1
|
Pieplow C, Furze A, Gregory P, Oulhen N, Wessel GM. Sex specific gene expression is present prior to metamorphosis in the sea urchin. Dev Biol 2025; 517:217-233. [PMID: 39427857 DOI: 10.1016/j.ydbio.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/26/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
A profound collaboration between the germline and somatic cells of an organism is the creation of a functional gonad. Here we establish a foundation for studying molecular gonadogenesis in the sea urchin by use of RNA-seq, quantitative mRNA measurements, and in-situ hybridizations throughout the life cycle of the variegated sea urchin, Lytechinus variegatus (Lv). We found through three distinct analyses that the ovary and testis of this echinoderm expresses unique transcripts involved in gametogenesis, and also discovered uncharacterized gene products unique to each gonad. We further developed a pipeline integrating timepoint RNA-seq data throughout development to identify hallmark gene expression in gonads. We found that meiotic and candidate genes involved in sex determination are first expressed surprisingly early during larval growth, and well before metamorphosis. We further discovered that individual larvae express varying amounts of male- or female-hallmarks before metamorphosis, including germline, oocyte, sperm, and meiotic related genes. These distinct male- or female-gonad gene profiles may indicate the onset of, and commitment to, development of a bipotential gonad primordium, and may include metabolic differences, supported by the observation that transcripts involved in glycolysis are highly enriched in the ovary compared to the testis. Together these data support a hypothesis that sex determination is initiated prior to metamorphosis in the sea urchin and that the many uncharacterized genes unique to each gonad type characterized herein may reveal unique pathways and mechanisms in echinoderm reproduction.
Collapse
Affiliation(s)
- Cosmo Pieplow
- Department of Molecular, Cellular Biology and Biochemistry, BioMed Division, Brown University, 185 Meeting Street, Providence, RI, 02912, USA
| | - Aidan Furze
- Department of Molecular, Cellular Biology and Biochemistry, BioMed Division, Brown University, 185 Meeting Street, Providence, RI, 02912, USA
| | - Pauline Gregory
- Department of Molecular, Cellular Biology and Biochemistry, BioMed Division, Brown University, 185 Meeting Street, Providence, RI, 02912, USA
| | - Nathalie Oulhen
- Department of Molecular, Cellular Biology and Biochemistry, BioMed Division, Brown University, 185 Meeting Street, Providence, RI, 02912, USA
| | - Gary M Wessel
- Department of Molecular, Cellular Biology and Biochemistry, BioMed Division, Brown University, 185 Meeting Street, Providence, RI, 02912, USA.
| |
Collapse
|
2
|
Kushawah G, Amaral DB, Hassan H, Gogol M, Nowotarski SH, Bazzini AA. Critical role of Spatio-Temporally Regulated Maternal RNAs in Zebrafish Embryogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622483. [PMID: 39574587 PMCID: PMC11580991 DOI: 10.1101/2024.11.07.622483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
The maternal-to-zygotic transition shifts regulatory control from maternal to zygotic messenger RNAs (mRNA) through maternal mRNA degradation. While temporal aspects of maternal mRNA decay are known, spatial mechanisms remain underexplored. Using CRISPR-Cas9 and CRISPR-Cas13d systems, we functionally dissected the contribution of maternal versus zygotic fractions and overcame challenges of studying embryonic lethal genes. We identified differentially distributed maternal mRNAs in specific cells and evidenced the critical role of five maternal mRNAs, cth1, arl4d, abi1b, foxa and lhx1a, in embryogenesis. Further, we focused on the functionally uncharacterized cth1 gene, revealing its essential role in gametogenesis and embryogenesis. Cth1 acts as a spatio-temporal RNA decay factor regulating mRNA stability and accumulation of its targets in a spatio-temporal manner through 3'UTR recognition during early development. Furthermore, Cth1 3'UTR drives its spatio-temporal RNA localization. Our findings provide new insights into spatio-temporal RNA decay mechanisms and highlight dual CRISPR-Cas strategies in studying embryonic development.
