1
|
Pesce E, Benitez-Gonzalez J, Tindall AJ, Lemkine GF, Robin-Duchesne B, Sachs LM, Pasquier EDD. Testing the sensitivity of the medaka Transgenic Eleuthero-embryonic THYroid-Specific assay (TETHYS) to different mechanisms of action. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107081. [PMID: 39305711 DOI: 10.1016/j.aquatox.2024.107081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 11/12/2024]
Abstract
There are many concerns about the impacts of Endocrine-Disrupting Chemicals on both wildlife and human populations. A plethora of chemicals have been shown to interfere with the Hypothalamic-Pituitary-Thyroid (HPT) axis in vertebrates. Disruption of the HPT axis is one of main endocrine criteria considered for the regulation of chemicals, along with the estrogen axis, androgen axis and steroidogenesis (EATS). In response to these concerns, the Organization for Economic Cooperation and Development (OECD) initiated the validation of test guidelines (TGs) covering the EATS modalities. Regarding thyroid activity and/or disruption assessment, three OECD TGs are validated, all of them using amphibians. To date, no OECD TGs based on fish are available for the detection of Thyroid Active Chemicals (TACs). To fill this gap, we developed a new test for the detection of TACs, the TETHYS assay (Transgenic Eleuthero-embryonic THYroid-Specific assay). This assay uses a medaka (Oryzias latipes) transgenic line Tg(tg:eGFP) expressing Green Fluorescent Protein in the thyroid follicles, under the control of the thyroglobulin promoter. This assay is performed at eleuthero-embryonic life-stages with an exposure length of 72 h. In the present study, the following reference chemicals with known thyroid hormone system mechanism of action have been tested: methimazole, sodium perchlorate, sodium tetrafluoroborate, diclofenac, iopanoic acid, sobetirome, NH-3 and 1-850. Except for the thyroid receptor antagonists, all chemicals tested were identified as thyroid active, modifying the total fluorescence and the size of the thyroid follicles. To investigate the test specificity, we tested three chemicals presumed to be inert on the HPT axis: cefuroxime, abamectin and 17α-ethinylestradiol. All were found to be inactive in the TETHYS assay. This promising New Approach Methodology can serve as a foundation for the development of a new OECD TG in the frame of regulatory assessment of chemicals for thyroid activity.
Collapse
Affiliation(s)
- Elise Pesce
- Laboratoire WatchFrog S.A., 1 Rue Pierre Fontaine, 91000 Évry, France; UMR 7221 Physiologie Moléculaire et Adaptation, CNRS, Muséum National d'Histoire Naturelle, CP32, 57 rue Cuvier, 75005 Paris, France
| | | | - Andrew J Tindall
- Laboratoire WatchFrog S.A., 1 Rue Pierre Fontaine, 91000 Évry, France
| | - Gregory F Lemkine
- Laboratoire WatchFrog S.A., 1 Rue Pierre Fontaine, 91000 Évry, France
| | | | - Laurent M Sachs
- UMR 7221 Physiologie Moléculaire et Adaptation, CNRS, Muséum National d'Histoire Naturelle, CP32, 57 rue Cuvier, 75005 Paris, France
| | | |
Collapse
|
2
|
Gudala S, Sharma A, Lankada A, Liu R, Jha A, Penta S, Dar OI, Yang J. Green One-Pot Synthesis of Thiazole Scaffolds Catalyzed by Reusable NiFe 2O 4 Nanoparticles: In Silico Binding Affinity and In Vitro Anticancer Activity Studies. ACS OMEGA 2024; 9:38262-38271. [PMID: 39281943 PMCID: PMC11391536 DOI: 10.1021/acsomega.4c05587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024]
Abstract
A facile, green, one-pot multicomponent synthesis strategy was employed to fabricate novel thiazole scaffolds incorporating phthalazine, pyridazine, and pyrido-pyridazine derivatives (4a-4o). This synthetic route entailed the reaction of an α-halo carbonyl compound (1) with thiosemicarbazide (2) and various anhydrides (3a-3o), utilizing NiFe2O4 nanoparticles as a reusable catalyst in an ethanol:water (1:1) solvent system. The cytotoxicity of the synthesized compounds was meticulously assessed against three cancer cell lines, A375, HeLa, and MCF-7, employing IC50 values (μM) as the benchmark, and compared to the reference drug erlotinib. Compound 4n displayed remarkable efficacy against A375 (0.87 ± 0.31 μM), HeLa (1.38 ± 1.24 μM), and MCF-7 (1.13 ± 0.96 μM) cell lines, significantly surpassing erlotinib's IC50 values. Additionally, compounds 4k, 4l, 4m, and 4o demonstrated notable cytotoxicity across all tested cell lines, indicating their potential as effective anticancer agents. In silico docking studies against Hsp82 and Hsp90 proteins indicated that ligands 4k, 4m, 4c, 4j, 4o, and 4l had superior binding affinities compared to erlotinib. ADME analysis showed that compounds 4n, 4j, 4l, 4m, and 4o had favorable pharmacokinetic profiles, including nontoxicity, high human intestinal absorption, and low CYP inhibitory promiscuity. Structure-activity relationship analysis revealed that cyano and benzylidene substitutions significantly enhanced anticancer activity. Overall, the synthesized compounds, particularly 4n, demonstrated high efficacy, favorable binding interactions, and promising pharmacokinetic profiles, making them strong candidates for further development as anticancer agents.
Collapse
Affiliation(s)
- Satish Gudala
- Department of Chemistry, National Institute of Technology, Raipur, Chhattisgarh 492010, India
- Key Laboratory of Green Catalysis and Reaction Engineering of Haikou, College of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, People's Republic of China
| | - Archi Sharma
- Department of Chemistry, Vardhman College of Engineering, Hyderabad, Telangana 500085, India
| | - Aruna Lankada
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781039, India
| | - Ruotong Liu
- Key Laboratory of Green Catalysis and Reaction Engineering of Haikou, College of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, People's Republic of China
| | - Anubhuti Jha
- Department of Biotechnology, St. Thomas College, Hemchand Yadav University, Durg, Chhattisgarh 490006, India
| | - Santhosh Penta
- Department of Chemistry, National Institute of Technology, Raipur, Chhattisgarh 492010, India
- Department of Chemistry, National Institute of Technology, Warangal, Telangana 506004, India
| | - Owias Iqbal Dar
- Key Laboratory of Ministry of Education for Advance Materials in Tropical Island Resources, College of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, People's Republic of China
| | - Jianxin Yang
- Key Laboratory of Green Catalysis and Reaction Engineering of Haikou, College of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, People's Republic of China
| |
Collapse
|
3
|
Zhang C, Yang L, Zhang H, Wu F, Zhang Y, Zhang K, Wu C, Li R, Dong M, Zhao S, Song H. TAF1 is needed for the proliferation and maturation of thyroid follicle cells via Notch signaling. Am J Physiol Endocrinol Metab 2024; 326:E832-E841. [PMID: 38656129 DOI: 10.1152/ajpendo.00403.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
Thyroid dysgenesis (TD) is the common pathogenic mechanism of congenital hypothyroidism (CH). In addition, known pathogenic genes are limited to those that are directly involved in thyroid development. To identify additional candidate pathogenetic genes, we performed forward genetic screening for TD in zebrafish, followed by positional cloning. The candidate gene was confirmed in vitro using the Nthy-ori 3.1 cell line and in vivo using a zebrafish model organism. We obtained a novel zebrafish line with thyroid dysgenesis and identified the candidate pathogenetic mutation TATA-box binding protein associated Factor 1 (taf1) by positional cloning. Further molecular studies revealed that taf1 was needed for the proliferation of thyroid follicular cells by binding to the NOTCH1 promoter region. Knockdown of TAF1 impaired the proliferation and maturation of thyroid cells, thereby leading to thyroid dysplasia. This study showed that TAF1 promoted Notch signaling and that this association played a pivotal role in thyroid development.NEW & NOTEWORTHY In our study, we obtained a novel zebrafish line with thyroid dysgenesis (TD) and identified the candidate pathogenetic mutation TATA-box binding protein associated Factor 1 (taf1). Further researches revealed that taf1 was required for thyroid follicular cells by binding to the NOTCH1 promoter region. Our findings revealed a novel role of TAF1 in thyroid morphogenesis.
Collapse
Affiliation(s)
- Caoxu Zhang
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Liu Yang
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Haiyang Zhang
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Fengyao Wu
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Yue Zhang
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Kaiwen Zhang
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Chenyang Wu
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Rui Li
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Mei Dong
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Shuangxia Zhao
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Huaidong Song
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
4
|
Gölz L, Blanc-Legendre M, Rinderknecht M, Behnstedt L, Coordes S, Reger L, Sire S, Cousin X, Braunbeck T, Baumann L. Development of a Zebrafish Embryo-Based Test System for Thyroid Hormone System Disruption: 3Rs in Ecotoxicological Research. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024. [PMID: 38804632 DOI: 10.1002/etc.5878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/05/2024] [Accepted: 03/25/2024] [Indexed: 05/29/2024]
Abstract
There is increasing concern regarding pollutants disrupting the vertebrate thyroid hormone (TH) system, which is crucial for development. Thus, identification of TH system-disrupting chemicals (THSDCs) is an important requirement in the Organisation for Economic Co-operation and Development (OECD) testing framework. The current OECD approach uses different model organisms for different endocrine modalities, leading to a high number of animal tests. Alternative models compatible with the 3Rs (replacement, reduction, refinement) principle are required. Zebrafish embryos, not protected by current European Union animal welfare legislation, represent a promising model. Studies show that zebrafish swim bladder inflation and eye development are affected by THSDCs, and the respective adverse outcome pathways (AOPs) have been established. The present study compared effects of four THSDCs with distinct molecular modes of action: Propylthiouracil (PTU), potassium perchlorate, iopanoic acid, and the TH triiodothyronine (T3) were tested with a protocol based on the OECD fish embryo toxicity test (FET). Effects were analyzed according to the AOP concept from molecular over morphological to behavioral levels: Analysis of thyroid- and eye-related gene expression revealed significant effects after PTU and T3 exposure. All substances caused changes in thyroid follicle morphology of a transgenic zebrafish line expressing fluorescence in thyrocytes. Impaired eye development and swimming activity were observed in all treatments, supporting the hypothesis that THSDCs cause adverse population-relevant changes. Findings thus confirm that the FET can be amended by TH system-related endpoints into an integrated protocol comprising molecular, morphological, and behavioral endpoints for environmental risk assessment of potential endocrine disruptors, which is compatible with the 3Rs principle. Environ Toxicol Chem 2024;00:1-18. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Lisa Gölz
- Aquatic Ecology & Toxicology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
- Current affiliation: Institute of Pharmacology, University of Heidelberg, Heidelberg, Germany
| | | | - Maximilian Rinderknecht
- Aquatic Ecology & Toxicology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Laura Behnstedt
- Aquatic Ecology & Toxicology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Sara Coordes
- Aquatic Ecology & Toxicology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Luisa Reger
- Aquatic Ecology & Toxicology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Sacha Sire
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, INRAE, Palavas, France
| | - Xavier Cousin
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, INRAE, Palavas, France
| | - Thomas Braunbeck
- Aquatic Ecology & Toxicology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Lisa Baumann
- Aquatic Ecology & Toxicology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
- Current affiliation: Amsterdam Institute for Life and Environment, Section Environmental Health & Toxicology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Gölz L, Pannetier P, Fagundes T, Knörr S, Behnstedt L, Coordes S, Matthiessen P, Morthorst J, Vergauwen L, Knapen D, Holbech H, Braunbeck T, Baumann L. Development of the integrated fish endocrine disruptor test-Part B: Implementation of thyroid-related endpoints. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:830-845. [PMID: 37578010 DOI: 10.1002/ieam.4828] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/21/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Given the vital role of thyroid hormones (THs) in vertebrate development, it is essential to identify chemicals that interfere with the TH system. Whereas, among nonmammalian laboratory animals, fish are the most frequently utilized test species in endocrine disruptor research, for example, in guidelines for the detection of effects on the sex hormone system, there is no test guideline (TG) using fish as models for thyroid-related effects; rather, amphibians are used. Therefore, the objective of the present project was to integrate thyroid-related endpoints for fish into a test protocol combining OECD TGs 229 (Fish Short-Term Reproduction Assay) and 234 (Fish Sexual Development Test). The resulting integrated Fish Endocrine Disruption Test (iFEDT) was designed as a comprehensive approach to covering sexual differentiation, early development, and reproduction and to identifying disruption not only of the sexual and/or reproductive system but also the TH system. Two 85-day exposure tests were performed using different well-studied endocrine disruptors: 6-propyl-2-thiouracil (PTU) and 17α-ethinylestradiol (EE2). Whereas the companion Part A of this study presents the findings on effects by PTU and EE2 on endpoints established in existing TGs, the present Part B discusses effects on novel thyroid-related endpoints such as TH levels, thyroid follicle histopathology, and eye development. 6-Propyl-2-thiouracil induced a massive proliferation of thyroid follicles in any life stage, and histopathological changes in the eyes proved to be highly sensitive for TH system disruption especially in younger life stages. For measurement of THs, further methodological development is required. 17-α-Ethinylestradiol demonstrated not only the well-known disruption of the hypothalamic-pituitary-gonadal axis, but also induced effects on thyroid follicles in adult zebrafish (Danio rerio) exposed to higher EE2 concentrations, suggesting crosstalk between endocrine axes. The novel iFEDT has thus proven capable of simultaneously capturing endocrine disruption of both the steroid and thyroid endocrine systems. Integr Environ Assess Manag 2024;20:830-845. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Lisa Gölz
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Pauline Pannetier
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
- Laboratoire de Ploufragan-Plouzané-Niort, Site de Plouzané, Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail, Plouzané, France
| | - Teresa Fagundes
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Susanne Knörr
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Laura Behnstedt
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Sara Coordes
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | | | - Jane Morthorst
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Lucia Vergauwen
- Department of Veterinary Sciences, Veterinary Physiology and Biochemistry, Zebrafishlab, University of Antwerp, Wilrijk, Belgium
| | - Dries Knapen
- Department of Veterinary Sciences, Veterinary Physiology and Biochemistry, Zebrafishlab, University of Antwerp, Wilrijk, Belgium
| | - Henrik Holbech
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Lisa Baumann
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
- Amsterdam Institute for Life and Environment (A-LIFE), Section Environmental Health & Toxicology, Vrije Universiteit Amsterdam, HV Amsterdam, The Netherlands
| |
Collapse
|
6
|
Fang Y, Wan JP, Wang Z, Song SY, Zhang CX, Yang L, Zhang QY, Yan CY, Wu FY, Lu SY, Sun F, Han B, Zhao SX, Dong M, Song HD. Deficiency of the HGF/Met pathway leads to thyroid dysgenesis by impeding late thyroid expansion. Nat Commun 2024; 15:3165. [PMID: 38605010 PMCID: PMC11009301 DOI: 10.1038/s41467-024-47363-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 03/28/2024] [Indexed: 04/13/2024] Open
Abstract
The mechanisms of bifurcation, a key step in thyroid development, are largely unknown. Here we find three zebrafish lines from a forward genetic screening with similar thyroid dysgenesis phenotypes and identify a stop-gain mutation in hgfa and two missense mutations in met by positional cloning from these zebrafish lines. The elongation of the thyroid primordium along the pharyngeal midline was dramatically disrupted in these zebrafish lines carrying a mutation in hgfa or met. Further studies show that MAPK inhibitor U0126 could mimic thyroid dysgenesis in zebrafish, and the phenotypes are rescued by overexpression of constitutively active MEK or Snail, downstream molecules of the HGF/Met pathway, in thyrocytes. Moreover, HGF promotes thyrocyte migration, which is probably mediated by downregulation of E-cadherin expression. The delayed bifurcation of the thyroid primordium is also observed in thyroid-specific Met knockout mice. Together, our findings reveal that HGF/Met is indispensable for the bifurcation of the thyroid primordium during thyroid development mediated by downregulation of E-cadherin in thyrocytes via MAPK-snail pathway.
