1
|
Iannone AF, Akgül G, Zhang R, Wacks S, Hussein N, Macias CG, Donatelle A, Bauriedel JMJ, Wright C, Abramov D, Johnson MA, Govek EE, Burré J, Milner TA, De Marco García NV. The chemokine Cxcl14 regulates interneuron differentiation in layer I of the somatosensory cortex. Cell Rep 2024; 43:114531. [PMID: 39058591 PMCID: PMC11373301 DOI: 10.1016/j.celrep.2024.114531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/10/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Spontaneous and sensory-evoked activity sculpts developing circuits. Yet, how these activity patterns intersect with cellular programs regulating the differentiation of neuronal subtypes is not well understood. Through electrophysiological and in vivo longitudinal analyses, we show that C-X-C motif chemokine ligand 14 (Cxcl14), a gene previously characterized for its association with tumor invasion, is expressed by single-bouquet cells (SBCs) in layer I (LI) of the somatosensory cortex during development. Sensory deprivation at neonatal stages markedly decreases Cxcl14 expression. Additionally, we report that loss of function of this gene leads to increased intrinsic excitability of SBCs-but not LI neurogliaform cells-and augments neuronal complexity. Furthermore, Cxcl14 loss impairs sensory map formation and compromises the in vivo recruitment of superficial interneurons by sensory inputs. These results indicate that Cxcl14 is required for LI differentiation and demonstrate the emergent role of chemokines as key players in cortical network development.
Collapse
Affiliation(s)
- Andrew F Iannone
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
| | - Gülcan Akgül
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Robin Zhang
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Sam Wacks
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Nisma Hussein
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Carmen Ginelly Macias
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Alexander Donatelle
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Julia M J Bauriedel
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Cora Wright
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Debra Abramov
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA; Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Megan A Johnson
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Eve-Ellen Govek
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY 10065, USA
| | - Jacqueline Burré
- Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Natalia V De Marco García
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
2
|
Zhang Y, Jin Y, Li J, Yan Y, Wang T, Wang X, Li Z, Qin X. CXCL14 as a Key Regulator of Neuronal Development: Insights from Its Receptor and Multi-Omics Analysis. Int J Mol Sci 2024; 25:1651. [PMID: 38338930 PMCID: PMC10855946 DOI: 10.3390/ijms25031651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
CXCL14 is not only involved in the immune process but is also closely related to neurodevelopment according to its molecular evolution. However, what role it plays in neurodevelopment remains unclear. In the present research, we found that, by crossbreeding CXCL14+/- and CXCL14-/- mice, the number of CXCL14-/- mice in their offspring was lower than the Mendelian frequency; CXCL14-/- mice had significantly fewer neurons in the external pyramidal layer of cortex than CXCL14+/- mice; and CXCL14 may be involved in synaptic plasticity, neuron projection, and chemical synaptic transmission based on analysis of human clinical transcriptome data. The expression of CXCL14 was highest at day 14.5 in the embryonic phase and after birth in the mRNA and protein levels. Therefore, we hypothesized that CXCL14 promotes the development of neurons in the somatic layer of the pyramidal cells of mice cortex on embryonic day 14.5. In order to further explore its mechanism, CXCR4 and CXCR7 were suggested as receptors by Membrane-Anchored Ligand and Receptor Yeast Two-Hybrid technology. Through metabolomic techniques, we inferred that CXCL14 promotes the development of neurons by regulating fatty acid anabolism and glycerophospholipid anabolism.
Collapse
Affiliation(s)
- Yinjie Zhang
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, China (T.W.)
| | - Yue Jin
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, China (T.W.)
| | - Jingjing Li
- Engineering Research Center of Cell & Therapeutic Antibody, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Yan
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, China (T.W.)
| | - Ting Wang
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, China (T.W.)
| | - Xuanlin Wang
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, China (T.W.)
| | - Zhenyu Li
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, China (T.W.)
