1
|
Fogarty EA, Buchert EM, Ma Y, Nicely AB, Buttitta LA. Transcriptional repression and enhancer decommissioning silence cell cycle genes in postmitotic tissues. G3 (BETHESDA, MD.) 2024; 14:jkae203. [PMID: 39171889 PMCID: PMC11457063 DOI: 10.1093/g3journal/jkae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
The mechanisms that maintain a non-cycling status in postmitotic tissues are not well understood. Many cell cycle genes have promoters and enhancers that remain accessible even when cells are terminally differentiated and in a non-cycling state, suggesting their repression must be maintained long term. In contrast, enhancer decommissioning has been observed for rate-limiting cell cycle genes in the Drosophila wing, a tissue where the cells die soon after eclosion, but it has been unclear if this also occurs in other contexts of terminal differentiation. In this study, we show that enhancer decommissioning also occurs at specific, rate-limiting cell cycle genes in the long-lived tissues of the Drosophila eye and brain, and we propose this loss of chromatin accessibility may help maintain a robust postmitotic state. We examined the decommissioned enhancers at specific rate-limiting cell cycle genes and showed that they encode for dynamic temporal and spatial expression patterns that include shared, as well as tissue-specific elements, resulting in broad gene expression with developmentally controlled temporal regulation. We extend our analysis to cell cycle gene expression and chromatin accessibility in the mammalian retina using a published dataset and find that the principles of cell cycle gene regulation identified in terminally differentiating Drosophila tissues are conserved in the differentiating mammalian retina. We propose a robust, non-cycling status is maintained in long-lived postmitotic tissues through a combination of stable repression at most cell cycle genes, alongside enhancer decommissioning at specific rate-limiting cell cycle genes.
Collapse
Affiliation(s)
- Elizabeth A Fogarty
- Molecular, Cellular and Developmental Biology, University of Michigan, 1105 N. University Ave., Ann Arbor, MI 48109, USA
| | - Elli M Buchert
- Molecular, Cellular and Developmental Biology, University of Michigan, 1105 N. University Ave., Ann Arbor, MI 48109, USA
| | - Yiqin Ma
- Molecular, Cellular and Developmental Biology, University of Michigan, 1105 N. University Ave., Ann Arbor, MI 48109, USA
| | - Ava B Nicely
- Molecular, Cellular and Developmental Biology, University of Michigan, 1105 N. University Ave., Ann Arbor, MI 48109, USA
| | - Laura A Buttitta
- Molecular, Cellular and Developmental Biology, University of Michigan, 1105 N. University Ave., Ann Arbor, MI 48109, USA
| |
Collapse
|
2
|
Fogarty EA, Buchert EM, Ma Y, Nicely AB, Buttitta LA. Transcriptional repression and enhancer decommissioning silence cell cycle genes in postmitotic tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592773. [PMID: 38766255 PMCID: PMC11100713 DOI: 10.1101/2024.05.06.592773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The mechanisms that maintain a non-cycling status in postmitotic tissues are not well understood. Many cell cycle genes have promoters and enhancers that remain accessible even when cells are terminally differentiated and in a non-cycling state, suggesting their repression must be maintained long term. In contrast, enhancer decommissioning has been observed for rate-limiting cell cycle genes in the Drosophila wing, a tissue where the cells die soon after eclosion, but it has been unclear if this also occurs in other contexts of terminal differentiation. In this study, we show that enhancer decommissioning also occurs at specific, rate-limiting cell cycle genes in the long-lived tissues of the Drosophila eye and brain, and we propose this loss of chromatin accessibility may help maintain a robust postmitotic state. We examined the decommissioned enhancers at specific rate-limiting cell cycle genes and show that they encode dynamic temporal and spatial expression patterns that include shared, as well as tissue-specific elements, resulting in broad gene expression with developmentally controlled temporal regulation. We extend our analysis to cell cycle gene expression and chromatin accessibility in the mammalian retina using a published dataset, and find that the principles of cell cycle gene regulation identified in terminally differentiating Drosophila tissues are conserved in the differentiating mammalian retina. We propose a robust, non-cycling status is maintained in long-lived postmitotic tissues through a combination of stable repression at most cell cycle gens, alongside enhancer decommissioning at specific rate-limiting cell cycle genes.
Collapse
Affiliation(s)
- Elizabeth A. Fogarty
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor 48109
| | - Elli M. Buchert
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor 48109
| | - Yiqin Ma
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor 48109
| | - Ava B. Nicely
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor 48109
| | - Laura A. Buttitta
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor 48109
| |
Collapse
|
3
|
Deshpande R, Lee B, Qiao Y, Grewal SS. TOR signalling is required for host lipid metabolic remodelling and survival following enteric infection in Drosophila. Dis Model Mech 2022; 15:dmm049551. [PMID: 35363274 PMCID: PMC9118046 DOI: 10.1242/dmm.049551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/22/2022] [Indexed: 12/29/2022] Open
Abstract
When infected by enteric pathogenic bacteria, animals need to initiate local and whole-body defence strategies. Although most attention has focused on the role of innate immune anti-bacterial responses, less is known about how changes in host metabolism contribute to host defence. Using Drosophila as a model system, we identify induction of intestinal target-of-rapamycin (TOR) kinase signalling as a key adaptive metabolic response to enteric infection. We find that enteric infection induces both local and systemic induction of TOR independently of the Immune deficiency (IMD) innate immune pathway, and we see that TOR functions together with IMD signalling to promote infection survival. These protective effects of TOR signalling are associated with remodelling of host lipid metabolism. Thus, we see that TOR is required to limit excessive infection-mediated wasting of host lipid stores by promoting an increase in the levels of gut- and fat body-expressed lipid synthesis genes. Our data support a model in which induction of TOR represents a host tolerance response to counteract infection-mediated lipid wasting in order to promote survival. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
| | | | | | - Savraj S. Grewal
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
4
|
Millington JW, Biswas P, Chao C, Xia YH, Wat LW, Brownrigg GP, Sun Z, Basner-Collins PJ, Klein Geltink RI, Rideout EJ. A low-sugar diet enhances Drosophila body size in males and females via sex-specific mechanisms. Development 2022; 149:dev200491. [PMID: 35195254 PMCID: PMC10656461 DOI: 10.1242/dev.200491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/14/2022] [Indexed: 12/11/2022]
Abstract
In Drosophila, changes to dietary protein elicit different body size responses between the sexes. Whether these differential body size effects extend to other macronutrients remains unclear. Here, we show that lowering dietary sugar (0S diet) enhanced body size in male and female larvae. Despite an equivalent phenotypic effect between the sexes, we detected sex-specific changes to signalling pathways, transcription and whole-body glycogen and protein. In males, the low-sugar diet augmented insulin/insulin-like growth factor signalling pathway (IIS) activity by increasing insulin sensitivity, where increased IIS was required for male metabolic and body size responses in 0S. In females reared on low sugar, IIS activity and insulin sensitivity were unaffected, and IIS function did not fully account for metabolic and body size responses. Instead, we identified a female-biased requirement for the Target of rapamycin pathway in regulating metabolic and body size responses. Together, our data suggest the mechanisms underlying the low-sugar-induced increase in body size are not fully shared between the sexes, highlighting the importance of including males and females in larval studies even when similar phenotypic outcomes are observed.