Collapse
Affiliation(s)
- Ya Fang
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Department of Endocrinology and Metabolism, The Fourth Affiliated Hospital of Soochow University, Medical Center of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Jia-Ping Wan
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zheng Wang
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Shi-Yang Song
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cao-Xu Zhang
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Liu Yang
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Qian-Yue Zhang
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Chen-Yan Yan
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Feng-Yao Wu
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Sang-Yu Lu
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Feng Sun
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Bing Han
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Shuang-Xia Zhao
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Mei Dong
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Huai-Dong Song
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
7
|
Pesce E, Garde M, Rigolet M, Tindall AJ, Lemkine GF, Baumann LA, Sachs LM, Du Pasquier D. A Novel Transgenic Model to Study Thyroid Axis Activity in Early Life Stage Medaka. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:99-109. [PMID: 38117130 PMCID: PMC10786150 DOI: 10.1021/acs.est.3c05515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023]
Abstract
Identifying endocrine disrupting chemicals in order to limit their usage is a priority and required according to the European Regulation. There are no Organization for Economic Co-operation and Development (OECD) test guidelines based on fish available for the detection of Thyroid axis Active Chemicals (TACs). This study aimed to fill this gap by developing an assay at eleuthero-embryonic life stages in a novel medaka (Oryzias latipes) transgenic line. This transgenic line expresses green fluorescent protein (GFP) in thyrocytes, under the control of the medaka thyroglobulin gene promoter. The fluorescence expressed in the thyrocytes is inversely proportional to the thyroid axis activity. When exposed for 72 h to activators (triiodothyronine (T3) and thyroxine (T4)) or inhibitors (6-N-propylthiouracil (PTU), Tetrabromobisphenol A (TBBPA)) of the thyroid axis, the thyrocytes can change their size and express lower or higher levels of fluorescence, respectively. This reflects the regulation of thyroglobulin by the negative feedback loop of the Hypothalamic-Pituitary-Thyroid axis. T3, T4, PTU, and TBBPA induced fluorescence changes with the lowest observable effect concentrations (LOECs) of 5 μg/L, 1 μg/L, 8 mg/L, and 5 mg/L, respectively. This promising tool could be used as a rapid screening assay and also to help decipher the mechanisms by which TACs can disrupt the thyroid axis in medaka.
Collapse
Affiliation(s)
- Elise Pesce
- Laboratoire
WatchFrog S.A., 1 Rue
Pierre Fontaine, 91000 Évry, France
- UMR
7221 Physiologie Moléculaire et Adaptation, CNRS, Muséum
National d’Histoire Naturelle, CP32, 7 rue Cuvier, 75005 Paris, France
| | - Marion Garde
- Laboratoire
WatchFrog S.A., 1 Rue
Pierre Fontaine, 91000 Évry, France
| | - Muriel Rigolet
- UMR
7221 Physiologie Moléculaire et Adaptation, CNRS, Muséum
National d’Histoire Naturelle, CP32, 7 rue Cuvier, 75005 Paris, France
| | - Andrew J. Tindall
- Laboratoire
WatchFrog S.A., 1 Rue
Pierre Fontaine, 91000 Évry, France
| | | | - Lisa A. Baumann
- University
of Heidelberg, Centre for Organismal
Studies, Aquatic Ecology and Toxicology, Im Neuenheimer Feld 504, 69120 Heidelberg, Germany
- Vrije
Universiteit Amsterdam, Amsterdam Institute
for Life and Environment, Section Environmental Health & Toxicology, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Laurent M. Sachs
- UMR
7221 Physiologie Moléculaire et Adaptation, CNRS, Muséum
National d’Histoire Naturelle, CP32, 7 rue Cuvier, 75005 Paris, France
| | - David Du Pasquier
- Laboratoire
WatchFrog S.A., 1 Rue
Pierre Fontaine, 91000 Évry, France
| |
Collapse
|
8
|
Yang RM, Song SY, Wu FY, Yang RF, Shen YT, Tu PH, Wang Z, Zhang JX, Cheng F, Gao GQ, Liang J, Guo MM, Yang L, Zhou Y, Zhao SX, Zhan M, Song HD. Myeloid cells interact with a subset of thyrocytes to promote their migration and follicle formation through NF-κB. Nat Commun 2023; 14:8082. [PMID: 38057310 PMCID: PMC10700497 DOI: 10.1038/s41467-023-43895-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/23/2023] [Indexed: 12/08/2023] Open
Abstract
The pathogenesis of thyroid dysgenesis (TD) is not well understood. Here, using a combination of single-cell RNA and spatial transcriptome sequencing, we identify a subgroup of NF-κB-activated thyrocytes located at the center of thyroid tissues in postnatal mice, which maintained a partially mesenchymal phenotype. These cells actively protruded out of the thyroid primordium and generated new follicles in zebrafish embryos through continuous tracing. Suppressing NF-κB signaling affected thyrocyte migration and follicle formation, leading to a TD-like phenotype in both mice and zebrafish. Interestingly, during thyroid folliculogenesis, myeloid cells played a crucial role in promoting thyrocyte migration by maintaining close contact and secreting TNF-α. We found that cebpa mutant zebrafish, in which all myeloid cells were depleted, exhibited thyrocyte migration defects. Taken together, our results suggest that myeloid-derived TNF-α-induced NF-κB activation plays a critical role in promoting the migration of vertebrate thyrocytes for follicle generation.
Collapse
Affiliation(s)
- Rui-Meng Yang
- Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shi-Yang Song
- Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng-Yao Wu
- Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui-Feng Yang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan-Ting Shen
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping-Hui Tu
- Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Wang
- Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun-Xiu Zhang
- Department of Endocrinology, Maternal and Child Health Institute of Bozhou, Bozhou, China
| | - Feng Cheng
- Department of Laboratory Medicine, Fujian Children's Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Guan-Qi Gao
- Department of Endocrinology, The Linyi People's Hospital, Linyi, Shandong Province, China
| | - Jun Liang
- Department of Endocrinology, The Central Hospital of Xuzhou Affiliated to Xuzhou Medical College, Xuzhou, China
| | - Miao-Miao Guo
- Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liu Yang
- Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Zhou
- Stem Cell Program, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA, USA
| | - Shuang-Xia Zhao
- Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ming Zhan
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Huai-Dong Song
- Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
Ullrich S, Leidescher S, Feodorova Y, Thanisch K, Fini JB, Kaspers B, Weber F, Markova B, Führer D, Romitti M, Krebs S, Blum H, Leonhardt H, Costagliola S, Heuer H, Solovei I. The highly and perpetually upregulated thyroglobulin gene is a hallmark of functional thyrocytes. Front Cell Dev Biol 2023; 11:1265407. [PMID: 37860816 PMCID: PMC10582334 DOI: 10.3389/fcell.2023.1265407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
Abnormalities are indispensable for studying normal biological processes and mechanisms. In the present work, we draw attention to the remarkable phenomenon of a perpetually and robustly upregulated gene, the thyroglobulin gene (Tg). The gene is expressed in the thyroid gland and, as it has been recently demonstrated, forms so-called transcription loops, easily observable by light microscopy. Using this feature, we show that Tg is expressed at a high level from the moment a thyroid cell acquires its identity and both alleles remain highly active over the entire life of the cell, i.e., for months or years depending on the species. We demonstrate that this high upregulation is characteristic of thyroglobulin genes in all major vertebrate groups. We provide evidence that Tg is not influenced by the thyroid hormone status, does not oscillate round the clock and is expressed during both the exocrine and endocrine phases of thyrocyte activity. We conclude that the thyroglobulin gene represents a unique and valuable model to study the maintenance of a high transcriptional upregulation.
Collapse
Affiliation(s)
- Simon Ullrich
- Biocenter, Ludwig Maximilians University Munich, Munich, Germany
| | | | - Yana Feodorova
- Biocenter, Ludwig Maximilians University Munich, Munich, Germany
- Department of Medical Biology, Medical University of Plovdiv, Division of Molecular and Regenerative Medicine, Research Institute at Medical University of Plovdiv, Plovdiv, Bulgaria
| | | | - Jean-Baptiste Fini
- Département Adaptations du Vivant (AVIV), Physiologie Moléculaire et Adaptation (PhyMA UMR 7221 CNRS), Muséum National d’Histoire Naturelle, CNRS, CP 32, Paris, France
| | - Bernd Kaspers
- Department for Veterinary Sciences, Ludwig Maximilians University Munich, Planegg, Germany
| | - Frank Weber
- Department of General, Visceral and Transplantation Surgery, Section of Endocrine Surgery, University Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Boyka Markova
- Department of Endocrinology, Diabetes and Metabolism, University Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Dagmar Führer
- Department of Endocrinology, Diabetes and Metabolism, University Duisburg-Essen, University Hospital Essen, Essen, Germany
| | | | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig Maximilians University Munich, Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig Maximilians University Munich, Munich, Germany
| | | | | | - Heike Heuer
- Department of Endocrinology, Diabetes and Metabolism, University Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Irina Solovei
- Biocenter, Ludwig Maximilians University Munich, Munich, Germany
| |
Collapse
|
10
|
Jaka O, Iturria I, Martí C, Hurtado de Mendoza J, Mazón-Moya MJ, Rummel C, Amj W, Muriana A. Screening for chemicals with thyroid hormone-disrupting effects using zebrafish embryo. Reprod Toxicol 2023; 121:108463. [PMID: 37619763 DOI: 10.1016/j.reprotox.2023.108463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Thyroid disruption is an increasingly recognized issue in the use and development of chemicals and new drugs, especially to help toxicologist to complement the reproductive and developmental toxicology information of chemicals. Still, adequate assessment methods are scarce and often suffer a trade-off between physiological relevance and labor- and cost-intensive assays. Here, we present a tiered approach for a medium-throughput screening of chemicals to identify their thyroid disrupting potential in zebrafish embryos as a New Approach Methodology (NAM). After identifying the maximum tolerated concentrations, we exposed zebrafish larvae to sub-adverse effect levels of the reference compounds benzophenone-2, bisphenol A, phenylthiourea, potassium perchlorate, propylthiouracil, and phloroglucinol to exclude any systemic toxicity. Applying the transgenic zebrafish line that carries a gene for the red fluorescence protein (Tg(tg:mCherry)) under the thyroglobulin promoter, we could identify the thyroid disrupting effects of the chemicals by a time and cost-effective image analysis measuring the fluorescence levels in the thyroid glands. Our observations could be confirmed by altered expression patterns of genes involved in the hypothalamus-pituitary-thyroid (HPT) axis. Finally, to anchor the observed thyroid disruption, we determined some changes in the Thyroid hormone levels of triiodothyronine (T3) and Thyroxine (T4) using a newly developed liquid chromatography mass spectrometric (LCMS) method. The presented approach carries the potential to extend the toolbox for legislative authorities and chemical producers for the assessment of thyroid-specific endocrine disruption and to overcome current challenges in the evaluation of endocrine disruptors.
Collapse
Affiliation(s)
- O Jaka
- BBD BioPhenix S.L.U.- Biobide, Paseo Mikeletegui 56, 20009 Donostia, San Sebastian, Spain
| | - I Iturria
- BBD BioPhenix S.L.U.- Biobide, Paseo Mikeletegui 56, 20009 Donostia, San Sebastian, Spain
| | - C Martí
- BBD BioPhenix S.L.U.- Biobide, Paseo Mikeletegui 56, 20009 Donostia, San Sebastian, Spain
| | | | - M J Mazón-Moya
- BBD BioPhenix S.L.U.- Biobide, Paseo Mikeletegui 56, 20009 Donostia, San Sebastian, Spain
| | - C Rummel
- BBD BioPhenix S.L.U.- Biobide, Paseo Mikeletegui 56, 20009 Donostia, San Sebastian, Spain
| | - Weiner Amj
- BBD BioPhenix S.L.U.- Biobide, Paseo Mikeletegui 56, 20009 Donostia, San Sebastian, Spain
| | - A Muriana
- BBD BioPhenix S.L.U.- Biobide, Paseo Mikeletegui 56, 20009 Donostia, San Sebastian, Spain.
| |
Collapse
|
11
|
Wu FY, Yang RM, Zhang HY, Zhan M, Tu PH, Fang Y, Zhang CX, Song SY, Dong M, Cui RJ, Liu XY, Yang L, Yan CY, Sun F, Zhang RJ, Wang Z, Liang J, Song HD, Cheng F, Zhao SX. Pathogenic variations in MAML2 and MAMLD1 contribute to congenital hypothyroidism due to dyshormonogenesis by regulating the Notch signalling pathway. J Med Genet 2023; 60:874-884. [PMID: 36898841 DOI: 10.1136/jmg-2022-108866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 02/25/2023] [Indexed: 03/12/2023]
Abstract
BACKGROUND In several countries, thyroid dyshormonogenesis is more common than thyroid dysgenesis in patients with congenital hypothyroidism (CH). However, known pathogenic genes are limited to those directly involved in hormone biosynthesis. The aetiology and pathogenesis of thyroid dyshormonogenesis remain unknown in many patients. METHODS To identify additional candidate pathogenetic genes, we performed next-generation sequencing in 538 patients with CH and then confirmed the functions of the identified genes in vitro using HEK293T and Nthy-ori 3.1 cells, and in vivo using zebrafish and mouse model organisms. RESULTS We identified one pathogenic MAML2 variant and two pathogenic MAMLD1 variants that downregulated canonical Notch signalling in three patients with CH. Zebrafish and mice treated with N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butylester, a γ-secretase inhibitor exhibited clinical manifestations of hypothyroidism and thyroid dyshormonogenesis. Through organoid culture of primary mouse thyroid cells and transcriptome sequencing, we demonstrated that Notch signalling within thyroid cells directly affects thyroid hormone biosynthesis rather than follicular formation. Additionally, these three variants blocked the expression of genes associated with thyroid hormone biosynthesis, which was restored by HES1 expression. The MAML2 variant exerted a dominant-negative effect on both the canonical pathway and thyroid hormone biosynthesis. MAMLD1 also regulated hormone biosynthesis through the expression of HES3, the target gene of the non-canonical pathway. CONCLUSIONS This study identified three mastermind-like family gene variants in CH and revealed that both canonical and non-canonical Notch signalling affected thyroid hormone biosynthesis.