Collapse
Affiliation(s)
- Gopal Kushawah
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO 64110, USA
| | - Danielson Baia Amaral
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO 64110, USA
| | - Huzaifa Hassan
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO 64110, USA
| | - Madelaine Gogol
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO 64110, USA
| | | | - Ariel A Bazzini
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO 64110, USA
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| |
Collapse
|
3
|
Yu Y, Yang Y, Ye H, Lu L, Li H, Xu Z, Li W, Yin X, Xu D. Identification of germ cells in large yellow croaker (Larimichthys crocea) and yellow drum (Nibea albiflora) using RT-PCR and in situ hybridization analyses. Gene 2023; 863:147280. [PMID: 36804002 DOI: 10.1016/j.gene.2023.147280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/18/2023] [Accepted: 02/07/2023] [Indexed: 02/20/2023]
Abstract
Ocean-caught large yellow croaker (Larimichthys crocea) represents an important germplasm resource for the breeding of this species; however, these fish tend to show poor survival in captivity and would be unsuitable breeding purposes. As an alternative to the use of wild-caught croakers, germ cell transplantation has been proposed using the L. crocea specimens as donors and yellow drum (Nibea albiflora) as recipients. In this regard, the identification of L. crocea and N. albiflora germ cells is an essential prerequisite for establishing a germ cell transplantation protocol for these fish. In this study, we cloned the 3' untranslated regions (UTR) of the vasa, dnd, and nanos2 genes in N. albiflora using the rapid amplification of cDNA ends (RACE) method and then aligned and analyzed the sequences of the corresponding genes in L. crocea and N. albiflora. On the basis of gene sequence differences, we designed species-specific primers and probes for RT-PCR analysis and in situ hybridization. RT-PCR analysis revealed that these species-specific primers exclusively amplified DNA from gonads of the respective species, thus confirming that we had six specific primer pairs that could be used to distinguish the germ cells in L. crocea and N. albiflora. Using in situ hybridization analysis, we established that whereas Lcvasa and Nadnd probes showed high species specificity, the probes for Navasa and Lcdnd showed a less specificity. In situ hybridization using Lcvasa and Nadnd thus enabled us to visualize the germ cells in these two species. Using these species-specific primers and probes, we can reliably distinguish the germ cells of L. crocea and N. albiflora, thereby establishing an effective approach for the post-transplantation identification of germ cells when using L. crocea and N. albiflora as donors and recipients, respectively.
Collapse
Affiliation(s)
- Yanjie Yu
- School of Fisheries, Zhejiang Ocean University, Zhoushan, China; Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan, China
| | - Yang Yang
- Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan, China; Ocean and Fisheries Research Institute, Zhejiang Ocean University, Zhoushan, China
| | - Huan Ye
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Lei Lu
- School of Fisheries, Zhejiang Ocean University, Zhoushan, China; Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan, China
| | - Haidong Li
- School of Fisheries, Zhejiang Ocean University, Zhoushan, China; Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan, China; Ocean and Fisheries Research Institute, Zhejiang Ocean University, Zhoushan, China
| | - Zhijin Xu
- Zhoushan Fisheries Research Institute, Zhoushan, China
| | - Weiye Li
- Zhoushan Fisheries Research Institute, Zhoushan, China
| | - Xiaolong Yin
- Zhoushan Fisheries Research Institute, Zhoushan, China
| | - Dongdong Xu
- Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan, China; Ocean and Fisheries Research Institute, Zhejiang Ocean University, Zhoushan, China.
| |
Collapse
|
4
|
Pieplow C, Wessel G. Functional annotation of a hugely expanded nanos repertoire in Lytechinus variegatus, the green sea urchin. Mol Reprod Dev 2023; 90:310-322. [PMID: 37039283 PMCID: PMC10225336 DOI: 10.1002/mrd.23684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/17/2023] [Accepted: 03/18/2023] [Indexed: 04/12/2023]
Abstract
Nanos genes encode essential RNA-binding proteins involved in germline determination and germline stem cell maintenance. When examining diverse classes of echinoderms, typically three, sometimes four, nanos genes are present. In this analysis, we identify and annotate nine nanos orthologs in the green sea urchin, Lytechinus variegatus (Lv). All nine genes are transcribed and grouped into three distinct classes. Class one includes the germline Nanos, with one member: Nanos2. Class two includes Nanos3-like genes, with significant sequence similarity to Nanos3 in the purple sea urchin, Strongylocentrotus purpuratus (Sp), but with wildly variable expression patterns. The third class includes several previously undescribed nanos zinc-finger genes that may be the result of duplications of Nanos2. All nine nanos transcripts occupy unique genomic loci and are expressed with unique temporal profiles during development. Importantly, here we describe and characterize the unique genomic location, conservation, and phylogeny of the Lv ortholog of the well-studied Sp Nanos2. However, in addition to the conserved germline functioning Nanos2, the green sea urchin appears to be an outlier in the echinoderm phyla with eight additional nanos genes. We hypothesize that this expansion of nanos gene members may be the result of a previously uncharacterized L1-class transposon encoded on the opposite strand of a nanos2 pseudogene present on chromosome 12 in this species. The expansion of nanos genes described here represents intriguing insights into germline specification and nanos evolution in this species of sea urchin.
Collapse
Affiliation(s)
- Cosmo Pieplow
- MCB Department, Division of Biomedicine, Brown University, Providence RI 02912
| | - Gary Wessel
- MCB Department, Division of Biomedicine, Brown University, Providence RI 02912
| |
Collapse
|
5
|
Post-transcriptional regulation of factors important for the germ line. Curr Top Dev Biol 2022; 146:49-78. [PMID: 35152986 DOI: 10.1016/bs.ctdb.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Echinoderms are a major model system for many general aspects of biology, including mechanisms of gene regulation. Analysis of transcriptional regulation (Gene regulatory networks, direct DNA-binding of proteins to specific cis-elements, and transgenesis) has contributed to our understanding of how an embryo works. This chapter looks at post-transcriptional gene regulation in the context of how the primordial germ cells are formed, and how the factors essential for this process are regulated. Important in echinoderms, as in many embryos, is that key steps of fate determination are made post-transcriptionally. This chapter highlights these steps uncovered in sea urchins and sea stars, and links them to a general theme of how the germ line may regulate its fate differently than many of the embryo's somatic cell lineages.
