancer requires a systems biology perspective.
Collapse
Affiliation(s)
- Pablo Astudillo
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile.
| |
Collapse
|
7
|
Saferding V, Hofmann M, Brunner JS, Niederreiter B, Timmen M, Magilnick N, Hayer S, Heller G, Steiner G, Stange R, Boldin M, Schabbauer G, Weigl M, Hackl M, Grillari J, Smolen JS, Blüml S. microRNA-146a controls age-related bone loss. Aging Cell 2020; 19:e13244. [PMID: 33085187 PMCID: PMC7681058 DOI: 10.1111/acel.13244] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/01/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Bone loss is one of the consequences of aging, leading to diseases such as osteoporosis and increased susceptibility to fragility fractures and therefore considerable morbidity and mortality in humans. Here, we identify microRNA‐146a (miR‐146a) as an essential epigenetic switch controlling bone loss with age. Mice deficient in miR‐146a show regular development of their skeleton. However, while WT mice start to lose bone with age, animals deficient in miR‐146a continue to accrue bone throughout their life span. Increased bone mass is due to increased generation and activity of osteoblasts in miR‐146a‐deficient mice as a result of sustained activation of bone anabolic Wnt signaling during aging. Deregulation of the miR‐146a target genes Wnt1 and Wnt5a parallels bone accrual and osteoblast generation, which is accompanied by reduced development of bone marrow adiposity. Furthermore, miR‐146a‐deficient mice are protected from ovariectomy‐induced bone loss. In humans, the levels of miR‐146a are increased in patients suffering fragility fractures in comparison with those who do not. These data identify miR‐146a as a crucial epigenetic temporal regulator which essentially controls bone homeostasis during aging by regulating bone anabolic Wnt signaling. Therefore, miR‐146a might be a powerful therapeutic target to prevent age‐related bone dysfunctions such as the development of bone marrow adiposity and osteoporosis.
Collapse
Affiliation(s)
- Victoria Saferding
- Department of Rheumatology Medical University of Vienna Vienna Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation Vienna Austria
| | - Melanie Hofmann
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation Vienna Austria
- Institute for Vascular Biology Centre for Physiology and Pharmacology Medical University of Vienna Vienna Austria
| | - Julia S. Brunner
- Institute for Vascular Biology Centre for Physiology and Pharmacology Medical University of Vienna Vienna Austria
| | | | - Melanie Timmen
- Department of Regenerative Musculoskeletal Medicine Institute of Musculoskeletal Medicine (IMM) University Hospital Münster Münster Germany
| | - Nathaniel Magilnick
- Department of Molecular and Cellular Biology Beckman Research Institute City of Hope Duarte California USA
| | - Silvia Hayer
- Department of Rheumatology Medical University of Vienna Vienna Austria
| | - Gerwin Heller
- Department of Medicine I Medical University of Vienna Vienna Austria
| | - Günter Steiner
- Department of Rheumatology Medical University of Vienna Vienna Austria
| | - Richard Stange
- Department of Regenerative Musculoskeletal Medicine Institute of Musculoskeletal Medicine (IMM) University Hospital Münster Münster Germany
| | - Mark Boldin
- Department of Molecular and Cellular Biology Beckman Research Institute City of Hope Duarte California USA
| | - Gernot Schabbauer
- Institute for Vascular Biology Centre for Physiology and Pharmacology Medical University of Vienna Vienna Austria
| | - Moritz Weigl
- TAmiRNA GmbH Vienna Austria
- Austrian Cluster for Tissue Regeneration Vienna Austria
| | - Matthias Hackl
- TAmiRNA GmbH Vienna Austria
- Austrian Cluster for Tissue Regeneration Vienna Austria
| | - Johannes Grillari
- Austrian Cluster for Tissue Regeneration Vienna Austria
- Department of Biotechnology Institute for Molecular Biotechnology BOKU – University of Natural Resources and Life Sciences Vienna Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center Vienna Austria
| | - Josef S. Smolen
- Department of Rheumatology Medical University of Vienna Vienna Austria
| | - Stephan Blüml
- Department of Rheumatology Medical University of Vienna Vienna Austria
| |
Collapse
|
8
|
Koopmans T, Hesse L, Nawijn MC, Kumawat K, Menzen MH, Sophie T Bos I, Smits R, Bakker ERM, van den Berge M, Koppelman GH, Guryev V, Gosens R. Smooth-muscle-derived WNT5A augments allergen-induced airway remodelling and Th2 type inflammation. Sci Rep 2020; 10:6754. [PMID: 32317758 PMCID: PMC7174298 DOI: 10.1038/s41598-020-63741-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 04/06/2020] [Indexed: 12/21/2022] Open
Abstract
Asthma is a heterogeneous disease characterized by chronic inflammation and structural changes in the airways. The airway smooth muscle (ASM) is responsible for airway narrowing and an important source of inflammatory mediators. We and others have previously shown that WNT5A mRNA and protein expression is higher in the ASM of asthmatics compared to healthy controls. Here, we aimed to characterize the functional role of (smooth muscle-derived) WNT5A in asthma. We generated a tet-ON smooth-muscle-specific WNT5A transgenic mouse model, enabling in vivo characterization of smooth-muscle-derived WNT5A in response to ovalbumin. Smooth muscle specific WNT5A overexpression showed a clear trend towards enhanced actin (α-SMA) expression in the ASM in ovalbumin challenged animals, but had no effect on collagen content. WNT5A overexpression in ASM also significantly enhanced the production of the Th2-cytokines IL4 and IL5 in lung tissue after ovalbumin exposure. In line with this, WNT5A increased mucus production, and enhanced eosinophilic infiltration and serum IgE production in ovalbumin-treated animals. In addition, CD4+ T cells of asthma patients and healthy controls were stimulated with WNT5A and changes in gene transcription assessed by RNA-seq. WNT5A promoted expression of 234 genes in human CD4+ T cells, among which the Th2 cytokine IL31 was among the top 5 upregulated genes. IL31 was also upregulated in response to smooth muscle-specific WNT5A overexpression in the mouse. In conclusion, smooth-muscle derived WNT5A augments Th2 type inflammation and remodelling. Our findings imply a pro-inflammatory role for smooth muscle-derived WNT5A in asthma, resulting in increased airway wall inflammation and remodelling.
