1
|
Krawczyk E, Kitlińska J. Preclinical Models of Neuroblastoma-Current Status and Perspectives. Cancers (Basel) 2023; 15:3314. [PMID: 37444423 PMCID: PMC10340830 DOI: 10.3390/cancers15133314] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Preclinical in vitro and in vivo models remain indispensable tools in cancer research. These classic models, including two- and three-dimensional cell culture techniques and animal models, are crucial for basic and translational studies. However, each model has its own limitations and typically does not fully recapitulate the course of the human disease. Therefore, there is an urgent need for the development of novel, advanced systems that can allow for efficient evaluation of the mechanisms underlying cancer development and progression, more accurately reflect the disease pathophysiology and complexity, and effectively inform therapeutic decisions for patients. Preclinical models are especially important for rare cancers, such as neuroblastoma, where the availability of patient-derived specimens that could be used for potential therapy evaluation and screening is limited. Neuroblastoma modeling is further complicated by the disease heterogeneity. In this review, we present the current status of preclinical models for neuroblastoma research, discuss their development and characteristics emphasizing strengths and limitations, and describe the necessity of the development of novel, more advanced and clinically relevant approaches.
Collapse
Affiliation(s)
- Ewa Krawczyk
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Joanna Kitlińska
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
2
|
Aaltonen K, Radke K, Adamska A, Seger A, Mañas A, Bexell D. Patient-derived models: Advanced tools for precision medicine in neuroblastoma. Front Oncol 2023; 12:1085270. [PMID: 36776363 PMCID: PMC9910084 DOI: 10.3389/fonc.2022.1085270] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/21/2022] [Indexed: 01/27/2023] Open
Abstract
Neuroblastoma is a childhood cancer derived from the sympathetic nervous system. High-risk neuroblastoma patients have a poor overall survival and account for ~15% of childhood cancer deaths. There is thus a need for clinically relevant and authentic models of neuroblastoma that closely resemble the human disease to further interrogate underlying mechanisms and to develop novel therapeutic strategies. Here we review recent developments in patient-derived neuroblastoma xenograft models and in vitro cultures. These models can be used to decipher mechanisms of metastasis and treatment resistance, for drug screening, and preclinical drug testing. Patient-derived neuroblastoma models may also provide useful information about clonal evolution, phenotypic plasticity, and cell states in relation to neuroblastoma progression. We summarize current opportunities for, but also barriers to, future model development and application. Integration of patient-derived models with patient data holds promise for the development of precision medicine treatment strategies for children with high-risk neuroblastoma.
Collapse
|
3
|
Tucker ER, George S, Angelini P, Bruna A, Chesler L. The Promise of Patient-Derived Preclinical Models to Accelerate the Implementation of Personalised Medicine for Children with Neuroblastoma. J Pers Med 2021; 11:248. [PMID: 33808071 PMCID: PMC8065808 DOI: 10.3390/jpm11040248] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 01/02/2023] Open
Abstract
Patient-derived preclinical models are now a core component of cancer research and have the ability to drastically improve the predictive power of preclinical therapeutic studies. However, their development and maintenance can be challenging, time consuming, and expensive. For neuroblastoma, a developmental malignancy of the neural crest, it is possible to establish patient-derived models as xenografts in mice and zebrafish, and as spheroids and organoids in vitro. These varied approaches have contributed to comprehensive packages of preclinical evidence in support of new therapeutics for neuroblastoma. We discuss here the ethical and technical considerations for the creation of patient-derived models of neuroblastoma and how their use can be optimized for the study of tumour evolution and preclinical therapies. We also discuss how neuroblastoma patient-derived models might become avatars for personalised medicine for children with this devastating disease.
Collapse
Affiliation(s)
- Elizabeth R. Tucker
- Paediatric Tumour Biology, Division of Clinical Studies, The Institute of Cancer Research, Cotswold Road, London SM2 5NG, UK; (E.R.T.); (S.G.)
| | - Sally George
- Paediatric Tumour Biology, Division of Clinical Studies, The Institute of Cancer Research, Cotswold Road, London SM2 5NG, UK; (E.R.T.); (S.G.)
| | - Paola Angelini
- Children and Young People’s Unit, The Royal Marsden, Downs Road, Sutton, Surrey SM2 5PT, UK;
| | - Alejandra Bruna
- Preclinical Paediatric Cancer Evolution, Centre for Cancer Drug Discovery, The Institute of Cancer Research, Cotswold Road, London SM2 5NG, UK;
| | - Louis Chesler
- Paediatric Tumour Biology, Division of Clinical Studies, The Institute of Cancer Research, Cotswold Road, London SM2 5NG, UK; (E.R.T.); (S.G.)
| |
Collapse
|
4
|
Gavin C, Geerts N, Cavanagh B, Haynes M, Reynolds CP, Loessner D, Ewald AJ, Piskareva O. Neuroblastoma Invasion Strategies Are Regulated by the Extracellular Matrix. Cancers (Basel) 2021; 13:736. [PMID: 33578855 PMCID: PMC7916632 DOI: 10.3390/cancers13040736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/30/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023] Open
Abstract
Neuroblastoma is a paediatric malignancy of the developing sympathetic nervous system. About half of the patients have metastatic disease at the time of diagnosis and a survival rate of less than 50%. Our understanding of the cellular processes promoting neuroblastoma metastases will be facilitated by the development of appropriate experimental models. In this study, we aimed to explore the invasion of neuroblastoma cells and organoids from patient-derived xenografts (PDXs) grown embedded in 3D extracellular matrix (ECM) hydrogels by time-lapse microscopy and quantitative image analysis. We found that the ECM composition influenced the growth, viability and local invasion of organoids. The ECM compositions induced distinct cell behaviours, with Matrigel being the preferred substratum for local organoid invasion. Organoid invasion was cell line- and PDX-dependent. We identified six distinct phenotypes in PDX-derived organoids. In contrast, NB cell lines were more phenotypically restricted in their invasion strategies, as organoids isolated from cell line-derived xenografts displayed a broader range of phenotypes compared to clonal cell line clusters. The addition of FBS and bFGF induced more aggressive cell behaviour and a broader range of phenotypes. In contrast, the repression of the prognostic neuroblastoma marker, MYCN, resulted in less aggressive cell behaviour. The combination of PDX organoids, real-time imaging and the novel 3D culture assays developed herein will enable rapid progress in elucidating the molecular mechanisms that control neuroblastoma invasion.
Collapse
Affiliation(s)
- Cian Gavin
- Cancer Bio-Engineering Group, Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; (C.G.); (N.G.)
| | - Nele Geerts
- Cancer Bio-Engineering Group, Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; (C.G.); (N.G.)
| | - Brenton Cavanagh
- Cellular and Molecular Imaging Core, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland;
| | - Meagan Haynes
- Center for Cell Dynamics, Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (M.H.); (A.J.E.)
| | - C. Patrick Reynolds
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79416, USA;
- Departments of Pediatrics and Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79416, USA
| | - Daniela Loessner
- Departments of Chemical Engineering and Materials Science and Engineering, Faculty of Engineering, Monash University, Melbourne, VIC 3800, Australia;
- Department of Anatomy and Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Andrew J. Ewald
- Center for Cell Dynamics, Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (M.H.); (A.J.E.)
- Sidney Kimmel Comprehensive Cancer Center, Cancer Invasion and Metastasis Program, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Olga Piskareva
- Cancer Bio-Engineering Group, Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; (C.G.); (N.G.)