Collapse
Affiliation(s)
- Jason W. Millington
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Puja Biswas
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Charlotte Chao
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Yi Han Xia
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Lianna W. Wat
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver V6T 1Z3, Canada
| | - George P. Brownrigg
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Ziwei Sun
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Paige J. Basner-Collins
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Ramon I. Klein Geltink
- Department of Pathology and Laboratory Medicine, British Columbia Children's Hospital Research Institute, Vancouver V5Z 4H4, Canada
| | - Elizabeth J. Rideout
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver V6T 1Z3, Canada
| |
Collapse
|
5
|
Ohhara Y, Hoshino G, Imahori K, Matsuyuki T, Yamakawa-Kobayashi K. The Nutrient-Responsive Molecular Chaperone Hsp90 Supports Growth and Development in Drosophila. Front Physiol 2021; 12:690564. [PMID: 34239451 PMCID: PMC8258382 DOI: 10.3389/fphys.2021.690564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/27/2021] [Indexed: 01/09/2023] Open
Abstract
Animals can sense internal nutrients, such as amino acids/proteins, and are able to modify their developmental programs in accordance with their nutrient status. In the fruit fly, Drosophila melanogaster, amino acid/protein is sensed by the fat body, an insect adipose tissue, through a nutrient sensor, target of rapamycin (TOR) complex 1 (TORC1). TORC1 promotes the secretion of various peptide hormones from the fat body in an amino acid/protein-dependent manner. Fat-body-derived peptide hormones stimulate the release of insulin-like peptides, which are essential growth-promoting anabolic hormones, from neuroendocrine cells called insulin-producing cells (IPCs). Although the importance of TORC1 and the fat body-IPC axis has been elucidated, the mechanism by which TORC1 regulates the expression of insulinotropic signal peptides remains unclear. Here, we show that an evolutionarily conserved molecular chaperone, heat shock protein 90 (Hsp90), promotes the expression of insulinotropic signal peptides. Fat-body-selective Hsp90 knockdown caused the transcriptional downregulation of insulinotropic signal peptides. IPC activity and systemic growth were also impaired in fat-body-selective Hsp90 knockdown animals. Furthermore, Hsp90 expression depended on protein/amino acid availability and TORC1 signaling. These results strongly suggest that Hsp90 serves as a nutrient-responsive gene that upregulates the fat body-IPC axis and systemic growth. We propose that Hsp90 is induced in a nutrient-dependent manner to support anabolic metabolism during the juvenile growth period.
Collapse
Affiliation(s)
- Yuya Ohhara
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Genki Hoshino
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kyosuke Imahori
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Tomoya Matsuyuki
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kimiko Yamakawa-Kobayashi
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
6
|
Santiago JC, Boylan JM, Lemieux FA, Gruppuso PA, Sanders JA, Rand DM. Mitochondrial genotype alters the impact of rapamycin on the transcriptional response to nutrients in Drosophila. BMC Genomics 2021; 22:213. [PMID: 33761878 PMCID: PMC7992956 DOI: 10.1186/s12864-021-07516-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 03/08/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND In addition to their well characterized role in cellular energy production, new evidence has revealed the involvement of mitochondria in diverse signaling pathways that regulate a broad array of cellular functions. The mitochondrial genome (mtDNA) encodes essential components of the oxidative phosphorylation (OXPHOS) pathway whose expression must be coordinated with the components transcribed from the nuclear genome. Mitochondrial dysfunction is associated with disorders including cancer and neurodegenerative diseases, yet the role of the complex interactions between the mitochondrial and nuclear genomes are poorly understood. RESULTS Using a Drosophila model in which alternative mtDNAs are present on a common nuclear background, we studied the effects of this altered mitonuclear communication on the transcriptomic response to altered nutrient status. Adult flies with the 'native' and 'disrupted' genotypes were re-fed following brief starvation, with or without exposure to rapamycin, the cognate inhibitor of the nutrient-sensing target of rapamycin (TOR). RNAseq showed that alternative mtDNA genotypes affect the temporal transcriptional response to nutrients in a rapamycin-dependent manner. Pathways most greatly affected were OXPHOS, protein metabolism and fatty acid metabolism. A distinct set of testis-specific genes was also differentially regulated in the experiment. CONCLUSIONS Many of the differentially expressed genes between alternative mitonuclear genotypes have no direct interaction with mtDNA gene products, suggesting that the mtDNA genotype contributes to retrograde signaling from mitochondria to the nucleus. The interaction of mitochondrial genotype (mtDNA) with rapamycin treatment identifies new links between mitochondria and the nutrient-sensing mTORC1 (mechanistic target of rapamycin complex 1) signaling pathway.
