1
|
Liu Z, Ypsilanti AR, Markenscoff-Papadimitriou E, Dickel DE, Sanders SJ, Dong S, Pennacchio LA, Visel A, Rubenstein JL. Nr2f1 enhancers have distinct functions in controlling Nr2f1 expression during cortical development. Proc Natl Acad Sci U S A 2024; 121:e2402368121. [PMID: 39312666 PMCID: PMC11459158 DOI: 10.1073/pnas.2402368121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/09/2024] [Indexed: 09/25/2024] Open
Abstract
There is evidence that transcription factor (TF) encoding genes, which temporally control development in multiple cell types, can have tens of enhancers that regulate their expression. The NR2F1 TF developmentally promotes caudal and ventral cortical regional fates. Here, we epigenomically compared the activity of Nr2f1's enhancers during mouse cortical development with their activity in a transgenic assay. We identified at least six that are likely to be important in prenatal cortical development, with three harboring de novo mutants identified in ASD individuals. We chose to study the function of two of the most robust enhancers by deleting them singly or together. We found that they have distinct and overlapping functions in driving Nr2f1's regional and laminar expression in the developing cortex. Thus, these two enhancers, probably in combination with the others that we defined epigenetically, precisely tune Nr2f1's regional, cell type, and temporal expression during corticogenesis.
Collapse
Affiliation(s)
- Zhidong Liu
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, University of California San Francisco Weill Institute for Neurosciences, University of California, San Francisco, CA94158
| | - Athéna R. Ypsilanti
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, University of California San Francisco Weill Institute for Neurosciences, University of California, San Francisco, CA94158
| | | | - Diane E. Dickel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Stephan J. Sanders
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, OxfordOX3 7TY, United Kingdom
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA94158
- New York Genome Center, New York, NY10013
| | - Shan Dong
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA94158
| | - Len A. Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- US Department of Energy Joint Genome Institute, Berkeley, CA94720
- Comparative Biochemistry Program, University of California, Berkeley, CA94720
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- US Department of Energy Joint Genome Institute, Berkeley, CA94720
- School of Natural Sciences, University of California, Merced, CA95343
| | - John L. Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, University of California San Francisco Weill Institute for Neurosciences, University of California, San Francisco, CA94158
| |
Collapse
|
2
|
Aouci R, Fontaine A, Vion A, Belz L, Levi G, Narboux-Nême N. The Antidepressant Action of Fluoxetine Involves the Inhibition of Dlx5/6 in Cortical GABAergic Neurons through a TrkB-Dependent Pathway. Cells 2024; 13:1262. [PMID: 39120293 PMCID: PMC11311550 DOI: 10.3390/cells13151262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Major depressive disorder (MDD) is a complex and devastating illness that affects people of all ages. Despite the large use of antidepressants in current medical practice, neither their mechanisms of action nor the aetiology of MDD are completely understood. Experimental evidence supports the involvement of Parvalbumin-positive GABAergic neurons (PV-neurons) in the pathogenesis of MDD. DLX5 and DLX6 (DLX5/6) encode two homeodomain transcription factors involved in cortical GABAergic differentiation and function. In the mouse, the level of expression of these genes is correlated with the cortical density of PV-neurons and with anxiety-like behaviours. The same genomic region generates the lncRNA DLX6-AS1, which, in humans, participates in the GABAergic regulatory module downregulated in schizophrenia and ASD. Here, we show that the expression levels of Dlx5/6 in the adult mouse brain are correlated with the immobility time in the forced swim test, which is used to measure depressive-like behaviours. We show that the administration of the antidepressant fluoxetine (Flx) to normal mice induces, within 24 h, a rapid and stable reduction in Dlx5, Dlx6 and Dlx6-AS1 expression in the cerebral cortex through the activation of the TrkB-CREB pathway. Experimental Dlx5 overexpression counteracts the antidepressant effects induced by Flx treatment. Our findings show that one of the short-term effects of Flx administration is the reduction in Dlx5/6 expression in GABAergic neurons, which, in turn, has direct consequences on PV expression and on behavioural profiles. Variants in the DLX5/6 regulatory network could be implicated in the predisposition to depression and in the variability of patients' response to antidepressant treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Nicolas Narboux-Nême
- Molecular Physiology and Adaption, UMR7221 CNRS, Museum National d’Histoire Naturelle, 75005 Paris, France; (R.A.); (A.F.); (L.B.); (G.L.)