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, China (T.W.)
| |
Collapse
|
3
|
Schwend T. Wiring the ocular surface: A focus on the comparative anatomy and molecular regulation of sensory innervation of the cornea. Differentiation 2023:S0301-4681(23)00010-5. [PMID: 36997455 DOI: 10.1016/j.diff.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/23/2023] [Indexed: 01/29/2023]
Abstract
The cornea is richly innervated with sensory nerves that function to detect and clear harmful debris from the surface of the eye, promote growth and survival of the corneal epithelium and hasten wound healing following ocular disease or trauma. Given their importance to eye health, the neuroanatomy of the cornea has for many years been a source of intense investigation. Resultantly, complete nerve architecture maps exist for adult human and many animal models and these maps reveal few major differences across species. Interestingly, recent work has revealed considerable variation across species in how sensory nerves are acquired during developmental innervation of the cornea. Highlighting such species-distinct key differences, but also similarities, this review provides a full, comparative anatomy analysis of sensory innervation of the cornea for all species studied to date. Further, this article comprehensively describes the molecules that have been shown to guide and direct nerves toward, into and through developing corneal tissue as the final architectural pattern of the cornea's neuroanatomy is established. Such knowledge is useful for researchers and clinicians seeking to better understand the anatomical and molecular basis of corneal nerve pathologies and to hasten neuro-regeneration following infection, trauma or surgery that damage the ocular surface and its corneal nerves.
Collapse
|
4
|
Ye R, Yan C, Zhou H, Zhang C, Huang Y, Dong M, Zhang H, Lin J, Jiang X, Yuan S, Chen L, Jiang R, Cheng Z, Zheng K, Yu A, Zhang Q, Quan LH, Jin W. Brown adipose tissue activation by ginsenoside compound K treatment ameliorates polycystic ovary syndrome. Br J Pharmacol 2022; 179:4563-4574. [PMID: 35751868 DOI: 10.1111/bph.15909] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Polycystic ovary syndrome (PCOS) is a common metabolic and endocrine disease affecting women of reproductive age. Due to its complex etiology, there is no effective cure for PCOS currently. Brown adipose tissue (BAT) activity is significantly decreased in PCOS patients and BAT activation has beneficial effects on PCOS animal models. Here, we investigated the therapeutic effect of ginsenoside compound K (CK) on an animal model of PCOS and its mechanism of BAT activation EXPERIMENTAL APPROACH: Primary brown adipocyte, Db/Db mice and dehydroepiandrosterone (DHEA)-induced PCOS rats were used. The core body temperature, oxygen consumption, energy metabolism related gene and protein expression were assessed to identify the function of CK on energy metabolism. Estrous cycle, serum sex hormone, ovarian steroidogenic enzyme gene expression and ovarian morphology were evaluated following CK treatment. KEY RESULTS Our results indicated that CK treatment could significantly protect against body weight gain in Db/Db mice via BAT activation. Furthermore, we found that CK treatment could normalize hyperandrogenism, estrous cyclicity, normalize steroidogenic enzyme expression and decrease the number of cystic follicles in PCOS rats. Interestingly, as a potential endocrine intermediate, C-X-C motif chemokine ligand-14 protein (CXCL14) was significantly upregulated following CK administration. In addition, exogenous CXC14 supplementation was found to reverse DHEA-induced PCOS in a phenotypically similar manner to CK treatment. CONCLUSION AND IMPLICATIONS In summary, CK treatment significantly activates BAT, increases CXCL14 expression and ameliorates PCOS. These findings suggest that CK might be a potential drug candidate for PCOS treatment.
