1
|
Ławkowska K, Bonowicz K, Jerka D, Bai Y, Gagat M. Integrins in Cardiovascular Health and Disease: Molecular Mechanisms and Therapeutic Opportunities. Biomolecules 2025; 15:233. [PMID: 40001536 PMCID: PMC11853560 DOI: 10.3390/biom15020233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/30/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
Cardiovascular diseases, including atherosclerosis, hypertension, and heart failure, remain the leading cause of global mortality, with endothelial dysfunction and vascular remodeling as critical contributors. Integrins, as transmembrane adhesion proteins, are central regulators of cell adhesion, migration, and signaling, playing a pivotal role in maintaining vascular homeostasis and mediating pathological processes such as inflammation, angiogenesis, and extracellular matrix remodeling. This article comprehensively examines the role of integrins in the pathogenesis of cardiovascular diseases, focusing on their dysfunction in endothelial cells and interactions with inflammatory mediators, such as TNF-α. Molecular mechanisms of integrin action are discussed, including their involvement in mechanotransduction, leukocyte adhesion, and signaling pathways that regulate vascular integrity. The review also highlights experimental findings, such as the use of specific integrin-targeting plasmids and immunofluorescence to elucidate integrin functions under inflammatory conditions. Additionally, potential therapeutic strategies are explored, including the development of integrin inhibitors, monoclonal antibodies, and their application in regenerative medicine. These approaches aim not only to mitigate pathological vascular remodeling but also to promote tissue repair and angiogenesis. By bridging insights from molecular studies with their translational potential, this work underscores the promise of integrin-based therapies in advancing the management and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Karolina Ławkowska
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| | - Klaudia Bonowicz
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
- Collegium Medicum, Mazovian Academy in Płock, 09-402 Płock, Poland
| | - Dominika Jerka
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| | - Yidong Bai
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX 78229, USA;
| | - Maciej Gagat
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
- Collegium Medicum, Mazovian Academy in Płock, 09-402 Płock, Poland
| |
Collapse
|
2
|
Obut M, Akay A, Müjde IC, Çelik ÖY, Öncü AK, Acar Z, Seker E, Saglam E, Iskender C. Does the Presence of Extended Jugular Lymphatic Sacs Add More Risk to Nuchal Thickness for Genetic and Structural Abnormality? J Med Ultrasound 2023; 31:119-126. [PMID: 37576423 PMCID: PMC10413408 DOI: 10.4103/jmu.jmu_225_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/05/2022] [Accepted: 07/05/2022] [Indexed: 08/15/2023] Open
Abstract
Background The risks added by extended jugular lymphatic sacs (EJLS) to increased nuchal translucency (NT) including genetic and structural abnormalities and pregnancy outcomes have not been previously investigated, which this study aims to investigate. Methods The data of 155 singleton pregnancies with increased fetal NT (≥95th percentile) of these 20 with fetal EJLS were evaluated retrospectively. Patients were stratified according to NT thickness such that ≥95th percentile - 3.5 mm, 3.6-4.4 mm, 4.5-5.4 mm, 5.5-6.4 mm, ≥6.5 mm, and grouped according to the presence of EJLS. Pregnancy outcomes, genetic and structural abnormalities were assessed by comparing EJLS with non-EJSL cases (n-EJLS). Results Associated with NT, the incidence of the presence of EJLS increased with NT, from 4.5% at the ≥95th percentile - 3.5 mm to 30.8% when NT ≥5.5 mm. In the n-EJLS group, the proportion of fetuses with structural and genetic abnormalities increased as the measurement of NT increased. This correlation was not observed in the EJLS group. Compared to n-EJLS, cases with EJLS had a higher rate of fetal structural (38.5% vs. 75%, P = 0.003) and genetic (18.5% vs. 45%, P = 0.005) anomalies and a lower term live birth rate (59.3% vs. 15%, P < 0.001). Conclusion The increasing rate of EJLS was seen as NT increased. Compared to n-EJLS, the EJLS cases had a higher rate poor pregnancy outcomes and fetal genetic and structural abnormalities.
Collapse
Affiliation(s)
- Mehmet Obut
- Department of Perinatology, Etlik Zübeyde Hanim Women’s Health Training and Research Hospital, Ankara, Turkey
| | - Arife Akay
- Department of Gynecology and Obstetrics, Etlik Zübeyde Hanim Women’s Health Training and Research Hospital, Ankara, Turkey
| | - Ibanoglu Can Müjde
- Department of Gynecology and Obstetrics, Etlik Zübeyde Hanim Women’s Health Training and Research Hospital, Ankara, Turkey
| | - Özge Yucel Çelik
- Department of Perinatology, Etlik Zübeyde Hanim Women’s Health Training and Research Hospital, Ankara, Turkey
| | - Asya Kalayci Öncü
- Department of Gynecology and Obstetrics, Etlik Zübeyde Hanim Women’s Health Training and Research Hospital, Ankara, Turkey
| | - Zuat Acar
- Department of Perinatology, Şişli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey
| | - Erdal Seker
- Department of Perinatology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Erkan Saglam
- Department of Perinatology, Etlik Zübeyde Hanim Women’s Health Training and Research Hospital, Ankara, Turkey
| | - Cantekin Iskender
- Department of Perinatology, Etlik Zübeyde Hanim Women’s Health Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
3
|
Shimada R, Tatara Y, Kibayashi K. Gene expression in meningeal lymphatic endothelial cells following traumatic brain injury in mice. PLoS One 2022; 17:e0273892. [PMID: 36067135 PMCID: PMC9447870 DOI: 10.1371/journal.pone.0273892] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 08/17/2022] [Indexed: 11/18/2022] Open
Abstract
Meningeal lymphatic vessels transport both the cerebrospinal fluid and interstitial fluid to the deep cervical lymph nodes. Traumatic brain injury (TBI) is accompanied by meningeal injury. We hypothesized that the TBI-induced meningeal injury would damage lymphatic vessels and affect brain function. We observed altered gene expression in meningeal lymphatic endothelial cells (LECs) in a mouse model of TBI. Through flow cytometry–based cell sorting, meningeal LECs were obtained from a mouse model of controlled cortical impact 3 days after TBI. Microarray analysis, real-time polymerase chain reaction assays, and enzyme-linked immunosorbent assays were performed to determine mRNA and protein expression levels in meningeal LECs. The number of meningeal LECs was significantly lower in the injury group than in the sham group 3 days after TBI. Additionally, the mRNA expression of lymphatic vessel endothelial hyaluronan receptor 1 (a specific marker of lymphatic vessels) in meningeal LECs was significantly lower in the injury group than in the sham group. The mRNA and protein expression of FMS-like tyrosine kinase 4 and neuropilin 2 (markers of lymphangiogenesis) in meningeal LECs was significantly higher in the injury group than in the sham group. Our findings indicate that TBI is associated with the impairment of meningeal LECs and meningeal lymphangiogenesis, which implicates lymphatic vessel injury in the pathogenesis of this condition.
Collapse
Affiliation(s)
- Ryo Shimada
- Department of Forensic Medicine, School of Medicine, Tokyo Women’s Medical University, Tokyo, Japan
- * E-mail:
| | - Yuki Tatara
- Department of Forensic Medicine, School of Medicine, Tokyo Women’s Medical University, Tokyo, Japan
| | - Kazuhiko Kibayashi
- Department of Forensic Medicine, School of Medicine, Tokyo Women’s Medical University, Tokyo, Japan
| |
Collapse
|
4
|
Abdi A, AlOtaiby S, Badarin FA, Khraibi A, Hamdan H, Nader M. Interaction of SARS-CoV-2 with cardiomyocytes: Insight into the underlying molecular mechanisms of cardiac injury and pharmacotherapy. Biomed Pharmacother 2022; 146:112518. [PMID: 34906770 PMCID: PMC8654598 DOI: 10.1016/j.biopha.2021.112518] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/15/2021] [Accepted: 12/06/2021] [Indexed: 01/07/2023] Open
Abstract
SARS-CoV-2 causes respiratory illness with a spectrum of systemic complications. However, the mechanism for cardiac infection and cardiomyocyte injury in COVID-19 patients remains unclear. The current literature supports the notion that SARS-CoV-2 particles access the heart either by the circulating blood cells or by extracellular vesicles, originating from the inflamed lungs, and encapsulating the virus along with its receptor (ACE2). Both cardiomyocytes and pericytes (coronary arteries) express the necessary accessory proteins for access of SARS-CoV-2 particles (i.e. ACE2, NRP-1, TMPRSS2, CD147, integrin α5β1, and CTSB/L). These proteins facilitate the SARS-CoV-2 interaction and entry into the pericytes and cardiomyocytes thus leading to cardiac manifestations. Subsequently, various signaling pathways are altered in the infected cardiomyocytes (i.e. increased ROS production, reduced contraction, impaired calcium homeostasis), causing cardiac dysfunction. The currently adopted pharmacotherapy in severe COVID-19 subjects exhibited side effects on the heart, often manifested by electrical abnormalities. Nonetheless, cardiovascular adverse repercussions have been associated with the advent of some of the SARS-CoV-2 vaccines with no clear mechanisms underlining these complications. We provide herein an overview of the pathways involved with cardiomyocyte in COVID-19 subjects to help promoting pharmacotherapies that can protect against SARS-CoV-2-induced cardiac injuries.