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- National Children’s Research Centre, Our Lady’s Children’s Hospital Crumlin, Dublin D12 8MGH, Ireland
| |
Collapse
|
5
|
Williams J, Xu B, Putnam D, Thrasher A, Li C, Yang J, Chen X. MethylationToActivity: a deep-learning framework that reveals promoter activity landscapes from DNA methylomes in individual tumors. Genome Biol 2021; 22:24. [PMID: 33461601 PMCID: PMC7814737 DOI: 10.1186/s13059-020-02220-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 12/06/2020] [Indexed: 12/12/2022] Open
Abstract
Although genome-wide DNA methylomes have demonstrated their clinical value as reliable biomarkers for tumor detection, subtyping, and classification, their direct biological impacts at the individual gene level remain elusive. Here we present MethylationToActivity (M2A), a machine learning framework that uses convolutional neural networks to infer promoter activities based on H3K4me3 and H3K27ac enrichment, from DNA methylation patterns for individual genes. Using publicly available datasets in real-world test scenarios, we demonstrate that M2A is highly accurate and robust in revealing promoter activity landscapes in various pediatric and adult cancers, including both solid and hematologic malignant neoplasms.
Collapse
Affiliation(s)
- Justin Williams
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1135, Memphis, TN, 38105, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Daniel Putnam
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1135, Memphis, TN, 38105, USA
| | - Andrew Thrasher
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1135, Memphis, TN, 38105, USA
| | - Chunliang Li
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jun Yang
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1135, Memphis, TN, 38105, USA.
| |
Collapse
|
6
|
Guihurt Santiago J, Burgos-Tirado N, Lafontaine DD, Mendoza Sierra JC, Camacho RH, Vecchini Rodríguez CM, Morales-Tirado V, Flores-Otero J. Adhesion G protein-coupled receptor, ELTD1, is a potential therapeutic target for retinoblastoma migration and invasion. BMC Cancer 2021; 21:53. [PMID: 33430814 PMCID: PMC7802354 DOI: 10.1186/s12885-020-07768-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 12/25/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Prognosis for pediatric metastatic Retinoblastoma (Rb) is poor and current therapies are limited by high systemic toxicity rates and insufficient therapeutic efficacy for metastatic Rb. Tumor dissemination to the brain is promoted by the heterogeneous adhesive and invasive properties of Rb cells within the tumor. In this study we evaluate, for the first time, the expression, and roles of the ELTD1 and GPR125 adhesion G protein-coupled receptors (GPCRs) in Rb cell migration, viability and invasion. METHODS We characterized the RNA expression of adhesion-GPCRs in 64 Rb tumors compared to 11 fetal retinas using the database from the Childhood Solid Tumor Network from St Jude Children's Research Hospital. The role of ELTD1 and GPR125 in Rb were investigated ex vivo by microarray analysis, in vitro by cell viability, Western blot and migration assays, in addition to imaging of the subcellular localization of the GPCRs. To elucidate their role in vivo we utilized siRNA technology in an established Rb orthotopic xenograft murine model. RESULTS Our investigation demonstrates, for the first time, that ELTD1 but not GPR125, is significantly increased in Rb tumors compared to fetal retinas. We utilized established the Rb cell lines Y79 and Weri-Rb-1, which represent an aggressive, metastatic, and non-metastatic phenotype, respectively, for the in vitro analyses. The studies demonstrated that ELTD1 is enriched in Weri-Rb-1 cells, while GPR125 is enriched in Y79 cells. The measured differences extended to their subcellular localization as ELTD1 labeling displayed punctate clusters in cell-to-cell adhesion sites of Weri-Rb-1 cells, while GPR125 displayed a polarized distribution in Y79 cells. Lastly, we demonstrated the lack of both adhesion receptors does not affect Rb cell viability, yet inhibition of ELTD1 decreases Y79 cell migration in vitro and invasion in vivo. CONCLUSION Taken together, our data suggest that ELTD1, is a potential target to prevent extraocular Rb. The results within establish ELTD1 as a potential therapeutic target for metastatic Rb.
Collapse
Affiliation(s)
- Jonathan Guihurt Santiago
- Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
- University of Puerto Rico, Rio Piedras Campus, Rio Piedras, Puerto Rico
- Present address: Debusk College of Osteopathic Medicine at Lincoln Memorial University, Harrogate, TN USA
| | - Neikelyn Burgos-Tirado
- Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
- University of Puerto Rico, Rio Piedras Campus, Rio Piedras, Puerto Rico
- Present address: Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI USA
| | - Daniella Dorta Lafontaine
- Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
- University of Puerto Rico, Rio Piedras Campus, Rio Piedras, Puerto Rico
- Present address: Central University of the Caribbean of Puerto Rico, Bayamon, Puerto Rico
| | - José C. Mendoza Sierra
- Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
- University of Puerto Rico, Rio Piedras Campus, Rio Piedras, Puerto Rico
- University of Medicine and Health Sciences, New York, USA
| | - Roberto Herrera Camacho
- Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
- Current affiliation: Ponce Health Sciences University, Ponce, Puerto Rico
| | - Clara M. Vecchini Rodríguez
- Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
- Department of Anatomy and Neurobiology, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, 00936-5067 Puerto Rico
- University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico
| | - Vanessa Morales-Tirado
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN USA
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN USA
- Present address: AbbVie Bioresearch Center, Worcester, MA USA
| | - Jacqueline Flores-Otero
- Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
- Department of Anatomy and Neurobiology, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, 00936-5067 Puerto Rico
- University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico
| |
Collapse
|
7
|
Waetzig R, Matthes M, Leister J, Penkivech G, Heise T, Corbacioglu S, Sommer G. Comparing mTOR inhibitor Rapamycin with Torin-2 within the RIST molecular-targeted regimen in neuroblastoma cells. Int J Med Sci 2021; 18:137-149. [PMID: 33390782 PMCID: PMC7738968 DOI: 10.7150/ijms.48393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/16/2020] [Indexed: 12/14/2022] Open
Abstract
The prognosis for patients with relapsed or refractory high-risk neuroblastoma remains dismal and novel therapeutic options are urgently needed. The RIST treatment protocol has a multimodal metronomic therapy design combining molecular-targeted drugs (Rapamycin and Dasatinib) with chemotherapy backbone (Irinotecan and Temozolomide), which is currently verified in a phase II clinical trial (NCT01467986). With the availability of novel and more potent ATP competitive mTOR inhibitors, we expect to improve the RIST combination therapy. By comparing the IC50 values of Torin-1, Torin-2, AZD3147 and PP242 we established that only Torin-2 inhibited cell viability of all three MycN-amplified neuroblastoma cell lines tested at nanomolar concentration. Single treatment of both mTOR inhibitors induced a significant G1 cell cycle arrest and combination treatment with Dasatinib reduced the expression of cell cycle regulator cyclin D1 or increased the expression of cell cycle inhibitor p21. The combinatorial index depicted for both mTOR inhibitors a synergistic effect with Dasatinib. Interestingly, compared to Rapamycin, the combination treatment with Torin-2 resulted in a broader mTOR pathway inhibition as indicated by reduced phosphorylation of AKT (Thr308, Ser473), 4E-BP (Ser65), and S6K (Thr389). Furthermore, substituting Rapamycin in the modified multimodal RIST protocol with Torin-2 reduced cell viability and induced apoptosis despite a significant lower Torin-2 drug concentration applied. The efficacy of nanomolar concentrations may significantly reduce unwanted immunosuppression associated with Rapamycin. However, at this point we cannot rule out that Torin-2 has increased toxicity due to its potency in more complex systems. Nonetheless, our results suggest that including Torin-2 as a substitute for Rapamycin in the RIST protocol may represent a valid option to be evaluated in prospective clinical trials for relapsed or treatment-refractory high-risk neuroblastoma.