Collapse
Affiliation(s)
- Feng-Yao Wu
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui-Meng Yang
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hai-Yang Zhang
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Zhan
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping-Hui Tu
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya Fang
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cao-Xu Zhang
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shi-Yang Song
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mei Dong
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ren-Jie Cui
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Yu Liu
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liu Yang
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen-Yan Yan
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Sun
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui-Jia Zhang
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Wang
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Liang
- Department of Endocrinology, The Central Hospital of Xuzhou Affiliated to Xuzhou Medical College, Xuzhou, China
| | - Huai-Dong Song
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Cheng
- Department of Laboratory Medicine, Fujian Provincial Maternity and Children's Hospital, Fuzhou, China
| | - Shuang-Xia Zhao
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Pannetier P, Poulsen R, Gölz L, Coordes S, Stegeman H, Koegst J, Reger L, Braunbeck T, Hansen M, Baumann L. Reversibility of Thyroid Hormone System-Disrupting Effects on Eye and Thyroid Follicle Development in Zebrafish (Danio rerio) Embryos. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1276-1292. [PMID: 36920003 DOI: 10.1002/etc.5608] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/13/2022] [Accepted: 03/10/2023] [Indexed: 05/27/2023]
Abstract
Early vertebrate development is partially regulated by thyroid hormones (THs). Environmental pollutants that interact with the TH system (TH system-disrupting chemicals [THSDCs]) can have massively disrupting effects on this essential phase. Eye development of fish is directly regulated by THs and can, therefore, be used as a thyroid-related endpoint in endocrine disruptor testing. To evaluate the effects of THSDC-induced eye malformations during early development, zebrafish (Danio rerio) embryos were exposed for 5 days postfertilization (dpf) to either propylthiouracil, a TH synthesis inhibitor, or tetrabromobisphenol A, which interacts with TH receptors. Subsequently, one half of the embryos were exposed further to the THSDCs until 8 dpf, while the other half of the embryos were raised in clean water for 3 days to check for reversibility of effects. Continued THSDC exposure altered eye size and pigmentation and induced changes in the cellular structure of the retina. This correlated with morphological alterations of thyroid follicles as revealed by use of a transgenic zebrafish line. Interestingly, effects were partly reversible after a recovery period as short as 3 days. Results are consistent with changes in TH levels measured in different tissues of the embryos, for example, in the eyes. The results show that eye development in zebrafish embryos is very sensitive to THSDC treatment but able to recover quickly from early exposure by effective repair mechanisms. Environ Toxicol Chem 2023;42:1276-1292. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Pauline Pannetier
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Rikke Poulsen
- Environmental Metabolomics Laboratory, Department of Environmental Science, University of Aarhus, Aarhus, Denmark
| | - Lisa Gölz
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Sara Coordes
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Hanna Stegeman
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Johannes Koegst
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Luisa Reger
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Thomas Braunbeck
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Martin Hansen
- Environmental Metabolomics Laboratory, Department of Environmental Science, University of Aarhus, Aarhus, Denmark
| | - Lisa Baumann
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
- Amsterdam Institute for Life and Environment (A-LIFE), Section on Environmental Health & Toxicology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Patel P, Nandi A, Verma SK, Kaushik N, Suar M, Choi EH, Kaushik NK. Zebrafish-based platform for emerging bio-contaminants and virus inactivation research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162197. [PMID: 36781138 PMCID: PMC9922160 DOI: 10.1016/j.scitotenv.2023.162197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 02/08/2023] [Indexed: 05/27/2023]
Abstract
Emerging bio-contaminants such as viruses have affected health and environment settings of every country. Viruses are the minuscule entities resulting in severe contagious diseases like SARS, MERS, Ebola, and avian influenza. Recent epidemic like the SARS-CoV-2, the virus has undergone mutations strengthen them and allowing to escape from the remedies. Comprehensive knowledge of viruses is essential for the development of targeted therapeutic and vaccination treatments. Animal models mimicking human biology like non-human primates, rats, mice, and rabbits offer competitive advantage to assess risk of viral infections, chemical toxins, nanoparticles, and microbes. However, their economic maintenance has always been an issue. Furthermore, the redundancy of experimental results due to aforementioned aspects is also in examine. Hence, exploration for the alternative animal models is crucial for risk assessments. The current review examines zebrafish traits and explores the possibilities to monitor emerging bio-contaminants. Additionally, a comprehensive picture of the bio contaminant and virus particle invasion and abatement mechanisms in zebrafish and human cells is presented. Moreover, a zebrafish model to investigate the emerging viruses such as coronaviridae and poxviridae has been suggested.
Collapse
Affiliation(s)
- Paritosh Patel
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea
| | - Aditya Nandi
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India; Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, 18323 Hwaseong, Republic of Korea
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea.
| |
Collapse
|
14
|
Silva N, Campinho MA. In a zebrafish biomedical model of human Allan-Herndon-Dudley syndrome impaired MTH signaling leads to decreased neural cell diversity. Front Endocrinol (Lausanne) 2023; 14:1157685. [PMID: 37214246 PMCID: PMC10194031 DOI: 10.3389/fendo.2023.1157685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/04/2023] [Indexed: 05/24/2023] Open
Abstract
Background Maternally derived thyroid hormone (T3) is a fundamental factor for vertebrate neurodevelopment. In humans, mutations on the thyroid hormones (TH) exclusive transporter monocarboxylic acid transporter 8 (MCT8) lead to the Allan-Herndon-Dudley syndrome (AHDS). Patients with AHDS present severe underdevelopment of the central nervous system, with profound cognitive and locomotor consequences. Functional impairment of zebrafish T3 exclusive membrane transporter Mct8 phenocopies many symptoms observed in patients with AHDS, thus providing an outstanding animal model to study this human condition. In addition, it was previously shown in the zebrafish mct8 KD model that maternal T3 (MTH) acts as an integrator of different key developmental pathways during zebrafish development. Methods Using a zebrafish Mct8 knockdown model, with consequent inhibition of maternal thyroid hormones (MTH) uptake to the target cells, we analyzed genes modulated by MTH by qPCR in a temporal series from the start of segmentation through hatching. Survival (TUNEL) and proliferation (PH3) of neural progenitor cells (dla, her2) were determined, and the cellular distribution of neural MTH-target genes in the spinal cord during development was characterized. In addition, in-vivo live imaging was performed to access NOTCH overexpression action on cell division in this AHDS model. We determined the developmental time window when MTH is required for appropriate CNS development in the zebrafish; MTH is not involved in neuroectoderm specification but is fundamental in the early stages of neurogenesis by promoting the maintenance of specific neural progenitor populations. MTH signaling is required for developing different neural cell types and maintaining spinal cord cytoarchitecture, and modulation of NOTCH signaling in a non-autonomous cell manner is involved in this process. Discussion The findings show that MTH allows the enrichment of neural progenitor pools, regulating the cell diversity output observed by the end of embryogenesis and that Mct8 impairment restricts CNS development. This work contributes to the understanding of the cellular mechanisms underlying human AHDS.
Collapse
Affiliation(s)
- Nádia Silva
- Centre for Marine Sciences of the University of the Algarve, Faro, Portugal
- Algarve Biomedical Center-Research Institute, University of the Algarve, Faro, Portugal
| | - Marco António Campinho
- Centre for Marine Sciences of the University of the Algarve, Faro, Portugal
- Algarve Biomedical Center-Research Institute, University of the Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of the Algarve, Faro, Portugal
| |
Collapse
|
15
|
Kraft M, Gölz L, Rinderknecht M, Koegst J, Braunbeck T, Baumann L. Developmental exposure to triclosan and benzophenone-2 causes morphological alterations in zebrafish (Danio rerio) thyroid follicles and eyes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:33711-33724. [PMID: 36495432 PMCID: PMC9736712 DOI: 10.1007/s11356-022-24531-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/28/2022] [Indexed: 05/31/2023]
Abstract
Thyroid hormones (THs) regulate a multitude of developmental and metabolic processes, which are responsible for vertebrate development, growth, and maintenance of homeostasis. THs also play a key role in neurogenesis of vertebrates and thus affect eye development, which is vital for foraging efficiency and for effective escape from predation. Currently, there are no validated test guidelines for the assessment of TH system-disrupting chemicals (THSDCs) in fish. Consequently, the present study was designed to demonstrate the suitability of novel thyroid-related endpoints in early life-stages of fish. Embryos of a transgenic zebrafish (Danio rerio) line expressing the reporter gene tg:mCherry in their thyrocytes were used to investigate the effects of the environmental THSDCs triclosan (TCS, antibacterial agent) and benzophenone-2 (BP-2, UV filter) on thyroid follicle and eye development. Both BP-2 and TCS caused thyroid follicle hyperplasia in transgenic zebrafish, thus confirming their role as THSDCs. The effect intensity on follicle size and fluorescence was comparable with a 1.7-fold increase for BP-2 and 1.6-fold for TCS. Alterations of the cellular structures of the retina indicate an impact of both substances on eye development, with a stronger impact of TCS. With respect to guideline development, results provide further evidence for the suitability of morphological changes in thyroid follicles and the eyes as novel endpoints for the sensitive assessment of THSD-related effects in fish.
Collapse
Affiliation(s)
- Maximilian Kraft
- Aquatic Toxicology and Ecology Section, Centre of Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany
| | - Lisa Gölz
- Aquatic Toxicology and Ecology Section, Centre of Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany
| | - Maximilian Rinderknecht
- Aquatic Toxicology and Ecology Section, Centre of Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany
| | - Johannes Koegst
- Aquatic Toxicology and Ecology Section, Centre of Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany
| | - Thomas Braunbeck
- Aquatic Toxicology and Ecology Section, Centre of Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany
| | - Lisa Baumann
- Aquatic Toxicology and Ecology Section, Centre of Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany.
| |
Collapse
|
16
|
Romitti M, Tourneur A, de Faria da Fonseca B, Doumont G, Gillotay P, Liao XH, Eski SE, Van Simaeys G, Chomette L, Lasolle H, Monestier O, Kasprzyk DF, Detours V, Singh SP, Goldman S, Refetoff S, Costagliola S. Transplantable human thyroid organoids generated from embryonic stem cells to rescue hypothyroidism. Nat Commun 2022; 13:7057. [PMID: 36396935 PMCID: PMC9672394 DOI: 10.1038/s41467-022-34776-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/04/2022] [Indexed: 11/18/2022] Open
Abstract
The thyroid gland captures iodide in order to synthesize hormones that act on almost all tissues and are essential for normal growth and metabolism. Low plasma levels of thyroid hormones lead to hypothyroidism, which is one of the most common disorder in humans and is not always satisfactorily treated by lifelong hormone replacement. Therefore, in addition to the lack of in vitro tractable models to study human thyroid development, differentiation and maturation, functional human thyroid organoids could pave the way to explore new therapeutic approaches. Here we report the generation of transplantable thyroid organoids derived from human embryonic stem cells capable of restoring plasma thyroid hormone in athyreotic mice as a proof of concept for future therapeutic development.
Collapse
Affiliation(s)
- Mírian Romitti
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Adrien Tourneur
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Barbara de Faria da Fonseca
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Gilles Doumont
- Center for Microscopy and Molecular Imaging (CMMI), Université libre de Bruxelles (ULB), Charleroi (Gosselies), Belgium
| | - Pierre Gillotay
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Xiao-Hui Liao
- Departments of Medicine, The University of Chicago, Chicago, IL, USA
| | - Sema Elif Eski
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Gaetan Van Simaeys
- Center for Microscopy and Molecular Imaging (CMMI), Université libre de Bruxelles (ULB), Charleroi (Gosselies), Belgium
- Service de Médecine Nucléaire, Hôpital Érasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Laura Chomette
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Helene Lasolle
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Olivier Monestier
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Dominika Figini Kasprzyk
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Vincent Detours
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Sumeet Pal Singh
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Serge Goldman
- Center for Microscopy and Molecular Imaging (CMMI), Université libre de Bruxelles (ULB), Charleroi (Gosselies), Belgium
- Service de Médecine Nucléaire, Hôpital Érasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Samuel Refetoff
- Departments of Medicine, The University of Chicago, Chicago, IL, USA
- Departments of Medicine, Pediatrics and Committee on Genetics, The University of Chicago, Chicago, IL, USA
| | - Sabine Costagliola
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
17
|
Yadav P, Sarode LP, Gaddam RR, Kumar P, Bhatti JS, Khurana A, Navik U. Zebrafish as an emerging tool for drug discovery and development for thyroid diseases. FISH & SHELLFISH IMMUNOLOGY 2022; 130:53-60. [PMID: 36084888 DOI: 10.1016/j.fsi.2022.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 12/06/2022]
Abstract
Zebrafish is a useful model for understanding human genetics and diseases and has evolved into a prominent scientific research model. The genetic structure of zebrafish is 70% identical to that of humans. Its small size, low cost, and transparent embryo make it a valuable tool in experimentation. Zebrafish and mammals possess the same molecular mechanism of thyroid organogenesis and development. Thus, thyroid hormone signaling, embryonic development, thyroid-related disorders, and novel genes involved in early thyroid development can all be studied using zebrafish as a model. Here in this review, we emphasize the evolving role of zebrafish as a possible tool for studying the thyroid gland in the context of physiology and pathology. The transcription factors nkx2.1a, pax2a, and hhex which contribute a pivotal role in the differentiation of thyroid primordium are discussed. Further, we have described the role of zebrafish as a model for thyroid cancer, evaluation of defects in thyroid hormone transport, thyroid hormone (TH) metabolism, and as a screening tool to study thyrotoxins. Hence, the present review highlights the role of zebrafish as a novel approach to understand thyroid development and organogenesis.