Collapse
Affiliation(s)
- Tim Koopmans
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands
| | - Laura Hesse
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Experimental Pulmonology and Inflammation Research, Groningen, The Netherlands
| | - Martijn C Nawijn
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Experimental Pulmonology and Inflammation Research, Groningen, The Netherlands
| | - Kuldeep Kumawat
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands
| | - Mark H Menzen
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands
| | - I Sophie T Bos
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands
| | - Ron Smits
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Centre, Groningen, The Netherlands
| | - Elvira R M Bakker
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Centre, Groningen, The Netherlands
| | - Maarten van den Berge
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, The Netherlands
| | - Gerard H Koppelman
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children 's Hospital, Groningen, The Netherlands
| | - Victor Guryev
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands.,European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands. .,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
9
|
Astudillo P. Wnt5a Signaling in Gastric Cancer. Front Cell Dev Biol 2020; 8:110. [PMID: 32195251 PMCID: PMC7064718 DOI: 10.3389/fcell.2020.00110] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/10/2020] [Indexed: 12/19/2022] Open
Abstract
Gastric cancer remains an important health challenge, accounting for a significant number of cancer-related deaths worldwide. Therefore, a deeper understanding of the molecular mechanisms involved in gastric cancer establishment and progression is highly desirable. The Wnt pathway plays a fundamental role in development, homeostasis, and disease, and abnormal Wnt signaling is commonly observed in several cancer types. Wnt5a, a ligand that activates the non-canonical branch of the Wnt pathway, can play a role as a tumor suppressor or by promoting cancer cell invasion and migration, although the molecular mechanisms explaining these roles have not been fully elucidated. Wnt5a is increased in gastric cancer samples; however, most gastric cancer cell lines seem to exhibit little expression of this ligand, thus raising the question about the source of this ligand in vivo. This review summarizes available research about Wnt5a expression and signaling in gastric cancer. In gastric cancer, Wnt5a promotes invasion and migration by modulating integrin adhesion turnover. Disheveled, a scaffolding protein with crucial roles in Wnt signaling, mediates the adhesion-related effects of Wnt5a in gastric cancer cells, and several studies provide growing support for a model whereby Disheveled-interacting proteins mediates Wnt5a signaling to modulate cytoskeleton dynamics. However, Wnt5a might induce other effects in gastric cancer cells, such as cell survival and induction of gene expression. On the other hand, the available evidence suggests that Wnt5a might be expressed by cells residing in the tumor microenvironment, where feedback mechanisms sustaining Wnt5a secretion and signaling might be established. This review analyzes the possible functions of Wnt5a in this pathological context and discusses potential links to mechanosensing and YAP/TAZ signaling.
Collapse
Affiliation(s)
- Pablo Astudillo
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
10
|
Shi W, Kaneiwa T, Cydzik M, Gariepy J, Filmus J. Glypican-6 stimulates intestinal elongation by simultaneously regulating Hedgehog and non-canonical Wnt signaling. Matrix Biol 2019; 88:19-32. [PMID: 31756413 DOI: 10.1016/j.matbio.2019.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 01/11/2023]
Abstract
We report here that Glypican-6 (GPC6)-null mice display at birth small intestines that are 75% shorter than those of normal littermates. Notably, we demonstrate that the role of GPC6 in intestinal elongation is mediated by both Hedgehog (Hh) and non-canonical Wnt signaling. Based on results from in vitro experiments, we had previously proposed that GPC6 stimulates Hh signaling by interacting with Hh and Patched1 (Ptc1), and facilitating/stabilizing their interaction. Here we provide strong support to this hypothesis by showing that GPC6 binds to Ptc1 in the mesenchymal layer of embryonic intestines. This study also provides experimental evidence that strongly suggests that GPC6 inhibits the activity of Wnt5a on the intestinal epithelium by binding to this growth factor, and reducing its release from the surrounding mesenchymal cells. Finally, we show that whereas the mesenchymal layer of GPC6-null intestines displays reduced cell proliferation and a thinner smooth muscle layer, epithelial cell differentiation is not altered in the mutant gut.