Collapse
Affiliation(s)
- Rebecca Waetzig
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital of Regensburg, Franz-Josef-Strauss Allee 11, 93053, Regensburg, Germany
| | - Marie Matthes
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital of Regensburg, Franz-Josef-Strauss Allee 11, 93053, Regensburg, Germany
| | - Johannes Leister
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital of Regensburg, Franz-Josef-Strauss Allee 11, 93053, Regensburg, Germany
| | - Gina Penkivech
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital of Regensburg, Franz-Josef-Strauss Allee 11, 93053, Regensburg, Germany
| | - Tilman Heise
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital of Regensburg, Franz-Josef-Strauss Allee 11, 93053, Regensburg, Germany
| | - Selim Corbacioglu
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital of Regensburg, Franz-Josef-Strauss Allee 11, 93053, Regensburg, Germany
| | - Gunhild Sommer
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital of Regensburg, Franz-Josef-Strauss Allee 11, 93053, Regensburg, Germany
| |
Collapse
|
8
|
Abstract
Informative and realistic mouse models of high-risk neuroblastoma are central to understanding mechanisms of tumour initiation, progression, and metastasis. They also play vital roles in validating tumour drivers and drug targets, as platforms for assessment of new therapies and in the generation of drug sensitivity data that can inform treatment decisions for individual patients. This review will describe genetically engineered mouse models of specific subsets of high-risk neuroblastoma, the development of patient-derived xenograft models that more broadly represent the diversity and heterogeneity of the disease, and models of primary and metastatic disease. We discuss the research applications, advantages, and limitations of each model type, the importance of model repositories and data standards for supporting reproducible, high-quality research, and potential future directions for neuroblastoma mouse models.
Collapse
Affiliation(s)
- Alvin Kamili
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia.,School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
| | - Caroline Atkinson
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia.,School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
| | - Toby N Trahair
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia.,School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia.,Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Jamie I Fletcher
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia. .,School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia.
| |
Collapse
|
9
|
Nguyen R, Patel AG, Griffiths LM, Dapper J, Stewart EA, Houston J, Johnson M, Akers WJ, Furman WL, Dyer MA. Next-generation humanized patient-derived xenograft mouse model for pre-clinical antibody studies in neuroblastoma. Cancer Immunol Immunother 2020; 70:721-732. [PMID: 32915319 DOI: 10.1007/s00262-020-02713-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 08/31/2020] [Indexed: 12/16/2022]
Abstract
Faithful tumor mouse models are fundamental research tools to advance the field of immuno-oncology (IO). This is particularly relevant in diseases with low incidence, as in the case of pediatric malignancies, that rely on pre-clinical therapeutic development. However, conventional syngeneic and genetically engineered mouse models fail to recapitulate the tumor heterogeneity and microenvironmental complexity of human pathology that are essential determinants of cancer-directed immunity. Here, we characterize a novel mouse model that supports human natural killer (NK) cell development and engraftment of neuroblastoma orthotopic patient-derived xenograft (O-PDX) for pre-clinical antibody and cytokine testing. Using cytotoxicity assays, single-cell RNA-sequencing, and multi-color flow cytometry, we demonstrate that NK cells that develop in the humanized mice are fully licensed to execute NK cell cytotoxicity, permit human tumor engraftment, but can be therapeutically redirected to induce antibody-dependent cell-mediated cytotoxicity (ADCC). Although these cells share phenotypic and molecular features with healthy controls, we noted that they lacked an NK cell subset, termed activated NK cells, that is characterized by differentially expressed genes that are induced by cytokine activation. Because this subset of genes is also downregulated in patients with neuroblastoma compared to healthy controls, we hypothesize that this finding could be due to tumor-mediated suppressive effects. Thus, despite its technical complexity, this humanized patient-derived xenograft mouse model could serve as a faithful system for future testing of IO applications and studies of underlying immunologic processes.
Collapse
Affiliation(s)
- Rosa Nguyen
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA.
| | - Anand G Patel
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lyra M Griffiths
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jason Dapper
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Elizabeth A Stewart
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jim Houston
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Melissa Johnson
- Center for In Vivo Imaging and Therapeutics (CIVIT), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Walter J Akers
- Center for In Vivo Imaging and Therapeutics (CIVIT), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wayne L Furman
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
10
|
Hee E, Wong MK, Tan SH, Choo Z, Kuick CH, Ling S, Yong MH, Jain S, Lian DWQ, Ng EHQ, Yong YFL, Ren MH, Syed Sulaiman N, Low SYY, Chua YW, Syed MF, Lim TKH, Soh SY, Iyer P, Seng MSF, Lam JCM, Tan EEK, Chan MY, Tan AM, Chen Y, Chen Z, Chang KTE, Loh AHP. Neuroblastoma patient-derived cultures are enriched for a mesenchymal gene signature and reflect individual drug response. Cancer Sci 2020; 111:3780-3792. [PMID: 32777141 PMCID: PMC7540996 DOI: 10.1111/cas.14610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
Ex vivo evaluation of personalized models can facilitate individualized treatment selection for patients, and advance the discovery of novel therapeutic options. However, for embryonal malignancies, representative primary cultures have been difficult to establish. We developed patient‐derived cell cultures (PDCs) from chemo‐naïve and post–treatment neuroblastoma tumors in a consistent and efficient manner, and characterized their in vitro growth dynamics, histomorphology, gene expression, and functional chemo‐response. From 34 neuroblastoma tumors, 22 engrafted in vitro to generate 31 individual PDC lines, with higher engraftment seen with metastatic tumors. PDCs displayed characteristic immunohistochemical staining patterns of PHOX2B, TH, and GD2 synthase. Concordance of MYCN amplification, 1p and 11q deletion between PDCs and patient tumors was 83.3%, 72.7%, and 80.0% respectively. PDCs displayed a predominantly mesenchymal‐type gene expression signature and showed upregulation of pro‐angiogenic factors that were similarly enriched in culture medium and paired patient serum samples. When tested with standard‐of‐care cytotoxics at human Cmax‐equivalent concentrations, MYCN‐amplified and non‐MYCN‐amplified PDCs showed a differential response to cyclophosphamide and topotecan, which mirrored the corresponding patients’ responses, and correlated with gene signatures of chemosensitivity. In this translational proof‐of‐concept study, early‐phase neuroblastoma PDCs enriched for the mesenchymal cell subpopulation recapitulated the individual molecular and phenotypic profile of patient tumors, and highlighted their potential as a platform for individualized ex vivo drug‐response testing.