Collapse
Affiliation(s)
- Rongcai Ye
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Chunlong Yan
- College of Agriculture, Yanbian University, Yanji, China
| | - Huiqiao Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Chuanhai Zhang
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Yuanyuan Huang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Meng Dong
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hanlin Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Jun Lin
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Xiaoxiao Jiang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Shouli Yuan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Li Chen
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Rui Jiang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Ziyu Cheng
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Kexin Zheng
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Anni Yu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Qiaoli Zhang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Lin-Hu Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
| | - Wanzhu Jin
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Ma J, Bi L, Spurlin J, Lwigale P. Nephronectin-Integrin α8 signaling is required for proper migration of periocular neural crest cells during chick corneal development. eLife 2022; 11:74307. [PMID: 35238772 PMCID: PMC8916771 DOI: 10.7554/elife.74307] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/02/2022] [Indexed: 11/19/2022] Open
Abstract
During development, cells aggregate at tissue boundaries to form normal tissue architecture of organs. However, how cells are segregated into tissue precursors remains largely unknown. Cornea development is a perfect example of this process whereby neural crest cells aggregate in the periocular region prior to their migration and differentiation into corneal cells. Our recent RNA-seq analysis identified upregulation of nephronectin (Npnt) transcripts during early stages of corneal development where its function has not been investigated. We found that Npnt mRNA and protein are expressed by various ocular tissues, including the migratory periocular neural crest (pNC), which also express the integrin alpha 8 (Itgα8) receptor. Knockdown of either Npnt or Itgα8 attenuated cornea development, whereas overexpression of Npnt resulted in cornea thickening. Moreover, overexpression of Npnt variants lacking RGD-binding sites did not affect corneal thickness. Neither the knockdown nor augmentation of Npnt caused significant changes in cell proliferation, suggesting that Npnt directs pNC migration into the cornea. In vitro analyses showed that Npnt promotes pNC migration from explanted periocular mesenchyme, which requires Itgα8, focal adhesion kinase, and Rho kinase. Combined, these data suggest that Npnt augments cell migration into the presumptive cornea extracellular matrix by functioning as a substrate for Itgα8-positive pNC cells.
Collapse
Affiliation(s)
- Justin Ma
- Department of Biosciences, Rice University, Houston, United States
| | - Lian Bi
- Department of Biosciences, Rice University, Houston, United States
| | - James Spurlin
- Department of Biosciences, Rice University, Houston, United States
| | - Peter Lwigale
- Department of Biosciences, Rice University, Houston, United States
| |
Collapse
|
6
|
Liu C, Lee MK, Naqvi S, Hoskens H, Liu D, White JD, Indencleef K, Matthews H, Eller RJ, Li J, Mohammed J, Swigut T, Richmond S, Manyama M, Hallgrímsson B, Spritz RA, Feingold E, Marazita ML, Wysocka J, Walsh S, Shriver MD, Claes P, Weinberg SM, Shaffer JR. Genome scans of facial features in East Africans and cross-population comparisons reveal novel associations. PLoS Genet 2021; 17:e1009695. [PMID: 34411106 PMCID: PMC8375984 DOI: 10.1371/journal.pgen.1009695] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 07/02/2021] [Indexed: 12/16/2022] Open
Abstract
Facial morphology is highly variable, both within and among human populations, and a sizable portion of this variation is attributable to genetics. Previous genome scans have revealed more than 100 genetic loci associated with different aspects of normal-range facial variation. Most of these loci have been detected in Europeans, with few studies focusing on other ancestral groups. Consequently, the degree to which facial traits share a common genetic basis across diverse sets of humans remains largely unknown. We therefore investigated the genetic basis of facial morphology in an East African cohort. We applied an open-ended data-driven phenotyping approach to a sample of 2,595 3D facial images collected on Tanzanian children. This approach segments the face into hierarchically arranged, multivariate features that capture the shape variation after adjusting for age, sex, height, weight, facial size and population stratification. Genome scans of these multivariate shape phenotypes revealed significant (p < 2.5 × 10-8) signals at 20 loci, which were enriched for active chromatin elements in human cranial neural crest cells and embryonic craniofacial tissue, consistent with an early developmental origin of the facial variation. Two of these associations were in highly conserved regions showing craniofacial-specific enhancer activity during embryological development (5q31.1 and 12q21.31). Six of the 20 loci surpassed a stricter threshold accounting for multiple phenotypes with study-wide significance (p < 6.25 × 10-10). Cross-population comparisons indicated 10 association signals were shared with Europeans (seven sharing the same associated SNP), and facilitated fine-mapping of causal variants at previously reported loci. Taken together, these results may point to both shared and population-specific components to the genetic architecture of facial variation.