Collapse
|
6
|
Wessel GM, Morita S, Oulhen N. Somatic cell conversion to a germ cell lineage: A violation or a revelation? JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 336:666-679. [PMID: 32445519 PMCID: PMC7680723 DOI: 10.1002/jez.b.22952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/29/2022]
Abstract
The germline is unique and immortal (or at least its genome is). It is able to perform unique jobs (meiosis) and is selected for genetic changes. Part of being this special also means that entry into the germline club is restricted and cells of the soma are always left out. However, the recent evidence from multiple animals now suggests that somatic cells may join the club and become germline cells in an animal when the original germline is removed. This "violation" may have garnered acceptance by the observation that iPScells, originating experimentally from somatic cells of an adult, can form reproductively successful eggs and sperm, all in vitro. Each of the genes and their functions used to induce pluripotentiality are found normally in the cell and the in vitro conditions to direct germline commitment replicate conditions in vivo. Here, we discuss evidence from three different animals: an ascidian, a segmented worm, and a sea urchin; and that the cells of a somatic cell lineage can convert into the germline in vivo. We discuss the consequences of such transitions and provide thoughts as how this process may have equal precision to the original germline formation of an embryo.
Collapse
Affiliation(s)
- Gary M. Wessel
- Department of Molecular and Cellular Biology, Brown University, Providence RI 02912 USA
| | - Shumpei Morita
- Department of Molecular and Cellular Biology, Brown University, Providence RI 02912 USA
| | - Nathalie Oulhen
- Department of Molecular and Cellular Biology, Brown University, Providence RI 02912 USA
| |
Collapse
|
7
|
Pieplow A, Dastaw M, Sakuma T, Sakamoto N, Yamamoto T, Yajima M, Oulhen N, Wessel GM. CRISPR-Cas9 editing of non-coding genomic loci as a means of controlling gene expression in the sea urchin. Dev Biol 2021; 472:85-97. [PMID: 33482173 PMCID: PMC7956150 DOI: 10.1016/j.ydbio.2021.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 11/28/2022]
Abstract
We seek to manipulate gene function here through CRISPR-Cas9 editing of cis-regulatory sequences, rather than the more typical mutation of coding regions. This approach would minimize secondary effects of cellular responses to nonsense mediated decay pathways or to mutant protein products by premature stops. This strategy also allows for reducing gene activity in cases where a complete gene knockout would result in lethality, and it can be applied to the rapid identification of key regulatory sites essential for gene expression. We tested this strategy here with genes of known function as a proof of concept, and then applied it to examine the upstream genomic region of the germline gene Nanos2 in the sea urchin, Strongylocentrotus purpuratus. We first used CRISPR-Cas9 to target established genomic cis-regulatory regions of the skeletogenic cell transcription factor, Alx1, and the TGF-β signaling ligand, Nodal, which produce obvious developmental defects when altered in sea urchin embryos. Importantly, mutation of cis-activator sites (Alx1) and cis-repressor sites (Nodal) result in the predicted decreased and increased transcriptional output, respectively. Upon identification of efficient gRNAs by genomic mutations, we then used the same validated gRNAs to target a deadCas9-VP64 transcriptional activator to increase Nodal transcription directly. Finally, we paired these new methodologies with a more traditional, GFP reporter construct approach to further our understanding of the transcriptional regulation of Nanos2, a key gene required for germ cell identity in S. purpuratus. With a series of reporter assays, upstream Cas9-promoter targeted mutagenesis, coupled with qPCR and in situ RNA hybridization, we concluded that the promoter of Nanos2 drives strong mRNA expression in the sea urchin embryo, indicating that its primordial germ cell (PGC)-specific restriction may rely instead on post-transcriptional regulation. Overall, we present a proof-of-principle tool-kit of Cas9-mediated manipulations of promoter regions that should be applicable in most cells and embryos for which CRISPR-Cas9 is employed.
Collapse
Affiliation(s)
- Alice Pieplow
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Meseret Dastaw
- Ethiopian Biotechnology Institute, Addis Ababa University, NBH1, 4killo King George VI St, Addis Ababa, Ethiopia
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8526, Japan
| | - Naoaki Sakamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8526, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8526, Japan
| | - Mamiko Yajima
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Nathalie Oulhen
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Gary M Wessel
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
8
|
Oulhen N, Swartz SZ, Wang L, Wikramanayake A, Wessel GM. Distinct transcriptional regulation of Nanos2 in the germ line and soma by the Wnt and delta/notch pathways. Dev Biol 2019; 452:34-42. [PMID: 31075220 PMCID: PMC6848975 DOI: 10.1016/j.ydbio.2019.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/19/2019] [Accepted: 04/21/2019] [Indexed: 12/23/2022]
Abstract
Specification of the primordial germ cells (PGCs) is essential for sexually reproducing animals. Although the mechanisms of PGC specification are diverse between organisms, the RNA binding protein Nanos is consistently required in the germ line in all species tested. How Nanos is selectively expressed in the germ line, however, remains largely elusive. We report that in sea urchin embryos, the early expression of Nanos2 in the PGCs requires the maternal Wnt pathway. During gastrulation, however, Nanos2 expression expands into adjacent somatic mesodermal cells and this secondary Nanos expression instead requires Delta/Notch signaling through the forkhead family member FoxY. Each of these transcriptional regulators were tested by chromatin immunoprecipitation analysis and found to directly interact with a DNA locus upstream of Nanos2. Given the conserved importance of Nanos in germ line specification, and the derived character of the micromeres and small micromeres in the sea urchin, we propose that the ancestral mechanism of Nanos2 expression in echinoderms was by induction in mesodermal cells during gastrulation.