Collapse
Affiliation(s)
- Esther Hee
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, KK Women's and Children's Hospital, Singapore, Singapore
| | - Meng Kang Wong
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, KK Women's and Children's Hospital, Singapore, Singapore
| | - Sheng Hui Tan
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, KK Women's and Children's Hospital, Singapore, Singapore
| | - Zhang'E Choo
- Neurodevelopment and Cancer Laboratory, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chik Hong Kuick
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Sharon Ling
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Min Hwee Yong
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Sudhanshi Jain
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Derrick W Q Lian
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Eileen H Q Ng
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Yvonne F L Yong
- KK Research Centre, KK Women's and Children's Hospital, Singapore, Singapore
| | - Mee Hiong Ren
- KK Research Centre, KK Women's and Children's Hospital, Singapore, Singapore
| | - Nurfarhanah Syed Sulaiman
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, KK Women's and Children's Hospital, Singapore, Singapore.,Department of Neurosurgery, National Neuroscience Institute, Singapore, Singapore
| | - Sharon Y Y Low
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, KK Women's and Children's Hospital, Singapore, Singapore.,Neurosurgical Service, KK Women's and Children's Hospital, Singapore, Singapore.,SingHealth Duke-NUS Neuroscience Academic Clinical Program, Singapore, Singapore
| | - Yong Wei Chua
- Department of Anatomic Pathology, Singapore General Hospital, Singapore, Singapore
| | - Muhammad Fahmy Syed
- Department of Anatomic Pathology, Singapore General Hospital, Singapore, Singapore
| | - Tony K H Lim
- Department of Anatomic Pathology, Singapore General Hospital, Singapore, Singapore
| | - Shui Yen Soh
- Department of Paediatric Subspecialties Haematology Oncology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Prasad Iyer
- Department of Paediatric Subspecialties Haematology Oncology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Michaela S F Seng
- Department of Paediatric Subspecialties Haematology Oncology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Joyce C M Lam
- Department of Paediatric Subspecialties Haematology Oncology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Enrica E K Tan
- Department of Paediatric Subspecialties Haematology Oncology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Mei Yoke Chan
- Department of Paediatric Subspecialties Haematology Oncology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Ah Moy Tan
- Department of Paediatric Subspecialties Haematology Oncology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Yong Chen
- Department of Paediatric Surgery, KK Women's and Children's Hospital, Singapore, Singapore
| | - Zhixiong Chen
- Neurodevelopment and Cancer Laboratory, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kenneth T E Chang
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Amos Hong Pheng Loh
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, KK Women's and Children's Hospital, Singapore, Singapore.,Department of Paediatric Surgery, KK Women's and Children's Hospital, Singapore, Singapore
| |
Collapse
|
11
|
Slyper M, Porter CBM, Ashenberg O, Waldman J, Drokhlyansky E, Wakiro I, Smillie C, Smith-Rosario G, Wu J, Dionne D, Vigneau S, Jané-Valbuena J, Tickle TL, Napolitano S, Su MJ, Patel AG, Karlstrom A, Gritsch S, Nomura M, Waghray A, Gohil SH, Tsankov AM, Jerby-Arnon L, Cohen O, Klughammer J, Rosen Y, Gould J, Nguyen L, Hofree M, Tramontozzi PJ, Li B, Wu CJ, Izar B, Haq R, Hodi FS, Yoon CH, Hata AN, Baker SJ, Suvà ML, Bueno R, Stover EH, Clay MR, Dyer MA, Collins NB, Matulonis UA, Wagle N, Johnson BE, Rotem A, Rozenblatt-Rosen O, Regev A. A single-cell and single-nucleus RNA-Seq toolbox for fresh and frozen human tumors. Nat Med 2020; 26:792-802. [PMID: 32405060 PMCID: PMC7220853 DOI: 10.1038/s41591-020-0844-1] [Citation(s) in RCA: 431] [Impact Index Per Article: 86.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 03/20/2020] [Indexed: 01/20/2023]
Abstract
Single-cell genomics is essential to chart tumor ecosystems. Although single-cell RNA-Seq (scRNA-Seq) profiles RNA from cells dissociated from fresh tumors, single-nucleus RNA-Seq (snRNA-Seq) is needed to profile frozen or hard-to-dissociate tumors. Each requires customization to different tissue and tumor types, posing a barrier to adoption. Here, we have developed a systematic toolbox for profiling fresh and frozen clinical tumor samples using scRNA-Seq and snRNA-Seq, respectively. We analyzed 216,490 cells and nuclei from 40 samples across 23 specimens spanning eight tumor types of varying tissue and sample characteristics. We evaluated protocols by cell and nucleus quality, recovery rate and cellular composition. scRNA-Seq and snRNA-Seq from matched samples recovered the same cell types, but at different proportions. Our work provides guidance for studies in a broad range of tumors, including criteria for testing and selecting methods from the toolbox for other tumors, thus paving the way for charting tumor atlases.
Collapse
Affiliation(s)
- Michal Slyper
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Caroline B M Porter
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Orr Ashenberg
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Julia Waldman
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Eugene Drokhlyansky
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Isaac Wakiro
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Center for Cancer Precision Medicine of Dana-Farber Cancer Institute, Boston, MA, USA
| | - Christopher Smillie
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Jingyi Wu
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Center for Cancer Precision Medicine of Dana-Farber Cancer Institute, Boston, MA, USA
| | - Danielle Dionne
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Sébastien Vigneau
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Center for Cancer Precision Medicine of Dana-Farber Cancer Institute, Boston, MA, USA
| | - Judit Jané-Valbuena
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Timothy L Tickle
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Sara Napolitano
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Center for Cancer Precision Medicine of Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mei-Ju Su
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Center for Cancer Precision Medicine of Dana-Farber Cancer Institute, Boston, MA, USA
| | - Anand G Patel
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Asa Karlstrom
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Simon Gritsch
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Masashi Nomura
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Avinash Waghray
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Satyen H Gohil
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alexander M Tsankov
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Livnat Jerby-Arnon
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ofir Cohen
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Center for Cancer Precision Medicine of Dana-Farber Cancer Institute, Boston, MA, USA
| | - Johanna Klughammer
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Yanay Rosen
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Joshua Gould
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Lan Nguyen
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Matan Hofree
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Bo Li
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Catherine J Wu
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Benjamin Izar
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Center for Cancer Precision Medicine of Dana-Farber Cancer Institute, Boston, MA, USA
- Laboratory for Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Center for Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Ludwig Center for Cancer Research at Harvard, Boston, MA, USA
- Melanoma Disease Center, Dana-Farber Cancer Institute, Boston, MA, USA
- Columbia Center for Translational Immunology and Division of Hematology and Oncology, Columbia University Medical Center, New York, NY, USA
| | - Rizwan Haq
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - F Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Melanoma Disease Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Charles H Yoon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Surgical Oncology, Brigham and Women's Hospital, Boston, MA, USA
| | - Aaron N Hata
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Suzanne J Baker
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Mario L Suvà
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Raphael Bueno
- Division of Thoracic Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Elizabeth H Stover
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael R Clay
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael A Dyer
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Natalie B Collins
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Pediatric Hematology and Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Ursula A Matulonis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nikhil Wagle
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Center for Cancer Precision Medicine of Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Bruce E Johnson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Center for Cancer Precision Medicine of Dana-Farber Cancer Institute, Boston, MA, USA
| | - Asaf Rotem
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Center for Cancer Precision Medicine of Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
- Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
12
|
Zeineldin M, Federico S, Chen X, Fan Y, Xu B, Stewart E, Zhou X, Jeon J, Griffiths L, Nguyen R, Norrie J, Easton J, Mulder H, Yergeau D, Liu Y, Wu J, Van Ryn C, Naranjo A, Hogarty MD, Kamiński MM, Valentine M, Pruett-Miller SM, Pappo A, Zhang J, Clay MR, Bahrami A, Vogel P, Lee S, Shelat A, Sarthy JF, Meers MP, George RE, Mardis ER, Wilson RK, Henikoff S, Downing JR, Dyer MA. MYCN amplification and ATRX mutations are incompatible in neuroblastoma. Nat Commun 2020; 11:913. [PMID: 32060267 PMCID: PMC7021759 DOI: 10.1038/s41467-020-14682-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 01/23/2020] [Indexed: 12/31/2022] Open
Abstract
Aggressive cancers often have activating mutations in growth-controlling oncogenes and inactivating mutations in tumor-suppressor genes. In neuroblastoma, amplification of the MYCN oncogene and inactivation of the ATRX tumor-suppressor gene correlate with high-risk disease and poor prognosis. Here we show that ATRX mutations and MYCN amplification are mutually exclusive across all ages and stages in neuroblastoma. Using human cell lines and mouse models, we found that elevated MYCN expression and ATRX mutations are incompatible. Elevated MYCN levels promote metabolic reprogramming, mitochondrial dysfunction, reactive-oxygen species generation, and DNA-replicative stress. The combination of replicative stress caused by defects in the ATRX-histone chaperone complex, and that induced by MYCN-mediated metabolic reprogramming, leads to synthetic lethality. Therefore, ATRX and MYCN represent an unusual example, where inactivation of a tumor-suppressor gene and activation of an oncogene are incompatible. This synthetic lethality may eventually be exploited to improve outcomes for patients with high-risk neuroblastoma.