Collapse
Affiliation(s)
- Chenxing Liu
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Myoung Keun Lee
- Department of Oral and Craniofacial Sciences, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sahin Naqvi
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Hanne Hoskens
- Medical Imaging Research Center, Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Dongjing Liu
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Julie D. White
- Department of Anthropology, Pennsylvania State University, State College, Pennsylvania, United States of America
| | - Karlijne Indencleef
- Medical Imaging Research Center, Katholieke Universiteit Leuven, Leuven, Belgium
- Processing Speech & Images, Department of Electrical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Harold Matthews
- Medical Imaging Research Center, Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
- Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Ryan J. Eller
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Jiarui Li
- Medical Imaging Research Center, Katholieke Universiteit Leuven, Leuven, Belgium
- Processing Speech & Images, Department of Electrical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jaaved Mohammed
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Tomek Swigut
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Stephen Richmond
- Applied Clinical Research and Public Health, School of Dentistry, Cardiff University, Cardiff, United Kingdom
| | - Mange Manyama
- Anatomy in Radiology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Benedikt Hallgrímsson
- Department of Anatomy and Cell Biology, Alberta Children´s Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Richard A. Spritz
- Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Eleanor Feingold
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Mary L. Marazita
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Oral and Craniofacial Sciences, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Susan Walsh
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Mark D. Shriver
- Department of Anthropology, Pennsylvania State University, State College, Pennsylvania, United States of America
| | - Peter Claes
- Medical Imaging Research Center, Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
- Processing Speech & Images, Department of Electrical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium
- Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Seth M. Weinberg
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Oral and Craniofacial Sciences, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Anthropology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - John R. Shaffer
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Oral and Craniofacial Sciences, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
7
|
DNA-based eyelid trait prediction in Chinese Han population. Int J Legal Med 2021; 135:1743-1752. [PMID: 33969445 DOI: 10.1007/s00414-021-02570-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
The eyelid folding represents one of the most distinguishing features of East Asian faces, involving the absence or presence of the eyelid crease, i.e., single vs. double eyelid. Recently, a genome-wide association study (GWAS) identified two SNPs (rs12570134 and rs1415425) showing genome-wide significant association with the double eyelid phenotype in Japanese. Here we report a confirmatory study in 697 Chinese individuals of exclusively Han origin. Only rs1415425 was statistically significant (P-value = 0.011), and the allele effect was on the same direction with that reported in Japanese. This SNP combined with gender and age explained 10.0% of the total variation in eyelid folding. DNA-based prediction model for the eyelid trait was developed and evaluated using logistic regression. The model showed mild to moderate predictive capacity (AUC = 0.69, sensitivity = 63%, and specificity = 70%). We further selected six additional SNPs by massive parallel sequencing of 19 candidate genes in 24 samples, and one SNP rs2761882 was statistically significant (P-value = 0.027). All predictors including these two SNPs (rs1415425 and rs2761882), gender, and age explained 11.2% of the total variation. The combined prediction model obtained an improved predictive capacity (AUC = 0.72, sensitivity = 62%, and specificity = 66%). Our study thus provided a confirmation of previous GWAS findings and a DNA-based prediction of the eyelid trait in Chinese Han individuals. This model may add value to forensic DNA phenotyping applications considering gender and age can be separately inferred from genetic and epigenetic markers. To further improve the prediction accuracy, future studies should focus on identifying more informative SNPs by large GWASs in East Asian populations.