Collapse
Affiliation(s)
- Nathalie Oulhen
- Department of Molecular and Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI, 02912, USA
| | - S Zachary Swartz
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA, 02142, USA
| | - Lingyu Wang
- Department of Biology and Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | | | - Gary M Wessel
- Department of Molecular and Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI, 02912, USA.
| |
Collapse
|
9
|
Zhang J, Han X, Wang J, Liu BZ, Wei JL, Zhang WJ, Sun ZH, Chang YQ. Molecular Cloning and Sexually Dimorphic Expression Analysis of nanos2 in the Sea Urchin, Mesocentrotus nudus. Int J Mol Sci 2019; 20:ijms20112705. [PMID: 31159444 PMCID: PMC6600436 DOI: 10.3390/ijms20112705] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 05/26/2019] [Accepted: 05/30/2019] [Indexed: 12/15/2022] Open
Abstract
Sea urchin (Mesocentrotus nudus) is an economically important mariculture species in China and the gonads are the solely edible parts to human. The molecular mechanisms of gonad development have attracted increasing attention in recent years. Although the nanos2 gene has been identified as a germ cell marker in several invertebrates, little is known about nanos2 in adult sea urchins. Hereinto, we report the characterization of Mnnano2, an M. nudus nanos2 homology gene. Mnnanos2 is a maternal factor and can be detected continuously during embryogenesis and early ontogeny. Real-time quantitative PCR (RT-qPCR) and section in situ hybridization (ISH) analysis revealed a dynamic and sexually dimorphic expression pattern of Mnnano2 in the gonads. Its expression reached the maximal level at Stage 2 along with the gonad development in both ovary and testis. In the ovary, Mnnanos2 is specifically expressed in germ cells. In contrast, Mnnanos2 is expressed in both nutritive phagocytes (NP) cells and male germ cells in testis. Moreover, knocking down of Mnnanos2 by means of RNA interference (RNAi) reduced nanos2 and boule expression but conversely increased the expression of foxl2. Therefore, our data suggest that Mnnanos2 may serve as a female germ cell marker during gametogenesis and provide chances to uncover its function in adult sea urchin.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China.
| | - Xiao Han
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China.
| | - Jin Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China.
| | - Bing-Zheng Liu
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China.
| | - Jin-Liang Wei
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China.
| | - Wei-Jie Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China.
| | - Zhi-Hui Sun
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China.
| | - Ya-Qing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
10
|
Gonadal transcriptomic analysis and identification of candidate sex-related genes in Mesocentrotus nudus. Gene 2019; 698:72-81. [DOI: 10.1016/j.gene.2019.02.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/14/2022]
|
11
|
Campanale JP, Hamdoun A, Wessel GM, Su YH, Oulhen N. Methods to label, isolate, and image sea urchin small micromeres, the primordial germ cells (PGCs). Methods Cell Biol 2019; 150:269-292. [PMID: 30777180 PMCID: PMC6487853 DOI: 10.1016/bs.mcb.2018.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Small micromeres of the sea urchin are believed to be primordial germ cells (PGCs), fated to give rise to sperm or eggs in the adult. Sea urchin PGCs are formed at the fifth cleavage, undergo one additional division during blastulation, and migrate to the coelomic pouches of the pluteus larva. The goal of this chapter is to detail classical and modern techniques used to analyze primordial germ cell specification, gene expression programs, and cell behaviors in fixed and live embryos. The transparency of the sea urchin embryo enables both live imaging techniques and in situ RNA hybridization and immunolabeling for a detailed molecular characterization of these cells. Four approaches are presented to highlight small micromeres with fluorescent molecules for analysis by live and fixed cell microscopy: (1) small molecule dye accumulation during cleavage and blastula stages, (2) primordial germ cell targeted RNA expression using the Nanos untranslated regions, (3) fusing genes of interest with a Nanos2 targeting peptide, and (4) EdU and BrdU labeling. Applications of the live labeling techniques are discussed, including sorting by fluorescence-activated cell sorting for transcriptomic analysis, and, methods to image small micromere behavior in whole and dissociated embryos by live confocal microscopy. Finally, summary table of antibody and RNA probes as well as small molecule dyes to label small micromeres at a variety of developmental stages is provided.