Collapse
Affiliation(s)
- Maged Zeineldin
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Sara Federico
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- St. Jude Children's Research Hospital-Washington University Pediatric Cancer Genome Project, St. Louis, MO, USA
| | - Yiping Fan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Beisi Xu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Elizabeth Stewart
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Xin Zhou
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jongrye Jeon
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Lyra Griffiths
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Rosa Nguyen
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jackie Norrie
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Heather Mulder
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Donald Yergeau
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yanling Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jianrong Wu
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Collin Van Ryn
- Children's Oncology Group Statistics and Data Center, Department of Biostatistics, University of Florida, Gainesville, FlL, 32607, USA
| | - Arlene Naranjo
- Children's Oncology Group Statistics and Data Center, Department of Biostatistics, University of Florida, Gainesville, FlL, 32607, USA
| | - Michael D Hogarty
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Marcin M Kamiński
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Marc Valentine
- Cytogenetics Shared Resource, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Alberto Pappo
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Michael R Clay
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Armita Bahrami
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Peter Vogel
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Seungjae Lee
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Anang Shelat
- Department of Chemical Biology and Therapeutics St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jay F Sarthy
- Basic Science Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Michael P Meers
- Basic Science Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Rani E George
- Department of Hematology/Oncology, Dana Farber Cancer Institute, Boston, MA, 02215, USA
| | - Elaine R Mardis
- The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Richard K Wilson
- The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Steven Henikoff
- Basic Science Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - James R Downing
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- St. Jude Children's Research Hospital-Washington University Pediatric Cancer Genome Project, St. Louis, MO, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
13
|
Accelerating development of high-risk neuroblastoma patient-derived xenograft models for preclinical testing and personalised therapy. Br J Cancer 2020; 122:680-691. [PMID: 31919402 PMCID: PMC7054410 DOI: 10.1038/s41416-019-0682-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 01/17/2023] Open
Abstract
Background Predictive preclinical models play an important role in the assessment of new treatment strategies and as avatar models for personalised medicine; however, reliable and timely model generation is challenging. We investigated the feasibility of establishing patient-derived xenograft (PDX) models of high-risk neuroblastoma from a range of tumour-bearing patient materials and assessed approaches to improve engraftment efficiency. Methods PDX model development was attempted in NSG mice by using tumour materials from 12 patients, including primary and metastatic solid tumour samples, bone marrow, pleural fluid and residual cells from cytogenetic analysis. Subcutaneous, intramuscular and orthotopic engraftment were directly compared for three patients. Results PDX models were established for 44% (4/9) of patients at diagnosis and 100% (5/5) at relapse. In one case, attempted engraftment from pleural fluid resulted in an EBV-associated atypical lymphoid proliferation. Xenogeneic graft versus host disease was observed with attempted engraftment from lymph node and bone marrow tumour samples but could be prevented by T-cell depletion. Orthotopic engraftment was more efficient than subcutaneous or intramuscular engraftment. Conclusions High-risk neuroblastoma PDX models can be reliably established from diverse sample types. Orthotopic implantation allows more rapid model development, increasing the likelihood of developing an avatar model within a clinically useful timeframe.
Collapse
|
14
|
Ornell KJ, Coburn JM. Developing preclinical models of neuroblastoma: driving therapeutic testing. BMC Biomed Eng 2019; 1:33. [PMID: 32903387 PMCID: PMC7422585 DOI: 10.1186/s42490-019-0034-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 11/19/2019] [Indexed: 12/14/2022] Open
Abstract
Despite advances in cancer therapeutics, particularly in the area of immuno-oncology, successful treatment of neuroblastoma (NB) remains a challenge. NB is the most common cancer in infants under 1 year of age, and accounts for approximately 10% of all pediatric cancers. Currently, children with high-risk NB exhibit a survival rate of 40–50%. The heterogeneous nature of NB makes development of effective therapeutic strategies challenging. Many preclinical models attempt to mimic the tumor phenotype and tumor microenvironment. In vivo mouse models, in the form of genetic, syngeneic, and xenograft mice, are advantageous as they replicated the complex tumor-stroma interactions and represent the gold standard for preclinical therapeutic testing. Traditional in vitro models, while high throughput, exhibit many limitations. The emergence of new tissue engineered models has the potential to bridge the gap between in vitro and in vivo models for therapeutic testing. Therapeutics continue to evolve from traditional cytotoxic chemotherapies to biologically targeted therapies. These therapeutics act on both the tumor cells and other cells within the tumor microenvironment, making development of preclinical models that accurately reflect tumor heterogeneity more important than ever. In this review, we will discuss current in vitro and in vivo preclinical testing models, and their potential applications to therapeutic development.
Collapse
Affiliation(s)
- Kimberly J Ornell
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01605 USA
| | - Jeannine M Coburn
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01605 USA
| |
Collapse
|
15
|
Nguyen R, Moustaki A, Norrie JL, Brown S, Akers WJ, Shirinifard A, Dyer MA. Interleukin-15 Enhances Anti-GD2 Antibody-Mediated Cytotoxicity in an Orthotopic PDX Model of Neuroblastoma. Clin Cancer Res 2019; 25:7554-7564. [PMID: 31455682 PMCID: PMC6911623 DOI: 10.1158/1078-0432.ccr-19-1045] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/26/2019] [Accepted: 08/21/2019] [Indexed: 01/01/2023]
Abstract
PURPOSE Immunotherapy with IL2, GM-CSF, and an anti-disialoganglioside (GD2) antibody significantly increases event-free survival in children with high-risk neuroblastoma. However, therapy failure in one third of these patients and IL2-related toxicities pose a major challenge. We compared the immunoadjuvant effects of IL15 with those of IL2 for enhancing antibody-dependent cell-mediated cytotoxicity (ADCC) in neuroblastoma. EXPERIMENTAL DESIGN We tested ADCC against neuroblastoma patient-derived xenografts (PDX) in vitro and in vivo and examined the functional and migratory properties of NK cells activated with IL2 and IL15. RESULTS In cell culture, IL15-activated NK cells induced higher ADCC against two GD+ neuroblastoma PDXs than did IL2-activated NK cells (P < 0.001). This effect was dose-dependent (P < 0.001) and was maintained across several effector-to-tumor ratios. As compared with IL2, IL15 also improved chemotaxis of NK cells, leading to higher numbers of tumorsphere-infiltrating NK cells in vitro (P = 0.002). In an orthotopic PDX model, animals receiving chemoimmunotherapy with an anti-GD2 antibody, GM-CSF, and a soluble IL15/IL15Rα complex had greater tumor regression than did those receiving chemotherapy alone (P = 0.012) or combined with anti-GD2 antibody and GM-CSF with (P = 0.016) or without IL2 (P = 0.035). This was most likely due to lower numbers of immature tumor-infiltrating NK cells (DX5+CD27+) after IL15/IL15Rα administration (P = 0.029) and transcriptional upregulation of Gzmd. CONCLUSIONS The substitution of IL15 for IL2 leads to significant tumor regression in vitro and in vivo and supports clinical testing of IL15 for immunotherapy in pediatric neuroblastoma.