Collapse
|
8
|
Li Z, Gu S, Quan Y, Varadaraj K, Jiang JX. Development of a potent embryonic chick lens model for studying congenital cataracts in vivo. Commun Biol 2021; 4:325. [PMID: 33707565 PMCID: PMC7952907 DOI: 10.1038/s42003-021-01849-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/11/2021] [Indexed: 01/31/2023] Open
Abstract
Congenital cataracts are associated with gene mutations, yet the underlying mechanism remains largely unknown. Here we reported an embryonic chick lens model that closely recapitulates the process of cataract formation. We adopted dominant-negative site mutations that cause congenital cataracts, connexin, Cx50E48K, aquaporin 0, AQP0R33C, αA-crystallin, CRYAA R12C and R54C. The recombinant retroviruses containing these mutants were microinjected into the occlusive lumen of chick lenses at early embryonic development. Cx50E48K expression developed cataracts associated with disorganized nuclei and enlarged extracellular spaces. Expression of AQP0R33C resulted in cortical cataracts, enlarged extracellular spaces and distorted fiber cell organization. αA crystallin mutations distorted lens light transmission and increased crystalline protein aggregation. Together, retroviral expression of congenital mutant genes in embryonic chick lenses closely mimics characteristics of human congenital cataracts. This model will provide an effective, reliable in vivo system to investigate the development and underlying mechanism of cataracts and other genetic diseases.
Collapse
Affiliation(s)
- Zhen Li
- grid.267309.90000 0001 0629 5880Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX USA
| | - Sumin Gu
- grid.267309.90000 0001 0629 5880Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX USA
| | - Yumeng Quan
- grid.267309.90000 0001 0629 5880Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX USA
| | - Kulandaiappan Varadaraj
- grid.36425.360000 0001 2216 9681Department of Physiology and Biophysics, Stony Brook University, New York, NY USA
| | - Jean X. Jiang
- grid.267309.90000 0001 0629 5880Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX USA
| |
Collapse
|
9
|
Kouzeli A, Collins PJ, Metzemaekers M, Meyrath M, Szpakowska M, Artinger M, Struyf S, Proost P, Chevigne A, Legler DF, Eberl M, Moser B. CXCL14 Preferentially Synergizes With Homeostatic Chemokine Receptor Systems. Front Immunol 2020; 11:561404. [PMID: 33123134 PMCID: PMC7570948 DOI: 10.3389/fimmu.2020.561404] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/02/2020] [Indexed: 11/13/2022] Open
Abstract
Reflecting their importance in immunity, the activity of chemokines is regulated on several levels, including tissue and context-specific expression and availability of their cognate receptor on target cells. Chemokine synergism, affecting both chemokine and chemokine receptor function, has emerged as an additional control mechanism. We previously demonstrated that CXCL14 is a positive allosteric modulator of CXCR4 in its ability to synergize with CXCL12 in diverse cellular responses. Here, we have extended our study to additional homeostatic, as well as a selection of inflammatory chemokine systems. We report that CXCL14 strongly synergizes with low (sub-active) concentrations of CXCL13 and CCL19/CCL21 in in vitro chemotaxis with immune cells expressing the corresponding receptors CXCR5 and CCR7, respectively. CXCL14 by itself was inactive, not only on cells expressing CXCR5 or CCR7 but also on cells expressing any other known conventional or atypical chemokine receptor, as assessed by chemotaxis and/or β-arrestin recruitment assays. Furthermore, synergistic migration responses between CXCL14 and inflammatory chemokines CXCL10/CXCL11 and CCL5, targeting CXCR3 and CCR5, respectively, were marginal and occasional synergistic Ca2+ flux responses were observed. CXCL14 bound to 300-19 cells and interfered with CCL19 binding to CCR7-expressing cells, suggesting that these cellular interactions contributed to the reported CXCL14-mediated synergistic activities. We propose a model whereby tissue-expressed CXCL14 contributes to cell localization under steady-state conditions at sites with prominent expression of homeostatic chemokines.