Collapse
Affiliation(s)
- John C. Santiago
- grid.40263.330000 0004 1936 9094Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI 02912 USA ,grid.40263.330000 0004 1936 9094Department Pathology & Laboratory Medicine, Brown University, Providence, RI 02912 USA
| | - Joan M. Boylan
- grid.240588.30000 0001 0557 9478Department of Pediatrics, Rhode Island Hospital, Providence, RI 02903 USA
| | - Faye A. Lemieux
- grid.40263.330000 0004 1936 9094Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912 USA
| | - Philip A. Gruppuso
- grid.40263.330000 0004 1936 9094Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI 02912 USA ,grid.240588.30000 0001 0557 9478Department of Pediatrics, Rhode Island Hospital, Providence, RI 02903 USA
| | - Jennifer A. Sanders
- grid.40263.330000 0004 1936 9094Department Pathology & Laboratory Medicine, Brown University, Providence, RI 02912 USA
| | - David M. Rand
- grid.40263.330000 0004 1936 9094Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI 02912 USA ,grid.40263.330000 0004 1936 9094Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912 USA
| |
Collapse
|
7
|
Texada MJ, Koyama T, Rewitz K. Regulation of Body Size and Growth Control. Genetics 2020; 216:269-313. [PMID: 33023929 PMCID: PMC7536854 DOI: 10.1534/genetics.120.303095] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022] Open
Abstract
The control of body and organ growth is essential for the development of adults with proper size and proportions, which is important for survival and reproduction. In animals, adult body size is determined by the rate and duration of juvenile growth, which are influenced by the environment. In nutrient-scarce environments in which more time is needed for growth, the juvenile growth period can be extended by delaying maturation, whereas juvenile development is rapidly completed in nutrient-rich conditions. This flexibility requires the integration of environmental cues with developmental signals that govern internal checkpoints to ensure that maturation does not begin until sufficient tissue growth has occurred to reach a proper adult size. The Target of Rapamycin (TOR) pathway is the primary cell-autonomous nutrient sensor, while circulating hormones such as steroids and insulin-like growth factors are the main systemic regulators of growth and maturation in animals. We discuss recent findings in Drosophila melanogaster showing that cell-autonomous environment and growth-sensing mechanisms, involving TOR and other growth-regulatory pathways, that converge on insulin and steroid relay centers are responsible for adjusting systemic growth, and development, in response to external and internal conditions. In addition to this, proper organ growth is also monitored and coordinated with whole-body growth and the timing of maturation through modulation of steroid signaling. This coordination involves interorgan communication mediated by Drosophila insulin-like peptide 8 in response to tissue growth status. Together, these multiple nutritional and developmental cues feed into neuroendocrine hubs controlling insulin and steroid signaling, serving as checkpoints at which developmental progression toward maturation can be delayed. This review focuses on these mechanisms by which external and internal conditions can modulate developmental growth and ensure proper adult body size, and highlights the conserved architecture of this system, which has made Drosophila a prime model for understanding the coordination of growth and maturation in animals.
Collapse
Affiliation(s)
| | - Takashi Koyama
- Department of Biology, University of Copenhagen, 2100, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, 2100, Denmark
| |
Collapse
|
8
|
Borreguero-Muñoz N, Fletcher GC, Aguilar-Aragon M, Elbediwy A, Vincent-Mistiaen ZI, Thompson BJ. The Hippo pathway integrates PI3K-Akt signals with mechanical and polarity cues to control tissue growth. PLoS Biol 2019; 17:e3000509. [PMID: 31613895 PMCID: PMC6814241 DOI: 10.1371/journal.pbio.3000509] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 10/25/2019] [Accepted: 10/03/2019] [Indexed: 11/19/2022] Open
Abstract
The Hippo signalling pathway restricts cell proliferation in animal tissues by inhibiting Yes-associated protein (YAP or YAP1) and Transcriptional Activator with a PDZ domain (TAZ or WW-domain-containing transcriptional activator [WWTR1]), coactivators of the Scalloped (Sd or TEAD) DNA-binding transcription factor. Drosophila has a single YAP/TAZ homolog named Yorkie (Yki) that is regulated by Hippo pathway signalling in response to epithelial polarity and tissue mechanics during development. Here, we show that Yki translocates to the nucleus to drive Sd-mediated cell proliferation in the ovarian follicle cell epithelium in response to mechanical stretching caused by the growth of the germline. Importantly, mechanically induced Yki nuclear localisation also requires nutritionally induced insulin/insulin-like growth factor 1 (IGF-1) signalling (IIS) via phosphatidyl inositol-3-kinase (PI3K), phosphoinositide-dependent kinase 1 (PDK1 or PDPK1), and protein kinase B (Akt or PKB) in the follicular epithelium. We find similar results in the developing Drosophila wing, where Yki becomes nuclear in the mechanically stretched cells of the wing pouch during larval feeding, which induces IIS, but translocates to the cytoplasm upon cessation of feeding in the third instar stage. Inactivating Akt prevents nuclear Yki localisation in the wing disc, while ectopic activation of the insulin receptor, PI3K, or Akt/PKB is sufficient to maintain nuclear Yki in mechanically stimulated cells of the wing pouch even after feeding ceases. Finally, IIS also promotes YAP nuclear localisation in response to mechanical cues in mammalian skin epithelia. Thus, the Hippo pathway has a physiological function as an integrator of epithelial cell polarity, tissue mechanics, and nutritional cues to control cell proliferation and tissue growth in both Drosophila and mammals.
Collapse
Affiliation(s)
| | - Georgina C. Fletcher
- Epithelial Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Mario Aguilar-Aragon
- Epithelial Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Ahmed Elbediwy
- Epithelial Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - Barry J. Thompson
- Epithelial Biology Laboratory, The Francis Crick Institute, London, United Kingdom
- EMBL Australia, Department of Cancer Biology & Therapeutics, The John Curtin School of Medical Research, The Australian National University, Acton, Australia
- * E-mail:
| |
Collapse
|
9
|
DREF Genetically Counteracts Mi-2 and Caf1 to Regulate Adult Stem Cell Maintenance. PLoS Genet 2019; 15:e1008187. [PMID: 31226128 PMCID: PMC6619835 DOI: 10.1371/journal.pgen.1008187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/10/2019] [Accepted: 05/10/2019] [Indexed: 11/19/2022] Open
Abstract
Active adult stem cells maintain a bipotential state with progeny able to either self-renew or initiate differentiation depending on extrinsic signals from the surrounding microenvironment. However, the intrinsic gene regulatory networks and chromatin states that allow adult stem cells to make these cell fate choices are not entirely understood. Here we show that the transcription factor DNA Replication-related Element Factor (DREF) regulates adult stem cell maintenance in the Drosophila male germline. A temperature-sensitive allele of DREF described in this study genetically separated a role for DREF in germline stem cell self-renewal from the general roles of DREF in cell proliferation. The DREF temperature-sensitive allele caused defects in germline stem cell self-renewal but allowed viability and division of germline stem cells as well as cell viability, growth and division of somatic cyst stem cells in the testes and cells in the Drosophila eye. Germline stem cells mutant for the temperature sensitive DREF allele exhibited lower activation of a TGF-beta reporter, and their progeny turned on expression of the differentiation factor Bam prematurely. Results of genetic interaction analyses revealed that Mi-2 and Caf1/p55, components of the Nucleosome Remodeling and Deacetylase (NuRD) complex, genetically antagonize the role of DREF in germline stem cell maintenance. Taken together, these data suggest that DREF contributes to intrinsic components of the germline stem cell regulatory network that maintains competence to self-renew. Many adult tissues are maintained throughout life by the dual ability of adult stem cells to produce progeny that either self-renew or differentiate to replace specialized cells lost to turnover or damage. Although signals from the surrounding microenvironment have been shown to regulate the choice between self-renewal and onset of differentiation, the intrinsic gene regulatory programs that set up and maintain this bipotential state are not well understood. In this report we describe antagonistic components of an intrinsic stem cell program important for maintaining the balance between self-renewal and differentiation in Drosophila male germline adult stem cell lineage. We identified a temperature-sensitive mutant in the transcription factor DNA Replication-related Element Factor (DREF) gene that disrupts the ability of germline stem cells to self-renew, but not stem cell viability, ability to divide or differentiate under the same conditions. DREF mutant germline stem cells showed defects in the TGF-beta signaling pathway, a pathway that is critical for maintaining the stem cell population. Genetic interaction analyses revealed that Mi-2 and Caf1/p55, components of the Nucleosome Remodeling and Deacetylase complex genetically antagonize the role of DREF in germline stem cell maintenance. We propose that DREF contributes to a transcriptional environment necessary for maintaining a bi-potential stem cell state able to properly respond to extrinsic niche signals.