Collapse
Affiliation(s)
- Rosa Nguyen
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ardiana Moustaki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jacqueline L Norrie
- Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Shantel Brown
- Center for In Vivo Imaging and Therapeutics (CIVIT), St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Walter J Akers
- Center for In Vivo Imaging and Therapeutics (CIVIT), St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Abbas Shirinifard
- Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Michael A Dyer
- Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee.
| |
Collapse
|
16
|
Mohlin S, Hansson K, Radke K, Martinez S, Blanco-Apiricio C, Garcia-Ruiz C, Welinder C, Esfandyari J, O'Neill M, Pastor J, von Stedingk K, Bexell D. Anti-tumor effects of PIM/PI3K/mTOR triple kinase inhibitor IBL-302 in neuroblastoma. EMBO Mol Med 2019; 11:e10058. [PMID: 31310053 PMCID: PMC6685085 DOI: 10.15252/emmm.201810058] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 06/04/2019] [Accepted: 06/24/2019] [Indexed: 11/12/2022] Open
Abstract
The PI3K pathway is a major driver of cancer progression. However, clinical resistance to PI3K inhibition is common. IBL‐302 is a novel highly specific triple PIM, PI3K, and mTOR inhibitor. Screening IBL‐302 in over 700 cell lines representing 47 tumor types identified neuroblastoma as a strong candidate for PIM/PI3K/mTOR inhibition. IBL‐302 was more effective than single PI3K inhibition in vitro, and IBL‐302 treatment of neuroblastoma patient‐derived xenograft (PDX) cells induced apoptosis, differentiated tumor cells, and decreased N‐Myc protein levels. IBL‐302 further enhanced the effect of the common cytotoxic chemotherapies cisplatin, doxorubicin, and etoposide. Global genome, proteome, and phospho‐proteome analyses identified crucial biological processes, including cell motility and apoptosis, targeted by IBL‐302 treatment. While IBL‐302 treatment alone reduced tumor growth in vivo, combination therapy with low‐dose cisplatin inhibited neuroblastoma PDX growth. Complementing conventional chemotherapy treatment with PIM/PI3K/mTOR inhibition has the potential to improve clinical outcomes and reduce severe late effects in children with high‐risk neuroblastoma.
Collapse
Affiliation(s)
- Sofie Mohlin
- Division of Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Karin Hansson
- Department of Laboratory Medicine, Translational Cancer Research, Lund University Cancer Center, Lund University, Lund, Sweden
| | - Katarzyna Radke
- Department of Laboratory Medicine, Translational Cancer Research, Lund University Cancer Center, Lund University, Lund, Sweden
| | - Sonia Martinez
- Experimental Therapeutics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Carmen Blanco-Apiricio
- Experimental Therapeutics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Cristian Garcia-Ruiz
- Department of Laboratory Medicine, Translational Cancer Research, Lund University Cancer Center, Lund University, Lund, Sweden
| | - Charlotte Welinder
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Javanshir Esfandyari
- Department of Laboratory Medicine, Translational Cancer Research, Lund University Cancer Center, Lund University, Lund, Sweden
| | | | - Joaquin Pastor
- Experimental Therapeutics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Kristoffer von Stedingk
- Division of Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden.,Department of Oncogenomics, University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Daniel Bexell
- Department of Laboratory Medicine, Translational Cancer Research, Lund University Cancer Center, Lund University, Lund, Sweden
| |
Collapse
|
17
|
Takada M, Smyth LA, Hix JM, Corner SM, Kiupel M, Yuzbasiyan-Gurkan V. Development of an Orthotopic Intrasplenic Xenograft Mouse Model of Canine Histiocytic Sarcoma and Its Use in Evaluating the Efficacy of Treatment with Dasatinib. Comp Med 2019; 69:22-28. [PMID: 30717820 DOI: 10.30802/aalas-cm-18-000065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Canine histiocytic sarcoma is a highly aggressive and metastatic hematopoietic neoplasm that responds poorly to currently available treatment regimens. Our goal was to establish a clinically relevant xenograft mouse model to assess the preclinical efficacy of novel cancer treatment protocols for histiocytic sarcoma. We developed an intrasplenic xenograft mouse model characterized by consistent tumor growth and development of metastasis to the liver and other abdominal organs. This model represents the metastatic or disseminated form of canine histiocytic sarcoma, which is considered the most clinically challenging form of the disease. Transfection of tumor cells with a luciferase vector supported the use of in vivo bioluminescence imaging to track tumor progression over time and to assess the response of this murine model to novel chemotherapeutic agents. Dasatinib treatment of the mice with intrasplenic xenografts decreased tumor growth and increased survival times, compared with mice treated with vehicle only. Our findings indicate the potential of dasatinib for the treatment of histiocytic sarcoma in dogs and for similar diseases in humans. These results warrant additional studies to clinically test the efficacy of dasatinib in dogs with histiocytic sarcoma.
Collapse
Affiliation(s)
- Marilia Takada
- Comparative Medicine and Integrative Biology Program, Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin
| | - Lauren A Smyth
- Comparative Medicine and Integrative Biology Program, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan
| | - Jeremy Ml Hix
- Department of Radiology, Comparative Medicine and Integrative Biology Program, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan
| | - Sarah M Corner
- Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan
| | - Matti Kiupel
- Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan
| | - Vilma Yuzbasiyan-Gurkan
- Comparative Medicine and Integrative Biology Program, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan;,
| |
Collapse
|
18
|
Wierdl M, Tsurkan L, Chi L, Hatfield MJ, Tollemar V, Bradley C, Chen X, Qu C, Potter PM. Targeting ALK in pediatric RMS does not induce antitumor activity in vivo. Cancer Chemother Pharmacol 2018; 82:251-263. [PMID: 29855693 PMCID: PMC6054567 DOI: 10.1007/s00280-018-3615-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/29/2018] [Indexed: 12/22/2022]
Abstract
PURPOSE The anaplastic lymphoma kinase (ALK) has been demonstrated to be a valid clinical target in diseases such as anaplastic large cell lymphoma and non-small cell lung cancer. Recent studies have indicated that ALK is overexpressed in pediatric rhabdomyosarcoma (RMS) and hence we hypothesized that this kinase may be a suitable candidate for therapeutic intervention in this tumor. METHODS We evaluated the expression of ALK in a panel of pediatric RMS cell lines and patient-derived xenografts (PDX), and sensitivity to ALK inhibitors was assessed both in vitro and in vivo. RESULTS Essentially, all RMS lines were sensitive to crizotinib, NVP-TAE684 or LDK-378 in vitro, and molecular analyses demonstrated inhibition of RMS cell proliferation following siRNA-mediated reduction of ALK expression. However, in vivo PDX studies using ALK kinase inhibitors demonstrated no antitumor activity when used as single agents or when combined with standard of care therapy (vincristine, actinomycin D and cyclophosphamide). More alarmingly, however, crizotinib actually accelerated the growth of these tumors in vivo. CONCLUSIONS While ALK appears to be a relevant target in RMS in vitro, targeting this kinase in vivo yields no therapeutic efficacy, warranting extreme caution when considering the use of these agents in pediatric RMS patients.
Collapse
Affiliation(s)
- Monika Wierdl
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-2794, USA
| | - Lyudmila Tsurkan
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-2794, USA
| | - Liying Chi
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-2794, USA
| | - M Jason Hatfield
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-2794, USA
| | - Viktor Tollemar
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-2794, USA
| | - Cori Bradley
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-2794, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-2794, USA
| | - Chunxu Qu
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-2794, USA
| | - Philip M Potter
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-2794, USA.
| |
Collapse
|
19
|
Thomas TT, Chukkapalli S, Van Noord RA, Krook M, Hoenerhoff MJ, Dillman JR, Lawlor ER, Opipari VP, Newman EA. Utilization of Ultrasound Guided Tissue-directed Cellular Implantation for the Establishment of Biologically Relevant Metastatic Tumor Xenografts. J Vis Exp 2018. [PMID: 29889191 DOI: 10.3791/57558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Preclinical testing of anticancer therapies relies on relevant xenograft models that mimic the innate tendencies of cancer. Advantages of standard subcutaneous flank models include procedural ease and the ability to monitor tumor progression and response without invasive imaging. Such models are often inconsistent in translational clinical trials and have limited biologically relevant characteristics with low proclivity to produce metastasis, as there is a lack of a native microenvironment. In comparison, orthotopic xenograft models at native tumor sites have been shown to mimic the tumor microenvironment and replicate important disease characteristics such as distant metastatic spread. These models often require tedious surgical procedures with prolonged anesthetic time and recovery periods. To address this, cancer researchers have recently utilized ultrasound-guided injection techniques to establish cancer xenograft models for preclinical experiments, which allows for rapid and reliable establishment of tissue-directed murine models. Ultrasound visualization also provides a noninvasive method for longitudinal assessment of tumor engraftment and growth. Here, we describe the method for ultrasound-guided injection of cancer cells, utilizing the adrenal gland for NB and renal sub capsule for ES. This minimally invasive approach overcomes tedious open surgery implantation of cancer cells in tissue-specific locations for growth and metastasis, and abates morbid recovery periods. We describe the utilization of both established cell lines and patient derived cell lines for orthotopic injection. Pre-made commercial kits are available for tumor dissociation and luciferase tagging of cells. Injection of cell suspension using image-guidance provides a minimally invasive and reproducible platform for the creation of preclinical models. This method is utilized to create reliable preclinical models for other cancers such as bladder, liver and pancreas exemplifying its untapped potential for numerous cancer models.