Collapse
Affiliation(s)
- Joseph P Campanale
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States.
| | - Amro Hamdoun
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States.
| | - Gary M Wessel
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, RI, United States
| | - Yi-Hsien Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Nathalie Oulhen
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, RI, United States
| |
Collapse
|
12
|
Roux-Osovitz MM, Foltz KR, Oulhen N, Wessel G. Trapping, tagging and tracking: Tools for the study of proteins during early development of the sea urchin. Methods Cell Biol 2019; 151:283-304. [PMID: 30948012 PMCID: PMC7549693 DOI: 10.1016/bs.mcb.2018.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2024]
Abstract
The exquisite synchronicity of sea urchin development provides a reliable model for studying maternal proteins in the haploid egg as well as those involved in egg activation, fertilization and early development. Sea urchin eggs are released by the millions, enabling the quantitative evaluation of maternally stored and newly synthesized proteins over a range of time (seconds to hours post fertilization). During this window of development exist many hallmark and unique biochemical interactions that can be investigated for the purpose of characterizing profiles of kinases and other signaling proteins, manipulated using pharmacology to test sufficiency and necessity, for identification of post translational modifications, and for capturing protein-protein interactions. Coupled with the fact that sea urchin eggs and embryos are transparent, this synchronicity also results in large populations of cells that can be evaluated for newly synthesized protein localization and identification through use of the Click-iT technology. We provide basic protocols for these approaches and direct readers to the appropriate literature for variations and examples.
Collapse
Affiliation(s)
| | - Kathy R Foltz
- Department of Molecular, Cellular and Developmental Biology and Marine Science Institute, UC Santa Barbara, Santa Barbara, CA, United States
| | - Nathalie Oulhen
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, RI, United States
| | - Gary Wessel
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, RI, United States
| |
Collapse
|
13
|
Molina MD, Gache C, Lepage T. Expression of exogenous mRNAs to study gene function in echinoderm embryos. Methods Cell Biol 2019; 151:239-282. [PMID: 30948011 DOI: 10.1016/bs.mcb.2018.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
With the completion of the genome sequencing projects, a new challenge for developmental biologists is to assign a function to the thousands of genes identified. Expression of exogenous mRNAs is a powerful, versatile and rapid technique that can be used to study gene function during development of the sea urchin. This chapter describes how this technique can be used to analyze gene function in echinoderm embryos, how it can be combined with cell transplantation to perform mosaic analysis and how it can be applied to identify downstream targets genes of transcription factors and signaling pathways. We describe specific examples of the use of overexpression of mRNA to analyze gene function, mention the benefits and current limitations of the technique and emphasize the importance of using different controls to assess the specificity of the effects observed. Finally, this chapter details the different steps, vectors and protocols for in vitro production of mRNA and phenotypic analysis.
Collapse
Affiliation(s)
| | - Christian Gache
- Université Pierre et Marie Curie, Observatoire Océanologique de Villefranche sur Mer, UMR7009 CNRS, Paris, France
| | - Thierry Lepage
- Université Côte d'Azur, CNRS, INSERM, iBV, Nice, France.
| |
Collapse
|
14
|
Oulhen N, Wessel G. A quiet space during rush hour: Quiescence in primordial germ cells. Stem Cell Res 2017; 25:296-299. [PMID: 29157935 DOI: 10.1016/j.scr.2017.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 10/25/2017] [Accepted: 11/03/2017] [Indexed: 10/18/2022] Open
Abstract
Quiescence is a common character in stem cells. Low cellular activity in these cells may function to minimize the potential damaging effects of oxidative stress, reduce the number of cells needed for tissue replenishment, and as a consequence, perhaps occupy unique niches. Quiescent stem cells are found in many adult human tissues, the hematopoietic stem cells are paradigmatic, and more recently it appears that stem cell of the germ line in many animals display quiescence characters. Here we explore the diversity of quiescence phenotypes in primordial germ cells, leveraging the diverse mechanisms of germ cell formation to extract evolutionary significance to common processes.
Collapse
Affiliation(s)
- Nathalie Oulhen
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, RI 02912, United States
| | - Gary Wessel
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, RI 02912, United States.
| |
Collapse
|
15
|
Oulhen N, Swartz SZ, Laird J, Mascaro A, Wessel GM. Transient translational quiescence in primordial germ cells. Development 2017; 144:1201-1210. [PMID: 28235822 PMCID: PMC5399625 DOI: 10.1242/dev.144170] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 02/01/2017] [Indexed: 01/07/2023]
Abstract
Stem cells in animals often exhibit a slow cell cycle and/or low transcriptional activity referred to as quiescence. Here, we report that the translational activity in the primordial germ cells (PGCs) of the sea urchin embryo (Strongylocentrotus purpuratus) is quiescent. We measured new protein synthesis with O-propargyl-puromycin and L-homopropargylglycine Click-iT technologies, and determined that these cells synthesize protein at only 6% the level of their adjacent somatic cells. Knockdown of translation of the RNA-binding protein Nanos2 by morpholino antisense oligonucleotides, or knockout of the Nanos2 gene by CRISPR/Cas9 resulted in a significant, but partial, increase (47%) in general translation specifically in the PGCs. We found that the mRNA of the translation factor eEF1A is excluded from the PGCs in a Nanos2-dependent manner, a consequence of a Nanos/Pumilio response element (PRE) in its 3'UTR. In addition to eEF1A, the cytoplasmic pH of the PGCs appears to repress translation and simply increasing the pH also significantly restores translation selectively in the PGCs. We conclude that the PGCs of this sea urchin institute parallel pathways to quiesce translation thoroughly but transiently.