| |
Collapse
|
3
|
Rubenstein JL, Nord AS, Ekker M. DLX genes and proteins in mammalian forebrain development. Development 2024; 151:dev202684. [PMID: 38819455 PMCID: PMC11190439 DOI: 10.1242/dev.202684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The vertebrate Dlx gene family encode homeobox transcription factors that are related to the Drosophila Distal-less (Dll) gene and are crucial for development. Over the last ∼35 years detailed information has accrued about the redundant and unique expression and function of the six mammalian Dlx family genes. DLX proteins interact with general transcriptional regulators, and co-bind with other transcription factors to enhancer elements with highly specific activity in the developing forebrain. Integration of the genetic and biochemical data has yielded a foundation for a gene regulatory network governing the differentiation of forebrain GABAergic neurons. In this Primer, we describe the discovery of vertebrate Dlx genes and their crucial roles in embryonic development. We largely focus on the role of Dlx family genes in mammalian forebrain development revealed through studies in mice. Finally, we highlight questions that remain unanswered regarding vertebrate Dlx genes despite over 30 years of research.
Collapse
Affiliation(s)
- John L. Rubenstein
- UCSF Department of Psychiatry and Behavioral Sciences, Department of UCSF Weill Institute for Neurosciences, Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Alex S. Nord
- Department of Neurobiology, Physiology, and Behavior and Department of Psychiatry and 20 Behavioral Sciences, Center for Neuroscience, University of California Davis, Davis, CA 95618, USA
| | - Marc Ekker
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
4
|
Aouci R, El Soudany M, Maakoul Z, Fontaine A, Kurihara H, Levi G, Narboux-Nême N. Dlx5/6 Expression Levels in Mouse GABAergic Neurons Regulate Adult Parvalbumin Neuronal Density and Anxiety/Compulsive Behaviours. Cells 2022; 11:cells11111739. [PMID: 35681437 PMCID: PMC9179869 DOI: 10.3390/cells11111739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 02/01/2023] Open
Abstract
Neuronal circuits integrating Parvalbumin-positive GABAergic inhibitory interneurons (PV) are essential for normal brain function and are often altered in psychiatric conditions. During development, Dlx5 and Dlx6 (Dlx5/6) genes are involved in the differentiation of PV-interneurons. In the adult, Dlx5/6 continue to be expressed at low levels in most telencephalic GABAergic neurons, but their importance in determining the number and distribution of adult PV-interneurons is unknown. Previously, we have shown that targeted deletion of Dlx5/6 in mouse GABAergic neurons (Dlx5/6VgatCre mice) results in altered behavioural and metabolic profiles. Here we evaluate the consequences of targeted Dlx5/6 gene dosage alterations in adult GABAergic neurons. We compare the effects on normal brain of homozygous and heterozygous (Dlx5/6VgatCre and Dlx5/6VgatCre/+ mice) Dlx5/6 deletions to those of Dlx5 targeted overexpression (GABAergicDlx5/+ mice). We find a linear correlation between Dlx5/6 allelic dosage and the density of PV-positive neurons in the adult prelimbic cortex and in the hippocampus. In parallel, we observe that Dlx5/6 expression levels in GABAergic neurons are also linearly associated with the intensity of anxiety and compulsivity-like behaviours. Our findings reinforce the notion that regulation of Dlx5/6 expression is involved in individual cognitive variability and, possibly, in the genesis of certain neuropsychiatric conditions.