Collapse
|
10
|
Jonchère V, Alqadri N, Herbert J, Dodgson L, Mason D, Messina G, Falciani F, Bennett D. Transcriptional responses to hyperplastic MRL signalling in Drosophila. Open Biol 2017; 7:rsob.160306. [PMID: 28148822 PMCID: PMC5356444 DOI: 10.1098/rsob.160306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/04/2017] [Indexed: 12/19/2022] Open
Abstract
Recent work has implicated the actin cytoskeleton in tissue size control and tumourigenesis, but how changes in actin dynamics contribute to hyperplastic growth is still unclear. Overexpression of Pico, the only Drosophila Mig-10/RIAM/Lamellipodin adapter protein family member, has been linked to tissue overgrowth via its effect on the myocardin-related transcription factor (Mrtf), an F-actin sensor capable of activating serum response factor (SRF). Transcriptional changes induced by acute Mrtf/SRF signalling have been largely linked to actin biosynthesis and cytoskeletal regulation. However, by RNA profiling, we find that the common response to chronic mrtf and pico overexpression in wing discs was upregulation of ribosome protein and mitochondrial genes, which are conserved targets for Mrtf/SRF and are known growth drivers. Consistent with their ability to induce a common transcriptional response and activate SRF signalling in vitro, we found that both pico and mrtf stimulate expression of an SRF-responsive reporter gene in wing discs. In a functional genetic screen, we also identified deterin, which encodes Drosophila Survivin, as a putative Mrtf/SRF target that is necessary for pico-mediated tissue overgrowth by suppressing proliferation-associated cell death. Taken together, our findings raise the possibility that distinct targets of Mrtf/SRF may be transcriptionally induced depending on the duration of upstream signalling.
Collapse
Affiliation(s)
- Vincent Jonchère
- Department of Biochemistry, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Nada Alqadri
- Department of Biochemistry, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - John Herbert
- Centre for Computational Biology and Modelling (CCBM), Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Lauren Dodgson
- Department of Biochemistry, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - David Mason
- Centre for Cell Imaging, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Giovanni Messina
- Department of Biochemistry, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Francesco Falciani
- Centre for Computational Biology and Modelling (CCBM), Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Daimark Bennett
- Department of Biochemistry, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK .,Centre for Cell Imaging, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| |
Collapse
|
11
|
Dasari V, Srivastava S, Khan S, Mishra RK. Epigenetic factors Polycomb (Pc) and Suppressor of zeste (Su(z)2) negatively regulate longevity in Drosophila melanogaster. Biogerontology 2017; 19:33-45. [PMID: 29177687 DOI: 10.1007/s10522-017-9737-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 11/22/2017] [Indexed: 01/10/2023]
Abstract
The process of aging is a hallmark of the natural life span of all organisms and individuals within a population show variability in the measures of age related performance. Longevity and the rate of aging are influenced by several factors such as genetics, nutrition, stress, and environment. Many studies have focused on the genes that impact aging and there is increasing evidence that epigenetic factors regulate these genes to control life span. Polycomb (PcG) and trithorax (trxG) protein complexes maintain the expression profiles of developmentally important genes and regulate many cellular processes. Here, we report that mutations of PcG and trxG members affect the process of aging in Drosophila melanogaster, with perturbations mostly associated with retardation in aging. We find that mutations in polycomb repressive complex (PRC1) components Pc and Su(z)2 increase fly survival. Using an inducible UAS-GAL4 system, we show that this effect is tissue-specific; knockdown in fat body, but not in muscle or brain tissues, enhances life span. We hypothesize that these two proteins influence life span via pathways independent of their PRC1 functions, with distinct effects on response to oxidative stress. Our observations highlight the role of global epigenetic regulators in determining life span.
Collapse
Affiliation(s)
- Vasanthi Dasari
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
| | - Surabhi Srivastava
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
| | - Shagufta Khan
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
| | - Rakesh K Mishra
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India.
| |
Collapse
|
12
|
Yang H, Hultmark D. Drosophila muscles regulate the immune response against wasp infection via carbohydrate metabolism. Sci Rep 2017; 7:15713. [PMID: 29146985 PMCID: PMC5691183 DOI: 10.1038/s41598-017-15940-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 11/06/2017] [Indexed: 11/09/2022] Open
Abstract
We recently found that JAK/STAT signaling in skeletal muscles is important for the immune response of Drosophila larvae against wasp infection, but it was not clear how muscles could affect the immune response. Here we show that insulin signaling is required in muscles, but not in fat body or hemocytes, during larval development for an efficient encapsulation response and for the formation of lamellocytes. This effect requires TOR signaling. We show that muscle tissue affects the immune response by acting as a master regulator of carbohydrate metabolism in the infected animal, via JAK/STAT and insulin signaling in the muscles, and that there is indirect positive feedback between JAK/STAT and insulin signaling in the muscles. Specifically, stimulation of JAK/STAT signaling in the muscles can rescue the deficient immune response when insulin signaling is suppressed. Our results shed new light on the interaction between metabolism, immunity, and tissue communication.