Collapse
Affiliation(s)
- Tina T Thomas
- Departments of Surgery, C.S Mott Children's and Women's Hospital, The University of Michigan Medical School
| | - Sahiti Chukkapalli
- Departments of Surgery, C.S Mott Children's and Women's Hospital, The University of Michigan Medical School
| | - Raelene A Van Noord
- Departments of Surgery, C.S Mott Children's and Women's Hospital, The University of Michigan Medical School
| | - Melanie Krook
- Departments of Pathology, C.S Mott Children's and Women's Hospital, The University of Michigan Medical School
| | - Mark J Hoenerhoff
- Unit for Laboratory Animal Medicine, The University of Michigan Medical School
| | - Jonathan R Dillman
- Departments of Radiology, C.S Mott Children's and Women's Hospital, The University of Michigan Medical School
| | - Elizabeth R Lawlor
- Departments of Pathology, C.S Mott Children's and Women's Hospital, The University of Michigan Medical School; Departments of Pediatrics, C.S Mott Children's and Women's Hospital, The University of Michigan Medical School
| | - Valerie P Opipari
- Departments of Pediatrics, C.S Mott Children's and Women's Hospital, The University of Michigan Medical School
| | - Erika A Newman
- Departments of Surgery, C.S Mott Children's and Women's Hospital, The University of Michigan Medical School;
| |
Collapse
|
20
|
Ledet MM, Anderson R, Harman R, Muth A, Thompson PR, Coonrod SA, Van de Walle GR. BB-Cl-Amidine as a novel therapeutic for canine and feline mammary cancer via activation of the endoplasmic reticulum stress pathway. BMC Cancer 2018; 18:412. [PMID: 29649984 PMCID: PMC5898062 DOI: 10.1186/s12885-018-4323-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 03/29/2018] [Indexed: 11/24/2022] Open
Abstract
Background Mammary cancer is highly prevalent in dogs and cats and results in a poor prognosis due to critically lacking viable treatment options. Recent human and mouse studies have suggested that inhibiting peptidyl arginine deiminase enzymes (PAD) may be a novel breast cancer therapy. Based on the similarities between human breast cancer and mammary cancer in dogs and cats, we hypothesized that PAD inhibitors would also be an effective treatment for mammary cancer in these animals. Methods Canine and feline mammary cancer cell lines were treated with BB-Cl-Amidine (BB-CLA) and evaluated for viability and tumorigenicity. Endoplasmic reticulum stress was tested by western blot, immunofluorescence, and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Canine and feline mammary cancer xenograft models were created using NOD scid gamma (NSG) mice, and were treated with BB-CLA for two weeks. Results We found that BB-CLA reduced viability and tumorigenicity of canine and feline mammary cancer cell lines in vitro. Additionally, we demonstrated that BB-CLA activates the endoplasmic reticulum stress pathway in these cells by downregulating 78 kDa Glucose-regulated Protein (GRP78), a potential target in breast cancer for molecular therapy, and upregulating the downstream target gene DNA Damage Inducible Transcript 3 (DDIT3). Finally, we established a mouse xenograft model of both canine and feline mammary cancer in which we preliminarily tested the effects of BB-CLA in vivo. Conclusion We propose that our established mouse xenograft models will be useful for the study of mammary cancer in dogs and cats, and furthermore, that BB-CLA has potential as a novel therapeutic for mammary cancer in these species. Electronic supplementary material The online version of this article (10.1186/s12885-018-4323-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Melissa M Ledet
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Robyn Anderson
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Rebecca Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Aaron Muth
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Paul R Thompson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Scott A Coonrod
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
21
|
The role of interleukin-2, all-trans retinoic acid, and natural killer cells: surveillance mechanisms in anti-GD2 antibody therapy in neuroblastoma. Cancer Immunol Immunother 2018; 67:615-626. [PMID: 29327110 DOI: 10.1007/s00262-017-2108-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 12/14/2017] [Indexed: 02/05/2023]
Abstract
Although anti-disialoganglioside (GD2) antibodies are successfully used for neuroblastoma therapy, a third of patients with neuroblastoma experience treatment failure or serious toxicity. Various strategies have been employed in the clinic to improve antibody-dependent cell-mediated cytotoxicity (ADCC), such as the addition of interleukin (IL)-2 to enhance natural killer (NK) cell function, adoptive transfer of allogeneic NK cells to exploit immune surveillance, and retinoid-induced differentiation therapy. Nevertheless, these mechanisms are not fully understood. We developed a quantitative assay to test ADCC induced by the anti-GD2 antibody Hu14.18K322A in nine neuroblastoma cell lines and dissociated cells from orthotopic patient-derived xenografts (O-PDXs) in culture. IL-2 improved ADCC against neuroblastoma cells, and differentiation with all-trans retinoic acid stabilized GD2 expression on tumor cells and enhanced ADCC as well. Degranulation was highest in licensed NK cells that expressed CD158b (P < 0.001) and harbored a killer-cell immunoglobulin-like receptor (KIR) mismatch against the tumor-specific human leukocyte antigen (HLA; P = 0.016). In conclusion, IL-2 is an important component of immunotherapy because it can improve the cytolytic function of NK cells against neuroblastoma cells and could lower the antibody dose required for efficacy, thereby reducing toxicity. The effect of IL-2 may vary among individuals and a biomarker would be useful to predict ADCC following IL-2 activation. Sub-populations of NK cells may have different levels of activity dependent on their licensing status, KIR expression, and HLA-KIR interaction. Better understanding of HLA-KIR interactions and the molecular changes following retinoid-induced differentiation is necessary to delineate their role in ADCC.
Collapse
|
22
|
Braekeveldt N, Bexell D. Patient-derived xenografts as preclinical neuroblastoma models. Cell Tissue Res 2017; 372:233-243. [PMID: 28924803 PMCID: PMC5915499 DOI: 10.1007/s00441-017-2687-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/27/2017] [Indexed: 11/26/2022]
Abstract
The prognosis for children with high-risk neuroblastoma is often poor and survivors can suffer from severe side effects. Predictive preclinical models and novel therapeutic strategies for high-risk disease are therefore a clinical imperative. However, conventional cancer cell line-derived xenografts can deviate substantially from patient tumors in terms of their molecular and phenotypic features. Patient-derived xenografts (PDXs) recapitulate many biologically and clinically relevant features of human cancers. Importantly, PDXs can closely parallel clinical features and outcome and serve as excellent models for biomarker and preclinical drug development. Here, we review progress in and applications of neuroblastoma PDX models. Neuroblastoma orthotopic PDXs share the molecular characteristics, neuroblastoma markers, invasive properties and tumor stroma of aggressive patient tumors and retain spontaneous metastatic capacity to distant organs including bone marrow. The recent identification of genomic changes in relapsed neuroblastomas opens up opportunities to target treatment-resistant tumors in well-characterized neuroblastoma PDXs. We highlight and discuss the features and various sources of neuroblastoma PDXs, methodological considerations when establishing neuroblastoma PDXs, in vitro 3D models, current limitations of PDX models and their application to preclinical drug testing.