Collapse
Affiliation(s)
- Abdulhamid Abdi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, and Biotechnology Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Shahad AlOtaiby
- Research Center, King Fahad Medical City, Central Second Health Cluster, Ministry of Health, Riyadh, Saudi Arabia
| | - Firas Al Badarin
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ali Khraibi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, and Biotechnology Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Hamdan Hamdan
- Department of Physiology and Immunology, College of Medicine and Health Sciences, and Biotechnology Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Moni Nader
- Department of Physiology and Immunology, College of Medicine and Health Sciences, and Biotechnology Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
5
|
Leppänen VM, Brouillard P, Korhonen EA, Sipilä T, Jha SK, Revencu N, Labarque V, Fastré E, Schlögel M, Ravoet M, Singer A, Luzzatto C, Angelone D, Crichiutti G, D'Elia A, Kuurne J, Elamaa H, Koh GY, Saharinen P, Vikkula M, Alitalo K. Characterization of ANGPT2 mutations associated with primary lymphedema. Sci Transl Med 2021; 12:12/560/eaax8013. [PMID: 32908006 DOI: 10.1126/scitranslmed.aax8013] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 12/31/2019] [Accepted: 08/14/2020] [Indexed: 12/11/2022]
Abstract
Primary lymphedema is caused by developmental and functional defects of the lymphatic vascular system that result in accumulation of protein-rich fluid in tissues, resulting in edema. The 28 currently known genes causing primary lymphedema can explain <30% of cases. Angiopoietin 1 (ANGPT1) and ANGPT2 function via the TIE1-TIE2 (tyrosine kinase with immunoglobulin-like and epidermal growth factor-like domains 1 and 2) receptor complex and α5β1 integrin to form an endothelial cell signaling pathway that is critical for blood and lymphatic vessel formation and remodeling during embryonic development, as well as for homeostasis of the mature vasculature. By screening a cohort of 543 individuals affected by primary lymphedema, we identified one heterozygous de novo ANGPT2 whole-gene deletion and four heterozygous ANGPT2 missense mutations. Functional analyses revealed three missense mutations that resulted in decreased ANGPT2 secretion and inhibited the secretion of wild-type (WT)-ANGPT2, suggesting that they have a dominant-negative effect on ANGPT2 signaling. WT-ANGPT2 and soluble mutants T299M and N304K activated TIE1 and TIE2 in an autocrine assay in human lymphatic endothelial cells. Molecular modeling and biophysical studies showed that amino-terminally truncated ANGPT subunits formed asymmetrical homodimers that bound TIE2 in a 2:1 ratio. The T299M mutant, located in the dimerization interphase, showed reduced integrin α5 binding, and its expression in mouse skin promoted hyperplasia and dilation of cutaneous lymphatic vessels. These results demonstrate that primary lymphedema can be associated with ANGPT2 mutations and provide insights into TIE1 and TIE2 activation mechanisms.
Collapse
Affiliation(s)
- Veli-Matti Leppänen
- Wihuri Research Institute, Biomedicum Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland. .,Translational Cancer Medicine Program, Faculty of Medicine and Helsinki Institute of Life Science, 00014 University of Helsinki, Finland
| | - Pascal Brouillard
- Human Molecular Genetics, de Duve Institute, University of Louvain, 1200 Brussels, Belgium.
| | - Emilia A Korhonen
- Wihuri Research Institute, Biomedicum Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Tuomas Sipilä
- Wihuri Research Institute, Biomedicum Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Sawan Kumar Jha
- Translational Cancer Medicine Program, Faculty of Medicine and Helsinki Institute of Life Science, 00014 University of Helsinki, Finland
| | - Nicole Revencu
- Center for Human Genetics, Cliniques universitaires Saint-Luc, University of Louvain, 1200 Brussels, Belgium
| | - Veerle Labarque
- Centre for Molecular and Vascular Biology, University of Leuven, 3000 Leuven, Belgium
| | - Elodie Fastré
- Human Molecular Genetics, de Duve Institute, University of Louvain, 1200 Brussels, Belgium
| | - Matthieu Schlögel
- Human Molecular Genetics, de Duve Institute, University of Louvain, 1200 Brussels, Belgium
| | - Marie Ravoet
- Center for Human Genetics, Cliniques universitaires Saint-Luc, University of Louvain, 1200 Brussels, Belgium
| | | | | | | | - Giovanni Crichiutti
- Azienda Ospedaliero-Universitaria Santa Maria della Misericordia, 33100 Udine, Italy
| | - Angela D'Elia
- Azienda Ospedaliero-Universitaria Santa Maria della Misericordia, 33100 Udine, Italy
| | - Jaakko Kuurne
- Wihuri Research Institute, Biomedicum Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Harri Elamaa
- Oulu Centre for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Gou Young Koh
- Center for Vascular Research, Institute of Basic Science (IBS), 34141 Daejeon, Republic of Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 34141 Daejeon, Republic of Korea
| | - Pipsa Saharinen
- Wihuri Research Institute, Biomedicum Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland.,Translational Cancer Medicine Program, Faculty of Medicine and Helsinki Institute of Life Science, 00014 University of Helsinki, Finland
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of Louvain, 1200 Brussels, Belgium. .,Walloon Excellence in Lifesciences and Biotechnology (WELBIO), University of Louvain, 1200 Brussels, Belgium
| | - Kari Alitalo
- Wihuri Research Institute, Biomedicum Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland. .,Translational Cancer Medicine Program, Faculty of Medicine and Helsinki Institute of Life Science, 00014 University of Helsinki, Finland
| |
Collapse
|
6
|
Klaourakis K, Vieira JM, Riley PR. The evolving cardiac lymphatic vasculature in development, repair and regeneration. Nat Rev Cardiol 2021; 18:368-379. [PMID: 33462421 PMCID: PMC7812989 DOI: 10.1038/s41569-020-00489-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 02/08/2023]
Abstract
The lymphatic vasculature has an essential role in maintaining normal fluid balance in tissues and modulating the inflammatory response to injury or pathogens. Disruption of normal development or function of lymphatic vessels can have severe consequences. In the heart, reduced lymphatic function can lead to myocardial oedema and persistent inflammation. Macrophages, which are phagocytic cells of the innate immune system, contribute to cardiac development and to fibrotic repair and regeneration of cardiac tissue after myocardial infarction. In this Review, we discuss the cardiac lymphatic vasculature with a focus on developments over the past 5 years arising from the study of mammalian and zebrafish model organisms. In addition, we examine the interplay between the cardiac lymphatics and macrophages during fibrotic repair and regeneration after myocardial infarction. Finally, we discuss the therapeutic potential of targeting the cardiac lymphatic network to regulate immune cell content and alleviate inflammation in patients with ischaemic heart disease.
Collapse
Affiliation(s)
- Konstantinos Klaourakis
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- British Heart Foundation-Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford, UK
| | - Joaquim M Vieira
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
- British Heart Foundation-Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford, UK.
| | - Paul R Riley
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
- British Heart Foundation-Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford, UK.
| |
Collapse
|
7
|
Tucker AB, Krishnan P, Agarwal S. Lymphovenous shunts: from development to clinical applications. Microcirculation 2021; 28:e12682. [PMID: 33523573 DOI: 10.1111/micc.12682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 01/19/2023]
Abstract
The lymphatic system is a vast network of vessels that functions to return excess fluid from the interstitial space to the blood stream. Lymphovenous shunts are anastomoses, either natural or surgical, that connect the lymphatic and venous systems. Connections between the thoracic duct and venous system or between the right lymphatic duct and venous system are prime examples of anatomic lymphovenous shunts. Lymphovenous shunts are also present peripherally in tissues such as lymph nodes. Furthermore, pathologic lymphovenous shunts are observed in conditions such as lymphedema, malignancy, and lymphovenous malformations. Surgically, lymphovenous shunts may be constructed as an approach to treat lymphedema. Here, we discuss anatomic and surgical lymphovenous shunts in the context of normal development and disease. This perspective is intended to give an understanding of the role of lymphovenous shunts in health and disease and to show how they can be leveraged to treat disease surgically.