Collapse
Affiliation(s)
- Wen Shi
- Sunnybrook Research Institute and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Tomoyuki Kaneiwa
- Sunnybrook Research Institute and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Marzena Cydzik
- Sunnybrook Research Institute and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jean Gariepy
- Sunnybrook Research Institute and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jorge Filmus
- Sunnybrook Research Institute and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
11
|
Akiyama N, Yamamoto-Fukuda T, Yoshikawa M, Kojima H. Regulation of DNA methylation levels in the process of oral mucosal regeneration in a rat oral ulcer model. Histol Histopathol 2019; 35:247-256. [PMID: 31286466 DOI: 10.14670/hh-18-147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DNA methylation is an important epigenetic mechanism for cellular maintenance. However, the methylation pattern and the key molecule regulated epigenetically in oral mucosal regeneration is unclear. In this study, we generated a rat oral ulcer model and investigated the cell proliferative activities and DNA methylation patterns immunohistochemically. We also performed immunohistochemical analysis of a regulator of epithelial stem/progenitor cell differentiation in the rat model. We demonstrated immunohistochemistry using antibodies for the molecules as follows: Ki-67, a marker of cellular proliferation; 5-methylcytosine (5-mC), a marker of DNA methylation; 5-hydroxymethylcytosine (5-hmC), a marker of DNA demethylation; Dnmt1, a maintenance DNA methyltransferase; Dnmt3a and Dnmt3b, de novo DNA methyltransferases; and Wnt5a, a regulator of stem/progenitor cell differentiation. In this model, re-epithelialization was completed at Day 4 after ulceration. Regenerating mucosal hypertrophy reached a peak at Day 5 and appeared normal at Day 14. Ki-67-positive cells increased at Day 2 and returned to normal at Day 6 after ulceration. The ratio of the expression level of 5-mC to 5-hmC declined at Day 5 and returned to normal at Day 6. The expression level of Dnmt1 had not changed compared to the normal control at every time point. On the other hand, the expression levels of Dnmt3a and Dnmt3b had decreased significantly at Day 5 and returned to normal at Day 6. Moreover, Wnt5a-positive cells increased at Day 5. In conclusion, oral mucosal regeneration was strictly regulated by DNA methylation. Moreover, Wnt5a might play a critical role in oral mucosal regeneration.
Collapse
Affiliation(s)
- Naotaro Akiyama
- Department of Otorhinolaryngology, Toho University School of Medicine, Tokyo, Japan. .,Department of Histology and Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomomi Yamamoto-Fukuda
- Department of Histology and Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Otorhinolaryngology, Jikei University School of Medicine, Tokyo, Japan
| | - Mamoru Yoshikawa
- Department of Otorhinolaryngology, Toho University School of Medicine, Tokyo, Japan
| | - Hiromi Kojima
- Department of Otorhinolaryngology, Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Wang S, Cebrian C, Schnell S, Gumucio DL. Radial WNT5A-Guided Post-mitotic Filopodial Pathfinding Is Critical for Midgut Tube Elongation. Dev Cell 2018; 46:173-188.e3. [PMID: 30016620 DOI: 10.1016/j.devcel.2018.06.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/17/2018] [Accepted: 06/14/2018] [Indexed: 01/09/2023]
Abstract
The early midgut undergoes intensive elongation, but the underlying cellular and molecular mechanisms are unknown. The early midgut epithelium is pseudostratified, and its nuclei travel between apical and basal surfaces in concert with cell cycle. Using 3D confocal imaging and 2D live imaging, we profiled behaviors of individual dividing cells. As nuclei migrate apically for mitosis, cells maintain a basal process (BP), which splits but is inherited by only one daughter. After mitosis, some daughters directly use the inherited BP as a "conduit" to transport the nucleus basally, while >50% of daughters generate a new basal filopodium and use it as a path to return the nucleus. Post-mitotic filopodial "pathfinding" is guided by mesenchymal WNT5A. Without WNT5A, some cells fail to tether basally and undergo apoptosis, leading to a shortened midgut. Thus, these studies reveal previously unrecognized strategies for efficient post-mitotic nuclear trafficking, which is critical for early midgut elongation.
Collapse
Affiliation(s)
- Sha Wang
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA.
| | - Cristina Cebrian
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Santiago Schnell
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Deborah L Gumucio
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA.
| |
Collapse
|
13
|
Usui K, Tokita M. Creating diversity in mammalian facial morphology: a review of potential developmental mechanisms. EvoDevo 2018; 9:15. [PMID: 29946416 PMCID: PMC6003202 DOI: 10.1186/s13227-018-0103-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/25/2018] [Indexed: 12/22/2022] Open
Abstract
Mammals (class Mammalia) have evolved diverse craniofacial morphology to adapt to a wide range of ecological niches. However, the genetic and developmental mechanisms underlying the diversification of mammalian craniofacial morphology remain largely unknown. In this paper, we focus on the facial length and orofacial clefts of mammals and deduce potential mechanisms that produced diversity in mammalian facial morphology. Small-scale changes in facial morphology from the common ancestor, such as slight changes in facial length and the evolution of the midline cleft in some lineages of bats, could be attributed to heterochrony in facial bone ossification. In contrast, large-scale changes of facial morphology from the common ancestor, such as a truncated, widened face as well as the evolution of the bilateral cleft possessed by some bat species, could be brought about by changes in growth and patterning of the facial primordium (the facial processes) at the early stages of embryogenesis.