Collapse
Affiliation(s)
- Ariadni Kouzeli
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Paul J Collins
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Mieke Metzemaekers
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Max Meyrath
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Martyna Szpakowska
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Marc Artinger
- Biotechnology Institute Thurgau (BITg), University of Konstanz, Kreuzlingen, Switzerland
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Andy Chevigne
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Daniel F Legler
- Biotechnology Institute Thurgau (BITg), University of Konstanz, Kreuzlingen, Switzerland
| | - Matthias Eberl
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Bernhard Moser
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| |
Collapse
|
10
|
Niu L, Zheng Z, Xue Q, Cheng H, Liu Y, Wang H, Hu X, Zhang A, Liu B, Xu X. Two coupled mutations abolished the binding of CEBPB to the promoter of CXCL14 that displayed an antiviral effect on PRRSV by activating IFN signaling. FASEB J 2020; 34:11257-11271. [PMID: 32648265 DOI: 10.1096/fj.202000477r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 11/11/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is the most economically important infectious disease of pigs worldwide. Our previous study revealed that Tongcheng (TC) pigs display higher resistance to PRRS than Largewhite (LW) pigs, but the genetic mechanism remains unknown. Here, we first confirmed that CXCL14 was downregulated in lungs and porcine alveolar macrophages (PAMs) responding to PRRS virus (PRRSV) infection, but the decline in LW pigs was more obvious than that in TC pigs. Then, we found that the overexpression of CXCL14 activated type-I interferon (IFN-I) signaling by upregulating interferon beta (IFNB), which plays a major role in the antiviral effect. To further decipher the mechanism underlying its differential expression, we characterized the core promoter of CXCL14 as being located from -145 to 276 bp of the transcription start site (TSS) and identified two main haplotypes that displayed significant differential transcriptional activities. We further identified two coupled point mutations that altered the binding status of CEBPB and were responsible for the differential expression in TC and LW pigs. The regulatory effect of CEBPB on CXCL14 was further confirmed by RNA interference (RNAi) and chromatin immunoprecipitation (ChIP), providing crucial clues for deciphering the mechanism of CXCL14 downregulation in unusual conditions. The present study revealed the potential antiviral effect of CXCL14, occurring via activation of interferon signaling, and suggested that CXCL14 contributes to the PRRS resistance of TC pigs.
Collapse
Affiliation(s)
- Lizhu Niu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Lab of Freshwater Animal Breeding, College of Fishery, Huazhong Agricultural University, Wuhan, China
| | - Zhiwei Zheng
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Qianjing Xue
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Huijun Cheng
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ying Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Huanling Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,Key Lab of Freshwater Animal Breeding, College of Fishery, Huazhong Agricultural University, Wuhan, China
| | - Xueying Hu
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Anding Zhang
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Bang Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Xuewen Xu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, China