Collapse
Affiliation(s)
- A Blake Tucker
- University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | - Pranav Krishnan
- University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | - Shailesh Agarwal
- Division of Plastic and Reconstructive Surgery, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
8
|
Sugihara K, Sasaki S, Uemura A, Kidoaki S, Miura T. Mechanisms of endothelial cell coverage by pericytes: computational modelling of cell wrapping and in vitro experiments. J R Soc Interface 2020; 17:20190739. [PMID: 31992164 DOI: 10.1098/rsif.2019.0739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Pericytes (PCs) wrap around endothelial cells (ECs) and perform diverse functions in physiological and pathological processes. Although molecular interactions between ECs and PCs have been extensively studied, the morphological processes at the cellular level and their underlying mechanisms have remained elusive. In this study, using a simple cellular Potts model, we explored the mechanisms for EC wrapping by PCs. Based on the observed in vitro cell wrapping in three-dimensional PC-EC coculture, the model identified four putative contributing factors: preferential adhesion of PCs to the extracellular matrix (ECM), strong cell-cell adhesion, PC surface softness and larger PC size. While cell-cell adhesion can contribute to the prevention of cell segregation and the degree of cell wrapping, it cannot determine the orientation of cell wrapping alone. While atomic force microscopy revealed that PCs have a larger Young's modulus than ECs, the experimental analyses supported preferential ECM adhesion and size asymmetry. We also formulated the corresponding energy minimization problem and numerically solved this problem for specific cases. These results give biological insights into the role of PC-ECM adhesion in PC coverage. The modelling framework presented here should also be applicable to other cell wrapping phenomena observed in vivo.
Collapse
Affiliation(s)
- Kei Sugihara
- Department of Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Saori Sasaki
- Laboratory of Biomedical and Biophysical Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan
| | - Akiyoshi Uemura
- Department of Retinal Vascular Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Satoru Kidoaki
- Laboratory of Biomedical and Biophysical Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan
| | - Takashi Miura
- Department of Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| |
Collapse
|
9
|
Cha B, Geng X, Mahamud MR, Zhang JY, Chen L, Kim W, Jho EH, Kim Y, Choi D, Dixon JB, Chen H, Hong YK, Olson L, Kim TH, Merrill BJ, Davis MJ, Srinivasan RS. Complementary Wnt Sources Regulate Lymphatic Vascular Development via PROX1-Dependent Wnt/β-Catenin Signaling. Cell Rep 2019; 25:571-584.e5. [PMID: 30332639 PMCID: PMC6264919 DOI: 10.1016/j.celrep.2018.09.049] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/16/2018] [Accepted: 09/14/2018] [Indexed: 11/24/2022] Open
Abstract
Wnt/β-catenin signaling is necessary for lymphatic vascular development. Oscillatory shear stress (OSS) enhances Wnt/β-catenin signaling in cultured lymphatic endothelial cells (LECs) to induce expression of the lymphedema-associated transcription factors GATA2 and FOXC2. However, the mechanisms by which OSS regulates Wnt/β-catenin signaling and GATA2 and FOXC2 expression are unknown. We show that OSS activates autocrine Wnt/β-catenin signaling in LECs in vitro. Tissue-specific deletion of Wntless, which is required for the secretion of Wnt ligands, reveals that LECs and vascular smooth muscle cells are complementary sources of Wnt ligands that regulate lymphatic vascular development in vivo. Further, the LEC master transcription factor PROX1 forms a complex with β-catenin and the TCF/LEF transcription factor TCF7L1 to enhance Wnt/β-catenin signaling and promote FOXC2 and GATA2 expression in LECs. Thus, our work defines Wnt sources, reveals that PROX1 directs cell fate by acting as a Wnt signaling component, and dissects the mechanisms of PROX1 and Wnt synergy.
Collapse
Affiliation(s)
- Boksik Cha
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Xin Geng
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Md Riaj Mahamud
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jenny Y Zhang
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, IL, USA
| | - Lijuan Chen
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Wantae Kim
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Deajeon, Korea
| | - Eek-Hoon Jho
- Department of Life Science, University of Seoul, Seoul, Korea
| | - Yeunhee Kim
- Department of Biological Sciences and Center for Systems Biology, The University of Texas at Dallas, Richardson, TX, USA
| | - Dongwon Choi
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - J Brandon Dixon
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
| | - Young-Kwon Hong
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lorin Olson
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tae Hoon Kim
- Department of Biological Sciences and Center for Systems Biology, The University of Texas at Dallas, Richardson, TX, USA
| | - Bradley J Merrill
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, IL, USA
| | - Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - R Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
10
|
Jamali N, Song YS, Sorenson CM, Sheibani N. 1,25(OH) 2D 3 regulates the proangiogenic activity of pericyte through VDR-mediated modulation of VEGF production and signaling of VEGF and PDGF receptors. FASEB Bioadv 2019; 1:415-434. [PMID: 31396585 PMCID: PMC6687334 DOI: 10.1096/fba.2018-00067] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We have previously demonstrated that the active form of vitamin D (calcitriol; 1,25(OH)2D3) is a potent inhibitor of retinal neovascularization. However, the underlying molecular and cellular mechanisms involved remained poorly understood. Perivascular supporting cells including pericytes (PC) play important roles during angiogenesis, vascular maturation, and stabilization of blood vessels. How 1,25(OH)2D3 affects retinal PC proliferation and migration, and whether these effects are mediated through vitamin D receptor (VDR), are unknown. Here, we determined the impact of 1,25(OH)2D3 on retinal PC prepared from wild‐type (Vdr+/+) and VDR‐deficient (Vdr−/−) mice. Retinal PC expressed significantly higher VDR levels compared to retinal endothelial cells (EC). Unlike retinal EC, 1,25(OH)2D3 significantly decreased PC proliferation and migration and resulted in a G0/G1 cell cycle arrest. Although 1,25(OH)2D3 did not inhibit the proliferation of Vdr−/− PC, it did inhibit their migration. PC adhesion to various extracellular matrix (ECM) proteins and ECM production were also affected by incubation of PC with 1,25(OH)2D3. Vdr−/− PC were more adherent compared with Vdr+/+ cells. Mechanistically, incubation of Vdr+/+ PC with 1,25(OH)2D3 resulted in an increased expression of vascular endothelial growth factor (VEGF) and attenuation of signaling through VEGF‐R2 and platelet‐derived growth factor receptor‐beta. Incubation with soluble VEGF‐R1 (sFlt‐1) partially reversed the effect of VEGF on Vdr+/+ PC. In addition, incubation of Vdr+/+ PC with VEGF or inhibition of VEGF‐R2 increased VDR expression. Together, these results suggest an important role for retinal PC as a target for vitamin D and VDR action for attenuation of angiogenesis.
Collapse
Affiliation(s)
- Nasim Jamali
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Yong-Seok Song
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Christine M Sorenson
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
11
|
Janardhan HP, Trivedi CM. Establishment and maintenance of blood-lymph separation. Cell Mol Life Sci 2019; 76:1865-1876. [PMID: 30758642 PMCID: PMC6482084 DOI: 10.1007/s00018-019-03042-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/15/2019] [Accepted: 02/05/2019] [Indexed: 02/07/2023]
Abstract
Hippocratic Corpus, a collection of Greek medical literature, described the functional anatomy of the lymphatic system in the fifth century B.C. Subsequent studies in cadavers and surgical patients firmly established that lymphatic vessels drain extravasated interstitial fluid, also known as lymph, into the venous system at the bilateral lymphovenous junctions. Recent advances revealed that lymphovenous valves and platelet-mediated hemostasis at the lymphovenous junctions maintain life-long separation of the blood and lymphatic vascular systems. Here, we review murine models that exhibit failure of blood-lymph separation to highlight the novel mechanisms and molecular targets for the modulation of lymphatic disorders. Specifically, we focus on the transcription factors, cofactors, and signaling pathways that regulate lymphovenous valve development and platelet-mediated lymphovenous hemostasis, which cooperate to maintain blood-lymph separation.
Collapse
Affiliation(s)
- Harish P Janardhan
- Division of Cardiovascular Medicine, University of Massachusetts Medical School, The Albert Sherman Center, AS7-1047, 368 Plantation St, Worcester, MA, 01605, USA
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Chinmay M Trivedi
- Division of Cardiovascular Medicine, University of Massachusetts Medical School, The Albert Sherman Center, AS7-1047, 368 Plantation St, Worcester, MA, 01605, USA.
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
- The Li-Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
12
|
Breslin JW, Yang Y, Scallan JP, Sweat RS, Adderley SP, Murfee WL. Lymphatic Vessel Network Structure and Physiology. Compr Physiol 2018; 9:207-299. [PMID: 30549020 PMCID: PMC6459625 DOI: 10.1002/cphy.c180015] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The lymphatic system is comprised of a network of vessels interrelated with lymphoid tissue, which has the holistic function to maintain the local physiologic environment for every cell in all tissues of the body. The lymphatic system maintains extracellular fluid homeostasis favorable for optimal tissue function, removing substances that arise due to metabolism or cell death, and optimizing immunity against bacteria, viruses, parasites, and other antigens. This article provides a comprehensive review of important findings over the past century along with recent advances in the understanding of the anatomy and physiology of lymphatic vessels, including tissue/organ specificity, development, mechanisms of lymph formation and transport, lymphangiogenesis, and the roles of lymphatics in disease. © 2019 American Physiological Society. Compr Physiol 9:207-299, 2019.