Collapse
Affiliation(s)
- Kaoru Usui
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510 Japan
| | - Masayoshi Tokita
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510 Japan
| |
Collapse
|
14
|
The Coordinated Activities of nAChR and Wnt Signaling Regulate Intestinal Stem Cell Function in Mice. Int J Mol Sci 2018; 19:ijms19030738. [PMID: 29510587 PMCID: PMC5877599 DOI: 10.3390/ijms19030738] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 02/27/2018] [Accepted: 03/03/2018] [Indexed: 12/14/2022] Open
Abstract
Cholinergic signaling, which modulates cell activities via nicotinic and muscarinic acetylcholine receptors (n- and mAChRs) in response to internal or external stimuli, has been demonstrated in mammalian non-neuronal cells that synthesize acetylcholine (ACh). One of the major pathways of excitatory transmission in the enteric nervous system (ENS) is mediated by cholinergic transmission, with the transmitter ACh producing excitatory potentials in postsynaptic effector cells. In addition to ACh-synthesizing and ACh-metabolizing elements in the ENS, the presence of non-neuronal ACh machinery has been reported in epithelial cells of the small and large intestines of rats and humans. However, little is known about how non-neuronal ACh controls physiological function in the intestine. Here, experiments using crypt-villus organoids that lack nerve and immune cells in culture suggest that endogenous ACh is synthesized in the intestinal epithelium to drive organoid growth and differentiation through activation of nAChRs. Treatment of organoids with nicotine enhanced cell growth and the expression of marker genes for stem and epithelial cells. On the other hand, the nAChR antagonist mecamylamine strongly inhibited the growth and differentiation of organoids, suggesting the involvement of nAChRs in the regulation of proliferation and differentiation of Lgr5-positive stem cells. More specifically, RNA sequencing analysis revealed that Wnt5a expression was dramatically upregulated after nicotine treatment, and Wnt5a rescued organoid growth and differentiation in response to mecamylamine. Taken together, our results indicate that coordinated activities of nAChR and Wnt signaling maintain Lgr5-positive stem cell activity and balanced differentiation. Furthermore, we could clearly separate the two groups, neuronal ACh in the ENS and non-neuronal ACh in the intestinal epithelium. Dysfunction of the non-neuronal cholinergic system is involved in the pathogenesis of disease. The data will increase our understanding of the cholinergic properties of non-neuronal cells and lead to optimization of drug therapy.
Collapse
|
15
|
Baarsma HA, Skronska-Wasek W, Mutze K, Ciolek F, Wagner DE, John-Schuster G, Heinzelmann K, Günther A, Bracke KR, Dagouassat M, Boczkowski J, Brusselle GG, Smits R, Eickelberg O, Yildirim AÖ, Königshoff M. Noncanonical WNT-5A signaling impairs endogenous lung repair in COPD. J Exp Med 2016; 214:143-163. [PMID: 27979969 PMCID: PMC5206496 DOI: 10.1084/jem.20160675] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/16/2016] [Accepted: 11/04/2016] [Indexed: 01/17/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a leading cause of death worldwide. One main pathological feature of COPD is the loss of functional alveolar tissue without adequate repair (emphysema), yet the underlying mechanisms are poorly defined. Reduced WNT-β-catenin signaling is linked to impaired lung repair in COPD; however, the factors responsible for attenuating this pathway remain to be elucidated. Here, we identify a canonical to noncanonical WNT signaling shift contributing to COPD pathogenesis. We demonstrate enhanced expression of noncanonical WNT-5A in two experimental models of COPD and increased posttranslationally modified WNT-5A in human COPD tissue specimens. WNT-5A was increased in primary lung fibroblasts from COPD patients and induced by COPD-related stimuli, such as TGF-β, cigarette smoke (CS), and cellular senescence. Functionally, mature WNT-5A attenuated canonical WNT-driven alveolar epithelial cell wound healing and transdifferentiation in vitro. Lung-specific WNT-5A overexpression exacerbated airspace enlargement in elastase-induced emphysema in vivo. Accordingly, inhibition of WNT-5A in vivo attenuated lung tissue destruction, improved lung function, and restored expression of β-catenin-driven target genes and alveolar epithelial cell markers in the elastase, as well as in CS-induced models of COPD. We thus identify a novel essential mechanism involved in impaired mesenchymal-epithelial cross talk in COPD pathogenesis, which is amenable to therapy.
