1
|
Como CN, O'Rourke R, Winkler C, Mitchell D, Tran L, Lorberbaum D, Sussel L, Franco S, Siegenthaler J. Meningeal-derived retinoic acid regulates neurogenesis via suppression of Notch and Sox2. Cell Rep 2025; 44:115637. [PMID: 40310723 DOI: 10.1016/j.celrep.2025.115637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 02/03/2025] [Accepted: 04/10/2025] [Indexed: 05/03/2025] Open
Abstract
The meninges act as a regulator of brain development by secreting ligands that act on neural cells to regulate neurogenesis and neuronal migration. Meningeal-derived retinoic acid (RA) promotes neocortical neural progenitor cell cycle exit; however, the underlying molecular mechanism is unknown. Here, we used spatial transcriptomics and profiling of retinoic acid receptor α (RARα) DNA binding in Foxc1-mutant embryos that lack meninges-derived signals to identify potential neurogenic transcriptional mechanisms of RA signaling in telencephalic neural progenitors. This identified upregulation of Sox2 and Notch pathway genes, and RARα binds to the Sox2ot promoter, a long noncoding RNA that regulates Sox2 expression. Our experiments using maternal RA treatment and in utero electroporation in Foxc1 mutants support that meningeal-derived RA promotes neurogenesis by suppressing Notch signaling, a progenitor self-renewal pathway. Our findings elucidate a previously unknown mechanism of how meningeal RA coordinates neocortical development and provide insight into how defects in meningeal development may cause neurodevelopmental disorders.
Collapse
Affiliation(s)
- Christina N Como
- University of Colorado Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA; University of Colorado Anschutz Medical Campus, Neuroscience Graduate Program, Aurora, CO 80045, USA
| | - Rebecca O'Rourke
- University of Colorado Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| | - Caitlin Winkler
- University of Colorado Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| | - Danae Mitchell
- University of Colorado Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA; University of Colorado Anschutz Medical Campus, Neuroscience Graduate Program, Aurora, CO 80045, USA
| | - Luuli Tran
- University of Colorado Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA; University of Colorado Anschutz Medical Campus, Molecular Biology Graduate Program, Aurora, CO 80045, USA
| | - David Lorberbaum
- University of Colorado Anschutz Medical Campus, Department of Pediatrics, Barbara Davis Center for Childhood Diabetes, Aurora, CO 80045, USA; University of Michigan Medical School, Department of Pharmacology and Caswell Diabetes Institute, Ann Arbor, MI 48105, USA
| | - Lori Sussel
- University of Colorado Anschutz Medical Campus, Department of Pediatrics, Barbara Davis Center for Childhood Diabetes, Aurora, CO 80045, USA
| | - Santos Franco
- University of Colorado Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA.
| | - Julie Siegenthaler
- University of Colorado Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA; University of Colorado Anschutz Medical Campus, Neuroscience Graduate Program, Aurora, CO 80045, USA.
| |
Collapse
|
2
|
Lin Q, Tan X, Ma D, Huang Y, Wang L, Zheng D, Lin J, Zhu Z, Mao M, Yi Z, Wang J, Li X. Verification of Pain-Related Neuromodulation Mechanisms of Calcitonin in Knee Osteoarthritis. Mol Neurobiol 2025:10.1007/s12035-025-04707-w. [PMID: 39994161 DOI: 10.1007/s12035-025-04707-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 01/14/2025] [Indexed: 02/26/2025]
Abstract
Chronic pain represents the prevailing symptom among patients suffering from knee osteoarthritis (KOA). In KOA, peripheral sensitization is driven by disruptions in subchondral bone homeostasis, local inflammatory responses, and variations in neuropeptide and neurotransmitter levels. Calcitonin, a pivotal peptide involved in bone metabolism, additionally exhibits potent analgesic properties. This study aimed to elucidate the mechanisms underlying calcitonin's neuromodulatory effects related to pain in the treatment of KOA. Three experiments were conducted: (1) assessing calcitonin's therapeutic effects via histomorphology, nociceptive behavioral assessments, and Western blot analysis of proteins; (2) verification of the involvement of neurotransmitters and neuropeptides in calcitonin's action using the Signal Transduction PathwayFinder PCR Array, Bio-Plex suspension chip, and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS); and (3) exploration of calcitonin's impact on brain function through functional magnetic resonance imaging (fMRI). Experiment 1 validated calcitonin's efficacy in KOA models. Experiment 2 demonstrated the involvement of the retinoic acid signaling pathway in calcitonin treatment, confirming that its analgesic efficacy is associated with the modulation of neuropeptides and neurotransmitters. Experiment 3 revealed that calcitonin treatment could reverse regional homogeneity and amplitude of low-frequency fluctuations in the hippocampus and tegmental nucleus. The study affirmed the critical role of pain-related neuromodulation mechanisms in calcitonin treatment, demonstrating that its analgesic effects are mediated through the modulation of neurotransmitters, neuropeptides, and brain function, as observed via fMRI. These findings provide a theoretical foundation for the clinical application of calcitonin in the treatment of KOA pain.