| |
Collapse
|
11
|
Ko HM, Moon JS, Shim HK, Lee SY, Kang JH, Kim MS, Chung HJ, Kim SH. Inhibitory effect of C-X-C motif chemokine ligand 14 on the osteogenic differentiation of human periodontal ligament cells through transforming growth factor-beta1. Arch Oral Biol 2020; 115:104733. [PMID: 32408131 DOI: 10.1016/j.archoralbio.2020.104733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/17/2020] [Accepted: 04/14/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVE This study aimed to determine the expression of chemokine (C-X-C motif) ligand 14 (CXCL14) in pulpal and periodontal cells in vivo and in vitro, and investigate function of CXCL14 and its underlying mechanism in the proliferation and osteogenic differentiation of human periodontal ligament (hPDL) cells. METHODS To determine the expression level of CXCL14 in adult rat oral tissues and in hPDL cells after application of biophysical forces, RT-PCR, western blot, and histological analyses were performed. The role of CXCL14 in proliferation and osteogenic differentiation of PDL cells was evaluated by measuring dehydrogenase activity and Alizarin red S staining. RESULTS Strong immunoreactivity against CXCL14 was observed in the PDL tissues and pulpal cells of rat molar, and attenuated apparently by orthodontic biophysical forces. As seen in rat molar, highly expressed CXCL14 was observed in human dental pulp and hPDL cells, and attenuated obviously by biophysical tensile force. CXCL14 expression in hPDL cells was increased in incubation time-dependent manner. Proliferation of hPDL cells was inhibited dramatically by small interfering (si) RNA against CXCL14. Furthermore, dexamethasone-induced osteogenic mineralization was inhibited by recombinant human (rh) CXCL14, and augmented by CXCL14 siRNA. rhCXCL14 increased transforming growth factor-beta1 (TGF- β1) in hPDL cells. Inhibition of the cell proliferation and osteogenic differentiation of hPDL cells by CXCL14 siRNA and rhCXCL14 were restored by rhTGF-β1 and SB431542, respectively. CONCLUSION These results suggest that CXCL14 may play roles as a growth factor and a negative regulator of osteogenic differentiation by increasing TGF-β1 expression in hPDL cells.
Collapse
Affiliation(s)
- Hyun-Mi Ko
- Dental Science Research Institute, Department of Oral Anatomy, School of Dentistry, Chonnam National University, Gwangju 61186, South Korea
| | - Jung-Sun Moon
- Dental Science Research Institute, Department of Oral Anatomy, School of Dentistry, Chonnam National University, Gwangju 61186, South Korea
| | - Hae-Kyoung Shim
- Dental Science Research Institute, Department of Oral Anatomy, School of Dentistry, Chonnam National University, Gwangju 61186, South Korea
| | - Su-Young Lee
- Dental Science Research Institute, Department of Oral Anatomy, School of Dentistry, Chonnam National University, Gwangju 61186, South Korea
| | - Jee-Hae Kang
- Dental Science Research Institute, Department of Oral Anatomy, School of Dentistry, Chonnam National University, Gwangju 61186, South Korea
| | - Min-Seok Kim
- Dental Science Research Institute, Department of Oral Anatomy, School of Dentistry, Chonnam National University, Gwangju 61186, South Korea
| | - Hyun-Ju Chung
- Dental Science Research Institute, Department of Periodontology, School of Dentistry, Chonnam National University, Gwangju 61186, South Korea
| | - Sun-Hun Kim
- Dental Science Research Institute, Department of Oral Anatomy, School of Dentistry, Chonnam National University, Gwangju 61186, South Korea.