Collapse
Affiliation(s)
- Hoeke A Baarsma
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Ludwig Maximilians University Munich, University Hospital Grosshadern, 81377 Munich, Germany
| | - Wioletta Skronska-Wasek
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Ludwig Maximilians University Munich, University Hospital Grosshadern, 81377 Munich, Germany
| | - Kathrin Mutze
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Ludwig Maximilians University Munich, University Hospital Grosshadern, 81377 Munich, Germany
| | - Florian Ciolek
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Ludwig Maximilians University Munich, University Hospital Grosshadern, 81377 Munich, Germany
| | - Darcy E Wagner
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Ludwig Maximilians University Munich, University Hospital Grosshadern, 81377 Munich, Germany
| | - Gerrit John-Schuster
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Ludwig Maximilians University Munich, University Hospital Grosshadern, 81377 Munich, Germany
| | - Katharina Heinzelmann
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Ludwig Maximilians University Munich, University Hospital Grosshadern, 81377 Munich, Germany
| | | | - Ken R Bracke
- Department of Respiratory Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| | | | | | - Guy G Brusselle
- Department of Respiratory Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| | - Ron Smits
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, 3000 Rotterdam, Netherlands
| | - Oliver Eickelberg
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Ludwig Maximilians University Munich, University Hospital Grosshadern, 81377 Munich, Germany
| | - Ali Ö Yildirim
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Ludwig Maximilians University Munich, University Hospital Grosshadern, 81377 Munich, Germany
| | - Melanie Königshoff
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Ludwig Maximilians University Munich, University Hospital Grosshadern, 81377 Munich, Germany
| |
Collapse
|
16
|
Microglia-induced activation of non-canonical Wnt signaling aggravates neurodegeneration in demyelinating disorders. Mol Cell Biol 2016; 36:2728-2741. [PMID: 27550808 DOI: 10.1128/mcb.00139-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Oligodendrocytes are myelinating cells of the central nervous system. Multiple sclerosis (MS) is a demyelinating disease characterized by both myelin loss and neuronal degeneration. However, the molecular mechanisms underlying neuronal degeneration in demyelinating disorders are not fully understood. In the experimental autoimmune encephalomyelitis (EAE) demyelinating mouse model of MS, inflammatory microglia produce cytokines including interleukin-1β (IL-1β). Since microglia and non-canonical Wnt signaling components in neurons, such as the co-receptor Ror2, were observed in the spinal cord of EAE mice, we postulated that the interplay between activated microglia and spinal neurons under EAE conditions is mediated through non-canonical Wnt signaling. EAE treatment up-regulated in vivo expression of non-canonical Wnt signaling components in spinal neurons through microglial activation. In accordance with the neuronal degeneration detected in the EAE spinal cord in vivo, co-culture of spinal neurons with microglia or the application of recombinant IL-1β up-regulated non-canonical Wnt signaling, and induced neuronal cell death, which was suppressed by the inhibition of the Wnt-Ror2 pathway. Ectopic non-canonical Wnt signaling aggravated the demyelinating pathology in another MS mouse model due to Wnt5a-induced neurodegeneration. The linkage between activated microglia and neuronal Wnt-Ror2 signaling may provide a possible candidate target for therapeutic approaches to demyelinating disorders.
Collapse
|
17
|
Kaucka M, Ivashkin E, Gyllborg D, Zikmund T, Tesarova M, Kaiser J, Xie M, Petersen J, Pachnis V, Nicolis SK, Yu T, Sharpe P, Arenas E, Brismar H, Blom H, Clevers H, Suter U, Chagin AS, Fried K, Hellander A, Adameyko I. Analysis of neural crest-derived clones reveals novel aspects of facial development. SCIENCE ADVANCES 2016; 2:e1600060. [PMID: 27493992 PMCID: PMC4972470 DOI: 10.1126/sciadv.1600060] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 06/29/2016] [Indexed: 05/05/2023]
Abstract
Cranial neural crest cells populate the future facial region and produce ectomesenchyme-derived tissues, such as cartilage, bone, dermis, smooth muscle, adipocytes, and many others. However, the contribution of individual neural crest cells to certain facial locations and the general spatial clonal organization of the ectomesenchyme have not been determined. We investigated how neural crest cells give rise to clonally organized ectomesenchyme and how this early ectomesenchyme behaves during the developmental processes that shape the face. Using a combination of mouse and zebrafish models, we analyzed individual migration, cell crowd movement, oriented cell division, clonal spatial overlapping, and multilineage differentiation. The early face appears to be built from multiple spatially defined overlapping ectomesenchymal clones. During early face development, these clones remain oligopotent and generate various tissues in a given location. By combining clonal analysis, computer simulations, mouse mutants, and live imaging, we show that facial shaping results from an array of local cellular activities in the ectomesenchyme. These activities mostly involve oriented divisions and crowd movements of cells during morphogenetic events. Cellular behavior that can be recognized as individual cell migration is very limited and short-ranged and likely results from cellular mixing due to the proliferation activity of the tissue. These cellular mechanisms resemble the strategy behind limb bud morphogenesis, suggesting the possibility of common principles and deep homology between facial and limb outgrowth.
Collapse
Affiliation(s)
- Marketa Kaucka
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Evgeny Ivashkin
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Research Center of Neurology, 125367 Moscow, Russia
| | - Daniel Gyllborg
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Tomas Zikmund
- Central European Institute of Technology, Brno University of Technology, 616 00 Brno, Czech Republic
| | - Marketa Tesarova
- Central European Institute of Technology, Brno University of Technology, 616 00 Brno, Czech Republic
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, 616 00 Brno, Czech Republic
| | - Meng Xie
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Julian Petersen
- Department of Molecular Neurosciences, Medical University of Vienna, Vienna 1190, Austria
| | - Vassilis Pachnis
- Division of Molecular Neurobiology, Medical Research Council National Institute for Medical Research, London NW7 1AA, UK
| | - Silvia K. Nicolis
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - Tian Yu
- Department of Craniofacial Development and Stem Cell Biology, King’s College London Dental Institute, Guy’s Hospital, London SE1 9RT, UK
| | - Paul Sharpe
- Department of Craniofacial Development and Stem Cell Biology, King’s College London Dental Institute, Guy’s Hospital, London SE1 9RT, UK
| | - Ernest Arenas
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Hjalmar Brismar
- Science for Life Laboratory, Royal Institute of Technology, Solna 17121, Sweden
| | - Hans Blom
- Science for Life Laboratory, Royal Institute of Technology, Solna 17121, Sweden
| | - Hans Clevers
- Hubrecht Institute of the Royal Netherlands Academy of Arts and Sciences, Princess Maxima Centre and University Medical Centre Utrecht, 3584 Utrecht, Netherlands
| | - Ueli Suter
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich CH-8093, Switzerland
| | - Andrei S. Chagin
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Kaj Fried
- Department of Neuroscience, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Andreas Hellander
- Department of Information Technology, Uppsala University, Uppsala SE-751 05, Sweden
- Corresponding author. (I.A.); (A.H.)