Collapse
Affiliation(s)
- Rym Aouci
- Physiologie Moléculaire et Adaptation, CNRS UMR7221, Team BBC, Département AVIV, Muséum National d’Histoire Naturelle, UMR-7221, 7 rue Cuvier, 75005 Paris, France; (R.A.); (M.E.S.); (Z.M.); (A.F.); (G.L.)
| | - Mey El Soudany
- Physiologie Moléculaire et Adaptation, CNRS UMR7221, Team BBC, Département AVIV, Muséum National d’Histoire Naturelle, UMR-7221, 7 rue Cuvier, 75005 Paris, France; (R.A.); (M.E.S.); (Z.M.); (A.F.); (G.L.)
| | - Zakaria Maakoul
- Physiologie Moléculaire et Adaptation, CNRS UMR7221, Team BBC, Département AVIV, Muséum National d’Histoire Naturelle, UMR-7221, 7 rue Cuvier, 75005 Paris, France; (R.A.); (M.E.S.); (Z.M.); (A.F.); (G.L.)
| | - Anastasia Fontaine
- Physiologie Moléculaire et Adaptation, CNRS UMR7221, Team BBC, Département AVIV, Muséum National d’Histoire Naturelle, UMR-7221, 7 rue Cuvier, 75005 Paris, France; (R.A.); (M.E.S.); (Z.M.); (A.F.); (G.L.)
| | - Hiroki Kurihara
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan;
| | - Giovanni Levi
- Physiologie Moléculaire et Adaptation, CNRS UMR7221, Team BBC, Département AVIV, Muséum National d’Histoire Naturelle, UMR-7221, 7 rue Cuvier, 75005 Paris, France; (R.A.); (M.E.S.); (Z.M.); (A.F.); (G.L.)
| | - Nicolas Narboux-Nême
- Physiologie Moléculaire et Adaptation, CNRS UMR7221, Team BBC, Département AVIV, Muséum National d’Histoire Naturelle, UMR-7221, 7 rue Cuvier, 75005 Paris, France; (R.A.); (M.E.S.); (Z.M.); (A.F.); (G.L.)
- Correspondence: ; Tel.: +33-140-798-027
| |
Collapse
|
5
|
Su Z, Wang Z, Lindtner S, Yang L, Shang Z, Tian Y, Guo R, You Y, Zhou W, Rubenstein JL, Yang Z, Zhang Z. Dlx1/2-dependent expression of Meis2 promotes neuronal fate determination in the mammalian striatum. Development 2022; 149:dev200035. [PMID: 35156680 PMCID: PMC8918808 DOI: 10.1242/dev.200035] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/04/2022] [Indexed: 12/16/2022]
Abstract
The striatum is a central regulator of behavior and motor function through the actions of D1 and D2 medium-sized spiny neurons (MSNs), which arise from a common lateral ganglionic eminence (LGE) progenitor. The molecular mechanisms of cell fate specification of these two neuronal subtypes are incompletely understood. Here, we found that deletion of murine Meis2, which is highly expressed in the LGE and derivatives, led to a large reduction in striatal MSNs due to a block in their differentiation. Meis2 directly binds to the Zfp503 and Six3 promoters and is required for their expression and specification of D1 and D2 MSNs, respectively. Finally, Meis2 expression is regulated by Dlx1/2 at least partially through the enhancer hs599 in the LGE subventricular zone. Overall, our findings define a pathway in the LGE whereby Dlx1/2 drives expression of Meis2, which subsequently promotes the fate determination of striatal D1 and D2 MSNs via Zfp503 and Six3.
Collapse
Affiliation(s)
- Zihao Su
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Ziwu Wang
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Susan Lindtner
- Department of Psychiatry, Nina Ireland Laboratory of Developmental Neurobiology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Lin Yang
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Zicong Shang
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Yu Tian
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Rongliang Guo
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Yan You
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Wenhao Zhou
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - John L. Rubenstein
- Department of Psychiatry, Nina Ireland Laboratory of Developmental Neurobiology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Zhengang Yang
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Zhuangzhi Zhang
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| |
Collapse
|
6
|
Fazel Darbandi S, Esau C, Lesage-Pelletier C, Monis S, Poitras L, Yu M, Perin S, Hatch G, Ekker M. Increased Sociability in Mice Lacking Intergenic Dlx Enhancers. Front Neurosci 2021; 15:718948. [PMID: 34671237 PMCID: PMC8520905 DOI: 10.3389/fnins.2021.718948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Abstract
The Dlx homeodomain transcription factors play important roles in the differentiation and migration of GABAergic interneuron precursors. The mouse and human genomes each have six Dlx genes organized into three convergently transcribed bigene clusters (Dlx1/2, Dlx3/4, and Dlx5/6) with cis-regulatory elements (CREs) located in the intergenic region of each cluster. Amongst these, the I56i and I12b enhancers from the Dlx1/2 and Dlx5/6 locus, respectively, are active in the developing forebrain. I56i is also a binding site for GTF2I, a transcription factor whose function is associated with increased sociability and Williams-Beuren syndrome. In determining the regulatory roles of these CREs on forebrain development, we have generated mutant mouse-lines where Dlx forebrain intergenic enhancers have been deleted (I56i(-/-), I12b(-/-)). Loss of Dlx intergenic enhancers impairs expression of Dlx genes as well as some of their downstream targets or associated genes including Gad2 and Evf2. The loss of the I56i enhancer resulted in a transient decrease in GABA+ cells in the developing forebrain. The intergenic enhancer mutants also demonstrate increased sociability and learning deficits in a fear conditioning test. Characterizing mice with mutated Dlx intergenic enhancers will help us to further enhance our understanding of the role of these Dlx genes in forebrain development.