Collapse
Affiliation(s)
- Qing Lin
- College of Integrative Medicine, Department of Science and Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Xue Tan
- College of Integrative Medicine, Department of Science and Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Dezun Ma
- College of Integrative Medicine, Department of Science and Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine On Geriatrics, Fuzhou, 350122, China
| | - Yanfeng Huang
- College of Integrative Medicine, Department of Science and Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Lili Wang
- College of Integrative Medicine, Department of Science and Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine On Geriatrics, Fuzhou, 350122, China
| | - Danhao Zheng
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Shanghai Key Laboratory of Emotions and Affective Disorders (LEAD), Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 800 Dongchuan Road, Shanghai, 201100, China
| | - Jiaqiu Lin
- The Third Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Zaishi Zhu
- College of Integrative Medicine, Department of Science and Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Min Mao
- College of Integrative Medicine, Department of Science and Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Zhouping Yi
- College of Integrative Medicine, Department of Science and Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Jie Wang
- College of Integrative Medicine, Department of Science and Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Shanghai Key Laboratory of Emotions and Affective Disorders (LEAD), Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 800 Dongchuan Road, Shanghai, 201100, China
| | - Xihai Li
- College of Integrative Medicine, Department of Science and Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
- Fujian Key Laboratory of Integrative Medicine On Geriatrics, Fuzhou, 350122, China.
| |
Collapse
|
3
|
Dorsey SG, Mocci E, Lane MV, Krueger BK. Rapid effects of valproic acid on the fetal brain transcriptome: implications for brain development and autism. Transl Psychiatry 2024; 14:482. [PMID: 39632793 PMCID: PMC11618798 DOI: 10.1038/s41398-024-03179-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
There is an increased incidence of autism among the children of women who take the anti-epileptic, mood-stabilizing drug, valproic acid (VPA) during pregnancy; moreover, exposure to VPA in utero causes autistic-like symptoms in rodents and non-human primates. Analysis of RNA-seq data obtained from E12.5 fetal mouse brains 3 hours after VPA administration to the pregnant dam revealed that VPA rapidly and significantly increased or decreased the expression of approximately 7,300 genes. No significant sex differences in VPA-induced gene expression were observed. Expression of 399 autism risk genes was significantly altered by VPA as was expression of 258 genes that have been reported to modulate fetal brain development but are not otherwise linked to autism. Expression of genes associated with intracellular signaling pathways, neurogenesis, and excitation-inhibition balance as well as synaptogenesis, neuronal fate determination, axon and dendritic development, neuroinflammation, circadian rhythms, and epigenetic modulation of gene expression was dysregulated by VPA. Notably, at least 40 genes that are known to regulate embryonic neurogenesis were dysregulated by VPA. The goal of this study was to identify mouse genes that are: (a) significantly up- or downregulated by VPA in the fetal brain and (b) associated with autism and/or known to play a role in embryonic neurodevelopmental processes, perturbation of which has the potential to alter brain connectivity and, consequently behavior, in the adult. The genes meeting these criteria provide potential targets for future hypothesis-driven studies to elucidate the proximal causes of errors in brain connectivity underlying neurodevelopmental disorders such as autism.