Collapse
Affiliation(s)
- Poonam Yadav
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Lopmudra P Sarode
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440033, Maharashtra, India
| | - Ravinder Reddy Gaddam
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, IA, USA
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Amit Khurana
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074, Aachen, Germany.
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, India.
| |
Collapse
|
18
|
Li YF, Rodrigues J, Campinho MA. Ioxynil and diethylstilbestrol increase the risks of cardiovascular and thyroid dysfunction in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156386. [PMID: 35662599 DOI: 10.1016/j.scitotenv.2022.156386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/17/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Endocrine disruption results from exposure to chemicals that alter the function of the endocrine system in animals. Chronic 60 days of exposure to a low dose (0.1 μM) of ioxynil (IOX) or diethylstilbestrol (DES) via food was used to determine the effects of these chemicals on the physiology of the heart and thyroid follicles in juvenile zebrafish. Immunofluorescence analysis and subsequent 3D morphometric analysis of the zebrafish heart revealed that chronic exposure to IOX induced ventricle deformation and significant volume increase (p < 0.001). DES exposure caused a change in ventricle morphology, but volume was unaffected. Alongside, it was found that DES exposure upregulated endothelial related genes (angptl1b, mhc1lia, mybpc2a, ptgir, notch1b and vwf) involved in vascular homeostasis. Both IOX and DES exposure caused a change in thyroid follicle morphology. Notably, in IOX exposed juveniles, thyroid follicle hypertrophy was observed; and in DES-exposed fish, an enlarged thyroid field was present. In summary, chronic exposure of juvenile zebrafish to IOX and DES affected the heart and the thyroid. Given that both chemicals are able to change the morphology of the thyroid it indicates that they behave as endocrine disruptive chemicals (EDCs). Heart function dynamically changes thyroid morphology, and function and hence it is likely that the observed cardiac effects of IOX and DES are the source of altered thyroid status in these fish.
Collapse
Affiliation(s)
- Yi-Feng Li
- International Research Centre for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Joana Rodrigues
- Faculty of Science and Technology, University of the Algarve, Faro, Portugal
| | - Marco A Campinho
- Centre of Marine Sciences, University of Algarve, Faro, Portugal; Faculty of Medicine and Biomedical Sciences, University of the Algarve, Faro, Portugal; Algarve Biomedical Center-Research Institute (ABC-RI), University of Algarve, Faro, Portugal.
| |
Collapse
|
19
|
Teng M, Zhao W, Chen X, Wang C, Zhou L, Wang C, Xu Y. Parental exposure to propiconazole at environmentally relevant concentrations induces thyroid and metabolism disruption in zebrafish (Danio rerio) offspring: An in vivo, in silico and in vitro study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113865. [PMID: 35870346 DOI: 10.1016/j.ecoenv.2022.113865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/20/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Propiconazole is used against fungal growth in agriculture and is released into the environment, but is a potential health threat to aquatic organisms. Propiconazole induces a generational effect on zebrafish, although the toxic mechanisms involved have not been described. The aim of this study was to investigate the potential mechanisms of abnormal offspring development after propiconazole exposure in zebrafish parents. Zebrafish were exposed to propiconazole at environmentally realistic concentrations (0.1, 5, and 250 μg/L) for 100 days and their offspring were grown in control solution for further study. Heart rate, hatching rate, and body length of hatched offspring were reduced. An increase in triiodothyronine (T3) content and the T3/T4 (tetraiodothyronine) ratio was observed, indicating disruption of thyroid hormones. Increased protein level of transthyretin (TTR) in vivo was consistent with the in silico molecular docking results and T4 competitive binding in vitro assay, suggests higher binding affinity between propiconazole and TTR, more than with T4. Increased expression of genes related to the hypothalamus-pituitary-thyroid (HPT) axis and altered metabolite levels may have affected offspring development. These findings emphasizes that propiconazole, even on indirect exposure, represents health and environmental risk that should not be ignored.
Collapse
Affiliation(s)
- Miaomiao Teng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wentian Zhao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Xiangguang Chen
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Chen Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lingfeng Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chengju Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China.
| | - Yong Xu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
20
|
Takagishi M, Aleogho BM, Okumura M, Ushida K, Yamada Y, Seino Y, Fujimura S, Nakashima K, Shindo A. Nutritional control of thyroid morphogenesis through gastrointestinal hormones. Curr Biol 2022; 32:1485-1496.e4. [PMID: 35196509 DOI: 10.1016/j.cub.2022.01.075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 12/08/2021] [Accepted: 01/26/2022] [Indexed: 01/27/2023]
Abstract
Developing animals absorb nutrients either through the placenta or from ingested food; however, the mechanisms by which embryos use external nutrients for individual organ morphogenesis remain to be elucidated. In this study, we assessed nutrient-dependent thyroid follicle morphogenesis in Xenopus laevis and investigated the role of secreted gastrointestinal (GI) hormones post-feeding. We found that feeding triggers thyroid follicle formation, and the thyroid cells showed transient inactivation of cell proliferation after feeding. In addition, the thyroid cells with multi-lumina were frequently observed in the fed tadpoles. The expression of the particular GI hormone incretin, glucose-dependent insulinotropic polypeptide (GIP), responded to feeding in the intestines of Xenopus tadpoles. Inhibition of dipeptidyl peptidase 4 (Dpp4), a degradative enzyme of incretin, increased the size of the thyroid follicles by facilitating follicular lumina connection, whereas inhibition of the sodium-glucose cotransporter (SGLT) reversed the effects of Dpp4 inhibition. Furthermore, injection of GIP peptide in unfed tadpoles initiated thyroid follicle formation-without requiring feeding-and injection of an incretin receptor antagonist suppressed follicle enlargement in the fed tadpoles. Lastly, GIP receptor knockout in neonatal mice showed smaller follicles in the thyroid, suggesting that the GI hormone-dependent thyroid morphogenesis is conserved in mammals. In conclusion, our study links external nutrients to thyroid morphogenesis and provides new insights into the function of GI hormone as a regulator of organ morphology in developing animals.
Collapse
Affiliation(s)
- Maki Takagishi
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Binta Maria Aleogho
- Division of Biological Sciences, Department of Molecular Biology, Nagoya University Graduate School of Science, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Masako Okumura
- Division of Biological Sciences, Department of Molecular Biology, Nagoya University Graduate School of Science, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Kaori Ushida
- Division for Medical Research Engineering, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yuichiro Yamada
- Kansai Electric Power Medical Research Institute, 2-1-7 Fukushima, Fukushima-ku, Osaka 553-0003, Japan
| | - Yusuke Seino
- Department of Endocrinology, Diabetes and Metabolism, Fujita Health University, 1-98 Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Sayoko Fujimura
- Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Kaoru Nakashima
- Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Asako Shindo
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Division of Biological Sciences, Department of Molecular Biology, Nagoya University Graduate School of Science, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan; Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan.
| |
Collapse
|
21
|
Takesono A, Kudoh T, Tyler CR. Application of Transgenic Zebrafish Models for Studying the Effects of Estrogenic Endocrine Disrupting Chemicals on Embryonic Brain Development. Front Pharmacol 2022; 13:718072. [PMID: 35264948 PMCID: PMC8900011 DOI: 10.3389/fphar.2022.718072] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
Endocrine disrupting chemicals (EDCs) are environmental pollutants that mimic hormones and/or disrupt their function. Estrogenic EDCs (eEDCs) interfere with endogenous estrogen signalling pathway(s) and laboratory animal and human epidemiological studies have provided evidence for a causal link between exposure to them during embryonic/early life and neurological impairments. However, our understanding of the molecular and cellular mechanism(s) underlying eEDCs exposure effects on brain development, tissue architecture and function and behaviour are limited. Transgenic (TG) zebrafish models offer new approach methodologies (NAMs) to help identify the modes of action (MoAs) of EDCs and their associated impacts on tissue development and function. Estrogen biosensor TG zebrafish models have been applied to study eEDC interactions and resulting transcriptional activation (via a fluorescent reporter expression) across the entire body of the developing zebrafish embryo, including in real time. These estrogen biosensor TG zebrafish models are starting to deepen our understanding of the spatiotemporal actions of eEDCs and their resulting impacts on neurological development, brain function and behaviour. In this review, we first investigate the links between early life exposure to eEDCs and neurodevelopmental alterations in model organisms (rodents and zebrafish) and humans. We then present examples of the application of estrogen biosensor and other TG zebrafish models for elucidating the mechanism(s) underlying neurodevelopmental toxicities of eEDCs. In particular we illustrate the utility of combining estrogen biosensor zebrafish models with other TG zebrafish models for understanding the effects of eEDCs on the brain, spanning cellular processes, brain circuitry, neurophysiology and behaviour. Finally, we discuss the future prospects of TG zebrafish models as experimental models for studying more complex scenarios for exposure to contaminant mixtures on neurological development and function.
Collapse
Affiliation(s)
- Aya Takesono
- *Correspondence: Aya Takesono, ; Charles R. Tyler,
| | | | | |
Collapse
|
22
|
Marelli F, Rurale G, Persani L. From Endoderm to Progenitors: An Update on the Early Steps of Thyroid Morphogenesis in the Zebrafish. Front Endocrinol (Lausanne) 2021; 12:664557. [PMID: 34149617 PMCID: PMC8213386 DOI: 10.3389/fendo.2021.664557] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/14/2021] [Indexed: 12/24/2022] Open
Abstract
The mechanisms underlying thyroid gland development have a central interest in biology and this review is aimed to provide an update on the recent advancements on the early steps of thyroid differentiation that were obtained in the zebrafish, because this teleost fish revealed to be a suitable organism to study the early developmental stages. Physiologically, the thyroid precursors fate is delineated by the appearance among the endoderm cells of the foregut of a restricted cell population expressing specific transcription factors, including pax2a, nkx2.4b, and hhex. The committed thyroid primordium first appears as a thickening of the pharyngeal floor of the anterior endoderm, that subsequently detaches from the floor and migrates to its final location where it gives rise to the thyroid hormone-producing follicles. At variance with mammalian models, thyroid precursor differentiation in zebrafish occurs early during the developmental process before the dislocation to the eutopic positioning of thyroid follicles. Several pathways have been implicated in these early events and nowadays there is evidence of a complex crosstalk between intrinsic (coming from the endoderm and thyroid precursors) and extrinsic factors (coming from surrounding tissues, as the cardiac mesoderm) whose organization in time and space is probably required for the proper thyroid development. In particular, Notch, Shh, Fgf, Bmp, and Wnt signaling seems to be required for the commitment of endodermal cells to a thyroid fate at specific developmental windows of zebrafish embryo. Here, we summarize the recent findings produced in the various zebrafish experimental models with the aim to define a comprehensive picture of such complicated puzzle.
Collapse
Affiliation(s)
- Federica Marelli
- Dipartimento di Malattie Endocrine e del Metabolismo, IRCCS Istituto Auxologico Italiano IRCCS, Milan, Italy
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano - LITA, Segrate, Italy
| | - Giuditta Rurale
- Dipartimento di Malattie Endocrine e del Metabolismo, IRCCS Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Luca Persani
- Dipartimento di Malattie Endocrine e del Metabolismo, IRCCS Istituto Auxologico Italiano IRCCS, Milan, Italy
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano - LITA, Segrate, Italy
| |
Collapse
|
23
|
Guzzolino E, Milella MS, Forini F, Borsò M, Rutigliano G, Gorini F, Zucchi R, Saba A, Bianchi F, Iervasi G, Pitto L. Thyroid disrupting effects of low-dose dibenzothiophene and cadmium in single or concurrent exposure: New evidence from a translational zebrafish model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144703. [PMID: 33486188 DOI: 10.1016/j.scitotenv.2020.144703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Thyroid hormones (THs) are major regulators of biological processes essential for correct development and energy homeostasis. Although thyroid disruptors can deeply affect human health, the impact of exogenous chemicals and in particular mixture of chemicals on different aspects of thyroid development and metabolism is not yet fully understood. In this study we have used the highly versatile zebrafish model to assess the thyroid axis disrupting effects of cadmium (Cd) and dibenzothiophene (DBT), two environmental endocrine disruptors found to be significantly correlated in epidemiological co-exposure studies. Zebrafish embryos (5hpf) were exposed to low concentrations of Cd (from 0.05 to 2 μM) and DBT (from 0.05 to 1 μM) and to mixtures of them. A multilevel assessment of the pollutant effects has been obtained by combining in vivo morphological analyses allowed by the use of transgenic fluorescent lines with liquid chromatography mass spectrometry determination of TH levels and quantification of the expression levels of key genes involved in the Hypothalamic-Pituitary-Thyroid Axis (HPTA) and TH metabolism. Our results underscore for the first time an important synergistic toxic effect of these pollutants on embryonic development and thyroid morphology highlighting differences in the mechanisms through which they can adversely impact on multiple physiological processes of the HPTA and TH disposal influencing also heart geometry and function.