Collapse
Affiliation(s)
| | - Crystal Esau
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | | | - Simon Monis
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Luc Poitras
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Man Yu
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Sofia Perin
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Gary Hatch
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Marc Ekker
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
7
|
Yu EPY, Perin S, Saxena V, Ekker M. Novel cross-regulation interactions between dlx genes in larval zebrafish. Gene 2021; 801:145848. [PMID: 34293450 DOI: 10.1016/j.gene.2021.145848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/13/2021] [Indexed: 11/19/2022]
Abstract
The homeodomain-containing transcription factors dlx1a, dlx2a, dlx5a and dlx6a are expressed in the zebrafish brain in overlapping patterns and are important in vertebrate development. Previous work in mice have suggested the overlapping expression pattern is in part due to cross-regulatory interactions among the aforementioned dlx genes. However, the extent of these interactions and whether they are conserved among vertebrates remains to be determined. Through whole-mount in situ hybridization in zebrafish dlx mutants produced by CRISPR-Cas9 mutagenesis, cross-regulatory interactions between dlx1a, dlx2a, dlx5a and dlx6a were examined from 24 to 72 h post fertilization (hpf). Notably, and different from previous work done in mouse, zebrafish dlx2a-/- mutants continue to express dlx5a until 72hpf, whereas deletion of both enhancers within the dlx5a/dlx6a locus resulted in delayed dlx5a/dlx6a expression and relative increased dlx2a expression. These results suggest alternative regulatory elements and pathways exist to mediate dlx expression in zebrafish and may highlight evolutionary differences in gene interactions between vertebrates.
Collapse
Affiliation(s)
- Emily P Y Yu
- Department of Biology, University of Ottawa, Marie-Curie Private, Ottawa, ON K1N9A4, Canada
| | - Sofia Perin
- Department of Biology, University of Ottawa, Marie-Curie Private, Ottawa, ON K1N9A4, Canada
| | - Vishal Saxena
- Department of Biology, University of Ottawa, Marie-Curie Private, Ottawa, ON K1N9A4, Canada
| | - Marc Ekker
- Department of Biology, University of Ottawa, Marie-Curie Private, Ottawa, ON K1N9A4, Canada.
| |
Collapse
|
8
|
Fazel Darbandi S, Robinson Schwartz SE, Pai ELL, Everitt A, Turner ML, Cheyette BNR, Willsey AJ, State MW, Sohal VS, Rubenstein JLR. Enhancing WNT Signaling Restores Cortical Neuronal Spine Maturation and Synaptogenesis in Tbr1 Mutants. Cell Rep 2021; 31:107495. [PMID: 32294447 PMCID: PMC7473600 DOI: 10.1016/j.celrep.2020.03.059] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 01/17/2020] [Accepted: 03/17/2020] [Indexed: 12/21/2022] Open
Abstract
Tbr1 is a high-confidence autism spectrum disorder (ASD)
gene encoding a transcription factor with distinct pre- and postnatal functions.