Collapse
Affiliation(s)
- Jerome W. Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Ying Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Joshua P. Scallan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Richard S. Sweat
- Department of Biomedical Engineering, Tulane University, New Orleans, LA
| | - Shaquria P. Adderley
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - W. Lee Murfee
- Department of Biomedical Engineering, University of Florida, Gainesville, FL
| |
Collapse
|
13
|
Geng X, Cha B, Mahamud MR, Srinivasan RS. Intraluminal valves: development, function and disease. Dis Model Mech 2018; 10:1273-1287. [PMID: 29125824 PMCID: PMC5719258 DOI: 10.1242/dmm.030825] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The circulatory system consists of the heart, blood vessels and lymphatic vessels, which function in parallel to provide nutrients and remove waste from the body. Vascular function depends on valves, which regulate unidirectional fluid flow against gravitational and pressure gradients. Severe valve disorders can cause mortality and some are associated with severe morbidity. Although cardiac valve defects can be treated by valve replacement surgery, no treatment is currently available for valve disorders of the veins and lymphatics. Thus, a better understanding of valves, their development and the progression of valve disease is warranted. In the past decade, molecules that are important for vascular function in humans have been identified, with mouse studies also providing new insights into valve formation and function. Intriguing similarities have recently emerged between the different types of valves concerning their molecular identity, architecture and development. Shear stress generated by fluid flow has also been shown to regulate endothelial cell identity in valves. Here, we review our current understanding of valve development with an emphasis on its mechanobiology and significance to human health, and highlight unanswered questions and translational opportunities.
Collapse
Affiliation(s)
- Xin Geng
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Boksik Cha
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Md Riaj Mahamud
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - R Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA .,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
14
|
Urner S, Kelly-Goss M, Peirce SM, Lammert E. Mechanotransduction in Blood and Lymphatic Vascular Development and Disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 81:155-208. [PMID: 29310798 DOI: 10.1016/bs.apha.2017.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The blood and lymphatic vasculatures are hierarchical networks of vessels, which constantly transport fluids and, therefore, are exposed to a variety of mechanical forces. Considering the role of mechanotransduction is key for fully understanding how these vascular systems develop, function, and how vascular pathologies evolve. During embryonic development, for example, initiation of blood flow is essential for early vascular remodeling, and increased interstitial fluid pressure as well as initiation of lymph flow is needed for proper development and maturation of the lymphatic vasculature. In this review, we introduce specific mechanical forces that affect both the blood and lymphatic vasculatures, including longitudinal and circumferential stretch, as well as shear stress. In addition, we provide an overview of the role of mechanotransduction during atherosclerosis and secondary lymphedema, which both trigger tissue fibrosis.
Collapse
Affiliation(s)
- Sofia Urner
- Institute of Metabolic Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Molly Kelly-Goss
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Shayn M Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Eckhard Lammert
- Institute of Metabolic Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute for Beta Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
15
|
Turner CJ, Badu-Nkansah K, Hynes RO. Endothelium-derived fibronectin regulates neonatal vascular morphogenesis in an autocrine fashion. Angiogenesis 2017; 20:519-531. [PMID: 28667352 PMCID: PMC5660148 DOI: 10.1007/s10456-017-9563-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/21/2017] [Indexed: 12/02/2022]
Abstract
Fibronectin containing alternatively spliced EIIIA and EIIIB domains is largely absent from mature quiescent vessels in adults, but is highly expressed around blood vessels during developmental and pathological angiogenesis. The precise functions of fibronectin and its splice variants during developmental angiogenesis however remain unclear due to the presence of cardiac, somitic, mesodermal and neural defects in existing global fibronectin KO mouse models. Using a rare family of surviving EIIIA EIIIB double KO mice, as well as inducible endothelial-specific fibronectin-deficient mutant mice, we show that vascular development in the neonatal retina is regulated in an autocrine manner by endothelium-derived fibronectin, and requires both EIIIA and EIIIB domains and the RGD-binding α5 and αv integrins for its function. Exogenous sources of fibronectin do not fully substitute for the autocrine function of endothelial fibronectin, demonstrating that fibronectins from different sources contribute differentially to specific aspects of angiogenesis.
Collapse
Affiliation(s)
- Christopher J Turner
- Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Ave, 76-361, Cambridge, MA, 02139, USA
- University of Suffolk, James Hehir Building, University Avenue, Ipswich, Suffolk, IP3 0FS, UK
| | - Kwabena Badu-Nkansah
- Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Ave, 76-361, Cambridge, MA, 02139, USA
- Duke University Medical Center, 307 Research Drive, Durham, NC, 27710, USA
| | - Richard O Hynes
- Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Ave, 76-361, Cambridge, MA, 02139, USA.
| |
Collapse
|
16
|
Shen EM, McCloskey KE. Development of Mural Cells: From In Vivo Understanding to In Vitro Recapitulation. Stem Cells Dev 2017; 26:1020-1041. [DOI: 10.1089/scd.2017.0020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Edwin M. Shen
- Graduate Program in Biological Engineering and Small-scale Technologies
| | - Kara E. McCloskey
- Graduate Program in Biological Engineering and Small-scale Technologies
- School of Engineering, University of California, Merced, Merced, California
| |
Collapse
|
17
|
Reynolds LE, D'Amico G, Lechertier T, Papachristodoulou A, Muñoz-Félix JM, De Arcangelis A, Baker M, Serrels B, Hodivala-Dilke KM. Dual role of pericyte α6β1-integrin in tumour blood vessels. J Cell Sci 2017; 130:1583-1595. [PMID: 28289267 PMCID: PMC5450232 DOI: 10.1242/jcs.197848] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/08/2017] [Indexed: 12/18/2022] Open
Abstract
The α6β1-integrin is a major laminin receptor, and formation of a laminin-rich basement membrane is a key feature in tumour blood vessel stabilisation and pericyte recruitment, processes that are important in the growth and maturation of tumour blood vessels. However, the role of pericyte α6β1-integrin in angiogenesis is largely unknown. We developed mice where the α6-integrin subunit is deleted in pericytes and examined tumour angiogenesis and growth. These mice had: (1) reduced pericyte coverage of tumour blood vessels; (2) reduced tumour blood vessel stability; (3) increased blood vessel diameter; (4) enhanced blood vessel leakiness, and (5) abnormal blood vessel basement membrane architecture. Surprisingly, tumour growth, blood vessel density and metastasis were not altered. Analysis of retinas revealed that deletion of pericyte α6-integrin did not affect physiological angiogenesis. At the molecular level, we provide evidence that pericyte α6-integrin controls PDGFRβ expression and AKT-mTOR signalling. Taken together, we show that pericyte α6β1-integrin regulates tumour blood vessels by both controlling PDGFRβ and basement membrane architecture. These data establish a novel dual role for pericyte α6-integrin as modulating the blood vessel phenotype during pathological angiogenesis.
Collapse
Affiliation(s)
- Louise E Reynolds
- Adhesion and Angiogenesis Laboratory, Centre for Tumour Biology, Barts Cancer Institute - A CRUK Centre of Excellence, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Gabriela D'Amico
- Adhesion and Angiogenesis Laboratory, Centre for Tumour Biology, Barts Cancer Institute - A CRUK Centre of Excellence, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Tanguy Lechertier
- Adhesion and Angiogenesis Laboratory, Centre for Tumour Biology, Barts Cancer Institute - A CRUK Centre of Excellence, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Alexandros Papachristodoulou
- Laboratory for Molecular Neuro-Oncology, Dept. of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, Zurich CH-8091, Switzerland
| | - José M Muñoz-Félix
- Adhesion and Angiogenesis Laboratory, Centre for Tumour Biology, Barts Cancer Institute - A CRUK Centre of Excellence, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Adèle De Arcangelis
- IGBMC, UMR 7104, INSERM U964, Université de Strasbourg, BP. 10142, 1, Rue Laurent Fries, Illkirch Cedex 67404, France
| | - Marianne Baker
- Adhesion and Angiogenesis Laboratory, Centre for Tumour Biology, Barts Cancer Institute - A CRUK Centre of Excellence, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Bryan Serrels
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Kairbaan M Hodivala-Dilke
- Adhesion and Angiogenesis Laboratory, Centre for Tumour Biology, Barts Cancer Institute - A CRUK Centre of Excellence, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
18
|
Betterman KL, Harvey NL. The lymphatic vasculature: development and role in shaping immunity. Immunol Rev 2016; 271:276-92. [PMID: 27088921 DOI: 10.1111/imr.12413] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The lymphatic vasculature is an integral component of the immune system. Lymphatic vessels are a key highway via which immune cells are trafficked, serving not simply as a passive route of transport, but to actively shape and coordinate immune responses. Reciprocally, immune cells provide signals that impact the growth, development, and activity of the lymphatic vasculature. In addition to immune cell trafficking, lymphatic vessels are crucial for fluid homeostasis and lipid absorption. The field of lymphatic vascular research is rapidly expanding, fuelled by rapidly advancing technology that has enabled the manipulation and imaging of lymphatic vessels, together with an increasing recognition of the involvement of lymphatic vessels in a myriad of human pathologies. In this review we provide an overview of the genetic pathways and cellular processes important for development and maturation of the lymphatic vasculature, discuss recent work revealing important roles for the lymphatic vasculature in directing immune cell traffic and coordinating immune responses and highlight the involvement of lymphatic vessels in a range of pathological settings.