Collapse
Affiliation(s)
- E Guzzolino
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - M S Milella
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - F Forini
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - M Borsò
- Department of Pathology, University of Pisa, Pisa, Italy
| | - G Rutigliano
- Department of Pathology, University of Pisa, Pisa, Italy
| | - F Gorini
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - R Zucchi
- Department of Pathology, University of Pisa, Pisa, Italy
| | - A Saba
- Department of Pathology, University of Pisa, Pisa, Italy
| | - F Bianchi
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - G Iervasi
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - L Pitto
- Institute of Clinical Physiology, National Research Council, Pisa, Italy.
| |
Collapse
|
24
|
Zhang RJ, Yang L, Sun F, Fang Y, Ye XP, Song HD, Dong M. Three-dimensional microscopy and image fusion reconstruction analysis of the thyroid gland during morphogenesis. FEBS Open Bio 2021; 11:1417-1427. [PMID: 33735512 PMCID: PMC8091578 DOI: 10.1002/2211-5463.13150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 11/05/2022] Open
Abstract
Thyroid dysgenesis (TD) is a major cause of primary congenital hypothyroidism; however, the molecular mechanism underlying this process is unclear. Current knowledge regarding the morphogenesis of the thyroid gland and vascular anomalies affecting thyroid development is limited. To monitor the early stages of thyroid gland development, we generated double transgenic zebrafish embryos Tg(tg:mCherry/flk1:EGFP). We described the volume of the thyroid from 2 days postfertilization (dpf) to 5 dpf using 3D reconstruction images. We treated zebrafish embryos with the fibroblast growth factor (FGF) inhibitor PD166866 to better understand the impact of vascular defects on thyroid development and the effects of drug administration at specific time periods on different stages of thyroid development. The 3D reconstruction data revealed that the thyroid glands underwent significant transformation at critical time points. PD166866 treatment from 48 to 72 hours postfertilization (hpf) and from 72 to 96 hpf did not cause obvious reductions in thyroid volume but did result in observable abnormalities in thyroid morphology. The treatment also affected thyroid volume from 36 to 48 hpf, thus indicating that there are time-point-specific effects of drug administration during thyroid development. Three-dimensional image reconstruction provides a comprehensive picture of thyroid anatomy and can be used to complement anatomical fluorescence information. The effects of an FGF pathway inhibitor on thyroid development were determined to be time-point-dependent.
Collapse
Affiliation(s)
- Rui-Jia Zhang
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Liu Yang
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Feng Sun
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Ya Fang
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Xiao-Ping Ye
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Huai-Dong Song
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Mei Dong
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
25
|
Vandernoot I, Haerlingen B, Gillotay P, Trubiroha A, Janssens V, Opitz R, Costagliola S. Enhanced Canonical Wnt Signaling During Early Zebrafish Development Perturbs the Interaction of Cardiac Mesoderm and Pharyngeal Endoderm and Causes Thyroid Specification Defects. Thyroid 2021; 31:420-438. [PMID: 32777984 DOI: 10.1089/thy.2019.0828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background: Congenital hypothyroidism due to thyroid dysgenesis is a frequent congenital endocrine disorder for which the molecular mechanisms remain unresolved in the majority of cases. This situation reflects, in part, our still limited knowledge about the mechanisms involved in the early steps of thyroid specification from the endoderm, in particular the extrinsic signaling cues that regulate foregut endoderm patterning. In this study, we used small molecules and genetic zebrafish models to characterize the role of various signaling pathways in thyroid specification. Methods: We treated zebrafish embryos during different developmental periods with small-molecule compounds known to manipulate the activity of Wnt signaling pathway and observed effects in thyroid, endoderm, and cardiovascular development using whole-mount in situ hybridization and transgenic fluorescent reporter models. We used the antisense morpholino (MO) technique to create a zebrafish acardiac model. For thyroid rescue experiments, bone morphogenetic protein (BMP) pathway induction in zebrafish embryos was obtained by manipulation of heat-shock inducible transgenic lines. Results: Combined analyses of thyroid and cardiovascular development revealed that overactivation of Wnt signaling during early development leads to impaired thyroid specification concurrent with severe defects in the cardiac specification. When using a model of MO-induced blockage of cardiomyocyte differentiation, a similar correlation was observed, suggesting that defective signaling between cardiac mesoderm and endodermal thyroid precursors contributes to thyroid specification impairment. Rescue experiments through transient overactivation of BMP signaling could partially restore thyroid specification in models with defective cardiac development. Conclusion: Collectively, our results indicate that BMP signaling is critically required for thyroid cell specification and identify cardiac mesoderm as a likely source of BMP signals.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Bone Morphogenetic Protein 2/genetics
- Bone Morphogenetic Protein 2/metabolism
- Bone Morphogenetic Protein 4/genetics
- Bone Morphogenetic Protein 4/metabolism
- Congenital Hypothyroidism/genetics
- Congenital Hypothyroidism/metabolism
- Congenital Hypothyroidism/pathology
- Cytoskeletal Proteins/genetics
- Cytoskeletal Proteins/metabolism
- Disease Models, Animal
- Embryonic Development
- Endoderm/abnormalities
- Endoderm/metabolism
- Gene Expression Regulation, Developmental
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/metabolism
- Heart Defects, Congenital/pathology
- Mesoderm/abnormalities
- Mesoderm/metabolism
- Morpholinos/genetics
- Morpholinos/metabolism
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/metabolism
- Thyroid Dysgenesis/genetics
- Thyroid Dysgenesis/metabolism
- Thyroid Dysgenesis/pathology
- Thyroid Gland/abnormalities
- Thyroid Gland/metabolism
- Wnt Proteins/genetics
- Wnt Proteins/metabolism
- Wnt Signaling Pathway
- Zebrafish/embryology
- Zebrafish/genetics
- Zebrafish/metabolism
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Isabelle Vandernoot
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Benoît Haerlingen
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Pierre Gillotay
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Achim Trubiroha
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
- Department Chemicals and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Véronique Janssens
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Robert Opitz
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
- Institute of Experimental Pediatric Endocrinology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Sabine Costagliola
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
26
|
Romitti M, Eski SE, Fonseca BF, Gillotay P, Singh SP, Costagliola S. Single-Cell Trajectory Inference Guided Enhancement of Thyroid Maturation In Vitro Using TGF-Beta Inhibition. Front Endocrinol (Lausanne) 2021; 12:657195. [PMID: 34135860 PMCID: PMC8202408 DOI: 10.3389/fendo.2021.657195] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/10/2021] [Indexed: 12/30/2022] Open
Abstract
The thyroid gland regulates metabolism and growth via secretion of thyroid hormones by thyroid follicular cells (TFCs). Loss of TFCs, by cellular dysfunction, autoimmune destruction or surgical resection, underlies hypothyroidism. Recovery of thyroid hormone levels by transplantation of mature TFCs derived from stem cells in vitro holds great therapeutic promise. However, the utilization of in vitro derived tissue for regenerative medicine is restricted by the efficiency of differentiation protocols to generate mature organoids. Here, to improve the differentiation efficiency for thyroid organoids, we utilized single-cell RNA-Seq to chart the molecular steps undertaken by individual cells during the in vitro transformation of mouse embryonic stem cells to TFCs. Our single-cell atlas of mouse organoid systematically and comprehensively identifies, for the first time, the cell types generated during production of thyroid organoids. Using pseudotime analysis, we identify TGF-beta as a negative regulator of thyroid maturation in vitro. Using pharmacological inhibition of TGF-beta pathway, we improve the level of thyroid maturation, in particular the induction of Nis expression. This in turn, leads to an enhancement of iodide organification in vitro, suggesting functional improvement of the thyroid organoid. Our study highlights the potential of single-cell molecular characterization in understanding and improving thyroid maturation and paves the way for identification of therapeutic targets against thyroid disorders.
Collapse
Affiliation(s)
- Mírian Romitti
- *Correspondence: Mírian Romitti, ; Sumeet Pal Singh, ; Sabine Costagliola,
| | | | | | | | - Sumeet Pal Singh
- *Correspondence: Mírian Romitti, ; Sumeet Pal Singh, ; Sabine Costagliola,
| | - Sabine Costagliola
- *Correspondence: Mírian Romitti, ; Sumeet Pal Singh, ; Sabine Costagliola,
| |
Collapse
|
27
|
Parsons AE, Lange A, Hutchinson TH, Miyagawa S, Iguchi T, Kudoh T, Tyler CR. Expression dynamics of genes in the hypothalamic-pituitary-thyroid (HPT) cascade and their responses to 3,3',5-triiodo-l-thyronine (T3) highlights potential vulnerability to thyroid-disrupting chemicals in zebrafish (Danio rerio) embryo-larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 225:105547. [PMID: 32623180 DOI: 10.1016/j.aquatox.2020.105547] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/08/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
Some chemicals in the environment disrupt thyroid hormone (TH) systems leading to alterations in organism development, but their effect mechanisms are poorly understood. In fish, this has been limited by a lack of fundamental knowledge on thyroid gene ontogeny and tissue expression in early life stages. Here we established detailed expression profiles for a suite of genes in the hypothalamic-pituitary-thyroid (HPT) axis of zebrafish (Danio rerio) between 24-120 h post fertilisation (hpf) and quantified their responses following exposure to 3,3',5-triiodo-L-thyronine (T3) using whole mount in situ hybridisation (WISH) and qRT-PCR (using whole-body extracts). All of the selected genes in the HPT axis demonstrated dynamic transcript expression profiles across the developmental stages examined. The expression of thyroid receptor alpha (thraa) was observed in the brain, gastrointestinal tract, craniofacial tissues and pectoral fins, while thyroid receptor beta (thrb) expression occurred in the brain, otic vesicles, liver and lower jaw. The TH deiodinases (dio1, dio2 and dio3b) were expressed in the liver, pronephric ducts and brain and the patterns differed depending on life stage. Both dio1 and dio2 were also expressed in the intestinal bulb (96-120 hpf), and dio2 expression occurred also in the pituitary (48-120 hpf). Exposure of zebrafish embryo-larvae to T3 (30 and 100 μg L-1) for periods of 48, 96 or 120 hpf resulted in the up-regulation of thraa, thrb, dio3b, thyroid follicle synthesis proteins (pax8) and corticotropin-releasing hormone (crhb) and down-regulation of dio1, dio2, glucuronidation enzymes (ugt1ab) and thyroid stimulating hormone (tshb) (assessed via qRT-PCR) and responses differed across life stage and tissues. T3 induced thraa expression in the pineal gland, pectoral fins, brain, somites, gastrointestinal tract, craniofacial tissues, liver and pronephric ducts. T3 enhanced thrb expression in the brain, jaw cartilage and intestine, while thrb expression was suppressed in the liver. T3 exposure suppressed the transcript levels of dio1 and dio2 in the liver, brain, gastrointestinal tract and craniofacial tissues, while dio2 signalling was also suppressed in the pituitary gland. Dio3b expression was induced by T3 exposure in the jaw cartilage, pectoral fins and brain. The involvement of THs in the development of numerous body tissues and the responsiveness of these tissues to T3 in zebrafish highlights their potential vulnerability to exposure to environmental thyroid-disrupting chemicals.
Collapse
Affiliation(s)
- Aoife E Parsons
- University of Exeter, Biosciences, College of Life and Environmental Sciences, Geoffrey Pope Building, Stocker Rd., Exeter, EX4 4QD, United Kingdom
| | - Anke Lange
- University of Exeter, Biosciences, College of Life and Environmental Sciences, Geoffrey Pope Building, Stocker Rd., Exeter, EX4 4QD, United Kingdom
| | - Thomas H Hutchinson
- University of Plymouth, School of Geography, Earth & Environmental Sciences, Drake Circus, Plymouth, Devon, PL4 8AA, United Kingdom
| | - Shinichi Miyagawa
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, 125-8585, Japan
| | - Taisen Iguchi
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa, 236-0027, Japan
| | - Tetsuhiro Kudoh
- University of Exeter, Biosciences, College of Life and Environmental Sciences, Geoffrey Pope Building, Stocker Rd., Exeter, EX4 4QD, United Kingdom
| | - Charles R Tyler
- University of Exeter, Biosciences, College of Life and Environmental Sciences, Geoffrey Pope Building, Stocker Rd., Exeter, EX4 4QD, United Kingdom.
| |
Collapse
|
28
|
ERGO: Breaking Down the Wall between Human Health and Environmental Testing of Endocrine Disrupters. Int J Mol Sci 2020; 21:ijms21082954. [PMID: 32331419 PMCID: PMC7215679 DOI: 10.3390/ijms21082954] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
ERGO (EndocRine Guideline Optimization) is the acronym of a European Union-funded research and innovation action, that aims to break down the wall between mammalian and non-mammalian vertebrate regulatory testing of endocrine disruptors (EDs), by identifying, developing and aligning thyroid-related biomarkers and endpoints (B/E) for the linkage of effects between vertebrate classes. To achieve this, an adverse outcome pathway (AOP) network covering various modes of thyroid hormone disruption (THD) in multiple vertebrate classes will be developed. The AOP development will be based on existing and new data from in vitro and in vivo experiments with fish, amphibians and mammals, using a battery of different THDs. This will provide the scientifically plausible and evidence-based foundation for the selection of B/E and assays in lower vertebrates, predictive of human health outcomes. These assays will be prioritized for validation at OECD (Organization for Economic Cooperation and Development) level. ERGO will re-think ED testing strategies from in silico methods to in vivo testing and develop, optimize and validate existing in vivo and early life-stage OECD guidelines, as well as new in vitro protocols for THD. This strategy will reduce requirements for animal testing by preventing duplication of testing in mammals and non-mammalian vertebrates and increase the screening capacity to enable more chemicals to be tested for ED properties.
Collapse
|
29
|
Abstract
Background: GLIS3 (GLI-Similar protein 3) is a transcription factor involved in several cellular processes. Homozygous mutations in the GLIS3 gene have been typically associated with neonatal diabetes and congenital hypothyroidism (CH) in a syndrome called NDH. NDH patients present developmental abnormalities including endocrine pancreas defects and a spectrum of thyroid abnormalities, mainly including thyroid dysgenesis (TD). The mouse models revealed a key role of Glis3 in pancreatic islets but not in early thyroid development, as Glis3 was described to retain a role in regulating thyroid hormone synthesis downstream the thyrotropin (TSH)/TSHR signaling pathway and in postnatal follicle proliferation. Hence, in this study, we have been taking advantage of the zebrafish model to gain insights on the Glis3 activity during thyroid organogenesis. Methods: Transient glis3-knockdown zebrafish embryos (called glis3 morphants) were generated by the microinjection of specific glis3 morpholinos at one- to two-cell stage to analyze the thyroid phenotype in vivo. Several additional analyses (in situ hybridization, immunohistochemistry, and pharmacological treatments) were performed for further molecular characterization. Results: The analysis of thyroid embryonic development revealed that Glis3 is involved in early steps of thyroid specification. glis3 morphants exhibited a reduced expression of the early transcription factors nkx2.4 and pax2a at the thyroid primordium level, which is not caused by changes in proliferation or apoptosis of the pharyngeal endoderm. As a result, the differentiated thyroid tissue in morphants appeared reduced in size with decreased expression of tg and slc5a5, a low number of thyroxine (T4)-producing follicles, associated with an elevation of tshba (homologous of the human TSHβ), thus resembling the clinical and biochemical manifestations of patients with TD. Interestingly, glis3 morphants have pancreatic β-cell defects, but not liver defects. In vitro and in vivo data also demonstrated that Glis3 is an effector of the Sonic Hedgehog (SHH) pathway. Molecular and pharmacological inhibition of SHH reproduced the thyroid defects observed in glis3 morphant. Conclusions: Our results demonstrate that glis3, within the SHH pathway, appears to determine the number of endodermal cells committed to a thyroid fate. This is the first evidence of the involvement of Glis3 in TD, thereby expanding the understanding of the genetic basis of thyroid development and CH.