Postnatally, Tbr1 conditional knockout (CKO) mutants and
constitutive heterozygotes have immature dendritic spines and reduced synaptic
density. Tbr1 regulates expression of several genes that
underlie synaptic defects, including a kinesin (Kif1a) and a
WNT-signaling ligand (Wnt7b). Furthermore,
Tbr1 mutant corticothalamic neurons have reduced thalamic
axonal arborization. LiCl and a GSK3β inhibitor, two WNT-signaling
agonists, robustly rescue the dendritic spines and the synaptic and axonal
defects, suggesting that this could have relevance for therapeutic approaches in
some forms of ASD. Fazel Darbandi et al. demonstrate that TBR1 directly regulates
transcriptional circuits in cortical layers 5 and 6, which promote dendritic
spine and synaptic density. Enhancing WNT signaling rescues dendritic spine
maturation and synaptogenesis defects in Tbr1 mutants. These
results provide insights into mechanisms that underlie ASD pathophysiology.
Collapse
Affiliation(s)
- Siavash Fazel Darbandi
- Department of Psychiatry and UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sarah E Robinson Schwartz
- Department of Psychiatry and UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Emily Ling-Lin Pai
- Department of Psychiatry and UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Amanda Everitt
- Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Marc L Turner
- Department of Psychiatry and UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Benjamin N R Cheyette
- Department of Psychiatry and UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - A Jeremy Willsey
- Department of Psychiatry and UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthew W State
- Department of Psychiatry and UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA
| | - Vikaas S Sohal
- Department of Psychiatry and UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Kavli Institute for Fundamental Neuroscience and Sloan-Swartz Center for Theoretical Neurobiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John L R Rubenstein
- Department of Psychiatry and UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
9
|
Cajigas I, Chakraborty A, Lynam M, Swyter KR, Bastidas M, Collens L, Luo H, Ay F, Kohtz JD. Sox2- Evf2 lncRNA-mediated mechanisms of chromosome topological control in developing forebrain. Development 2021; 148:dev197202. [PMID: 33593819 PMCID: PMC7990859 DOI: 10.1242/dev.197202] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/07/2021] [Indexed: 12/13/2022]
Abstract
The Evf2 long non-coding RNA directs Dlx5/6 ultraconserved enhancer(UCE)-intrachromosomal interactions, regulating genes across a 27 Mb region on chromosome 6 in mouse developing forebrain. Here, we show that Evf2 long-range gene repression occurs through multi-step mechanisms involving the transcription factor Sox2. Evf2 directly interacts with Sox2, antagonizing Sox2 activation of Dlx5/6UCE, and recruits Sox2 to the Dlx5/6eii shadow enhancer and key Dlx5/6UCE interaction sites. Sox2 directly interacts with Dlx1 and Smarca4, as part of the Evf2 ribonucleoprotein complex, forming spherical subnuclear domains (protein pools, PPs). Evf2 targets Sox2 PPs to one long-range repressed target gene (Rbm28), at the expense of another (Akr1b8). Evf2 and Sox2 shift Dlx5/6UCE interactions towards Rbm28, linking Evf2/Sox2 co-regulated topological control and gene repression. We propose a model that distinguishes Evf2 gene repression mechanisms at Rbm28 (Dlx5/6UCE position) and Akr1b8 (limited Sox2 availability). Genome-wide control of RNPs (Sox2, Dlx and Smarca4) shows that co-recruitment influences Sox2 DNA binding. Together, these data suggest that Evf2 organizes a Sox2 PP subnuclear domain and, through Sox2-RNP sequestration and recruitment, regulates chromosome 6 long-range UCE targeting and activity with genome-wide consequences.