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Department of Molecular Neurosciences, Medical University of Vienna, Vienna 1190, Austria
- Corresponding author. (I.A.); (A.H.)
| |
Collapse
|
18
|
Abstract
The vertebrate small intestine requires an enormous surface area to effectively absorb nutrients from food. Morphological adaptations required to establish this extensive surface include generation of an extremely long tube and convolution of the absorptive surface of the tube into villi and microvilli. In this Review, we discuss recent findings regarding the morphogenetic and molecular processes required for intestinal tube elongation and surface convolution, examine shared and unique aspects of these processes in different species, relate these processes to known human maladies that compromise absorptive function and highlight important questions for future research.
Collapse
Affiliation(s)
- Katherine D Walton
- Cell and Developmental Biology Department, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Andrew M Freddo
- Cell and Developmental Biology Department, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sha Wang
- Cell and Developmental Biology Department, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Deborah L Gumucio
- Cell and Developmental Biology Department, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
19
|
Kumawat K, Gosens R. WNT-5A: signaling and functions in health and disease. Cell Mol Life Sci 2016; 73:567-87. [PMID: 26514730 PMCID: PMC4713724 DOI: 10.1007/s00018-015-2076-y] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/13/2015] [Accepted: 10/15/2015] [Indexed: 12/14/2022]
Abstract
WNT-5A plays critical roles in a myriad of processes from embryonic morphogenesis to the maintenance of post-natal homeostasis. WNT-5A knock-out mice fail to survive and present extensive structural malformations. WNT-5A predominantly activates β-catenin-independent WNT signaling cascade but can also activate β-catenin signaling to relay its diverse cellular effects such as cell polarity, migration, proliferation, cell survival, and immunomodulation. Moreover, aberrant WNT-5A signaling is associated with several human pathologies such as cancer, fibrosis, and inflammation. Thus, owing to its diverse functions, WNT-5A is a crucial signaling molecule currently under intense investigation with efforts to not only delineate its signaling mechanisms and functions in physiological and pathological conditions, but also to develop strategies for its therapeutic targeting.
Collapse
Affiliation(s)
- Kuldeep Kumawat
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
- Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands.
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
20
|
Kohlnhofer BM, Thompson CA, Walker EM, Battle MA. GATA4 regulates epithelial cell proliferation to control intestinal growth and development in mice. Cell Mol Gastroenterol Hepatol 2015; 2:189-209. [PMID: 27066525 PMCID: PMC4823006 DOI: 10.1016/j.jcmgh.2015.11.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS The embryonic small intestinal epithelium is highly proliferative, and although much is known about mechanisms regulating proliferation in the adult intestine, the mechanisms controlling epithelial cell proliferation in the developing intestine are less clear. GATA4, a transcription factor that regulates proliferation in other developing tissues, is first expressed early in the developing gut in midgut endoderm. GATA4 function within midgut endoderm and the early intestinal epithelium has not been investigated. METHODS Using Sonic Hedgehog Cre to eliminate GATA4 in the midgut endoderm of mouse embryos, we determined the impact of loss of GATA4 on intestinal development, including epithelial cell proliferation, between E9.5-E18.5. RESULTS We found that intestinal length and width were decreased in GATA4 mutants compared with controls. GATA4-deficient intestinal epithelium contained fewer cells, and epithelial girth was decreased. We further observed a decreased proportion of proliferating cells at E10.5 and E11.5 in GATA4 mutants. We demonstrated that GATA4 binds to chromatin containing GATA4 consensus binding sites within Cyclin D2 (Ccnd2), Cyclin dependent kinase 6 (Cdk6), and Frizzled 5 (Fzd5). Moreover, Ccnd2, Cdk6, and Fzd5 transcripts were reduced at E11.5 in GATA4 mutant tissue. Villus morphogenesis was delayed, and villus structure was abnormal in GATA4 mutant intestine. CONCLUSIONS Our data identify GATA4 as an essential regulator of early intestinal epithelial cell proliferation. We propose that GATA4 controls proliferation in part by directly regulating transcription of cell cycle mediators. Our data further suggest that GATA4 affects proliferation through transcriptional regulation of Fzd5, perhaps by influencing the response of the epithelium to WNT signaling.