Collapse
Affiliation(s)
- Giuditta Rurale
- Department of Endocrine and Metabolic Diseases and Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Federica Marelli
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Paolo Duminuco
- Department of Endocrine and Metabolic Diseases and Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Luca Persani
- Department of Endocrine and Metabolic Diseases and Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
30
|
Giusti N, Gillotay P, Trubiroha A, Opitz R, Dumont JE, Costagliola S, De Deken X. Inhibition of the thyroid hormonogenic H 2O 2 production by Duox/DuoxA in zebrafish reveals VAS2870 as a new goitrogenic compound. Mol Cell Endocrinol 2020; 500:110635. [PMID: 31678421 DOI: 10.1016/j.mce.2019.110635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/30/2019] [Accepted: 10/26/2019] [Indexed: 02/07/2023]
Abstract
Thyroid hormone (TH) synthesis requires extracellular hydrogen peroxide generated by the NADPH oxidases, DUOX1 and DUOX2, with maturation factors, DUOXA1 and DUOXA2. In zebrafish, only one duox and one duoxa gene are present. Using a thyroid-specific reporter line, we investigated the role of Duox and Duoxa for TH biosynthesis in zebrafish larvae. Analysis of several zebrafish duox and duoxa mutant models consistently recovered hypothyroid phenotypes with hyperplastic goiter caused by impaired TH synthesis. Mutant larvae developed enlarged thyroids and showed increased expression of the EGFP reporter and thyroid functional markers including wild-type and mutated duox and duoxa transcripts. Treatment of zebrafish larvae with the NADPH oxidase inhibitor VAS2870 phenocopied the thyroid effects observed in duox or duoxa mutants. Additional functional in vitro assays corroborated the pharmacological inhibition of Duox activity by VAS2870. These data support the utility of this new experimental model to characterize endocrine disruptors of the thyroid function.
Collapse
Affiliation(s)
- Nicoletta Giusti
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium.
| | - Pierre Gillotay
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium.
| | - Achim Trubiroha
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium; Present Address: German Federal Institute for Risk Assessment (BfR), Department Chemicals and Product Safety, Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany.
| | - Robert Opitz
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium; Institute of Experimental Pediatric Endocrinology, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Jacques-Emile Dumont
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium.
| | - Sabine Costagliola
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium.
| | - Xavier De Deken
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
31
|
Cassar S, Adatto I, Freeman JL, Gamse JT, Iturria I, Lawrence C, Muriana A, Peterson RT, Van Cruchten S, Zon LI. Use of Zebrafish in Drug Discovery Toxicology. Chem Res Toxicol 2019; 33:95-118. [PMID: 31625720 DOI: 10.1021/acs.chemrestox.9b00335] [Citation(s) in RCA: 332] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Unpredicted human safety events in clinical trials for new drugs are costly in terms of human health and money. The drug discovery industry attempts to minimize those events with diligent preclinical safety testing. Current standard practices are good at preventing toxic compounds from being tested in the clinic; however, false negative preclinical toxicity results are still a reality. Continual improvement must be pursued in the preclinical realm. Higher-quality therapies can be brought forward with more information about potential toxicities and associated mechanisms. The zebrafish model is a bridge between in vitro assays and mammalian in vivo studies. This model is powerful in its breadth of application and tractability for research. In the past two decades, our understanding of disease biology and drug toxicity has grown significantly owing to thousands of studies on this tiny vertebrate. This Review summarizes challenges and strengths of the model, discusses the 3Rs value that it can deliver, highlights translatable and untranslatable biology, and brings together reports from recent studies with zebrafish focusing on new drug discovery toxicology.
Collapse
Affiliation(s)
- Steven Cassar
- Preclinical Safety , AbbVie , North Chicago , Illinois 60064 , United States
| | - Isaac Adatto
- Stem Cell and Regenerative Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Jennifer L Freeman
- School of Health Sciences , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Joshua T Gamse
- Drug Safety Evaluation , Bristol-Myers Squibb , New Brunswick , New Jersey 08901 , United States
| | | | - Christian Lawrence
- Aquatic Resources Program , Boston Children's Hospital , Boston , Massachusetts 02115 , United States
| | | | - Randall T Peterson
- Pharmacology and Toxicology, College of Pharmacy , University of Utah , Salt Lake City , Utah 84112 , United States
| | | | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department , Harvard University , Boston , Massachusetts 02138 , United States
| |
Collapse
|
32
|
Haerlingen B, Opitz R, Vandernoot I, Trubiroha A, Gillotay P, Giusti N, Costagliola S. Small-Molecule Screening in Zebrafish Embryos Identifies Signaling Pathways Regulating Early Thyroid Development. Thyroid 2019; 29:1683-1703. [PMID: 31507237 DOI: 10.1089/thy.2019.0122] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Defects in embryonic development of the thyroid gland are a major cause for congenital hypothyroidism in human newborns, but the underlying molecular mechanisms are still poorly understood. Organ development relies on a tightly regulated interplay between extrinsic signaling cues and cell intrinsic factors. At present, however, there is limited knowledge about the specific extrinsic signaling cues that regulate foregut endoderm patterning, thyroid cell specification, and subsequent morphogenetic processes in thyroid development. Methods: To begin to address this problem in a systematic way, we used zebrafish embryos to perform a series of in vivo phenotype-driven chemical genetic screens to identify signaling cues regulating early thyroid development. For this purpose, we treated zebrafish embryos during different developmental periods with a panel of small-molecule compounds known to manipulate the activity of major signaling pathways and scored phenotypic deviations in thyroid, endoderm, and cardiovascular development using whole-mount in situ hybridization and transgenic fluorescent reporter models. Results: Systematic assessment of drugged embryos recovered a range of thyroid phenotypes including expansion, reduction or lack of the early thyroid anlage, defective thyroid budding, as well as hypoplastic, enlarged, or overtly disorganized presentation of the thyroid primordium after budding. Our pharmacological screening identified bone morphogenetic protein and fibroblast growth factor signaling as key factors for thyroid specification and early thyroid organogenesis, highlighted the importance of low Wnt activities during early development for thyroid specification, and implicated drug-induced cardiac and vascular anomalies as likely indirect mechanisms causing various forms of thyroid dysgenesis. Conclusions: By integrating the outcome of our screening efforts with previously available information from other model organisms including Xenopus, chicken, and mouse, we conclude that signaling cues regulating thyroid development appear broadly conserved across vertebrates. We therefore expect that observations made in zebrafish can inform mammalian models of thyroid organogenesis to further our understanding of the molecular mechanisms of congenital thyroid diseases.
Collapse
Affiliation(s)
- Benoit Haerlingen
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Robert Opitz
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
- Institute of Experimental Pediatric Endocrinology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Isabelle Vandernoot
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Achim Trubiroha
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Pierre Gillotay
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Nicoletta Giusti
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Sabine Costagliola
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
33
|
Noyes PD, Friedman KP, Browne P, Haselman JT, Gilbert ME, Hornung MW, Barone S, Crofton KM, Laws SC, Stoker TE, Simmons SO, Tietge JE, Degitz SJ. Evaluating Chemicals for Thyroid Disruption: Opportunities and Challenges with in Vitro Testing and Adverse Outcome Pathway Approaches. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:95001. [PMID: 31487205 PMCID: PMC6791490 DOI: 10.1289/ehp5297] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/01/2019] [Accepted: 08/13/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Extensive clinical and experimental research documents the potential for chemical disruption of thyroid hormone (TH) signaling through multiple molecular targets. Perturbation of TH signaling can lead to abnormal brain development, cognitive impairments, and other adverse outcomes in humans and wildlife. To increase chemical safety screening efficiency and reduce vertebrate animal testing, in vitro assays that identify chemical interactions with molecular targets of the thyroid system have been developed and implemented. OBJECTIVES We present an adverse outcome pathway (AOP) network to link data derived from in vitro assays that measure chemical interactions with thyroid molecular targets to downstream events and adverse outcomes traditionally derived from in vivo testing. We examine the role of new in vitro technologies, in the context of the AOP network, in facilitating consideration of several important regulatory and biological challenges in characterizing chemicals that exert effects through a thyroid mechanism. DISCUSSION There is a substantial body of knowledge describing chemical effects on molecular and physiological regulation of TH signaling and associated adverse outcomes. Until recently, few alternative nonanimal assays were available to interrogate chemical effects on TH signaling. With the development of these new tools, screening large libraries of chemicals for interactions with molecular targets of the thyroid is now possible. Measuring early chemical interactions with targets in the thyroid pathway provides a means of linking adverse outcomes, which may be influenced by many biological processes, to a thyroid mechanism. However, the use of in vitro assays beyond chemical screening is complicated by continuing limits in our knowledge of TH signaling in important life stages and tissues, such as during fetal brain development. Nonetheless, the thyroid AOP network provides an ideal tool for defining causal linkages of a chemical exerting thyroid-dependent effects and identifying research needs to quantify these effects in support of regulatory decision making. https://doi.org/10.1289/EHP5297.
Collapse
Affiliation(s)
- Pamela D Noyes
- National Center for Environmental Assessment, Office of Research and Development (ORD), U.S. Environmental Protection Agency (EPA), Washington, DC, USA
| | - Katie Paul Friedman
- National Center for Computational Toxicology, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Patience Browne
- Environment Health and Safety Division, Environment Directorate, Organisation for Economic Co-operation and Development (OECD), Paris, France
| | - Jonathan T Haselman
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| | - Mary E Gilbert
- Toxicity Assessment Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Michael W Hornung
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| | - Stan Barone
- Office of Pollution Prevention and Toxics, Office of Chemical Safety and Pollution Prevention, U.S. EPA, Washington, DC, USA
| | - Kevin M Crofton
- National Center for Computational Toxicology, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Susan C Laws
- Toxicity Assessment Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Tammy E Stoker
- Toxicity Assessment Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Steven O Simmons
- National Center for Computational Toxicology, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Joseph E Tietge
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| | - Sigmund J Degitz
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| |
Collapse
|
34
|
Philipp K, Lemke F, Scholz S, Wallrabe U, Wapler MC, Koukourakis N, Czarske JW. Diffraction-limited axial scanning in thick biological tissue with an aberration-correcting adaptive lens. Sci Rep 2019; 9:9532. [PMID: 31267005 PMCID: PMC6606592 DOI: 10.1038/s41598-019-45993-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 06/20/2019] [Indexed: 02/08/2023] Open
Abstract
Diffraction-limited deep focusing into biological tissue is challenging due to aberrations that lead to a broadening of the focal spot. The diffraction limit can be restored by employing aberration correction for example with a deformable mirror. However, this results in a bulky setup due to the required beam folding. We propose a bi-actuator adaptive lens that simultaneously enables axial scanning and the correction of specimen-induced spherical aberrations with a compact setup. Using the bi-actuator lens in a confocal microscope, we show diffraction-limited axial scanning up to 340 μm deep inside a phantom specimen. The application of this technique to in vivo measurements of zebrafish embryos with reporter-gene-driven fluorescence in a thyroid gland reveals substructures of the thyroid follicles, indicating that the bi-actuator adaptive lens is a meaningful supplement to the existing adaptive optics toolset.
Collapse
Affiliation(s)
- Katrin Philipp
- Technische Universität Dresden, Laboratory for Measurement and Sensor System Technique, Helmholtzstraße 18, 01069, Dresden, Germany.
| | - Florian Lemke
- University of Freiburg, Laboratory for Microactuators, Department of Microsystems Engineering-IMTEK, Georges-Köhler-Allee 102, 79110, Freiburg, Germany
| | - Stefan Scholz
- Helmholtz Centre for Environmental Research UFZ, Department of Bioanalytical Ecotoxicology, Leipzig, Germany
| | - Ulrike Wallrabe
- University of Freiburg, Laboratory for Microactuators, Department of Microsystems Engineering-IMTEK, Georges-Köhler-Allee 102, 79110, Freiburg, Germany
| | - Matthias C Wapler
- University of Freiburg, Laboratory for Microactuators, Department of Microsystems Engineering-IMTEK, Georges-Köhler-Allee 102, 79110, Freiburg, Germany
| | - Nektarios Koukourakis
- Technische Universität Dresden, Laboratory for Measurement and Sensor System Technique, Helmholtzstraße 18, 01069, Dresden, Germany
| | - Jürgen W Czarske
- Technische Universität Dresden, Laboratory for Measurement and Sensor System Technique, Helmholtzstraße 18, 01069, Dresden, Germany
| |
Collapse
|
35
|
Li YF, Canário AVM, Power DM, Campinho MA. Ioxynil and diethylstilbestrol disrupt vascular and heart development in zebrafish. ENVIRONMENT INTERNATIONAL 2019; 124:511-520. [PMID: 30685453 DOI: 10.1016/j.envint.2019.01.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/17/2018] [Accepted: 01/04/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Endocrine disruption is one of the consequences of industrialization and chemicals released into the environment have a profound impact on organisms. Waterborne micromolar concentrations of ioxynil (IOX) and diethylstilbestrol (DES) in fish affect the development of the heart, vasculature and thyroid gland. OBJECTIVES The present study aimed to determine how IOX and DES disrupt the crosstalk between the developing thyroid gland and cardio-vascular system in zebrafish. METHODS Twelve hours post fertilization (hpf) wild type, Tg(fli1:GFP) or Tg(cmalc2:GFPCaaX) zebrafish embryos were exposed to 0.1 μM IOX or DES for 36 h (up until 48 hpf) or 60 h (up until 72 hpf). Embryos were used for vascular endothelial cell sorting, whole-mount immunohistochemistry, tissue selective transcriptomics, selected gene expression analysis by quantitative real-time polymerase chain reaction analysis and determination of heart rate by live imaging. RESULTS Exposure of zebrafish embryos to IOX and DES (0.1 μM) increased heart beat frequency and reduced ventricle volume and aorta diameter. The transcriptome of endothelial cells from blood vessels of hypertrophic, dilated and arrhythmogenic right ventricular cardiomyopathy was significantly changed and compound-specific toxic effects were found in IOX and DES exposed embryos. Both DES and IOX directly affected vascular and heart development and this indirectly impaired thyroid gland development in zebrafish. Even though the toxicity end-point of the two chemicals was similar, their action seemed to be via different gene regulatory pathways and physiological mechanisms. CONCLUSION IOX and DES directly disrupt cardiovascular development and there is an associated disruption of thyroid tissue that most likely has long term consequences for this endocrine axis.