Collapse
Affiliation(s)
- Susan G Dorsey
- Department of Pain and Translational Symptom Science University of Maryland School of Nursing, Baltimore, MD, 21201, USA
| | - Evelina Mocci
- Department of Pain and Translational Symptom Science University of Maryland School of Nursing, Baltimore, MD, 21201, USA
- Institute for Genome Sciences University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Malcolm V Lane
- Translational Toxicology/Department of Epidemiology and Public Health University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Bruce K Krueger
- Departments of Physiology and Psychiatry University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
4
|
Pereira KE, de Aguiar GB, Villanova B, Rabello NJ, Schelbauer R, Carniel ES, Moresco RM, de Souza MA, Centenaro LA. Evaluation of developmental milestones and of brain measurements in rats exposed to the pesticide pyriproxyfen in prenatal period. Int J Dev Neurosci 2024; 84:758-768. [PMID: 39245789 DOI: 10.1002/jdn.10370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/17/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024] Open
Abstract
Pyriproxyfen is a pesticide used in Brazil to control the Aedes aegypti mosquito, vector of arboviruses like Zika and dengue. However, this pesticide is structurally similar to retinoic acid, a metabolite of vitamin A that regulates neuronal differentiation and hindbrain development during the embryonic period. Due to the similarity between pyriproxyfen and retinoic acid, studies indicate that this pesticide may have cross-reactivity with retinoid receptors. Thus, pregnant exposure to pyriproxyfen could interfere in the nervous system development of the fetal. In this context, the present study evaluated whether prenatal exposure to pyriproxyfen affects neonatal development and brain structure in rats. Wistar rat pups were divided in three experimental groups: (1) negative control (CT-)-offspring of rats that drink potable water during pregnancy; (2) pyriproxyfen (PIR)-offspring of rats exposed to Sumilarv® prenatally, a pesticide that has pyriproxyfen as active ingredient; and (3) positive control (CT+)-offspring of rats exposed to an excess of vitamin A prenatally. Only vitamin A treated-pregnant showed lower weight gain, but gestation length was similar among pregnant that received potable water, water containing vitamin A and water containing Sumilarv. In relation to the offspring, PIR group exhibits a delayed front-limb suspension response but performed early the negative geotaxis reflex. On the other hand, CT+ group exhibited lower body weight in the 1st postnatal day, delayed audio startle response, but performed early the eyelids opening and hindlimb placing response. A reduction in the maximum brain width was observed both in PIR and CT+ groups, but a reduction in the number of neurons in the M1 cortex was showed only in CT+ group. The number of glial cells in this brain area was similar between the three experimental groups studied. Although prenatal exposure to pyriproxyfen did not alter neonatal milestones in the same way as vitamin A in excess, both substances caused a reduction in the maximum width of the brain, suggesting that this pesticide can produce neurotoxic effects during the embryonic period.
Collapse
Affiliation(s)
- Katriane Endiel Pereira
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Gabrielle Batista de Aguiar
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Bianca Villanova
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Nicole Jansen Rabello
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Rafaela Schelbauer
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Estela Soares Carniel
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Rafaela Maria Moresco
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | | | - Lígia Aline Centenaro
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| |
Collapse
|
5
|
Carrazana R, Espinoza F, Ávila A. Mechanistic perspective on the actions of vitamin a in autism spectrum disorder etiology. Neuroscience 2024; 554:72-82. [PMID: 39002756 DOI: 10.1016/j.neuroscience.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/07/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Vitamin A (VA) has many functions in the body, some of which are key for the development and functioning of the nervous system, while some others might indirectly influence neural function. Both hypovitaminosis and hypervitaminosis A can lead to clinical manifestations of concern for individuals and for general global health. Scientific evidence on the link between VA and autism spectrum disorder (ASD) is growing, with some clinical studies and accumulating results obtained from basic research using cellular and animal models. Remarkably, it has been shown that VA deficiency can exacerbate autistic symptomatology. In turn, VA supplementation has been shown to be able to improve autistic symptomatology in selected groups of individuals with ASD. However, it is important to recognize that ASD is a highly heterogeneous condition. Therefore, it is important to clarify how and when VA supplementation can be of benefit for affected individuals. Here we delve into the relationship between VA and ASD, discussing clinical observations and mechanistic insights obtained from research on selected autistic syndromes and laboratory models to advance in defining how the VA signaling pathway can be exploited for treatment of ASD.