Collapse
Affiliation(s)
- Kelly L Betterman
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Natasha L Harvey
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia.,School of Medicine, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
19
|
Swonger JM, Liu JS, Ivey MJ, Tallquist MD. Genetic tools for identifying and manipulating fibroblasts in the mouse. Differentiation 2016; 92:66-83. [PMID: 27342817 PMCID: PMC5079827 DOI: 10.1016/j.diff.2016.05.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 01/18/2023]
Abstract
The use of mouse genetic tools to track and manipulate fibroblasts has provided invaluable in vivo information regarding the activities of these cells. Recently, many new mouse strains have been described for the specific purpose of studying fibroblast behavior. Colorimetric reporter mice and lines expressing Cre are available for the study of fibroblasts in the organs prone to fibrosis, including heart, kidney, liver, lung, and skeletal muscle. In this review we summarize the current state of the models that have been used to define tissue resident fibroblast populations. While these complex genetic reagents provide unique insights into the process of fibrosis, they also require a thorough understanding of the caveats and limitations. Here, we discuss the specificity and efficiency of the available genetic models and briefly describe how they have been used to document the mechanisms of fibrosis.
Collapse
Affiliation(s)
- Jessica M Swonger
- Departments of Medicine and Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Jocelyn S Liu
- Departments of Medicine and Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Malina J Ivey
- Departments of Medicine and Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Michelle D Tallquist
- Departments of Medicine and Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA.
| |
Collapse
|
20
|
Martin-Almedina S, Martinez-Corral I, Holdhus R, Vicente A, Fotiou E, Lin S, Petersen K, Simpson MA, Hoischen A, Gilissen C, Jeffery H, Atton G, Karapouliou C, Brice G, Gordon K, Wiseman JW, Wedin M, Rockson SG, Jeffery S, Mortimer PS, Snyder MP, Berland S, Mansour S, Makinen T, Ostergaard P. EPHB4 kinase-inactivating mutations cause autosomal dominant lymphatic-related hydrops fetalis. J Clin Invest 2016; 126:3080-8. [PMID: 27400125 PMCID: PMC4966301 DOI: 10.1172/jci85794] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/09/2016] [Indexed: 12/20/2022] Open
Abstract
Hydrops fetalis describes fluid accumulation in at least 2 fetal compartments, including abdominal cavities, pleura, and pericardium, or in body tissue. The majority of hydrops fetalis cases are nonimmune conditions that present with generalized edema of the fetus, and approximately 15% of these nonimmune cases result from a lymphatic abnormality. Here, we have identified an autosomal dominant, inherited form of lymphatic-related (nonimmune) hydrops fetalis (LRHF). Independent exome sequencing projects on 2 families with a history of in utero and neonatal deaths associated with nonimmune hydrops fetalis uncovered 2 heterozygous missense variants in the gene encoding Eph receptor B4 (EPHB4). Biochemical analysis determined that the mutant EPHB4 proteins are devoid of tyrosine kinase activity, indicating that loss of EPHB4 signaling contributes to LRHF pathogenesis. Further, inactivation of Ephb4 in lymphatic endothelial cells of developing mouse embryos led to defective lymphovenous valve formation and consequent subcutaneous edema. Together, these findings identify EPHB4 as a critical regulator of early lymphatic vascular development and demonstrate that mutations in the gene can cause an autosomal dominant form of LRHF that is associated with a high mortality rate.
Collapse
Affiliation(s)
- Silvia Martin-Almedina
- Lymphovascular Research Unit, Cardiovascular and Cell Sciences Institute, St. George’s University of London, London, United Kingdom (UK)
| | - Ines Martinez-Corral
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Rita Holdhus
- Genomics Core Facility, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Andres Vicente
- Lymphatic Development Laboratory, Cancer Research UK London Research Institute, London, UK
| | - Elisavet Fotiou
- Lymphovascular Research Unit, Cardiovascular and Cell Sciences Institute, St. George’s University of London, London, United Kingdom (UK)
| | - Shin Lin
- Division of Cardiovascular Medicine and
- Department of Genetics, Stanford University, Stanford, California, USA
| | - Kjell Petersen
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Michael A. Simpson
- Division of Genetics and Molecular Medicine, King’s College London School of Medicine, Guy’s Hospital, London, UK
| | - Alexander Hoischen
- Genomics Core Facility, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Human Genetics, Radboud University Medical Center and Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center and Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands
| | - Heather Jeffery
- Lymphovascular Research Unit, Cardiovascular and Cell Sciences Institute, St. George’s University of London, London, United Kingdom (UK)
| | - Giles Atton
- South West Thames Regional Genetics Unit, St. George’s University of London, London, UK
| | - Christina Karapouliou
- Lymphovascular Research Unit, Cardiovascular and Cell Sciences Institute, St. George’s University of London, London, United Kingdom (UK)
| | - Glen Brice
- South West Thames Regional Genetics Unit, St. George’s University of London, London, UK
| | - Kristiana Gordon
- Department of Dermatology, St. George’s University Hospital NHS Foundation Trust, London, UK
| | - John W. Wiseman
- Discovery Sciences, RAD-Transgenics, AstraZeneca R&D, Mölndal, Sweden
| | - Marianne Wedin
- Discovery Sciences, RAD-Transgenics, AstraZeneca R&D, Mölndal, Sweden
| | | | - Steve Jeffery
- Lymphovascular Research Unit, Cardiovascular and Cell Sciences Institute, St. George’s University of London, London, United Kingdom (UK)
| | - Peter S. Mortimer
- Lymphovascular Research Unit, Cardiovascular and Cell Sciences Institute, St. George’s University of London, London, United Kingdom (UK)
| | - Michael P. Snyder
- Department of Genetics, Stanford University, Stanford, California, USA
| | - Siren Berland
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Sahar Mansour
- South West Thames Regional Genetics Unit, St. George’s University of London, London, UK
| | - Taija Makinen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Pia Ostergaard
- Lymphovascular Research Unit, Cardiovascular and Cell Sciences Institute, St. George’s University of London, London, United Kingdom (UK)
| |
Collapse
|
21
|
Cha B, Geng X, Mahamud MR, Fu J, Mukherjee A, Kim Y, Jho EH, Kim TH, Kahn ML, Xia L, Dixon JB, Chen H, Srinivasan RS. Mechanotransduction activates canonical Wnt/β-catenin signaling to promote lymphatic vascular patterning and the development of lymphatic and lymphovenous valves. Genes Dev 2016; 30:1454-69. [PMID: 27313318 PMCID: PMC4926867 DOI: 10.1101/gad.282400.116] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/23/2016] [Indexed: 11/24/2022]
Abstract
In this study, Cha et al. show that the Wnt/β-catenin signaling pathway is the link between fluid flow and lymphatic vascular morphogenesis. They provide a molecular and structural framework to study mammalian lymphatic vasculature by demonstrating that mechanical stimulation is a critical regulator of lymphatic vascular development via activation of Wnt/β-catenin signaling. Lymphatic vasculature regulates fluid homeostasis by returning interstitial fluid to blood circulation. Lymphatic endothelial cells (LECs) are the building blocks of the entire lymphatic vasculature. LECs originate as a homogeneous population of cells predominantly from the embryonic veins and undergo stepwise morphogenesis to become the lymphatic capillaries, collecting vessels or valves. The molecular mechanisms underlying the morphogenesis of the lymphatic vasculature remain to be fully understood. Here we show that canonical Wnt/β-catenin signaling is necessary for lymphatic vascular morphogenesis. Lymphatic vascular-specific ablation of β-catenin in mice prevents the formation of lymphatic and lymphovenous valves. Additionally, lymphatic vessel patterning is defective in these mice, with abnormal recruitment of mural cells. We found that oscillatory shear stress (OSS), which promotes lymphatic vessel maturation, triggers Wnt/β-catenin signaling in LECs. In turn, Wnt/β-catenin signaling controls the expression of several molecules, including the lymphedema-associated transcription factor FOXC2. Importantly, FOXC2 completely rescues the lymphatic vessel patterning defects in mice lacking β-catenin. Thus, our work reveals that mechanical stimulation is a critical regulator of lymphatic vascular development via activation of Wnt/β-catenin signaling and, in turn, FOXC2.