Collapse
Affiliation(s)
- Noémie Braekeveldt
- Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village 404:C3, SE-223 81, Lund, Sweden
| | - Daniel Bexell
- Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village 404:C3, SE-223 81, Lund, Sweden.
| |
Collapse
|
23
|
VAN Noord RA, Thomas T, Krook M, Chukkapalli S, Hoenerhoff MJ, Dillman JR, Lawlor ER, Opipari VP, Newman EA. Tissue-directed Implantation Using Ultrasound Visualization for Development of Biologically Relevant Metastatic Tumor Xenografts. ACTA ACUST UNITED AC 2017; 31:779-791. [PMID: 28882943 DOI: 10.21873/invivo.11131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Advances in cancer therapeutics depend on reliable in vivo model systems. To develop biologically relevant xenografts, ultrasound was utilized for tissue-directed implantation of neuroblastoma (NB) cell line and patient-derived tumors in the adrenal gland, and for renal subcapsular engraftment of Ewing's sarcoma (ES). MATERIALS AND METHODS NB xenografts were established by direct adrenal injection of luciferase-transfected NB cell lines (IMR32, SH-SY5Y, SK-N-BE2) or NB patient-derived tumor cells (UMNBL001, UMNBL002). ES xenografts were established by renal subcapsular injection of TC32, A673, CHLA-25, or A4573 cells. Progression was monitored by in vivo imaging. RESULTS Tumors progressed to local disease with metastasis evident by 5 weeks. Metastatic sites included cortical bone, lung, liver, and lymph nodes. Xenografted tumors retained immunochemical features of the original cancer. CONCLUSION Human NB adrenal xenografts, including two patient-derived orthotopic, and ES renal subcapsular xenografts were established by ultrasound without open surgery. Tissue-directed implantation is an effective technique for developing metastatic preclinical models.
Collapse
Affiliation(s)
- Raelene A VAN Noord
- Department of Surgery, C.S Mott Children's and Women's Hospital, Mott Solid Tumor Oncology Program, The University of Michigan Medical School, Ann Arbor, MI, U.S.A
| | - Tina Thomas
- Department of Surgery, C.S Mott Children's and Women's Hospital, Mott Solid Tumor Oncology Program, The University of Michigan Medical School, Ann Arbor, MI, U.S.A
| | - Melanie Krook
- Department of Pathology, C.S Mott Children's and Women's Hospital, Mott Solid Tumor Oncology Program, The University of Michigan Medical School, Ann Arbor, MI, U.S.A
| | - Sahiti Chukkapalli
- Department of Surgery, C.S Mott Children's and Women's Hospital, Mott Solid Tumor Oncology Program, The University of Michigan Medical School, Ann Arbor, MI, U.S.A
| | - Mark J Hoenerhoff
- Unit for Laboratory Animal Medicine, The University of Michigan Medical School, Ann Arbor, MI, U.S.A
| | - Jonathan R Dillman
- Department of Radiology, C.S Mott Children's and Women's Hospital, Mott Solid Tumor Oncology Program, The University of Michigan Medical School, Ann Arbor, MI, U.S.A
| | - Elizabeth R Lawlor
- Department of Pathology, C.S Mott Children's and Women's Hospital, Mott Solid Tumor Oncology Program, The University of Michigan Medical School, Ann Arbor, MI, U.S.A.,Department of Pediatrics, C.S Mott Children's and Women's Hospital, Mott Solid Tumor Oncology Program, The University of Michigan Medical School, Ann Arbor, MI, U.S.A
| | - Valerie P Opipari
- Department of Pediatrics, C.S Mott Children's and Women's Hospital, Mott Solid Tumor Oncology Program, The University of Michigan Medical School, Ann Arbor, MI, U.S.A
| | - Erika A Newman
- Department of Surgery, C.S Mott Children's and Women's Hospital, Mott Solid Tumor Oncology Program, The University of Michigan Medical School, Ann Arbor, MI, U.S.A.
| |
Collapse
|
24
|
Shirinifard A, Thiagarajan S, Vogel P, Sablauer A. Detection of Phenotypic Alterations Using High-Content Analysis of Whole-Slide Images. J Histochem Cytochem 2016; 64:301-10. [PMID: 27026297 PMCID: PMC4851271 DOI: 10.1369/0022155416639884] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/25/2016] [Indexed: 11/22/2022] Open
Abstract
Tumors exhibit spatial heterogeneity, as manifested in immunohistochemistry (IHC) staining patterns. Current IHC quantification methods lose information by reducing this heterogeneity in each whole-slide image (WSI) or in selective fields of view to a single staining index. The aim of this study was to investigate the sensitivity of an IHC quantification method that uses this heterogeneity to reliably compare IHC staining patterns. We virtually partitioned WSIs by a grid of square tiles, and computed the staining index distributions to quantify heterogeneities. We used samples from these distributions as inputs to non-parametric statistical comparisons. We applied our grid method to fixed tumor samples from 26 tumors obtained from a double-blind preclinical study of a patient-derived orthotopic xenograft model of pediatric neuroblastoma in CD1 nude mice. We compared the results of our grid method to the results based on whole-slide indices, the current practice. We show that our grid method reliably detects phenotypic alterations that other tests based on whole-slide indices fail to detect. Based on robustness and increased sensitivity of statistical inference, we conclude that our method of whole-slide grid quantification is superior to existing whole-slide quantification techniques.
Collapse
Affiliation(s)
- Abbas Shirinifard
- Department of Information Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (ASh, ASa)
| | - Suresh Thiagarajan
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee (ST, ASa)
| | - Peter Vogel
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee (PV)
| | - András Sablauer
- Department of Information Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (ASh, ASa),Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee (ST, ASa)
| |
Collapse
|
25
|
Langenau DM, Sweet-Cordero A, Wechsler-Reya R, Dyer MA. Preclinical Models Provide Scientific Justification and Translational Relevance for Moving Novel Therapeutics into Clinical Trials for Pediatric Cancer. Cancer Res 2015; 75:5176-5186. [PMID: 26627009 DOI: 10.1158/0008-5472.can-15-1308] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/29/2015] [Indexed: 11/16/2022]
Abstract
Despite improvements in survival rates for children with cancer since the 1960s, progress for many pediatric malignancies has slowed over the past two decades. With the recent advances in our understanding of the genomic landscape of pediatric cancer, there is now enthusiasm for individualized cancer therapy based on genomic profiling of patients' tumors. However, several obstacles to effective personalized cancer therapy remain. For example, relatively little data from prospective clinical trials demonstrate the selective efficacy of molecular-targeted therapeutics based on somatic mutations in the patient's tumor. In this commentary, we discuss recent advances in preclinical testing for pediatric cancer and provide recommendations for providing scientific justification and translational relevance for novel therapeutic combinations for childhood cancer. Establishing rigorous criteria for defining and validating druggable mutations will be essential for the success of ongoing and future clinical genomic trials for pediatric malignancies.
Collapse
Affiliation(s)
- David M Langenau
- Molecular Pathology, Cancer Center, and Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02129.,Harvard Stem Cell Institute, Cambridge MA 02139
| | - Alejandro Sweet-Cordero
- Pediatrics, Stanford University Medical School. 265 Campus Drive, LLSCR Building Rm G2078b. Stanford, CA, 94305
| | - Robert Wechsler-Reya
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, 38105, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| |
Collapse
|