Collapse
Affiliation(s)
- Nathalie Oulhen
- Department of Molecular and Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - S Zachary Swartz
- Department of Molecular and Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
- Whitehead Institute for Biomedical Research, MIT, Nine Cambridge Center, Cambridge, MA 02142, USA
| | - Jessica Laird
- Department of Molecular and Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Alexandra Mascaro
- Department of Molecular and Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Gary M Wessel
- Department of Molecular and Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| |
Collapse
|
16
|
Sun ZH, Wang Y, Lu WJ, Li Z, Liu XC, Li SS, Zhou L, Gui JF. Divergent Expression Patterns and Function Implications of Four nanos Genes in a Hermaphroditic Fish, Epinephelus coioides. Int J Mol Sci 2017; 18:E685. [PMID: 28333083 PMCID: PMC5412271 DOI: 10.3390/ijms18040685] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/12/2017] [Accepted: 03/17/2017] [Indexed: 12/16/2022] Open
Abstract
Multiple nanos genes have been characterized in several fishes, but the functional implications of their various expression patterns remain unclear. In this study, we identified and characterized four nanos genes from a hermaphroditic fish orange-spotted grouper, Epinephelus coioides. Ecnanos1a and Ecnanos1b show divergent expression patterns, and the dynamic expression change of Ecnanos1a in pituitaries during sex change is associated with testis differentiation and spermatogenesis. Ecnanos2 and Ecnanos3 might be germline stem cells (GSCs) and primordial germ cells (PGCs)-specific markers, respectively. Significantly, Ecnanos3 3'-untranslated region (UTR) is necessary for PGC specific expression, where a non-canonical "GCACGTTT" sequence is required for miR-430-mediated repression of Ecnanos3 RNA. Furthermore, grouper Dead end (Dnd) can relieve miR-430 repression in PGCs by associating with a 23 bp U-rich region (URR) in Ecnanos3 3'-UTR. The current study revealed the functional association of multiple nanos genes with PGC formation and germ cell development in orange-spotted grouper, and opened up new possibilities for developing biotechnologies through utilizing the associations between Ecnanos3 and PGCs or between Ecnanos2 and GSCs in the hermaphroditic fish.
Collapse
Affiliation(s)
- Zhi-Hui Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China.
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China.
| | - Wei-Jia Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China.
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China.
| | - Xiao-Chun Liu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, The Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Shui-Sheng Li
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, The Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China.
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
17
|
Li M, Tan X, Sui Y, Jiao S, Wu Z, You F. Conserved elements in the nanos3 3′UTR of olive flounder are responsible for the selective retention of RNA in germ cells. Comp Biochem Physiol B Biochem Mol Biol 2016; 198:66-72. [DOI: 10.1016/j.cbpb.2016.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 11/17/2022]
|
18
|
Oulhen N, Wessel GM. Differential Nanos 2 protein stability results in selective germ cell accumulation in the sea urchin. Dev Biol 2016; 418:146-156. [PMID: 27424271 DOI: 10.1016/j.ydbio.2016.07.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 06/21/2016] [Accepted: 07/12/2016] [Indexed: 01/18/2023]
Abstract
Nanos is a translational regulator required for the survival and maintenance of primordial germ cells. In the sea urchin, Strongylocentrotus purpuratus (Sp), Nanos 2 mRNA is broadly transcribed but accumulates specifically in the small micromere (sMic) lineage, in part because of the 3'UTR element GNARLE leads to turnover in somatic cells but retention in the sMics. Here we found that the Nanos 2 protein is also selectively stabilized; it is initially translated throughout the embryo but turned over in the future somatic cells and retained only in the sMics, the future germ line in this animal. This differential stability of Nanos protein is dependent on the open reading frame (ORF), and is independent of the sumoylation and ubiquitylation pathways. Manipulation of the ORF indicates that 68 amino acids in the N terminus of the Nanos protein are essential for its stability in the sMics whereas a 45 amino acid element adjacent to the zinc fingers targets its degradation. Further, this regulation of Nanos protein is cell autonomous, following formation of the germ line. These results are paradigmatic for the unique presence of Nanos in the germ line by a combination of selective RNA retention, distinctive translational control mechanisms (Oulhen et al., 2013), and now also by defined Nanos protein stability.
Collapse
Affiliation(s)
- Nathalie Oulhen
- Department of Molecular and Cell Biology and Biochemistry, Brown University, 185 Meeting St., Providence, RI 02912, USA
| | - Gary M Wessel
- Department of Molecular and Cell Biology and Biochemistry, Brown University, 185 Meeting St., Providence, RI 02912, USA.
| |
Collapse
|
19
|
Quantitative developmental transcriptomes of the Mediterranean sea urchin Paracentrotus lividus. Mar Genomics 2015; 25:89-94. [PMID: 26671332 DOI: 10.1016/j.margen.2015.11.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 11/26/2015] [Accepted: 11/26/2015] [Indexed: 01/28/2023]
Abstract
Embryonic development progresses through the timely activation of thousands of differentially activated genes. Quantitative developmental transcriptomes provide the means to relate global patterns of differentially expressed genes to the emerging body plans they generate. The sea urchin is one of the classic model systems for embryogenesis and the models of its developmental gene regulatory networks are of the most comprehensive of their kind. Thus, the sea urchin embryo is an excellent system for studies of its global developmental transcriptional profiles. Here we produced quantitative developmental transcriptomes of the sea urchin Paracentrotus lividus (P. lividus) at seven developmental stages from the fertilized egg to prism stage. We generated de-novo reference transcriptome and identified 29,817 genes that are expressed at this time period. We annotated and quantified gene expression at the different developmental stages and confirmed the reliability of the expression profiles by QPCR measurement of a subset of genes. The progression of embryo development is reflected in the observed global expression patterns and in our principle component analysis. Our study illuminates the rich patterns of gene expression that participate in sea urchin embryogenesis and provide an essential resource for further studies of the dynamic expression of P. lividus genes.