Collapse
Affiliation(s)
- Hairu Yang
- Department of Molecular Biology, Umeå University, S-901 87, Umeå, Sweden.,Immunology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, 10065, USA
| | - Dan Hultmark
- Department of Molecular Biology, Umeå University, S-901 87, Umeå, Sweden. .,Institute of Biomedical Technology, University of Tampere, FI-33520, Tampere, Finland.
| |
Collapse
|
13
|
Tue NT, Yoshioka Y, Mizoguchi M, Yoshida H, Zurita M, Yamaguchi M. DREF plays multiple roles during Drosophila development. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:705-712. [PMID: 28363744 DOI: 10.1016/j.bbagrm.2017.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/27/2017] [Accepted: 03/27/2017] [Indexed: 12/31/2022]
Abstract
DREF was originally identified as a transcription factor that coordinately regulates the expression of DNA replication- and proliferation-related genes in Drosophila. Subsequent studies demonstrated that DREF is involved in tumor suppressor pathways including p53 and Hippo signaling. DREF also regulates the expression of genes encoding components of the JNK and EGFR pathways during Drosophila development. DREF itself is under the control of the TOR pathway during cell and tissue growth responding to nutrition. Recent studies revealed that DREF plays a role in chromatin organization including insulator function, chromatin remodeling, and telomere maintenance. DREF is also involved in the regulation of genes related to mitochondrial biogenesis, linking it to cellular proliferation. Thus, DREF is now emerging as not only a transcription factor, but also a multi-functional protein. In this review, we summarize current advances in studies on the novel functions of Drosophila DREF.
Collapse
Affiliation(s)
- Nguyen Trong Tue
- Gene-Protein Research Center, Hanoi Medical University, Hanoi, Vietnam
| | - Yasuhide Yoshioka
- Faculty of Science and Engineering, Setsunan University, Osaka, Japan
| | - Megumi Mizoguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; The Center for Advanced Insect Research, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Mario Zurita
- Departamento de Genética del Desarrollo Y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62250 Cuernavaca, Mor., Mexico
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; The Center for Advanced Insect Research, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|
14
|
Zheng H, Yang X, Xi Y. Fat body remodeling and homeostasis control in Drosophila. Life Sci 2016; 167:22-31. [DOI: 10.1016/j.lfs.2016.10.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/14/2016] [Accepted: 10/16/2016] [Indexed: 11/29/2022]
|
15
|
Zabidi MA, Stark A. Regulatory Enhancer-Core-Promoter Communication via Transcription Factors and Cofactors. Trends Genet 2016; 32:801-814. [PMID: 27816209 DOI: 10.1016/j.tig.2016.10.003] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/08/2016] [Accepted: 10/10/2016] [Indexed: 01/20/2023]
Abstract
Gene expression is regulated by genomic enhancers that recruit transcription factors and cofactors to activate transcription from target core promoters. Over the past years, thousands of enhancers and core promoters in animal genomes have been annotated, and we have learned much about the domain structure in which regulatory genomes are organized in animals. Enhancer-core-promoter targeting occurs at several levels, including regulatory domains, DNA accessibility, and sequence-encoded core-promoter specificities that are likely mediated by different regulatory proteins. We review here current knowledge about enhancer-core-promoter targeting, regulatory communication between enhancers and core promoters, and the protein factors involved. We conclude with an outlook on open questions that we find particularly interesting and that will likely lead to additional insights in the upcoming years.
Collapse
Affiliation(s)
- Muhammad A Zabidi
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Dr. Bohr-Gasse 7, 1030 Vienna, Austria.
| |
Collapse
|
16
|
Abstract
Many organisms have developed a robust ability to adapt and survive in the face of environmental perturbations that threaten the integrity of their genome, proteome, or metabolome. Studies in multiple model organisms have shown that, in general, when exposed to stress, cells activate a complex prosurvival signaling network that includes immune and DNA damage response genes, chaperones, antioxidant enzymes, structural proteins, metabolic enzymes, and noncoding RNAs. The manner of activation runs the gamut from transcriptional induction of genes to increased stability of transcripts to posttranslational modification of important biosynthetic proteins within the stressed tissue. Superimposed on these largely autonomous effects are nonautonomous responses in which the stressed tissue secretes peptides and other factors that stimulate tissues in different organs to embark on processes that ultimately help the organism as a whole cope with stress. This review focuses on the mechanisms by which tissues in one organ adapt to environmental challenges by regulating stress responses in tissues of different organs.
Collapse
Affiliation(s)
- Edward Owusu-Ansah
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY 10032;
| | | |
Collapse
|
17
|
Boulan L, Milán M, Léopold P. The Systemic Control of Growth. Cold Spring Harb Perspect Biol 2015; 7:cshperspect.a019117. [PMID: 26261282 DOI: 10.1101/cshperspect.a019117] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Growth is a complex process that is intimately linked to the developmental program to form adults with proper size and proportions. Genetics is an important determinant of growth, as exemplified by the role of local diffusible molecules setting up organ proportions. In addition, organisms use adaptive responses allowing modulating the size of individuals according to environmental cues, for example, nutrition. Here, we describe some of the physiological principles participating in the determination of final individual size.
Collapse
Affiliation(s)
- Laura Boulan
- University of Nice-Sophia Antipolis, 06108 Nice, France CNRS, University of Nice-Sophia Antipolis, 06108 Nice, France INSERM, University of Nice-Sophia Antipolis, 06108 Nice, France
| | - Marco Milán
- 5ICREA, Parc Cientific de Barcelona, 08028 Barcelona, Spain
| | - Pierre Léopold
- University of Nice-Sophia Antipolis, 06108 Nice, France CNRS, University of Nice-Sophia Antipolis, 06108 Nice, France INSERM, University of Nice-Sophia Antipolis, 06108 Nice, France
| |
Collapse
|
18
|
Rovenko BM, Kubrak OI, Gospodaryov DV, Perkhulyn NV, Yurkevych IS, Sanz A, Lushchak OV, Lushchak VI. High sucrose consumption promotes obesity whereas its low consumption induces oxidative stress in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2015; 79:42-54. [PMID: 26050918 DOI: 10.1016/j.jinsphys.2015.05.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 05/12/2015] [Accepted: 05/27/2015] [Indexed: 06/04/2023]
Abstract
The effects of sucrose in varied concentrations (0.25-20%) with constant amount of yeasts in larval diet on development and metabolic parameters of adult fruit fly Drosophila melanogaster were studied. Larvae consumed more food at low sucrose diet, overeating with yeast. On high sucrose diet, larvae ingested more carbohydrates, despite consuming less food and obtaining less protein derived from yeast. High sucrose diet slowed down pupation and increased pupa mortality, enhanced levels of lipids and glycogen, increased dry body mass, decreased water content, i.e. resulted in obese phenotype. Furthermore, it suppressed reactive oxygen species-induced oxidation of lipids and proteins as well as the activity of superoxide dismutase. The activity of catalase was gender-related. In males, at all sucrose concentrations used catalase activity was higher than at its concentration of 0.25%, whereas in females sucrose concentration virtually did not influence the activity. High sucrose diet increased content of protein thiols and the activity of glucose-6-phosphate dehydrogenase. The increase in sucrose concentration also enhanced uric acid level in females, but caused opposite effects in males. Development on high sucrose diets was accompanied by elevated steady-state insulin-like peptide 3 mRNA level. Finally, carbohydrate starvation at yeast overfeeding on low sucrose diets resulted in oxidative stress reflected by higher levels of oxidized lipids and proteins accompanied by increased superoxide dismutase activity. Potential mechanisms involved in regulation of redox processes by carbohydrates are discussed.