Collapse
Affiliation(s)
- Yi-Feng Li
- International Research Centre for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Adelino V M Canário
- International Research Centre for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Deborah M Power
- International Research Centre for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Marco A Campinho
- Centre of Marine Sciences, University of Algarve, Faro, Portugal.
| |
Collapse
|
36
|
Abstract
Extracellular hydrogen peroxide is required for thyroperoxidase-mediated thyroid hormone synthesis in the follicular lumen of the thyroid gland. Among the NADPH oxidases, dual oxidases, DUOX1 and DUOX2, constitute a distinct subfamily initially identified as thyroid oxidases, based on their level of expression in the thyroid. Despite their high sequence similarity, the two isoforms present distinct regulations, tissue expression, and catalytic functions. Inactivating mutations in many of the genes involved in thyroid hormone synthesis cause thyroid dyshormonogenesis associated with iodide organification defect. This chapter provides an overview of the genetic alterations in DUOX2 and its maturation factor, DUOXA2, causing inherited severe hypothyroidism that clearly demonstrate the physiological implication of this oxidase in thyroid hormonogenesis. Mutations in the DUOX2 gene have been described in permanent but also in transient forms of congenital hypothyroidism. Moreover, accumulating evidence demonstrates that the high phenotypic variability associated with altered DUOX2 function is not directly related to the number of inactivated DUOX2 alleles, suggesting the existence of other pathophysiological factors. The presence of two DUOX isoforms and their corresponding maturation factors in the same organ could certainly constitute an efficient redundant mechanism to maintain sufficient H2O2 supply for iodide organification. Many of the reported DUOX2 missense variants have not been functionally characterized, their clinical impact in the observed phenotype remaining unresolved, especially in mild transient congenital hypothyroidism. DUOX2 function should be carefully evaluated using an in vitro assay wherein (1) DUOXA2 is co-expressed, (2) H2O2 production is activated, (3) and DUOX2 membrane expression is precisely analyzed.
Collapse
Affiliation(s)
- Xavier De Deken
- Faculté de Médecine, Université Libre de Bruxelles (ULB), Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Brussels, Belgium.
| | - Françoise Miot
- Faculté de Médecine, Université Libre de Bruxelles (ULB), Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Brussels, Belgium
| |
Collapse
|
37
|
Teng M, Zhu W, Wang D, Yan J, Qi S, Song M, Wang C. Acute exposure of zebrafish embryo (Danio rerio) to flutolanil reveals its developmental mechanism of toxicity via disrupting the thyroid system and metabolism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:1157-1165. [PMID: 30114598 DOI: 10.1016/j.envpol.2018.07.092] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 07/09/2018] [Accepted: 07/21/2018] [Indexed: 06/08/2023]
Abstract
Flutolanil, an amide fungicide, had been detected frequently in aquatic environments; it is thus potentially a great risk to aquatic organisms and human health. Therefore, we investigated the developmental toxicity and the potential mechanism of thyroid endocrine disruption induced by flutolanil based on 1H NMR metabolomics analysis using a zebrafish model. Hatching of zebrafish embryo exposed to flutolanil was inhibited at 72 hpf (hour post-fertilization) and survival and body length at 96 hpf. In addition, increased teratogenic effects on embryos were observed, including pericardial edema, spine deformation, and tail malformation. Furthermore, flutolanil induced slower heartbeat and larger pericardial area in the treated groups than control group. Transcription levels of TRH, TSHR, TPO, Dio1, TRα, and UGT1ab were significantly altered after flutolanil exposure. Metabolomics analysis further indicated that flutolanil induced alterations of energy, amino acids, nucleotide, lipids, and fatty acid metabolism. Our study also indicated that flutolanil exposure led to alterations of endogenous metabolites, which induced the thyroid endocrine disruption in zebrafish. Ultimately, embryonic developmental toxicity was caused by flutolanil.
Collapse
Affiliation(s)
- Miaomiao Teng
- College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Wentao Zhu
- College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Dezhen Wang
- College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Jin Yan
- College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Suzhen Qi
- Institute of Apiculture Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Min Song
- Tai'an Academy of Agricultural Sciences, Tai'an, 271000, China
| | - Chengju Wang
- College of Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
38
|
Baek KI, Ding Y, Chang CC, Chang M, Sevag Packard RR, Hsu JJ, Fei P, Hsiai TK. Advanced microscopy to elucidate cardiovascular injury and regeneration: 4D light-sheet imaging. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 138:105-115. [PMID: 29752956 PMCID: PMC6226366 DOI: 10.1016/j.pbiomolbio.2018.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/30/2018] [Accepted: 05/04/2018] [Indexed: 12/20/2022]
Abstract
The advent of 4-dimensional (4D) light-sheet fluorescence microscopy (LSFM) has provided an entry point for rapid image acquisition to uncover real-time cardiovascular structure and function with high axial resolution and minimal photo-bleaching/-toxicity. We hereby review the fundamental principles of our LSFM system to investigate cardiovascular morphogenesis and regeneration after injury. LSFM enables us to reveal the micro-circulation of blood cells in the zebrafish embryo and assess cardiac ventricular remodeling in response to chemotherapy-induced injury using an automated segmentation approach. Next, we review two distinct mechanisms underlying zebrafish vascular regeneration following tail amputation. We elucidate the role of endothelial Notch signaling to restore vascular regeneration after exposure to the redox active ultrafine particles (UFP) in air pollutants. By manipulating the blood viscosity and subsequently, endothelial wall shear stress, we demonstrate the mechanism whereby hemodynamic shear forces impart both mechanical and metabolic effects to modulate vascular regeneration. Overall, the implementation of 4D LSFM allows for the elucidation of mechanisms governing cardiovascular injury and regeneration with high spatiotemporal resolution.
Collapse
Affiliation(s)
- Kyung In Baek
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Yichen Ding
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Chih-Chiang Chang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Megan Chang
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - René R Sevag Packard
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Jeffrey J Hsu
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Peng Fei
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Tzung K Hsiai
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA; Medical Engineering, California Institute of Technology, Pasadena, CA 91106, USA.
| |
Collapse
|
39
|
Vergauwen L, Cavallin JE, Ankley GT, Bars C, Gabriëls IJ, Michiels EDG, Fitzpatrick KR, Periz-Stanacev J, Randolph EC, Robinson SL, Saari TW, Schroeder AL, Stinckens E, Swintek J, Van Cruchten SJ, Verbueken E, Villeneuve DL, Knapen D. Gene transcription ontogeny of hypothalamic-pituitary-thyroid axis development in early-life stage fathead minnow and zebrafish. Gen Comp Endocrinol 2018; 266:87-100. [PMID: 29733815 PMCID: PMC6540109 DOI: 10.1016/j.ygcen.2018.05.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/23/2018] [Accepted: 05/03/2018] [Indexed: 11/30/2022]
Abstract
The hypothalamic-pituitary-thyroid (HPT) axis is known to play a crucial role in the development of teleost fish. However, knowledge of endogenous transcription profiles of thyroid-related genes in developing teleosts remains fragmented. We selected two model teleost species, the fathead minnow (Pimephales promelas) and the zebrafish (Danio rerio), to compare the gene transcription ontogeny of the HPT axis. Control organisms were sampled at several time points during embryonic and larval development until 33 days post-fertilization. Total RNA was extracted from pooled, whole fish, and thyroid-related mRNA expression was evaluated using quantitative polymerase chain reaction. Gene transcripts examined included: thyrotropin-releasing hormone receptor (trhr), thyroid-stimulating hormone receptor (tshr), sodium-iodide symporter (nis), thyroid peroxidase (tpo), thyroglobulin (tg), transthyretin (ttr), deiodinases 1, 2, 3a, and 3b (dio1, dio2, dio3a and 3b), and thyroid hormone receptors alpha and beta (thrα and β). A loess regression method was successful in identifying maxima and minima of transcriptional expression during early development of both species. Overall, we observed great similarities between the species, including maternal transfer, at least to some extent, of almost all transcripts (confirmed in unfertilized eggs), increasing expression of most transcripts during hatching and embryo-larval transition, and indications of a fully functional HPT axis in larvae. These data will aid in the development of hypotheses on the role of certain genes and pathways during development. Furthermore, this provides a background reference dataset for designing and interpreting targeted transcriptional expression studies both for fundamental research and for applications such as toxicology.
Collapse
Affiliation(s)
- Lucia Vergauwen
- University of Antwerp, Zebrafishlab, Veterinary Physiology and Biochemistry, Dept. Veterinary Sciences, Universiteitsplein 1, 2610 Wilrijk, Belgium; University of Antwerp, Systemic Physiological and Ecotoxicological Research (SPHERE), Dept. Biology, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - Jenna E Cavallin
- Badger Technical Services, US EPA, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA.
| | - Gerald T Ankley
- US EPA, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA.
| | - Chloé Bars
- University of Antwerp, Applied Veterinary Morphology, Dept. Veterinary Sciences, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Isabelle J Gabriëls
- University of Antwerp, Zebrafishlab, Veterinary Physiology and Biochemistry, Dept. Veterinary Sciences, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Ellen D G Michiels
- University of Antwerp, Zebrafishlab, Veterinary Physiology and Biochemistry, Dept. Veterinary Sciences, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Krysta R Fitzpatrick
- US EPA, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA.
| | - Jelena Periz-Stanacev
- University of Antwerp, Zebrafishlab, Veterinary Physiology and Biochemistry, Dept. Veterinary Sciences, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Eric C Randolph
- ORISE Research Participation Program, US EPA Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA.
| | | | - Travis W Saari
- US EPA, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA
| | - Anthony L Schroeder
- University of Minnesota-Crookston, Math, Science, and Technology Department, 2900 University Ave., Crookston, MN 56716, USA.
| | - Evelyn Stinckens
- University of Antwerp, Zebrafishlab, Veterinary Physiology and Biochemistry, Dept. Veterinary Sciences, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Joe Swintek
- Badger Technical Services, US EPA, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA.
| | - Steven J Van Cruchten
- University of Antwerp, Applied Veterinary Morphology, Dept. Veterinary Sciences, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Evy Verbueken
- University of Antwerp, Applied Veterinary Morphology, Dept. Veterinary Sciences, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Daniel L Villeneuve
- US EPA, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA.
| | - Dries Knapen
- University of Antwerp, Zebrafishlab, Veterinary Physiology and Biochemistry, Dept. Veterinary Sciences, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| |
Collapse
|
40
|
An automated screening method for detecting compounds with goitrogenic activity using transgenic zebrafish embryos. PLoS One 2018; 13:e0203087. [PMID: 30157258 PMCID: PMC6114901 DOI: 10.1371/journal.pone.0203087] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/14/2018] [Indexed: 12/30/2022] Open
Abstract
The knowledge on environmentally relevant chemicals that may interfere with thyroid signaling is scarce. Here, we present a method for the screening of goitrogens, compounds that disrupt the thyroid gland function, based on the automatic orientation of zebrafish in a glass capillary and a subsequent imaging of reporter gene fluorescence in the thyroid gland of embryos of the transgenic zebrafish line tg(tg:mCherry). The tg(tg:mCherry) reporter gene indicates a compensatory upregulation of thyroglobulin, the thyroid hormone precursor, in response to inhibition of thyroid hormone synthesis. Fish embryos were exposed to a negative control compound (3,4-dichloroaniline), or a concentration series of known goitrogenic compounds (resorcinol, methimazole, potassium perchlorate, 6-propyl-2-thiouracil, ethylenethiourea, phloroglucinol, pyrazole) with maximum exposure concentration selected based on mortality and/or solubility. Exposure to 3,4-dichloroaniline decreased the fluorescence signal. All goitrogenic compounds exhibited clear concentration-dependent inductions of reporter fluorescence 1.4 to 2.6 fold above control levels. Concentration-response modelling was used to calculate goitrogenic potencies based on EC50 values. The new automated method offers an efficient screening approach for goitrogenic activity.
Collapse
|
41
|
Trubiroha A, Gillotay P, Giusti N, Gacquer D, Libert F, Lefort A, Haerlingen B, De Deken X, Opitz R, Costagliola S. A Rapid CRISPR/Cas-based Mutagenesis Assay in Zebrafish for Identification of Genes Involved in Thyroid Morphogenesis and Function. Sci Rep 2018; 8:5647. [PMID: 29618800 PMCID: PMC5884836 DOI: 10.1038/s41598-018-24036-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 03/26/2018] [Indexed: 02/06/2023] Open
Abstract
The foregut endoderm gives rise to several organs including liver, pancreas, lung and thyroid with important roles in human physiology. Understanding which genes and signalling pathways regulate their development is crucial for understanding developmental disorders as well as diseases in adulthood. We exploited unique advantages of the zebrafish model to develop a rapid and scalable CRISPR/Cas-based mutagenesis strategy aiming at the identification of genes involved in morphogenesis and function of the thyroid. Core elements of the mutagenesis assay comprise bi-allelic gene invalidation in somatic mutants, a non-invasive monitoring of thyroid development in live transgenic fish, complementary analyses of thyroid function in fixed specimens and quantitative analyses of mutagenesis efficiency by Illumina sequencing of individual fish. We successfully validated our mutagenesis-phenotyping strategy in experiments targeting genes with known functions in early thyroid morphogenesis (pax2a, nkx2.4b) and thyroid functional differentiation (duox, duoxa, tshr). We also demonstrate that duox and duoxa crispants phenocopy thyroid phenotypes previously observed in human patients with bi-allelic DUOX2 and DUOXA2 mutations. The proposed combination of efficient mutagenesis protocols, rapid non-invasive phenotyping and sensitive genotyping holds great potential to systematically characterize the function of larger candidate gene panels during thyroid development and is applicable to other organs and tissues.