Collapse
Affiliation(s)
- Boksik Cha
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Xin Geng
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Md Riaj Mahamud
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Jianxin Fu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Anish Mukherjee
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Yeunhee Kim
- Department of Biological Sciences, Center for Systems Biology, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Eek-Hoon Jho
- Department of Life Science, University of Seoul, Seoul 130-743, Korea
| | - Tae Hoon Kim
- Department of Biological Sciences, Center for Systems Biology, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Mark L Kahn
- Department of Medicine, Division of Cardiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Lijun Xia
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA; Department of Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - J Brandon Dixon
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - R Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| |
Collapse
|
22
|
Crosswhite PL, Podsiadlowska JJ, Curtis CD, Gao S, Xia L, Srinivasan RS, Griffin CT. CHD4-regulated plasmin activation impacts lymphovenous hemostasis and hepatic vascular integrity. J Clin Invest 2016; 126:2254-66. [PMID: 27140400 DOI: 10.1172/jci84652] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 03/10/2016] [Indexed: 12/11/2022] Open
Abstract
The chromatin-remodeling enzyme CHD4 maintains vascular integrity at mid-gestation; however, it is unknown whether this enzyme contributes to later blood vessel or lymphatic vessel development. Here, we addressed this issue in mice harboring a deletion of Chd4 specifically in cells that express lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1), which include lymphatic endothelial cells (LECs) and liver sinusoidal endothelial cells. Chd4 mutant embryos died before birth and exhibited severe edema, blood-filled lymphatics, and liver hemorrhage. CHD4-deficient embryos developed normal lymphovenous (LV) valves, which regulate the return of lymph to the blood circulation; however, these valves lacked the fibrin-rich thrombi that prevent blood from entering the lymphatic system. Transcripts of the urokinase plasminogen activator receptor (uPAR), which facilitates activation of the fibrin-degrading protease plasmin, were upregulated in Chd4 mutant LYVE1+ cells, and plasmin activity was elevated near the LV valves. Genetic reduction of the uPAR ligand urokinase prevented degradation of fibrin-rich thrombi at the LV valves and largely resolved the blood-filled lymphatics in Chd4 mutants. Urokinase reduction also ameliorated liver hemorrhage and prolonged embryonic survival by reducing plasmin-mediated extracellular matrix degradation around sinusoidal blood vessels. These results highlight the susceptibility of LV thrombi and liver sinusoidal vessels to plasmin-mediated damage and demonstrate the importance of CHD4 in regulating embryonic plasmin activation after mid-gestation.
Collapse
|
23
|
Ulvmar MH, Martinez-Corral I, Stanczuk L, Mäkinen T. Pdgfrb-Cre targets lymphatic endothelial cells of both venous and non-venous origins. Genesis 2016; 54:350-8. [PMID: 27060598 PMCID: PMC5021155 DOI: 10.1002/dvg.22939] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/16/2016] [Accepted: 04/02/2016] [Indexed: 01/10/2023]
Abstract
The Pdgfrb‐Cre line has been used as a tool to specifically target pericytes and vascular smooth muscle cells. Recent studies showed additional targeting of cardiac and mesenteric lymphatic endothelial cells (LECs) by the Pdgfrb‐Cre transgene. In the heart, this was suggested to provide evidence for a previously unknown nonvenous source of LECs originating from yolk sac (YS) hemogenic endothelium (HemEC). Here we show that Pdgfrb‐Cre does not, however, target YS HemEC or YS‐derived erythro‐myeloid progenitors (EMPs). Instead, a high proportion of ECs in embryonic blood vessels of multiple organs, as well as venous‐derived LECs were targeted. Assessment of temporal Cre activity using the R26‐mTmG double reporter suggested recent occurrence of Pdgfrb‐Cre recombination in both blood and lymphatic ECs. It thus cannot be excluded that Pdgfrb‐Cre mediated targeting of LECs is due to de novo expression of the Pdgfrb‐Cre transgene or their previously established venous endothelial origin. Importantly, Pdgfrb‐Cre targeting of LECs does not provide evidence for YS HemEC origin of the lymphatic vasculature. Our results highlight the need for careful interpretation of lineage tracing using constitutive Cre lines that cannot discriminate active from historical expression. The early vascular targeting by the Pdgfrb‐Cre also warrants consideration for its use in studies of mural cells. genesis 54:350–358, 2016. © 2016 The Authors. Genesis Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maria H Ulvmar
- Department of Immunology Genetics and Pathology, Uppsala University, Dag Hammarskjöldsväg 20, 751 85, Uppsala, Sweden
| | - Ines Martinez-Corral
- Department of Immunology Genetics and Pathology, Uppsala University, Dag Hammarskjöldsväg 20, 751 85, Uppsala, Sweden
| | - Lukas Stanczuk
- Department of Immunology Genetics and Pathology, Uppsala University, Dag Hammarskjöldsväg 20, 751 85, Uppsala, Sweden
| | - Taija Mäkinen
- Department of Immunology Genetics and Pathology, Uppsala University, Dag Hammarskjöldsväg 20, 751 85, Uppsala, Sweden
| |
Collapse
|
24
|
Wang X, Astrof S. Neural crest cell-autonomous roles of fibronectin in cardiovascular development. Development 2015; 143:88-100. [PMID: 26552887 DOI: 10.1242/dev.125286] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 11/03/2015] [Indexed: 12/13/2022]
Abstract
The chemical and mechanical properties of extracellular matrices (ECMs) modulate diverse aspects of cellular fates; however, how regional heterogeneity in ECM composition regulates developmental programs is not well understood. We discovered that fibronectin 1 (Fn1) is expressed in strikingly non-uniform patterns during mouse development, suggesting that regionalized synthesis of the ECM plays cell-specific regulatory roles during embryogenesis. To test this hypothesis, we ablated Fn1 in the neural crest (NC), a population of multi-potent progenitors expressing high levels of Fn1. We found that Fn1 synthesized by the NC mediated morphogenesis of the aortic arch artery and differentiation of NC cells into vascular smooth muscle cells (VSMCs) by regulating Notch signaling. We show that NC Fn1 signals in an NC cell-autonomous manner through integrin α5β1 expressed by the NC, leading to activation of Notch and differentiation of VSMCs. Our data demonstrate an essential role of the localized synthesis of Fn1 in cardiovascular development and spatial regulation of Notch signaling.
Collapse
Affiliation(s)
- Xia Wang
- Sidney Kimmel Medical College of Thomas Jefferson University, Department of Medicine, Center for Translational Medicine, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Sophie Astrof
- Sidney Kimmel Medical College of Thomas Jefferson University, Department of Medicine, Center for Translational Medicine, 1020 Locust Street, Philadelphia, PA 19107, USA
| |
Collapse
|
25
|
Geng X, Cha B, Mahamud MR, Lim KC, Silasi-Mansat R, Uddin MKM, Miura N, Xia L, Simon AM, Engel JD, Chen H, Lupu F, Srinivasan RS. Multiple mouse models of primary lymphedema exhibit distinct defects in lymphovenous valve development. Dev Biol 2015; 409:218-233. [PMID: 26542011 DOI: 10.1016/j.ydbio.2015.10.022] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/19/2015] [Accepted: 10/19/2015] [Indexed: 12/12/2022]
Abstract
Lymph is returned to the blood circulation exclusively via four lymphovenous valves (LVVs). Despite their vital importance, the architecture and development of LVVs is poorly understood. We analyzed the formation of LVVs at the molecular and ultrastructural levels during mouse embryogenesis and identified three critical steps. First, LVV-forming endothelial cells (LVV-ECs) differentiate from PROX1(+) progenitors and delaminate from the luminal side of the veins. Second, LVV-ECs aggregate, align perpendicular to the direction of lymph flow and establish lympho-venous connections. Finally, LVVs mature with the recruitment of mural cells. LVV morphogenesis is disrupted in four different mouse models of primary lymphedema and the severity of LVV defects correlate with that of lymphedema. In summary, we have provided the first and the most comprehensive analysis of LVV development. Furthermore, our work suggests that aberrant LVVs contribute to lymphedema.
Collapse
Affiliation(s)
- Xin Geng
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Boksik Cha
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Md Riaj Mahamud
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Kim-Chew Lim
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Robert Silasi-Mansat
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Mohammad K M Uddin
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naoyuki Miura
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Lijun Xia
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | | | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Hong Chen
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Florea Lupu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - R Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
26
|
Chen D, Wang X, Liang D, Gordon J, Mittal A, Manley N, Degenhardt K, Astrof S. Fibronectin signals through integrin α5β1 to regulate cardiovascular development in a cell type-specific manner. Dev Biol 2015; 407:195-210. [PMID: 26434918 DOI: 10.1016/j.ydbio.2015.09.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/09/2015] [Accepted: 09/12/2015] [Indexed: 01/23/2023]
Abstract
Fibronectin (Fn1) is an evolutionarily conserved extracellular matrix glycoprotein essential for embryonic development. Global deletion of Fn1 leads to mid-gestation lethality from cardiovascular defects. However, severe morphogenetic defects that occur early in embryogenesis in these embryos precluded assigning a direct role for Fn1 in cardiovascular development. We noticed that Fn1 is expressed in strikingly non-uniform patterns during mouse embryogenesis, and that its expression is particularly enriched in the pharyngeal region corresponding with the pharyngeal arches 3, 4, and 6. This region bears a special importance for the developing cardiovascular system, and we hypothesized that the localized enrichment of Fn1 in the pharyngeal region may be essential for cardiovascular morphogenesis. To test this hypothesis, we ablated Fn1 using the Isl1(Cre) knock-in strain of mice. Deletion of Fn1 using the Isl1(Cre) strain resulted in defective formation of the 4th pharyngeal arch arteries (PAAs), aberrant development of the cardiac outflow tract (OFT), and ventricular septum defects. To determine the cell types responding to Fn1 signaling during cardiovascular development, we deleted a major Fn1 receptor, integrin α5 using the Isl1(Cre) strain, and observed the same spectrum of abnormalities seen in the Fn1 conditional mutants. Additional conditional mutagenesis studies designed to ablate integrin α5 in distinct cell types within the Isl1(+) tissues and their derivatives, suggested that the expression of integrin α5 in the pharyngeal arch mesoderm, endothelium, surface ectoderm and the neural crest were not required for PAA formation. Our studies suggest that an (as yet unknown) integrin α5-dependent signal extrinsic to the pharyngeal endothelium mediates the formation of the 4th PAAs.