Collapse
Affiliation(s)
- Ivelisse Cajigas
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Department of Human Molecular Genetics, Stanley Manne Children's Research Institute 2430 N Halsted, Chicago, IL 60614, USA
| | - Abhijit Chakraborty
- Centers for Autoimmunity and Cancer Immunotherapy, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Madison Lynam
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Department of Human Molecular Genetics, Stanley Manne Children's Research Institute 2430 N Halsted, Chicago, IL 60614, USA
| | - Kelsey R Swyter
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Department of Human Molecular Genetics, Stanley Manne Children's Research Institute 2430 N Halsted, Chicago, IL 60614, USA
| | - Monique Bastidas
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Department of Human Molecular Genetics, Stanley Manne Children's Research Institute 2430 N Halsted, Chicago, IL 60614, USA
| | - Linden Collens
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Department of Human Molecular Genetics, Stanley Manne Children's Research Institute 2430 N Halsted, Chicago, IL 60614, USA
| | - Hao Luo
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Department of Human Molecular Genetics, Stanley Manne Children's Research Institute 2430 N Halsted, Chicago, IL 60614, USA
| | - Ferhat Ay
- Centers for Autoimmunity and Cancer Immunotherapy, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
- School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jhumku D Kohtz
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Department of Human Molecular Genetics, Stanley Manne Children's Research Institute 2430 N Halsted, Chicago, IL 60614, USA
| |
Collapse
|
10
|
Weinschutz Mendes H, Taktek M, Duret T, Ekker M. Expression of dlx genes in the normal and regenerating brain of adult zebrafish. PLoS One 2020; 15:e0229549. [PMID: 32497078 PMCID: PMC7272068 DOI: 10.1371/journal.pone.0229549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/16/2020] [Indexed: 12/12/2022] Open
Abstract
Dysfunctions in the GABAergic system lead to various pathological conditions and impaired inhibitory function is one of the causes behind neuropathies characterized by neuronal hyper excitability. The Dlx homeobox genes are involved in the development of nervous system, neural crest, branchial arches and developing appendages. Dlx genes also take part in neuronal migration and differentiation during development, more precisely, in the migration and differentiation of GABAergic neurons. Functional analysis of dlx genes has mainly been carried out in developing zebrafish embryos and larvae, however information regarding the expression and roles of these genes in the adult zebrafish brain is still lacking. The extensive neurogenesis that takes place in the adult zebrafish brain, makes them a good model for the visualization of mechanisms involving dlx genes during adulthood in physiological conditions and during regeneration of the nervous system. We have identified the adult brain regions where transcripts of dlx1a, dlx2a, dlx5a and dlx6a genes are normally found and have confirmed that within telencephalic domains, there is high overlapping expression of the four dlx paralogs with a marker for GABAergic neurons. Co-localization analyses carried with the Tg(dlx6a-1.4kbdlx5a/dlx6a:GFP) reporter line have also shown that in some areas of the diencephalon, cells expressing the dlx5a/6a bigene may have a neural stem cell identity. Furthermore, investigations in a response to stab wound lesions, have demonstrated a possible participation of the dlx5a/6a bigene, most likely of dlx5a, during regeneration of the adult zebrafish brain. These observations suggest a possible participation of dlx-expressing cells during brain regeneration in adult zebrafish and also provide information on the role of dlx genes under normal physiological conditions in adults.
Collapse
Affiliation(s)
| | - Mariam Taktek
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Thomas Duret
- Faculté des Sciences Fondamentales et Appliquées, Université de Poitiers, Poitiers, France
| | - Marc Ekker
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
11
|
MacKenzie RK, Sankar PR, Bendall AJ. Dlx5 and Dlx6 can antagonize cell division at the G 1/S checkpoint. BMC Mol Cell Biol 2019; 20:8. [PMID: 31041891 PMCID: PMC6460778 DOI: 10.1186/s12860-019-0191-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 04/02/2019] [Indexed: 11/17/2022] Open
Abstract
Background Dlx5 and Dlx6 stimulate differentiation of diverse progenitors during embryonic development. Their actions as pro-differentiation transcription factors includes the up-regulation of differentiation markers but the extent to which differentiation may also be stimulated by regulation of the cell cycle has not been addressed. Results We document that expression of Dlx5 and Dlx6 antagonizes cell proliferation in a variety of cell types without inducing apoptosis or promoting cell cycle exit. Rather, a variety of evidence indicates that elevated Dlx5 and Dlx6 expression reduces the proportion of cells in S phase and affects the length of the cell cycle. Conclusions Antagonism of S-phase entry by Dlx5 and Dlx6 proteins likely represents a lineage-independent function to effect Dlx-mediated differentiation in multiple progenitor cell types.
Collapse
Affiliation(s)
- Rachel K MacKenzie
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd East, Guelph, Ontario, N1G 2W1, Canada
| | - Parvathy Ravi Sankar
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd East, Guelph, Ontario, N1G 2W1, Canada
| | - Andrew J Bendall
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd East, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|