Collapse
Affiliation(s)
- Bohdana M Rovenko
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk 76018, Ukraine
| | - Olga I Kubrak
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk 76018, Ukraine
| | - Dmytro V Gospodaryov
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk 76018, Ukraine
| | - Natalia V Perkhulyn
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk 76018, Ukraine
| | - Ihor S Yurkevych
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk 76018, Ukraine
| | - Alberto Sanz
- Institute for Cell and Molecular Biosciences and Newcastle Institute for Ageing, Newcastle University, Newcastle-Upon-Tyne NE4 5PL, UK
| | - Oleh V Lushchak
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk 76018, Ukraine.
| | - Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk 76018, Ukraine.
| |
Collapse
|
19
|
Bauke AC, Sasse S, Matzat T, Klämbt C. A transcriptional network controlling glial development in the Drosophila visual system. Development 2015; 142:2184-93. [DOI: 10.1242/dev.119750] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 04/28/2015] [Indexed: 01/07/2023]
Abstract
In the nervous system, glial cells need to be specified from a set of progenitor cells. In the developing Drosophila eye, perineurial glia proliferate and differentiate as wrapping glia in response to a neuronal signal conveyed by the FGF receptor pathway. To unravel the underlying transcriptional network we silenced all genes encoding predicted DNA-binding proteins in glial cells using RNAi. Dref and other factors of the TATA box-binding protein-related factor 2 (TRF2) complex were previously predicted to be involved in cellular metabolism and cell growth. Silencing of these genes impaired early glia proliferation and subsequent differentiation. Dref controls proliferation via activation of the Pdm3 transcription factor, whereas glial differentiation is regulated via Dref and the homeodomain protein Cut. Cut expression is controlled independently of Dref by FGF receptor activity. Loss- and gain-of-function studies show that Cut is required for glial differentiation and is sufficient to instruct the formation of membrane protrusions, a hallmark of wrapping glial morphology. Our work discloses a network of transcriptional regulators controlling the progression of a naïve perineurial glia towards the fully differentiated wrapping glia.
Collapse
Affiliation(s)
- Ann-Christin Bauke
- Institute of Neurobiology, University of Münster, Münster 48149, Germany
| | - Sofia Sasse
- Institute of Neurobiology, University of Münster, Münster 48149, Germany
| | - Till Matzat
- Institute of Neurobiology, University of Münster, Münster 48149, Germany
| | - Christian Klämbt
- Institute of Neurobiology, University of Münster, Münster 48149, Germany
| |
Collapse
|
20
|
The Hippo pathway as a target of the Drosophila DRE/DREF transcriptional regulatory pathway. Sci Rep 2014; 4:7196. [PMID: 25424907 PMCID: PMC4244634 DOI: 10.1038/srep07196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/04/2014] [Indexed: 01/08/2023] Open
Abstract
The DRE/DREF transcriptional regulatory system has been demonstrated to activate a wide variety of genes with various functions. In Drosophila, the Hippo pathway is known to suppress cell proliferation by inducing apoptosis and cell cycle arrest through inactivation of Yorkie, a transcription co-activator. In the present study, we found that half dose reduction of the hippo (hpo) gene induces ectopic DNA synthesis in eye discs that is suppressed by overexpression of DREF. Half reduction of the hpo gene dose reduced apoptosis in DREF-overexpressing flies. Consistent with these observations, overexpression of DREF increased the levels of hpo and phosphorylated Yorkie in eye discs. Interestingly, the diap1-lacZ reporter was seen to be significantly decreased by overexpression of DREF. Luciferase reporter assays in cultured S2 cells revealed that one of two DREs identified in the hpo gene promoter region was responsible for promoter activity in S2 cells. Furthermore, endogenous hpo mRNA was reduced in DREF knockdown S2 cells, and chromatin immnunoprecipitation assays with anti-DREF antibodies proved that DREF binds specifically to the hpo gene promoter region containing DREs in vivo. Together, these results indicate that the DRE/DREF pathway is required for transcriptional activation of the hpo gene to positively control Hippo pathways.