Collapse
Affiliation(s)
- Ramón Carrazana
- Neurodevelopmental Biology Unit, Biomedical Sciences Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Francisca Espinoza
- Neurodevelopmental Biology Unit, Biomedical Sciences Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Ariel Ávila
- Neurodevelopmental Biology Unit, Biomedical Sciences Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile.
| |
Collapse
|
6
|
Pio T, Hill EJ, Kebede N, Andersen J, Sloan SA. Neuron-Astrocyte Interactions: A Human Perspective. ADVANCES IN NEUROBIOLOGY 2024; 39:69-93. [PMID: 39190072 DOI: 10.1007/978-3-031-64839-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
This chapter explores the intricate interactions between neurons and astrocytes within the nervous system with a particular emphasis on studies conducted in human tissue or with human cells. We specifically explore how neuron-astrocyte interactions relate to processes of cellular development, morphology, migration, synapse formation, and metabolism. These findings enrich our understanding of basic neurobiology and how disruptions in these processes are relevant to human diseases.The study of human neuron-astrocyte interactions is made possible because of transformative in vitro advancements that have facilitated the generation and sustained culture of human neural cells. In addition, the rise of techniques like sequencing at single-cell resolution has enabled the exploration of numerous human cell atlases and their comparisons to other animal model systems. Thus, the innovations outlined in this chapter illuminate the convergence and divergence of neuron-astrocyte interactions across species. As technologies progress, continually more sophisticated in vitro systems will increasingly reflect in vivo environments and deepen our command of neuron-glial interactions in human biology.
Collapse
Affiliation(s)
- Taylor Pio
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Emily J Hill
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Nardos Kebede
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Jimena Andersen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Steven A Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
7
|
Amel A, Rabeling A, Rossouw S, Goolam M. Wnt and BMP signalling direct anterior-posterior differentiation in aggregates of mouse embryonic stem cells. Biol Open 2023; 12:bio059981. [PMID: 37622734 PMCID: PMC10508691 DOI: 10.1242/bio.059981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023] Open
Abstract
Stem-cell-based embryo models have allowed greater insight into peri-implantation mammalian developmental events that are otherwise difficult to manipulate due to the inaccessibility of the early embryo. The rapid development of this field has resulted in the precise roles of frequently used supplements such as N2, B27 and Chiron in driving stem cell lineage commitment not being clearly defined. Here, we investigate the effects of these supplements on embryoid bodies to better understand their roles in stem cell differentiation. We show that Wnt signalling has a general posteriorising effect on stem cell aggregates and directs differentiation towards the mesoderm, as confirmed through the upregulation of posterior and mesodermal markers. N2 and B27 can mitigate these effects and upregulate the expression of anterior markers. To control the Wnt gradient and the subsequent anterior versus posterior fate, we make use of a BMP4 signalling centre and show that aggregates in these conditions express cephalic markers. These findings indicate that there is an intricate balance between various culture supplements and their ability to guide differentiation in stem cell embryo models.