Collapse
|
20
|
Abstract
With few exceptions, all animals acquire the ability to produce eggs or sperm at some point in their life cycle. Despite this near-universal requirement for sexual reproduction, there exists an incredible diversity in germ line development. For example, animals exhibit a vast range of differences in the timing at which the germ line, which retains reproductive potential, separates from the soma, or terminally differentiated, nonreproductive cells. This separation may occur during embryonic development, after gastrulation, or even in adults, depending on the organism. The molecular mechanisms of germ line segregation are also highly diverse, and intimately intertwined with the overall transition from a fertilized egg to an embryo. The earliest embryonic stages of many species are largely controlled by maternally supplied factors. Later in development, patterning control shifts to the embryonic genome and, concomitantly with this transition, the maternally supplied factors are broadly degraded. This chapter attempts to integrate these processes--germ line segregation, and how the divergence of germ line and soma may utilize the egg to embryo transitions differently. In some embryos, this difference is subtle or maybe lacking altogether, whereas in other embryos, this difference in utilization may be a key step in the divergence of the two lineages. Here, we will focus our discussion on the echinoderms, and in particular the sea urchins, in which recent studies have provided mechanistic understanding in germ line determination. We propose that the germ line in sea urchins requires an acquisition of maternal factors from the egg and, when compared to other members of the taxon, this appears to be a derived mechanism. The acquisition is early--at the 32-cell stage--and involves active protection of maternal mRNAs, which are instead degraded in somatic cells with the maternal-to-embryonic transition. We collectively refer to this model as the Time Capsule method for germ line determination.
Collapse
Affiliation(s)
- S Zachary Swartz
- Department of Molecular and Cellular Biology, Brown University, Providence, Rhode Island, USA
| | - Gary M Wessel
- Department of Molecular and Cellular Biology, Brown University, Providence, Rhode Island, USA.
| |
Collapse
|
21
|
Yao X, Tang F, Yu M, Zhu H, Chu Z, Li M, Liu W, Hua J, Peng S. Expression profile of Nanos2 gene in dairy goat and its inhibitory effect on Stra8 during meiosis. Cell Prolif 2014; 47:396-405. [PMID: 25195564 DOI: 10.1111/cpr.12128] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/15/2014] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES Nanos2, an RNA-binding protein, belongs to the Nanos gene-coding family and contains two CCHC zinc-finger motifs. In mouse, it plays a pivotal role in male germ cell development, and self-renewal of spermatogonial stem cells. However, little is known of its expression pattern and functions in dairy goat testis. MATERIALS AND METHODS Immunohistochemistry and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) were used to generate the expression profile of Nanos2 in dairy goat testis. Furthermore, its overexpression effects on male germline stem cells (mGSCs) were studied using qRT-PCR, immunofluorescence, dual-luciferase reporter assay and western blotting. RESULTS Nanos2 is a conservative gene expressed widely in various tissues, especially in pancreas, and it displays higher expression in adult testes than in other age groups. Overexpression of Nanos2 significantly downregulated meiosis-related genes, including Stra8 and Scp3, which induced inhibition of meiosis. Results from dual-luciferase reporter assay and western blotting indicated that Nanos2 directly downregulated Stra8 in goat GmGSCs. CONCLUSIONS Taken together, these results suggest that Nanos2 plays an important role in spermatogonia and that its overexpression restrained meiosis in the dairy goat.
Collapse
Affiliation(s)
- X Yao
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, 712100, China; Shaanxi Stem Cell Engineering and Technology Research Center, Northwest Agriculture and Forestry University, Yangling, 712100, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wessel GM, Brayboy L, Fresques T, Gustafson EA, Oulhen N, Ramos I, Reich A, Swartz SZ, Yajima M, Zazueta V. The biology of the germ line in echinoderms. Mol Reprod Dev 2014; 81:679-711. [PMID: 23900765 PMCID: PMC4102677 DOI: 10.1002/mrd.22223] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 07/23/2013] [Indexed: 12/16/2022]
Abstract
The formation of the germ line in an embryo marks a fresh round of reproductive potential. The developmental stage and location within the embryo where the primordial germ cells (PGCs) form, however, differs markedly among species. In many animals, the germ line is formed by an inherited mechanism, in which molecules made and selectively partitioned within the oocyte drive the early development of cells that acquire this material to a germ-line fate. In contrast, the germ line of other animals is fated by an inductive mechanism that involves signaling between cells that directs this specialized fate. In this review, we explore the mechanisms of germ-line determination in echinoderms, an early-branching sister group to the chordates. One member of the phylum, sea urchins, appears to use an inherited mechanism of germ-line formation, whereas their relatives, the sea stars, appear to use an inductive mechanism. We first integrate the experimental results currently available for germ-line determination in the sea urchin, for which considerable new information is available, and then broaden the investigation to the lesser-known mechanisms in sea stars and other echinoderms. Even with this limited insight, it appears that sea stars, and perhaps the majority of the echinoderm taxon, rely on inductive mechanisms for germ-line fate determination. This enables a strongly contrasted picture for germ-line determination in this phylum, but one for which transitions between different modes of germ-line determination might now be experimentally addressed.