Collapse
Affiliation(s)
- A Trubiroha
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium.,German Federal Institute for Risk Assessment (BfR), Department Chemicals and Product Safety, Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - P Gillotay
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium
| | - N Giusti
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium
| | - D Gacquer
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium
| | - F Libert
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium
| | - A Lefort
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium
| | - B Haerlingen
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium
| | - X De Deken
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium
| | - R Opitz
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium. .,Institute of Experimental Pediatric Endocrinology, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - S Costagliola
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium.
| |
Collapse
|
42
|
Zada D, Blitz E, Appelbaum L. Zebrafish - An emerging model to explore thyroid hormone transporters and psychomotor retardation. Mol Cell Endocrinol 2017; 459:53-58. [PMID: 28274736 DOI: 10.1016/j.mce.2017.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/18/2017] [Accepted: 03/02/2017] [Indexed: 12/17/2022]
Abstract
Thyroid hormones (THs) regulate a variety of fundamental physiological processes, including the development and maintenance of the brain. For decades, it was thought that THs enter the cells by passive diffusion. However, it is now clear that TH transport across the cell membrane requires specific transporter proteins that facilitate the uptake and efflux of THs. Several thyroid hormone transmembrane transporters (THTTs) have been identified, including monocarboxylate transporter 8 (MCT8), MCT10, and organic anion transporting polypeptide 1C1 (OATP1C1). The critical role of THTTs in regulating metabolism and brain function is demonstrated in the Allan-Herndon-Dudley syndrome (AHDS), an X-linked psychomotor retardation associated with mutations in the MCT8/SLC16A2 gene. In addition to traditional research on humans, cell-lines, and rodents, the zebrafish has recently emerged as an attractive model to study THTTs and neuroendocrinological-related disorders. In this review, we describe the unique contribution of zebrafish studies to the understanding of the functional role of THTTs in live animals, and how this transparent vertebrate model can be used for translational studies on TH-related disorders.
Collapse
Affiliation(s)
- David Zada
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Einat Blitz
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Lior Appelbaum
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
43
|
Abstract
Next-generation sequencing technologies have revolutionized the identification of disease-causing genes, accelerating the discovery of new mutations and new candidate genes for thyroid diseases. To face this flow of novel genetic information, it is important to have suitable animal models to study the mechanisms regulating thyroid development and thyroid hormone availability and activity. Zebrafish ( Danio rerio), with its rapid external embryonic development, has been extensively used in developmental biology. To date, almost all of the components of the zebrafish thyroid axis have been characterized and are structurally and functionally comparable with those of higher vertebrates. The availability of transgenic fluorescent zebrafish lines allows the real-time analysis of thyroid organogenesis and its alterations. Transient morpholino-knockdown is a solution to silence the expression of a gene of interest and promptly obtain insights on its contribution during the development of the zebrafish thyroid axis. The recently available tools for targeted stable gene knockout have further increased the value of zebrafish to the study of thyroid disease. All of the reported zebrafish models can also be used to screen small compounds and to test new drugs and may allow the establishment of experimental proof of concept to plan subsequent clinical trials.
Collapse
Affiliation(s)
- Federica Marelli
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Luca Persani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Lab of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
44
|
Abstract
Thyroid hormones are crucial for organismal development and homeostasis. In humans, untreated congenital hypothyroidism due to thyroid agenesis inevitably leads to cretinism, which comprises irreversible brain dysfunction and dwarfism. Elucidating how the thyroid gland - the only source of thyroid hormones in the body - develops is thus key for understanding and treating thyroid dysgenesis, and for generating thyroid cells in vitro that might be used for cell-based therapies. Here, we review the principal mechanisms involved in thyroid organogenesis and functional differentiation, highlighting how the thyroid forerunner evolved from the endostyle in protochordates to the endocrine gland found in vertebrates. New findings on the specification and fate decisions of thyroid progenitors, and the morphogenesis of precursor cells into hormone-producing follicular units, are also discussed.
Collapse
Affiliation(s)
- Mikael Nilsson
- Sahlgrenska Cancer Center, Institute of Biomedicine, University of Gothenburg, Göteborg SE-40530, Sweden
| | - Henrik Fagman
- Sahlgrenska Cancer Center, Institute of Biomedicine, University of Gothenburg, Göteborg SE-40530, Sweden.,Department of Clinical Pathology and Genetics, Sahlgrenska University Hospital, Göteborg SE-41345, Sweden
| |
Collapse
|
45
|
Liang X, Li J, Martyniuk CJ, Wang J, Mao Y, Lu H, Zha J. Benzotriazole ultraviolet stabilizers alter the expression of the thyroid hormone pathway in zebrafish (Danio rerio) embryos. CHEMOSPHERE 2017; 182:22-30. [PMID: 28486152 DOI: 10.1016/j.chemosphere.2017.05.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 04/30/2017] [Accepted: 05/02/2017] [Indexed: 05/14/2023]
Abstract
Benzotriazole ultraviolet stabilizers (BUVSs) are widely used in industrial products as well as personal-hygiene products to protect the material or skin from harmful UV-radiation. Due to their persistence and bioaccumulation, BUVSs have been ubiquitously detected in aquatic environments. Although the toxicological effects of BUVSs in aquatic organisms have been previously examined, the effects of BUVSs on the thyroid system have not been adequately addressed. In this study, we assessed putative thyroid disrupting effects of BUVSs (UV-234, UV-326, UV-329 and UV-P) in zebrafish embryos at 1, 10 and 100 μg/L for 96 h. The heart rate was assessed in zebrafish and was observed to be decreased by 6.9%-21.4% in exposure of tested BUVSs. We also observed that the transcript levels of HPT axis-related genes were affected by the 4 BUVSs tested in different ways. Specifically, mRNA levels of thyroid hormone receptors (thraa and thrb) in zebrafish embryos were differentially expressed and the direction of change in these transcripts was isoform and BUVSs dependent. Pathway analysis of the targeted genes measured indicated that cellular processes putatively affected by BUVSs included response to organic substance, regulation of transcription from RNA polymerase II promoter, intracellular receptor signaling pathway, and hypothyroidism. Upon expansion of the network, novel genes involved in this predicted gene network may provide insight into the mechanisms of thyroid disrupting mechanisms of BUVSs. Taken together, our results indicate that BUVSs can potentially impact the thyroid system, and that this is dependent upon the type or structure of BUVSs.
Collapse
Affiliation(s)
- Xuefang Liang
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China.
| | - Jiajia Li
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, UF Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Juan Wang
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Yufeng Mao
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Huan Lu
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
46
|
Gut P, Reischauer S, Stainier DYR, Arnaout R. LITTLE FISH, BIG DATA: ZEBRAFISH AS A MODEL FOR CARDIOVASCULAR AND METABOLIC DISEASE. Physiol Rev 2017; 97:889-938. [PMID: 28468832 PMCID: PMC5817164 DOI: 10.1152/physrev.00038.2016] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 12/17/2022] Open
Abstract
The burden of cardiovascular and metabolic diseases worldwide is staggering. The emergence of systems approaches in biology promises new therapies, faster and cheaper diagnostics, and personalized medicine. However, a profound understanding of pathogenic mechanisms at the cellular and molecular levels remains a fundamental requirement for discovery and therapeutics. Animal models of human disease are cornerstones of drug discovery as they allow identification of novel pharmacological targets by linking gene function with pathogenesis. The zebrafish model has been used for decades to study development and pathophysiology. More than ever, the specific strengths of the zebrafish model make it a prime partner in an age of discovery transformed by big-data approaches to genomics and disease. Zebrafish share a largely conserved physiology and anatomy with mammals. They allow a wide range of genetic manipulations, including the latest genome engineering approaches. They can be bred and studied with remarkable speed, enabling a range of large-scale phenotypic screens. Finally, zebrafish demonstrate an impressive regenerative capacity scientists hope to unlock in humans. Here, we provide a comprehensive guide on applications of zebrafish to investigate cardiovascular and metabolic diseases. We delineate advantages and limitations of zebrafish models of human disease and summarize their most significant contributions to understanding disease progression to date.
Collapse
Affiliation(s)
- Philipp Gut
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Sven Reischauer
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Didier Y R Stainier
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Rima Arnaout
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| |
Collapse
|
47
|
Noyes PD, Garcia GR, Tanguay RL. ZEBRAFISH AS AN IN VIVO MODEL FOR SUSTAINABLE CHEMICAL DESIGN. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2016; 18:6410-6430. [PMID: 28461781 PMCID: PMC5408959 DOI: 10.1039/c6gc02061e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Heightened public awareness about the many thousands of chemicals in use and present as persistent contaminants in the environment has increased the demand for safer chemicals and more rigorous toxicity testing. There is a growing recognition that the use of traditional test models and empirical approaches is impractical for screening for toxicity the many thousands of chemicals in the environment and the hundreds of new chemistries introduced each year. These realities coupled with the green chemistry movement have prompted efforts to implement more predictive-based approaches to evaluate chemical toxicity early in product development. While used for many years in environmental toxicology and biomedicine, zebrafish use has accelerated more recently in genetic toxicology, high throughput screening (HTS), and behavioral testing. This review describes major advances in these testing methods that have positioned the zebrafish as a highly applicable model in chemical safety evaluations and sustainable chemistry efforts. Many toxic responses have been shown to be shared among fish and mammals owing to their generally well-conserved development, cellular networks, and organ systems. These shared responses have been observed for chemicals that impair endocrine functioning, development, and reproduction, as well as those that elicit cardiotoxicity and carcinogenicity, among other diseases. HTS technologies with zebrafish enable screening large chemical libraries for bioactivity that provide opportunities for testing early in product development. A compelling attribute of the zebrafish centers on being able to characterize toxicity mechanisms across multiple levels of biological organization from the genome to receptor interactions and cellular processes leading to phenotypic changes such as developmental malformations. Finally, there is a growing recognition of the links between human and wildlife health and the need for approaches that allow for assessment of real world multi-chemical exposures. The zebrafish is poised to be an important model in bridging these two conventionally separate areas of toxicology and characterizing the biological effects of chemical mixtures that could augment its role in sustainable chemistry.
Collapse
Affiliation(s)
- Pamela D. Noyes
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331
| | - Gloria R. Garcia
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331
| | - Robert L. Tanguay
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
48
|
Philipp K, Smolarski A, Koukourakis N, Fischer A, Stürmer M, Wallrabe U, Czarske JW. Volumetric HiLo microscopy employing an electrically tunable lens. OPTICS EXPRESS 2016; 24:15029-41. [PMID: 27410654 DOI: 10.1364/oe.24.015029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Electrically tunable lenses exhibit strong potential for fast motion-free axial scanning in a variety of microscopes. However, they also lead to a degradation of the achievable resolution because of aberrations and misalignment between illumination and detection optics that are induced by the scan itself. Additionally, the typically nonlinear relation between actuation voltage and axial displacement leads to over- or under-sampled frame acquisition in most microscopic techniques because of their static depth-of-field. To overcome these limitations, we present an Adaptive-Lens-High-and-Low-frequency (AL-HiLo) microscope that enables volumetric measurements employing an electrically tunable lens. By using speckle-patterned illumination, we ensure stability against aberrations of the electrically tunable lens. Its depth-of-field can be adjusted a-posteriori and hence enables to create flexible scans, which compensates for irregular axial measurement positions. The adaptive HiLo microscope provides an axial scanning range of 1 mm with an axial resolution of about 4 μm and sub-micron lateral resolution over the full scanning range. Proof of concept measurements at home-built specimens as well as zebrafish embryos with reporter gene-driven fluorescence in the thyroid gland are shown.
Collapse
|
49
|
Comparative analysis of goitrogenic effects of phenylthiourea and methimazole in zebrafish embryos. Reprod Toxicol 2015; 57:10-20. [DOI: 10.1016/j.reprotox.2015.04.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 04/19/2015] [Accepted: 04/29/2015] [Indexed: 11/24/2022]
|
50
|
Braunbeck T, Kais B, Lammer E, Otte J, Schneider K, Stengel D, Strecker R. The fish embryo test (FET): origin, applications, and future. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:16247-61. [PMID: 25395325 DOI: 10.1007/s11356-014-3814-7] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 11/03/2014] [Indexed: 05/06/2023]
Abstract
Originally designed as an alternative for the acute fish toxicity test according to, e.g., OECD TG 203, the fish embryo test (FET) with the zebrafish (Danio rerio) has been optimized, standardized, and validated during an OECD validation study and adopted as OECD TG 236 as a test to assess toxicity of embryonic forms of fish. Given its excellent correlation with the acute fish toxicity test and the fact that non-feeding developmental stages of fish are not categorized as protected stages according to the new European Directive 2010/63/EU on the protection of animals used for scientific purposes, the FET is ready for use not only for range-finding but also as a true alternative for the acute fish toxicity test, as required for a multitude of national and international regulations. If-for ethical reasons-not accepted as a full alternative, the FET represents at least a refinement in the sense of the 3Rs principle. Objections to the use of the FET have mainly been based on the putative lack of biotransformation capacity and the assumption that highly lipophilic and/or high molecular weight substances might not have access to the embryo due to the protective role of the chorion. With respect to bioactivation, the only substance identified so far as not being activated in the zebrafish embryo is allyl alcohol; all other biotransformation processes that have been studied in more detail so far were found to be present, albeit, in some cases, at lower levels than in adult fish. With respect to larger molecules, the extension of the test duration to 96 h (i.e., beyond hatch) has-at least for the substances tested so far-compensated for the reduced access to the embryo; however, more research is necessary to fully explore the applicability of the FET to substances with a molecular weight >3 kDa as well as substances with a neurotoxic mode of action. An extension of the endpoints to also cover sublethal endpoints makes the FET a powerful tool for the detection of teratogenicity, dioxin-like activity, genotoxicity and mutagenicity, neurotoxicity, as well as various forms of endocrine disruption.
Collapse
Affiliation(s)
- Thomas Braunbeck
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany.
| | - Britta Kais
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Eva Lammer
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Jens Otte
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Katharina Schneider
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Daniel Stengel
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Ruben Strecker
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| |
Collapse
|