Collapse
Affiliation(s)
- Atoosa Amel
- Department of Human Biology, University of Cape Town, Cape Town 7925, South Africa
| | - Alexa Rabeling
- Department of Human Biology, University of Cape Town, Cape Town 7925, South Africa
| | - Simoné Rossouw
- Department of Human Biology, University of Cape Town, Cape Town 7925, South Africa
| | - Mubeen Goolam
- Department of Human Biology, University of Cape Town, Cape Town 7925, South Africa
- UCT Neuroscience Institute, Cape Town, South Africa
| |
Collapse
|
8
|
Lavudi K, Nuguri SM, Olverson Z, Dhanabalan AK, Patnaik S, Kokkanti RR. Targeting the retinoic acid signaling pathway as a modern precision therapy against cancers. Front Cell Dev Biol 2023; 11:1254612. [PMID: 37645246 PMCID: PMC10461636 DOI: 10.3389/fcell.2023.1254612] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/28/2023] [Indexed: 08/31/2023] Open
Abstract
Retinoic acid (RA) is a vital metabolite derived from vitamin A. RA plays a prominent role during development, which helps in embryological advancement and cellular differentiation. Mechanistically, RA binds to its definite nuclear receptors including the retinoic acid receptor and retinoid X receptor, thus triggering gene transcription and further consequences in gene regulation. This functional heterodimer activation later results in gene activation/inactivation. Several reports have been published related to the detailed embryonic and developmental role of retinoic acids and as an anti-cancer drug for specific cancers, including acute promyelocytic leukemia, breast cancer, and prostate cancer. Nonetheless, the other side of all-trans retinoic acid (ATRA) has not been explored widely yet. In this review, we focused on the role of the RA pathway and its downstream gene activation in relation to cancer progression. Furthermore, we explored the ways of targeting the retinoic acid pathway by focusing on the dual role of aldehyde dehydrogenase (ALDH) family enzymes. Combination strategies by combining RA targets with ALDH-specific targets make the tumor cells sensitive to the treatment and improve the progression-free survival of the patients. In addition to the genomic effects of ATRA, we also highlighted the role of ATRA in non-canonical mechanisms as an immune checkpoint inhibitor, thus targeting the immune oncological perspective of cancer treatments in the current era. The role of ATRA in activating independent mechanisms is also explained in this review. This review also highlights the current clinical trials of ATRA in combination with other chemotherapeutic drugs and explains the future directional insights related to ATRA usage.
Collapse
Affiliation(s)
- Kousalya Lavudi
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Shreya Madhav Nuguri
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
| | - Zianne Olverson
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Anantha Krishna Dhanabalan
- Centre for Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, India
| | - Srinivas Patnaik
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Rekha Rani Kokkanti
- Department of Biotechnology, Sri Padmavati Mahila Visvavidyalayam, Tirupati, Andhra Pradesh, India
| |
Collapse
|
9
|
Dorsey SG, Mocci E, Lane MV, Krueger BK. Rapid effects of valproic acid on the fetal brain transcriptome: Implications for brain development and autism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.01.538959. [PMID: 37205520 PMCID: PMC10187231 DOI: 10.1101/2023.05.01.538959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
There is an increased incidence of autism among the children of women who take the anti-epileptic, mood stabilizing drug, valproic acid (VPA) during pregnancy; moreover, exposure to VPA in utero causes autistic-like symptoms in rodents and non-human primates. Analysis of RNAseq data ob-tained from E12.5 fetal mouse brains 3 hours after VPA administration revealed that VPA significant-ly increased or decreased the expression of approximately 7,300 genes. No significant sex differ-ences in VPA-induced gene expression were observed. Expression of genes associated with neu-rodevelopmental disorders (NDDs) such as autism as well as neurogenesis, axon growth and syn-aptogenesis, GABAergic, glutaminergic and dopaminergic synaptic transmission, perineuronal nets, and circadian rhythms was dysregulated by VPA. Moreover, expression of 399 autism risk genes was significantly altered by VPA as was expression of 252 genes that have been reported to play fundamental roles in the development of the nervous system but are not otherwise linked to autism. The goal of this study was to identify mouse genes that are: (a) significantly up- or down-regulated by VPA in the fetal brain and (b) known to be associated with autism and/or to play a role in embryonic neurodevelopmental processes, perturbation of which has the potential to alter brain connectivity in the postnatal and adult brain. The set of genes meeting these criteria pro-vides potential targets for future hypothesis-driven approaches to elucidating the proximal underly-ing causes of defective brain connectivity in NDDs such as autism.