Collapse
Affiliation(s)
| | | | | | - Michele A. Battle
- Correspondence Address correspondence to: Michele A. Battle, PhD, Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226. fax: (414) 955-6517.Department of Cell BiologyNeurobiology and AnatomyMedical College of Wisconsin8701 Watertown Plank RoadMilwaukeeWisconsin 53226
| |
Collapse
|
21
|
van der Werf CS, Halim D, Verheij JB, Alves MM, Hofstra RM. Congenital Short Bowel Syndrome: from clinical and genetic diagnosis to the molecular mechanisms involved in intestinal elongation. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2352-61. [DOI: 10.1016/j.bbadis.2015.08.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 12/16/2022]
|
22
|
Variants in the Regulatory Region of WNT5A Reduced Risk of Cardiac Conotruncal Malformations in the Chinese Population. Sci Rep 2015; 5:13120. [PMID: 26278011 PMCID: PMC4538571 DOI: 10.1038/srep13120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 07/17/2015] [Indexed: 12/23/2022] Open
Abstract
WNT5A is one of the most highly investigated non-canonical Wnt ligands and is involved in the embryonic heart development, especially in formation of the cardiac conotruncal region by regulating the migration and differentiation of cardiac neural crest (CNC) and second heart field (SHF) cells. No study to date has comprehensively characterized the WNT5A regulatory variants in patients with congenital heart malformations (CHMs). The association between regulatory variants of the WNT5A gene and CHMs was examined in case-control association study in 1,210 CHMs and 798 controls. Individuals carrying a homozygous genotype CC (rs524153) or GG (rs504849) had a similarly reduced risk of conotruncal malformations. The homozygous genotypes (CC for rs524153 and GG for rs504849) were associated with a lower WNT5A transcriptional level compared with the transcriptional level of those with wild-type genotypes. Further functional analysis revealed that an additional upstream single nucleotide polymorphisms (SNP) rs371954924 (–5244GCCA > CC) in a linkage disequilibrium (LD) block with the above genotyped SNPs decreased WNT5A expression through the attenuated binding affinity with the transcription factor SOX9. This is the first demonstration that genetic variants in the regulatory regions of WNT5A play a vital role in sporadic conotruncal malformations susceptibility through the changeable expression of the WNT5A gene.
Collapse
|
23
|
Xiang L, Chen M, He L, Cai B, Du Y, Zhang X, Zhou C, Wang C, Mao JJ, Ling J. Wnt5a regulates dental follicle stem/progenitor cells of the periodontium. Stem Cell Res Ther 2014; 5:135. [PMID: 25510849 PMCID: PMC4446079 DOI: 10.1186/scrt525] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 11/18/2014] [Indexed: 12/20/2022] Open
Abstract
Introduction Dental follicle gives rise to one or several tissues of the periodontium including the periodontal ligament, cementum and/or alveolar bone. Whether Wnt5a is expressed in the postnatal periodontium or regulates dental follicle stem/progenitor cells is unknown. Methods Dental follicle stem/progenitor cells were isolated from postnatal day 1 (p1) to p11 from rat mandibular first molars. Immunolocalization mapped Wnt5a expression in the alveolar bone, periodontal ligament, and the developing ameloblast and odontoblast layers. Mononucleated and adherent cells were isolated from p7 dental follicle. Wnt5a was overexpressed in dental follicle stem/progenitor cells to study their proliferation, osteogenic differentiation and migration behavior, with subpopulations of native dental follicle stem/progenitor cells as controls, using real-time PCR (Taqman), Lenti-viral transfection, Western blotting and immunofluorescence. Results Wnt5a was expressed consistently in p1 to p11 rat peridontium. Native, p7 dental follicle stem/progenitor cells had modest ability to mineralize in the tested 14 days. Even in chemically defined osteogenesis medium, dental follicle stem/progenitor cells only showed modest mineralization. Upon addition of 300 ng/mL Wnt5a protein in osteogenesis medium, dental follicle stem/progenitor cells displayed mineralization that was still unremarkable. Chemically induced or Wnt5a-induced mineralization of dental follicle cells only occurred sparsely. Combination of Wnt5a with 100 ng/mL BMP2 finally prompted dental follicle stem/progenitor cells to produce robust mineralization with elevated expression of Runx2, alkaline phosphatase, collagen 1α1 and osteocalcin. Thus, native dental follicle stem/progenitor cells or some of their fractions may be somewhat modest in mineralization. Strikingly, Wnt5a protein significantly augmented RANKL ligand, suggesting putative regulatory roles of dental follicle stem/progenitor cells for the monocyte/osteoclast lineage and potential involvement in alveolar bone remodeling and/or resorption. P-Jnk1/2 was activated in Wnt5a overexpressed dental follicle cells; conversely, exposure to SP600125, a c-Jun N-terminal kinase (JNK) inhibitor attenuated Runx2, collagen 1α1 and osteocalcin expression either in the presence or absence of Wnt5a. Wnt5a overexpression in dental follicle stem/progenitor cells significantly reduced their proliferation rates, but robustly augmented their migration capacity. Conclusions These findings provide a glimpse of Wnt5a’s putative roles in dental follicle stem/progenitor cells and the periodontium with implications in periodontal disease, tooth eruption, dental implant bone healing and orthodontic tooth movement.
Collapse
|
24
|
Liu C, Lin C, Gao C, May-Simera H, Swaroop A, Li T. Null and hypomorph Prickle1 alleles in mice phenocopy human Robinow syndrome and disrupt signaling downstream of Wnt5a. Biol Open 2014; 3:861-70. [PMID: 25190059 PMCID: PMC4163663 DOI: 10.1242/bio.20148375] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Planar cell polarity (PCP) signaling plays a critical role in tissue morphogenesis. In mammals, disruption of three of the six "core PCP" components results in polarity-dependent defects with rotated cochlear hair cell stereocilia and open neural tube. We recently demonstrated a role of Prickle1, a core PCP molecule in Drosophila, in mammalian neuronal development. To examine Prickle1 function along a broader developmental window, we generated three mutant alleles in mice. We show that the complete loss of Prickle1 leads to systemic tissue outgrowth defects, aberrant cell organization and disruption of polarity machinery. Curiously, Prickle1 mutants recapitulate the characteristic features of human Robinow syndrome and phenocopy mouse mutants with Wnt5a or Ror2 gene defects, prompting us to explore an association of Prickle1 with the Wnt pathway. We show that Prickle1 is a proteasomal target of Wnt5a signaling and that Dvl2, a target of Wnt5a signaling, is misregulated in Prickle1 mutants. Our studies implicate Prickle1 as a key component of the Wnt-signaling pathway and suggest that Prickle1 mediates some of the WNT5A-associated genetic defects in Robinow syndrome.