Collapse
Affiliation(s)
- Dongying Chen
- Sidney Kimmel Medical College of Thomas Jefferson University, Department of Medicine, Center for Translational Medicine, 1020 Locust Street, Philadelphia, PA 19107, USA; Cell and Developmental Biology graduate program, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Xia Wang
- Sidney Kimmel Medical College of Thomas Jefferson University, Department of Medicine, Center for Translational Medicine, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Dong Liang
- Sidney Kimmel Medical College of Thomas Jefferson University, Department of Medicine, Center for Translational Medicine, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Julie Gordon
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Ashok Mittal
- Sidney Kimmel Medical College of Thomas Jefferson University, Department of Medicine, Center for Translational Medicine, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Nancy Manley
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Karl Degenhardt
- Children's Hospital of Pennsylvania, University of Pennsylvania, Philadelphia, PA 19107, USA
| | - Sophie Astrof
- Sidney Kimmel Medical College of Thomas Jefferson University, Department of Medicine, Center for Translational Medicine, 1020 Locust Street, Philadelphia, PA 19107, USA; Cell and Developmental Biology graduate program, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
27
|
Kazenwadel J, Betterman KL, Chong CE, Stokes PH, Lee YK, Secker GA, Agalarov Y, Demir CS, Lawrence DM, Sutton DL, Tabruyn SP, Miura N, Salminen M, Petrova TV, Matthews JM, Hahn CN, Scott HS, Harvey NL. GATA2 is required for lymphatic vessel valve development and maintenance. J Clin Invest 2015. [PMID: 26214525 DOI: 10.1172/jci78888] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Heterozygous germline mutations in the zinc finger transcription factor GATA2 have recently been shown to underlie a range of clinical phenotypes, including Emberger syndrome, a disorder characterized by lymphedema and predisposition to myelodysplastic syndrome/acute myeloid leukemia (MDS/AML). Despite well-defined roles in hematopoiesis, the functions of GATA2 in the lymphatic vasculature and the mechanisms by which GATA2 mutations result in lymphedema have not been characterized. Here, we have provided a molecular explanation for lymphedema predisposition in a subset of patients with germline GATA2 mutations. Specifically, we demonstrated that Emberger-associated GATA2 missense mutations result in complete loss of GATA2 function, with respect to the capacity to regulate the transcription of genes that are important for lymphatic vessel valve development. We identified a putative enhancer element upstream of the key lymphatic transcriptional regulator PROX1 that is bound by GATA2, and the transcription factors FOXC2 and NFATC1. Emberger GATA2 missense mutants had a profoundly reduced capacity to bind this element. Conditional Gata2 deletion in mice revealed that GATA2 is required for both development and maintenance of lymphovenous and lymphatic vessel valves. Together, our data unveil essential roles for GATA2 in the lymphatic vasculature and explain why a select catalogue of human GATA2 mutations results in lymphedema.
Collapse
|
28
|
Cdk5 controls lymphatic vessel development and function by phosphorylation of Foxc2. Nat Commun 2015; 6:7274. [PMID: 26027726 DOI: 10.1038/ncomms8274] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 04/24/2015] [Indexed: 12/21/2022] Open
Abstract
The lymphatic system maintains tissue fluid balance, and dysfunction of lymphatic vessels and valves causes human lymphedema syndromes. Yet, our knowledge of the molecular mechanisms underlying lymphatic vessel development is still limited. Here, we show that cyclin-dependent kinase 5 (Cdk5) is an essential regulator of lymphatic vessel development. Endothelial-specific Cdk5 knockdown causes congenital lymphatic dysfunction and lymphedema due to defective lymphatic vessel patterning and valve formation. We identify the transcription factor Foxc2 as a key substrate of Cdk5 in the lymphatic vasculature, mechanistically linking Cdk5 to lymphatic development and valve morphogenesis. Collectively, our findings show that Cdk5-Foxc2 interaction represents a critical regulator of lymphatic vessel development and the transcriptional network underlying lymphatic vascular remodeling.
Collapse
|
29
|
Turner CJ, Badu-Nkansah K, Crowley D, van der Flier A, Hynes RO. α5 and αv integrins cooperate to regulate vascular smooth muscle and neural crest functions in vivo. Development 2015; 142:797-808. [PMID: 25670798 DOI: 10.1242/dev.117572] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The RGD-binding α5 and αv integrins have been shown to be key regulators of vascular smooth muscle cell (vSMC) function in vitro. However, their role on vSMCs during vascular development in vivo remains unclear. To address this issue, we have generated mice that lack α5, αv or both α5 and αv integrins on their vSMCs, using the SM22α-Cre transgenic mouse line. To our surprise, neither α5 nor αv mutants displayed any obvious vascular defects during embryonic development. By contrast, mice lacking both α5 and αv integrins developed interrupted aortic arches, large brachiocephalic/carotid artery aneurysms and cardiac septation defects, but developed extensive and apparently normal vasculature in the skin. Cardiovascular defects were also found, along with cleft palates and ectopically located thymi, in Wnt1-Cre α5/αv mutants, suggesting that α5 and αv cooperate on neural crest-derived cells to control the remodelling of the pharyngeal arches and the septation of the heart and outflow tract. Analysis of cultured α5/αv-deficient vSMCs suggests that this is achieved, at least in part, through proper assembly of RGD-containing extracellular matrix proteins and the correct incorporation and activation of latent TGF-β.
Collapse
Affiliation(s)
- Christopher J Turner
- Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kwabena Badu-Nkansah
- Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Denise Crowley
- Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Arjan van der Flier
- Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Richard O Hynes
- Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
30
|
Murphy PA, Begum S, Hynes RO. Tumor angiogenesis in the absence of fibronectin or its cognate integrin receptors. PLoS One 2015; 10:e0120872. [PMID: 25807551 PMCID: PMC4373772 DOI: 10.1371/journal.pone.0120872] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/10/2015] [Indexed: 11/18/2022] Open
Abstract
Binding of α5β1 and αvβ3/β5 integrin receptors on the endothelium to their fibronectin substrate in the extracellular matrix has been targeted as a possible means of blocking tumor angiogenesis and tumor growth. However, clinical trials of blocking antibodies and peptides have been disappointing despite promising preclinical results, leading to questions about the mechanism of the inhibitors and the reasons for their failure. Here, using tissue-specific and inducible genetics to delete the α5 and αv receptors in the endothelium or their fibronectin substrate, either in the endothelium or globally, we show that both are dispensable for tumor growth, in transplanted tumors as well as spontaneous and angiogenesis-dependent RIP-Tag-driven pancreatic adenocarcinomas. In the nearly complete absence of fibronectin, no differences in vascular density or the deposition of basement membrane laminins, ColIV, Nid1, Nid2, or the TGFβ binding matrix proteins, fibrillin-1 and -2, could be observed. Our results reveal that fibronectin and the endothelial fibronectin receptor subunits, α5 and αv, are dispensable for tumor angiogenesis, suggesting that the inhibition of angiogenesis induced by antibodies or small molecules may occur through a dominant negative effect, rather than a simple functional block.
Collapse
Affiliation(s)
- Patrick A. Murphy
- Howard Hughes Medical Institute, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Shahinoor Begum
- Howard Hughes Medical Institute, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Richard O. Hynes
- Howard Hughes Medical Institute, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- * E-mail:
| |
Collapse
|
31
|
Yang Y, Enis D, Zheng H, Chia S, Yang J, Chen M, Dhillon V, Papayannapoulou T, Kahn ML. Cell Adhesion Mediated by VCAM-ITGα9 Interactions Enables Lymphatic Development. Arterioscler Thromb Vasc Biol 2015; 35:1179-89. [PMID: 25745057 DOI: 10.1161/atvbaha.114.304997] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/22/2015] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Adhesive ligand-receptor interactions play key roles in blood vessel angiogenesis but remain poorly characterized during lymphatic vessel growth. In this study, we use genetic approaches in both fish and mice to address the roles of cell surface integrin ligand vascular cell adhesion molecule (VCAM) and its 2 receptors, integrins α9 and α4, during lymphatic vascular development. APPROACH AND RESULTS Conditional deletion of the Vcam gene was used to test VCAM function in lymphatic growth in midgestation mice. Morpholino knockdown and cRNA rescue of the 2 zebrafish vcam alleles, as well as integrins α9 and 4, were used to test the role of these ligands and receptors during lymphatic growth in the developing fish. We show that VCAM is essential for lymphatic development in the zebrafish embryo and that integrin α9 (Itgα9) rather than Itgα4 is the required VCAM receptor in the developing fish. VCAM is expressed along lines of lymphatic migration in the mouse intestine, but its loss only retards lymphatic growth. CONCLUSIONS These studies reveal an unexpected role for cell-cell adhesion mediated by Itgα9-VCAM interactions during lymphatic development in the fish but not in the mouse. We propose that the relative importance of cellular adhesive ligands is magnified under conditions of rapid tissue growth when the cell number increases faster than cell matrix, such as in the early zebrafish embryo.