Collapse
|
21
|
p53- and ERK7-dependent ribosome surveillance response regulates Drosophila insulin-like peptide secretion. PLoS Genet 2014; 10:e1004764. [PMID: 25393288 PMCID: PMC4230838 DOI: 10.1371/journal.pgen.1004764] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 09/19/2014] [Indexed: 01/05/2023] Open
Abstract
Insulin-like signalling is a conserved mechanism that coordinates animal growth and metabolism with nutrient status. In Drosophila, insulin-producing median neurosecretory cells (IPCs) regulate larval growth by secreting insulin-like peptides (dILPs) in a diet-dependent manner. Previous studies have shown that nutrition affects dILP secretion through humoral signals derived from the fat body. Here we uncover a novel mechanism that operates cell autonomously in the IPCs to regulate dILP secretion. We observed that impairment of ribosome biogenesis specifically in the IPCs strongly inhibits dILP secretion, which consequently leads to reduced body size and a delay in larval development. This response is dependent on p53, a known surveillance factor for ribosome biogenesis. A downstream effector of this growth inhibitory response is an atypical MAP kinase ERK7 (ERK8/MAPK15), which is upregulated in the IPCs following impaired ribosome biogenesis as well as starvation. We show that ERK7 is sufficient and essential to inhibit dILP secretion upon impaired ribosome biogenesis, and it acts epistatically to p53. Moreover, we provide evidence that p53 and ERK7 contribute to the inhibition of dILP secretion upon starvation. Thus, we conclude that a cell autonomous ribosome surveillance response, which leads to upregulation of ERK7, inhibits dILP secretion to impede tissue growth under limiting dietary conditions. Ribosome biogenesis is a major consumer of cellular energy and a rate-limiting process during cell growth. The ribosome biogenesis pathway is tightly connected with signaling pathways that regulate tissue growth. For example, nutrient-regulated signaling cues adjust the rate of ribosome biogenesis. On the other hand, the process of ribosome biogenesis is closely monitored by so-called surveillance mechanisms. The best-known ribosome surveillance factor is the transcription factor and tumor suppressor p53. In proliferating cells, activation of p53 upon disturbed ribosome biogenesis leads to cell cycle arrest and inhibition of proliferation. Here we show that ribosome surveillance not only regulates growth locally in proliferating cells, but is also coupled to hormonal growth control through regulation of insulin like peptide (dILPs) secretion. We observed that inhibition of ribosome biogenesis in the Drosophila insulin-producing cells generates a strong cell autonomous signal to inhibit dILP secretion. We identify two downstream effectors of this ribosome surveillance response by showing that p53 as well as an atypical MAP kinase ERK7 are mediators of the inhibition of dILP secretion. We also provide evidence that this ribosome surveillance mechanism contributes to nutrient-dependent regulation of dILP secretion.
Collapse
|
22
|
Drosophila neuroblasts as a new model for the study of stem cell self-renewal and tumour formation. Biosci Rep 2014; 34:BSR20140008. [PMID: 24965943 PMCID: PMC4114065 DOI: 10.1042/bsr20140008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Drosophila larval brain stem cells (neuroblasts) have emerged as an important model for the study of stem cell asymmetric division and the mechanisms underlying the transformation of neural stem cells into tumour-forming cancer stem cells. Each Drosophila neuroblast divides asymmetrically to produce a larger daughter cell that retains neuroblast identity, and a smaller daughter cell that is committed to undergo differentiation. Neuroblast self-renewal and differentiation are tightly controlled by a set of intrinsic factors that regulate ACD (asymmetric cell division). Any disruption of these two processes may deleteriously affect the delicate balance between neuroblast self-renewal and progenitor cell fate specification and differentiation, causing neuroblast overgrowth and ultimately lead to tumour formation in the fly. In this review, we discuss the mechanisms underlying Drosophila neural stem cell self-renewal and differentiation. Furthermore, we highlight emerging evidence in support of the notion that defects in ACD in mammalian systems, which may play significant roles in the series of pathogenic events leading to the development of brain cancers.
Collapse
|
23
|
Grifoni D, Bellosta P. Drosophila Myc: A master regulator of cellular performance. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:570-81. [PMID: 25010747 DOI: 10.1016/j.bbagrm.2014.06.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 06/26/2014] [Accepted: 06/30/2014] [Indexed: 11/25/2022]
Abstract
The identification of the Drosophila homolog of the human MYC oncogene has fostered a series of studies aimed to address its functions in development and cancer biology. Due to its essential roles in many fundamental biological processes it is hard to imagine a molecular mechanism in which MYC function is not required. For this reason, the easily manipulated Drosophila system has greatly helped in the dissection of the genetic and molecular pathways that regulate and are regulated by MYC function. In this review, we focus on studies of MYC in the fruitfly with particular emphasis on metabolism and cell competition, highlighting the contributions of this model system in the last decade to our understanding of MYC's complex biological nature. This article is part of a Special Issue entitled: Myc proteins in cell biology and pathology.
Collapse
Affiliation(s)
- Daniela Grifoni
- Department of "Farmacia e Biotecnologie", University of Bologna, Via Selmi 3, 40126 Bologna, Italy.
| | - Paola Bellosta
- Department of "Bioscienze", University of Milan, Via Celoria 26, 20133 Milan, Italy.
| |
Collapse
|
24
|
Abstract
Drosophila contains a single MYC gene. Like its vertebrate homologs, it encodes a transcription factor that activates many targets, including prominently genes involved in ribosome biogenesis and translation. This activity makes Myc a central regulator of growth and/or proliferation of many cell types, such as imaginal disc cells, polyploid cells, stem cells, and blood cells. Importantly, not only does Myc act cell autonomously but it also affects the fate of adjacent cells and tissues. This potential of Myc is harnessed by many different signaling pathways, involving, among others, Wg, Dpp, Hpo, ecdysone, insulin, and mTOR.
Collapse
Affiliation(s)
- Peter Gallant
- Julius-Maximilians-Universität Würzburg, Lehrstuhl für Biochemie und Molekularbiologie, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
25
|
Kawamori A, Shimaji K, Yamaguchi M. Control of e2f1 and PCNA by Drosophila transcription factor DREF. Genesis 2013; 51:741-50. [PMID: 23907762 DOI: 10.1002/dvg.22419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 07/19/2013] [Accepted: 07/24/2013] [Indexed: 12/26/2022]
Abstract
DREF (DNA replication-related element-binding factor), a zinc finger type transcription factor required for proper cell cycle progression in both mitotic and endocycling cells, is a positive regulator of E2F1, an important transcription factor which regulates genes related to the S-phase of the cell cycle. DREF and E2F1 regulate similar sets of replication-related genes, including proliferating cell nuclear antigen (PCNA), and play roles in the G1 to S phase transition. However, the relationships between dref and e2f1 or PCNA during development are poorly understood. Here, we provided evidence for novel control of e2f1 and PCNA involving DREF in endocycling cells. Somatic clone analysis demonstrated that dref knockdown stabilized E2F1 expression at posttranscriptional levels in endocycling salivary gland cells. Similarly, PCNA expression was up-regulated in the endocycling salivary gland cells. Genetic interaction analysis indicated that the endoreplication defects are partly caused via possible enhancement of E2F1 activity. From these results and previous reports, we conclude that regulation of e2f1 and PCNA by DREF in vivo is complex and the regulation mechanism may differ with the tissue and/or positions in the tissue.