Collapse
Affiliation(s)
- Chunqiao Liu
- Neurobiology-Neurodegeneration and Repair Laboratory (N-NRL), MSC0610, 6 Center Drive, Bethesda, MD 20892, USA
| | - Chen Lin
- Neurobiology-Neurodegeneration and Repair Laboratory (N-NRL), MSC0610, 6 Center Drive, Bethesda, MD 20892, USA Current address: The Ohio State University College of Medicine, 370 West 9th Avenue, Columbus, OH 43210, USA
| | - Chun Gao
- Imaging core facility, National Eye Institute, MSC0610, 6 Center Drive, Bethesda, MD 20892, USA
| | - Helen May-Simera
- Neurobiology-Neurodegeneration and Repair Laboratory (N-NRL), MSC0610, 6 Center Drive, Bethesda, MD 20892, USA
| | - Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory (N-NRL), MSC0610, 6 Center Drive, Bethesda, MD 20892, USA
| | - Tiansen Li
- Neurobiology-Neurodegeneration and Repair Laboratory (N-NRL), MSC0610, 6 Center Drive, Bethesda, MD 20892, USA
| |
Collapse
|
25
|
Wnt signaling in adult intestinal stem cells and cancer. Cell Signal 2013; 26:570-9. [PMID: 24308963 DOI: 10.1016/j.cellsig.2013.11.032] [Citation(s) in RCA: 288] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 11/26/2013] [Indexed: 12/22/2022]
Abstract
Signaling initiated by secreted glycoproteins of the Wnt family regulates many aspects of embryonic development and it is involved in homeostasis of adult tissues. In the gastrointestinal (GI) tract the Wnt pathway maintains the self-renewal capacity of epithelial stem cells. The stem cell attributes are conferred by mutual interactions of the stem cell with its local microenvironment, the stem cell niche. The niche ensures that the threshold of Wnt signaling in the stem cell is kept in physiological range. In addition, the Wnt pathway involves various feedback loops that balance the opposing processes of cell proliferation and differentiation. Today, we have compelling evidence that mutations causing aberrant activation of the Wnt pathway promote expansion of undifferentiated progenitors and lead to cancer. The review summarizes recent advances in characterization of adult epithelial stem cells in the gut. We mainly focus on discoveries related to molecular mechanisms regulating the output of the Wnt pathway. Moreover, we present novel experimental approaches utilized to investigate the epithelial cell signaling circuitry in vivo and in vitro. Pivotal aspects of tissue homeostasis are often deduced from studies of tumor cells; therefore, we also discuss some latest results gleaned from the deep genome sequencing studies of human carcinomas of the colon and rectum.
Collapse
|
26
|
Bakker ERM, Das AM, Helvensteijn W, Franken PF, Swagemakers S, van der Valk MA, ten Hagen TLM, Kuipers EJ, van Veelen W, Smits R. Wnt5a promotes human colon cancer cell migration and invasion but does not augment intestinal tumorigenesis in Apc1638N mice. Carcinogenesis 2013; 34:2629-38. [PMID: 23764752 DOI: 10.1093/carcin/bgt215] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Whereas aberrant activation of canonical Wnt/β-catenin signaling underlies the majority of colorectal cancer cases, the contribution of non-canonical Wnt signaling is unclear. As enhanced expression of the most extensively studied non-canonical Wnt ligand WNT5A is observed in various diseases including colon cancer, WNT5A is gaining attention nowadays. Numerous in vitro studies suggest modulating capacities of WNT5A on proliferation, differentiation, migration and invasion, affecting tumor and non-mutant cells. However, a possible contribution of WNT5A to colorectal cancer remains to be elucidated. We have analyzed WNT5A expression in colorectal cancer profiling data sets, altered WNT5A expression in colon cancer cells and used our inducible Wnt5a transgenic mouse model to gain more insight into the role of WNT5A in intestinal cancer. We observed that increased WNT5A expression is associated with poor prognosis of colorectal cancer patients. WNT5A knockdown in human colon cancer cells caused reduced directional migration, deregulated focal adhesion site formation and reduced invasion, whereas Wnt5a administration promoted the directional migration of colon cancer cells. Despite these observed protumorigenic activities of WNT5A, the induction of Wnt5a expression in intestinal tumors of Apc1638N mice was not sufficient to augment malignancy or metastasis by itself. In conclusion, WNT5A promotes adhesion sites to form in a focal fashion and promotes the directional migration and invasion of colon cancer cells. Although these activities appear insufficient by themselves to augment malignancy or metastasis in Apc1638N mice, they might explain the poor colon cancer prognosis associated with enhanced WNT5A expression.
Collapse
|