Collapse
|
10
|
Upreti D, Rouzer SK, Bowring A, Labbe E, Kumar R, Miranda RC, Mahnke AH. Microbiota and nutrition as risk and resiliency factors following prenatal alcohol exposure. Front Neurosci 2023; 17:1182635. [PMID: 37397440 PMCID: PMC10308314 DOI: 10.3389/fnins.2023.1182635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023] Open
Abstract
Alcohol exposure in adulthood can result in inflammation, malnutrition, and altered gastroenteric microbiota, which may disrupt efficient nutrient extraction. Clinical and preclinical studies have documented convincingly that prenatal alcohol exposure (PAE) also results in persistent inflammation and nutrition deficiencies, though research on the impact of PAE on the enteric microbiota is in its infancy. Importantly, other neurodevelopmental disorders, including autism spectrum and attention deficit/hyperactivity disorders, have been linked to gut microbiota dysbiosis. The combined evidence from alcohol exposure in adulthood and from other neurodevelopmental disorders supports the hypothesis that gut microbiota dysbiosis is likely an etiological feature that contributes to negative developmental, including neurodevelopmental, consequences of PAE and results in fetal alcohol spectrum disorders. Here, we highlight published data that support a role for gut microbiota in healthy development and explore the implication of these studies for the role of altered microbiota in the lifelong health consequences of PAE.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Amanda H. Mahnke
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX, United States
| |
Collapse
|
11
|
Saito M, Subbanna S, Zhang X, Canals-Baker S, Smiley JF, Wilson DA, Das BC. Effects of retinoic acid receptor α modulators on developmental ethanol-induced neurodegeneration and neuroinflammation. Front Neurosci 2023; 17:1170259. [PMID: 37205047 PMCID: PMC10187544 DOI: 10.3389/fnins.2023.1170259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/07/2023] [Indexed: 05/21/2023] Open
Abstract
Ethanol exposure in neonatal mice induces acute neurodegeneration followed by long-lasting glial activation and GABAergic cell deficits along with behavioral abnormalities, providing a third trimester model of fetal alcohol spectrum disorders (FASD). Retinoic acid (RA), the active form of vitamin A, regulates transcription of RA-responsive genes and plays essential roles in the development of embryos and their CNS. Ethanol has been shown to disturb RA metabolism and signaling in the developing brain, which may be a cause of ethanol toxicity leading to FASD. Using an agonist and an antagonist specific to RA receptor α (RARα), we studied how RA/RARα signaling affects acute and long-lasting neurodegeneration and activation of phagocytic cells and astrocytes caused by ethanol administered to neonatal mice. We found that an RARα antagonist (BT382) administered 30 min before ethanol injection into postnatal day 7 (P7) mice partially blocked acute neurodegeneration as well as elevation of CD68-positive phagocytic cells in the same brain area. While an RARα agonist (BT75) did not affect acute neurodegeneration, BT75 given either before or after ethanol administration ameliorated long-lasting astrocyte activation and GABAergic cell deficits in certain brain regions. Our studies using Nkx2.1-Cre;Ai9 mice, in which major GABAergic neurons and their progenitors in the cortex and the hippocampus are labeled with constitutively expressed tdTomato fluorescent protein, indicate that the long-lasting GABAergic cell deficits are mainly caused by P7 ethanol-induced initial neurodegeneration. However, the partial reduction of prolonged GABAergic cell deficits and glial activation by post-ethanol BT75 treatment suggests that, in addition to the initial cell death, there may be delayed cell death or disturbed development of GABAergic cells, which is partially rescued by BT75. Since RARα agonists including BT75 have been shown to exert anti-inflammatory effects, BT75 may rescue GABAergic cell deficits by reducing glial activation/neuroinflammation.