Collapse
Affiliation(s)
- Gary M. Wessel
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Lynae Brayboy
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Tara Fresques
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Eric A. Gustafson
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Nathalie Oulhen
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Isabela Ramos
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Adrian Reich
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - S. Zachary Swartz
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Mamiko Yajima
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Vanessa Zazueta
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| |
Collapse
|
23
|
Campanale JP, Gökirmak T, Espinoza JA, Oulhen N, Wessel GM, Hamdoun A. Migration of sea urchin primordial germ cells. Dev Dyn 2014; 243:917-27. [PMID: 24677545 PMCID: PMC4164171 DOI: 10.1002/dvdy.24133] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/23/2014] [Accepted: 03/24/2014] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Small micromeres are produced at the fifth cleavage of sea urchin development. They express markers of primordial germ cells (PGCs), and are required for the production of gametes. In most animals, PGCs migrate from sites of formation to the somatic gonad. Here, we investigated whether they also exhibit similar migratory behaviors using live-cell imaging of small micromere plasma membranes. RESULTS Early in gastrulation, small micromeres transition from non-motile epithelial cells, to motile quasi-mesenchymal cells. Late in gastrulation, at 43 hr post fertilization (HPF), they are embedded in the tip of the archenteron, but remain motile. From 43-49 HPF, they project numerous cortical blebs into the blastocoel, and filopodia that contact ectoderm. By 54 HPF, they begin moving in the plane of the blastoderm, often in a directed fashion, towards the coelomic pouches. Isolated small micromeres also produced blebs and filopodia. CONCLUSIONS Previous work suggested that passive translocation governs some of the movement of small micromeres during gastrulation. Here we show that small micromeres are motile cells that can traverse the archenteron, change position along the left-right axis, and migrate to coelomic pouches. These motility mechanisms are likely to play an important role in their left-right segregation.
Collapse
Affiliation(s)
- Joseph P. Campanale
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California
| | - Tufan Gökirmak
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California
| | - Jose A. Espinoza
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California
| | - Nathalie Oulhen
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Gary M. Wessel
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Amro Hamdoun
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California
| |
Collapse
|
24
|
Fresques T, Zazueta-Novoa V, Reich A, Wessel GM. Selective accumulation of germ-line associated gene products in early development of the sea star and distinct differences from germ-line development in the sea urchin. Dev Dyn 2014; 243:568-87. [PMID: 24038550 PMCID: PMC3996927 DOI: 10.1002/dvdy.24038] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 08/12/2013] [Accepted: 08/16/2013] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Echinodermata is a diverse phylum, a sister group to chordates, and contains diverse organisms that may be useful to understand varied mechanisms of germ-line specification. RESULTS We tested 23 genes in development of the sea star Patiria miniata that fall into five categories: (1) Conserved germ-line factors; (2) Genes involved in the inductive mechanism of germ-line specification; (3) Germ-line associated genes; (4) Molecules involved in left-right asymmetry; and (5) Genes involved in regulation and maintenance of the genome during early embryogenesis. Overall, our results support the contention that the posterior enterocoel is a source of the germ line in the sea star P. miniata. CONCLUSIONS The germ line in this organism appears to be specified late in embryogenesis, and in a pattern more consistent with inductive interactions amongst cells. This is distinct from the mechanism seen in sea urchins, a close relative of the sea star clad. We propose that P. miniata may serve as a valuable model to study inductive mechanisms of germ-cell specification and when compared with germ-line formation in the sea urchin S. purpuratus may reveal developmental transitions that occur in the evolution of inherited and inductive mechanisms of germ-line specification.
Collapse
Affiliation(s)
| | | | - Adrian Reich
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence RI 02912 USA
| | - Gary M. Wessel
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence RI 02912 USA
| |
Collapse
|
25
|
Oulhen N, Wessel GM. Every which way--nanos gene regulation in echinoderms. Genesis 2014; 52:279-86. [PMID: 24376110 DOI: 10.1002/dvg.22737] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 12/16/2013] [Indexed: 12/12/2022]
Abstract
Nanos is an essential factor of germ line success in all animals tested. This gene encodes a Zn-finger RNA-binding protein that in complex with its partner pumilio binds to and changes the fate of several known transcripts. We summarize here the documented functions of Nanos in several key organisms, and then emphasize echinoderms as a working model for how nanos expression is regulated. Nanos presence outside of the target cells is often detrimental to the animal, and in sea urchins, nanos expression appears to be regulated at every step of transcription, and post-transcriptional activity, making this gene product exciting, every which way.
Collapse
Affiliation(s)
- Nathalie Oulhen
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | | |
Collapse
|