Collapse
Affiliation(s)
- Akihito Kawamori
- Department of Applied Biology and Insect Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto, Japan
| | | | | |
Collapse
|
26
|
Fernández-Moreno MA, Hernández R, Adán C, Roberti M, Bruni F, Polosa PL, Cantatore P, Matsushima Y, Kaguni LS, Garesse R. Drosophila nuclear factor DREF regulates the expression of the mitochondrial DNA helicase and mitochondrial transcription factor B2 but not the mitochondrial translation factor B1. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:1136-46. [PMID: 23916463 DOI: 10.1016/j.bbagrm.2013.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 07/16/2013] [Accepted: 07/19/2013] [Indexed: 11/29/2022]
Abstract
DREF [DRE (DNA replication-related element)-binding factor] controls the transcription of numerous genes in Drosophila, many involved in nuclear DNA (nDNA) replication and cell proliferation, three in mitochondrial DNA (mtDNA) replication and two in mtDNA transcription termination. In this work, we have analysed the involvement of DREF in the expression of the known remaining genes engaged in the minimal mtDNA replication (d-mtDNA helicase) and transcription (the activator d-mtTFB2) machineries and of a gene involved in mitochondrial mRNA translation (d-mtTFB1). We have identified their transcriptional initiation sites and DRE sequences in their promoter regions. Gel-shift and chromatin immunoprecipitation assays demonstrate that DREF interacts in vitro and in vivo with the d-mtDNA helicase and d-mtTFB2, but not with the d-mtTFB1 promoters. Transient transfection assays in Drosophila S2 cells with mutated DRE motifs and truncated promoter regions show that DREF controls the transcription of d-mtDNA helicase and d-mtTFB2, but not that of d-mtTFB1. RNA interference of DREF in S2 cells reinforces these results showing a decrease in the mRNA levels of d-mtDNA helicase and d-mtTFB2 and no changes in those of the d-mtTFB1. These results link the genetic regulation of nuclear DNA replication with the genetic control of mtDNA replication and transcriptional activation in Drosophila.
Collapse
Affiliation(s)
- Miguel A Fernández-Moreno
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC and Centro de Investigación Biomédica en Red (CIBERER), Facultad de Medicina, Universidad Autónoma de Madrid, Spain, c/ Arzobispo Morcillo 4, 28029 Madrid, Spain; Instituto de Investigación Sanitaria Hospital Universitario 12 de Octubre (i+12), Madrid, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hyun S. Body size regulation and insulin-like growth factor signaling. Cell Mol Life Sci 2013; 70:2351-65. [PMID: 23508807 PMCID: PMC11113471 DOI: 10.1007/s00018-013-1313-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 02/28/2013] [Accepted: 02/28/2013] [Indexed: 12/18/2022]
Abstract
How animals achieve their specific body size is a fundamental, but still largely unresolved, biological question. Over the past decades, studies on the insect model system have provided some important insights into the process of body size determination and highlighted the importance of insulin/insulin-like growth factor signaling. Fat body, the Drosophila counterpart of liver and adipose tissue, senses nutrient availability and controls larval growth rate by modulating peripheral insulin signaling. Similarly, insulin-like growth factor I produced from liver and muscle promotes postnatal body growth in mammals. Organismal growth is tightly coupled with the process of sexual maturation wherein the sex steroid hormone attenuates body growth. This review summarizes some important findings from Drosophila and mammalian studies that shed light on the general mechanism of animal size determination.
Collapse
Affiliation(s)
- Seogang Hyun
- Department of Biological Sciences, Chung-Ang University, Seoul, 156-756, Korea.
| |
Collapse
|
28
|
Andersen DS, Colombani J, Léopold P. Coordination of organ growth: principles and outstanding questions from the world of insects. Trends Cell Biol 2013; 23:336-44. [PMID: 23587490 DOI: 10.1016/j.tcb.2013.03.005] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 03/13/2013] [Accepted: 03/14/2013] [Indexed: 01/07/2023]
Abstract
In animal species undergoing determinate growth, the making of a full-size adult body requires a series of coordinated growth events culminating in the cessation of growth that precedes sexual maturation. The merger between physiology and genetics now coming to pass in the Drosophila model allows us to decipher these growth events with an unsurpassed level of sophistication. Here, we review several coordination mechanisms that represent fundamental aspects of growth control: adaptation of growth to environmental cues, interorgan coordination, and the coordination of growth with developmental transitions. The view is emerging of an integrated process where organ-autonomous growth is coordinated with both developmental and environmental cues to define final body size.
Collapse
Affiliation(s)
- D S Andersen
- University of Nice-Sophia Antipolis, CNRS, and INSERM, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France
| | | | | |
Collapse
|
29
|
Baker NE. Developmental regulation of nucleolus size during Drosophila eye differentiation. PLoS One 2013; 8:e58266. [PMID: 23472166 PMCID: PMC3589261 DOI: 10.1371/journal.pone.0058266] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 02/05/2013] [Indexed: 11/29/2022] Open
Abstract
When cell cycle withdrawal accompanies terminal differentiation, biosynthesis and cellular growth are likely to change also. In this study, nucleolus size was monitored during cell fate specification in the Drosophila eye imaginal disc using fibrillarin antibody labeling. Nucleolus size is an indicator of ribosome biogenesis and can correlate with cellular growth rate. Nucleolar size was reduced significantly during cell fate specification and differentiation, predominantly as eye disc cells entered a cell cycle arrest that preceded cell fate specification. This reduction in nucleolus size required Dpp and Hh signaling. A transient enlargement of the nucleolus accompanied cell division in the Second Mitotic Wave. Nucleoli continued to diminish in postmitotic cells following fate specification. These results suggest that cellular growth is regulated early in the transition from proliferating progenitor cells to terminal cell fate specification, contemporary with regulation of the cell cycle, and requiring the same extracellular signals.
Collapse
Affiliation(s)
- Nicholas E Baker
- Departments of Genetics, Ophthalmology and Visual Sciences, and Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA.
| |
Collapse
|
30
|
Kawamori A, Shimaji K, Yamaguchi M. Temporal and Spatial Pattern of Dref Expression during Drosophila Bristle Development. Cell Struct Funct 2013; 38:169-81. [DOI: 10.1247/csf.13004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Akihito Kawamori
- Department of Applied Biology, Kyoto Institute of Technology
- Insect Biomedical Research Center, Kyoto Institute of Technology
| | - Kouhei Shimaji
- Department of Applied Biology, Kyoto Institute of Technology
- Insect Biomedical Research Center, Kyoto Institute of Technology
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology
- Insect Biomedical Research Center, Kyoto Institute of Technology
| |
Collapse
|