Collapse
Affiliation(s)
- Mariko Saito
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Psychiatry, New York University School of Medicine, New York, NY, United States
- *Correspondence: Mariko Saito,
| | - Shivakumar Subbanna
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Xiuli Zhang
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Stefanie Canals-Baker
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - John F. Smiley
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Psychiatry, New York University School of Medicine, New York, NY, United States
| | - Donald A. Wilson
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Child and Adolescent Psychiatry, New York University Medical Center, New York, NY, United States
| | - Bhaskar C. Das
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, United States
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Bhaskar C. Das,
| |
Collapse
|
12
|
Wang J, Weatheritt R, Voineagu I. Alu-minating the Mechanisms Underlying Primate Cortex Evolution. Biol Psychiatry 2022; 92:760-771. [PMID: 35981906 DOI: 10.1016/j.biopsych.2022.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/04/2022] [Accepted: 04/28/2022] [Indexed: 11/02/2022]
Abstract
The higher-order cognitive functions observed in primates correlate with the evolutionary enhancement of cortical volume and folding, which in turn are driven by the primate-specific expansion of cellular diversity in the developing cortex. Underlying these changes is the diversification of molecular features including the creation of human and/or primate-specific genes, the activation of specific molecular pathways, and the interplay of diverse layers of gene regulation. We review and discuss evidence for connections between Alu elements and primate brain evolution, the evolutionary milestones of which are known to coincide along primate lineages. Alus are repetitive elements that contribute extensively to the acquisition of novel genes and the expansion of diverse gene regulatory layers, including enhancers, alternative splicing, RNA editing, and microRNA pathways. By reviewing the impact of Alus on molecular features linked to cortical expansions or gyrification or implications in cognitive deficits, we suggest that future research focusing on the role of Alu-derived molecular events in the context of brain development may greatly advance our understanding of higher-order cognitive functions and neurologic disorders.
Collapse
Affiliation(s)
- Juli Wang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia.
| | - Robert Weatheritt
- St Vincent Clinical School, University of New South Wales, Sydney, Australia; Garvan Institute of Medical Research, EMBL Australia, Sydney, New South Wales, Australia
| | - Irina Voineagu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia; Cellular Genomics Futures Institute, University of New South Wales, Sydney, Australia.
| |
Collapse
|
13
|
Chesnokova E, Beletskiy A, Kolosov P. The Role of Transposable Elements of the Human Genome in Neuronal Function and Pathology. Int J Mol Sci 2022; 23:5847. [PMID: 35628657 PMCID: PMC9148063 DOI: 10.3390/ijms23105847] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/13/2022] Open
Abstract
Transposable elements (TEs) have been extensively studied for decades. In recent years, the introduction of whole-genome and whole-transcriptome approaches, as well as single-cell resolution techniques, provided a breakthrough that uncovered TE involvement in host gene expression regulation underlying multiple normal and pathological processes. Of particular interest is increased TE activity in neuronal tissue, and specifically in the hippocampus, that was repeatedly demonstrated in multiple experiments. On the other hand, numerous neuropathologies are associated with TE dysregulation. Here, we provide a comprehensive review of literature about the role of TEs in neurons published over the last three decades. The first chapter of the present review describes known mechanisms of TE interaction with host genomes in general, with the focus on mammalian and human TEs; the second chapter provides examples of TE exaptation in normal neuronal tissue, including TE involvement in neuronal differentiation and plasticity; and the last chapter lists TE-related neuropathologies. We sought to provide specific molecular mechanisms of TE involvement in neuron-specific processes whenever possible; however, in many cases, only phenomenological reports were available. This underscores the importance of further studies in this area.
Collapse
Affiliation(s)
- Ekaterina Chesnokova
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, 117485 Moscow, Russia; (A.B.); (P.K.)
| | | | | |
Collapse
|
14
|
Brain Organization and Human Diseases. Cells 2022; 11:cells11101642. [PMID: 35626679 PMCID: PMC9139716 DOI: 10.3390/cells11101642] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023] Open
Abstract
The cortex is a highly organized structure that develops from the caudal regions of the segmented neural tube. Its spatial organization sets the stage for future functional arealization. Here, we suggest using a developmental perspective to describe and understand the etiology of common cortical malformations and their manifestation in the human brain.