Collapse
Affiliation(s)
- Yiqing Yang
- From the Department of Medicine and Cardiovascular Institute (Y.Y., D.E., H.Z., S.C., J.Y., M.C., V.D., M.L.K.) and Department of Dermatology (D.E.), University of Pennsylvania, Philadelphia; and Department of Medicine, University of Washington, Seattle (T.P.)
| | - David Enis
- From the Department of Medicine and Cardiovascular Institute (Y.Y., D.E., H.Z., S.C., J.Y., M.C., V.D., M.L.K.) and Department of Dermatology (D.E.), University of Pennsylvania, Philadelphia; and Department of Medicine, University of Washington, Seattle (T.P.)
| | - Hui Zheng
- From the Department of Medicine and Cardiovascular Institute (Y.Y., D.E., H.Z., S.C., J.Y., M.C., V.D., M.L.K.) and Department of Dermatology (D.E.), University of Pennsylvania, Philadelphia; and Department of Medicine, University of Washington, Seattle (T.P.)
| | - Stephanie Chia
- From the Department of Medicine and Cardiovascular Institute (Y.Y., D.E., H.Z., S.C., J.Y., M.C., V.D., M.L.K.) and Department of Dermatology (D.E.), University of Pennsylvania, Philadelphia; and Department of Medicine, University of Washington, Seattle (T.P.)
| | - Jisheng Yang
- From the Department of Medicine and Cardiovascular Institute (Y.Y., D.E., H.Z., S.C., J.Y., M.C., V.D., M.L.K.) and Department of Dermatology (D.E.), University of Pennsylvania, Philadelphia; and Department of Medicine, University of Washington, Seattle (T.P.)
| | - Mei Chen
- From the Department of Medicine and Cardiovascular Institute (Y.Y., D.E., H.Z., S.C., J.Y., M.C., V.D., M.L.K.) and Department of Dermatology (D.E.), University of Pennsylvania, Philadelphia; and Department of Medicine, University of Washington, Seattle (T.P.)
| | - Veerpal Dhillon
- From the Department of Medicine and Cardiovascular Institute (Y.Y., D.E., H.Z., S.C., J.Y., M.C., V.D., M.L.K.) and Department of Dermatology (D.E.), University of Pennsylvania, Philadelphia; and Department of Medicine, University of Washington, Seattle (T.P.)
| | - Thalia Papayannapoulou
- From the Department of Medicine and Cardiovascular Institute (Y.Y., D.E., H.Z., S.C., J.Y., M.C., V.D., M.L.K.) and Department of Dermatology (D.E.), University of Pennsylvania, Philadelphia; and Department of Medicine, University of Washington, Seattle (T.P.)
| | - Mark L Kahn
- From the Department of Medicine and Cardiovascular Institute (Y.Y., D.E., H.Z., S.C., J.Y., M.C., V.D., M.L.K.) and Department of Dermatology (D.E.), University of Pennsylvania, Philadelphia; and Department of Medicine, University of Washington, Seattle (T.P.).
| |
Collapse
|
32
|
Qu X, Zhou B, Scott Baldwin H. Tie1 is required for lymphatic valve and collecting vessel development. Dev Biol 2015; 399:117-128. [PMID: 25576926 DOI: 10.1016/j.ydbio.2014.12.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 12/10/2014] [Accepted: 12/17/2014] [Indexed: 12/29/2022]
Abstract
Tie1 is a receptor tyrosine kinase with broad expression in embryonic endothelium. Reduction of Tie1 levels in mouse embryos with a hypomorphic Tie1 allele resulted in abnormal lymphatic patterning and architecture, decreased lymphatic draining efficiency, and ultimately, embryonic demise. Here we report that Tie1 is present uniformly throughout the lymphatics and from late embryonic/early postnatal stages, becomes more restricted to lymphatic valve regions. To investigate later events of lymphatic development, we employed Cre-loxP recombination utilizing a floxed Tie1 allele and an Nfatc1Cre line, to provide loxP excision predominantly in lymphatic endothelium and developing valves. Interestingly, unlike the early prenatal defects previously described by ubiquitous endothelial deletion, excision of Tie1 with Nfatc1Cre resulted in abnormal lymphatic defects in postnatal mice and was characterized by agenesis of lymphatic valves and a deficiency of collecting lymphatic vessels. Attenuation of Tie1 signaling in lymphatic endothelium prevented initiation of lymphatic valve specification by Prox1 high expression lymphatic endothelial cells that is associated with the onset of turbulent flow in the lymphatic circulation. Our findings reveal a fundamental role for Tie1 signaling during lymphatic vessel remodeling and valve morphogenesis and implicate it as a candidate gene involved in primary lymphedema.
Collapse
Affiliation(s)
- Xianghu Qu
- Department of Pediatrics (Cardiology), Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Bin Zhou
- Department of Genetics, Albert Einstein College of Medicine, NY 10461, USA
| | - H Scott Baldwin
- Department of Pediatrics (Cardiology), Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Development Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
33
|
Liang D, Wang X, Mittal A, Dhiman S, Hou SY, Degenhardt K, Astrof S. Mesodermal expression of integrin α5β1 regulates neural crest development and cardiovascular morphogenesis. Dev Biol 2014; 395:232-44. [PMID: 25242040 DOI: 10.1016/j.ydbio.2014.09.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 01/09/2023]
Abstract
Integrin α5-null embryos die in mid-gestation from severe defects in cardiovascular morphogenesis, which stem from defective development of the neural crest, heart and vasculature. To investigate the role of integrin α5β1 in cardiovascular development, we used the Mesp1(Cre) knock-in strain of mice to ablate integrin α5 in the anterior mesoderm, which gives rise to all of the cardiac and many of the vascular and muscle lineages in the anterior portion of the embryo. Surprisingly, we found that mutant embryos displayed numerous defects related to the abnormal development of the neural crest such as cleft palate, ventricular septal defect, abnormal development of hypoglossal nerves, and defective remodeling of the aortic arch arteries. We found that defects in arch artery remodeling stem from the role of mesodermal integrin α5β1 in neural crest proliferation and differentiation into vascular smooth muscle cells, while proliferation of pharyngeal mesoderm and differentiation of mesodermal derivatives into vascular smooth muscle cells was not defective. Taken together our studies demonstrate a requisite role for mesodermal integrin α5β1 in signaling between the mesoderm and the neural crest, thereby regulating neural crest-dependent morphogenesis of essential embryonic structures.
Collapse
Affiliation(s)
- Dong Liang
- Thomas Jefferson University, Department of Medicine, Center for Translational Medicine, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Xia Wang
- Thomas Jefferson University, Department of Medicine, Center for Translational Medicine, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Ashok Mittal
- Thomas Jefferson University, Department of Medicine, Center for Translational Medicine, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Sonam Dhiman
- Thomas Jefferson University, Department of Medicine, Center for Translational Medicine, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Shuan-Yu Hou
- Thomas Jefferson University, Department of Medicine, Center for Translational Medicine, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Karl Degenhardt
- Childrens Hospital of Pennsylvania, University of Pennsylvania, Philadelphia, PA 19107, USA
| | - Sophie Astrof
- Thomas Jefferson University, Department of Medicine, Center for Translational Medicine, 1020 Locust Street, Philadelphia, PA 19107, USA.
| |
Collapse
|
34
|
Blei F. Update September 2014. Lymphat Res Biol 2014. [DOI: 10.1089/lrb.2014.1232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
35
|
Bazigou E, Wilson JT, Moore JE. Primary and secondary lymphatic valve development: molecular, functional and mechanical insights. Microvasc Res 2014; 96:38-45. [PMID: 25086182 DOI: 10.1016/j.mvr.2014.07.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/17/2014] [Accepted: 07/22/2014] [Indexed: 01/27/2023]
Abstract
Fluid homeostasis in vertebrates critically relies on the lymphatic system forming a hierarchical network of lymphatic capillaries and collecting lymphatics, for the efficient drainage and transport of extravasated fluid back to the cardiovascular system. Blind-ended lymphatic capillaries employ specialized junctions and anchoring filaments to encourage a unidirectional flow of the interstitial fluid into the initial lymphatic vessels, whereas collecting lymphatics are responsible for the active propulsion of the lymph to the venous circulation via the combined action of lymphatic muscle cells and intraluminal valves. Here we describe recent findings on molecular and physical factors regulating the development and maturation of these two types of valves and examine their role in tissue-fluid homeostasis.
Collapse
Affiliation(s)
- Eleni Bazigou
- Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - John T Wilson
- Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - James E Moore
- Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|