| |
Collapse
|
12
|
Patel M, Pham NTK, Ziegenhorn E, Pisano A, Deaton RJ, Kim S, Rajarathnam V, Schwend T. Unique and overlapping effects of triiodothyronine (T3) and thyroxine (T4) on sensory innervation of the chick cornea. Exp Eye Res 2020; 194:108007. [PMID: 32194064 DOI: 10.1016/j.exer.2020.108007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 02/01/2020] [Accepted: 03/15/2020] [Indexed: 12/28/2022]
Abstract
Multiple aspects of cornea development, including the innervation of the cornea by trigeminal axons, are sensitive to embryonic levels of thyroid hormone (TH). Although previous work showed that increased TH levels could enhance the rate of axonal extension within the cornea in a thyroxine (T4)-dependent manner, details underlying the stimulatory effect of TH on cornea innervation are unclear. Here, by examining the effects throughout all stages of cornea innervation of the two main THs, triiodothyronine (T3) and T4, we provide a more complete characterization of the stimulatory effects of TH on corneal nerves and begin to unravel the underlying molecular mechanisms. During development, trigeminal axons are initially repelled at the corneal periphery and encircle the cornea in a pericorneal nerve ring prior to advancing into the corneal stroma radially from all along the nerve ring. Overall, exogenous T3 led to pleiotropic effects throughout all stages of cornea innervation, whereas the effects of exogenous T4 was confined to timepoints following completion of the nerve ring. Specifically, exogenous T3 accelerated the formation of the pericorneal nerve ring. By utilizing in vitro neuronal explants studies we demonstrated that T3 acts as a trophic factor to directly stimulate trigeminal nerve growth. Further, exogenous T3 caused disorganized and precocious innervation of the cornea, accompanied by the downregulation of inhibitory Robo receptors that normally act to regulate the timing of nerve advancement into the Slit-expressing corneal tissues. Following nerve ring completion, the growth rate and branching behavior of nerves as they advanced into and through the cornea were found to be stimulated equally by T3 or T4. These stimulatory influences of T3/T4 over nerves likely arose as secondary consequences brought on by TH-mediated modulations to the corneal extracellular matrix. Specifically, we found that the levels of nerve-inhibitory keratan- and chondroitin-sulfate containing proteoglycans and associated sulfation enzymes were dramatically altered in the presence of exogenous T3 or T4. Altogether, these findings uncover new roles for TH on corneal development and shed insight into the mechanistic basis of both T3 and T4 on cornea innervation.
Collapse
Affiliation(s)
- Mansi Patel
- Department of Biology, Illinois Wesleyan University, Bloomington, IL, USA
| | - Ngan T K Pham
- Department of Biology, Illinois Wesleyan University, Bloomington, IL, USA
| | - Elise Ziegenhorn
- Department of Biology, Illinois Wesleyan University, Bloomington, IL, USA
| | - Alyssa Pisano
- Department of Biology, Illinois Wesleyan University, Bloomington, IL, USA
| | - Ryan J Deaton
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Shinho Kim
- Department of Biology, Illinois Wesleyan University, Bloomington, IL, USA
| | | | - Tyler Schwend
- Department of Biology, Illinois Wesleyan University, Bloomington, IL, USA.
| |
Collapse
|
13
|
Ma J, Lwigale P. Transformation of the Transcriptomic Profile of Mouse Periocular Mesenchyme During Formation of the Embryonic Cornea. Invest Ophthalmol Vis Sci 2019; 60:661-676. [PMID: 30786278 PMCID: PMC6383728 DOI: 10.1167/iovs.18-26018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose Defects in neural crest development are a major contributing factor in corneal dysgenesis, but little is known about the genetic landscape during corneal development. The purpose of this study was to provide a detailed transcriptome profile and evaluate changes in gene expression during mouse corneal development. Methods RNA sequencing was used to uncover the transcriptomic profile of periocular mesenchyme (pNC) isolated at embryonic day (E) 10.5 and corneas isolated at E14.5 and E16.5. The spatiotemporal expression of several differentially expressed genes was validated by in situ hybridization. Results Analysis of the whole-transcriptome profile between pNC and embryonic corneas identified 3815 unique differentially expressed genes. Pathway analysis revealed an enrichment of differentially expressed genes involved in signal transduction (retinoic acid, transforming growth factor-β, and Wnt pathways) and transcriptional regulation. Conclusions Our analyses, for the first time, identify a large number of differentially expressed genes during progressive stages of mouse corneal development. Our data provide a comprehensive transcriptomic profile of the developing cornea. Combined, these data serve as a valuable resource for the identification of novel regulatory networks crucial for the advancement of studies in congenital defects, stem cell therapy, bioengineering, and adult corneal diseases.
Collapse
Affiliation(s)
- Justin Ma
- BioSciences Department, Rice University, Houston, Texas, United States
| | - Peter Lwigale
- BioSciences Department, Rice University, Houston, Texas, United States
| |
Collapse
|