Collapse
|
15
|
Napoli JL. Retinoic Acid: Sexually Dimorphic, Anti-Insulin and Concentration-Dependent Effects on Energy. Nutrients 2022; 14:1553. [PMID: 35458115 PMCID: PMC9027308 DOI: 10.3390/nu14081553] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 12/26/2022] Open
Abstract
This review addresses the fasting vs. re-feeding effects of retinoic acid (RA) biosynthesis and functions, and sexually dimorphic RA actions. It also discusses other understudied topics essential for understanding RA activities-especially interactions with energy-balance-regulating hormones, including insulin and glucagon, and sex hormones. This report will introduce RA homeostasis and hormesis to provide context. Essential context also will encompass RA effects on adiposity, muscle function and pancreatic islet development and maintenance. These comments provide background for explaining interactions among insulin, glucagon and cortisol with RA homeostasis and function. One aim would clarify the often apparent RA contradictions related to pancreagenesis vs. pancreas hormone functions. The discussion also will explore the adverse effects of RA on estrogen action, in contrast to the enhancing effects of estrogen on RA action, the adverse effects of androgens on RA receptors, and the RA induction of androgen biosynthesis.
Collapse
Affiliation(s)
- Joseph L Napoli
- Graduate Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, The University of California-Berkeley, Berkeley, CA 94704, USA
| |
Collapse
|
16
|
Shibata M, Pattabiraman K, Lorente-Galdos B, Andrijevic D, Kim SK, Kaur N, Muchnik SK, Xing X, Santpere G, Sousa AMM, Sestan N. Regulation of prefrontal patterning and connectivity by retinoic acid. Nature 2021; 598:483-488. [PMID: 34599305 PMCID: PMC9018119 DOI: 10.1038/s41586-021-03953-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 08/25/2021] [Indexed: 02/08/2023]
Abstract
The prefrontal cortex (PFC) and its connections with the mediodorsal thalamus are crucial for cognitive flexibility and working memory1 and are thought to be altered in disorders such as autism2,3 and schizophrenia4,5. Although developmental mechanisms that govern the regional patterning of the cerebral cortex have been characterized in rodents6-9, the mechanisms that underlie the development of PFC-mediodorsal thalamus connectivity and the lateral expansion of the PFC with a distinct granular layer 4 in primates10,11 remain unknown. Here we report an anterior (frontal) to posterior (temporal), PFC-enriched gradient of retinoic acid, a signalling molecule that regulates neural development and function12-15, and we identify genes that are regulated by retinoic acid in the neocortex of humans and macaques at the early and middle stages of fetal development. We observed several potential sources of retinoic acid, including the expression and cortical expansion of retinoic-acid-synthesizing enzymes specifically in primates as compared to mice. Furthermore, retinoic acid signalling is largely confined to the prospective PFC by CYP26B1, a retinoic-acid-catabolizing enzyme, which is upregulated in the prospective motor cortex. Genetic deletions in mice revealed that retinoic acid signalling through the retinoic acid receptors RXRG and RARB, as well as CYP26B1-dependent catabolism, are involved in proper molecular patterning of prefrontal and motor areas, development of PFC-mediodorsal thalamus connectivity, intra-PFC dendritic spinogenesis and expression of the layer 4 marker RORB. Together, these findings show that retinoic acid signalling has a critical role in the development of the PFC and, potentially, in its evolutionary expansion.
Collapse
Affiliation(s)
- Mikihito Shibata
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Kartik Pattabiraman
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Yale Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | | | - David Andrijevic
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Suel-Kee Kim
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Navjot Kaur
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Sydney K Muchnik
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Xiaojun Xing
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Yale Genome Editing Center, Yale School of Medicine, New Haven, CT, USA
| | - Gabriel Santpere
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Neurogenomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), DCEXS, Universitat Pompeu Fabra, Barcelona, Spain
| | - Andre M M Sousa
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA.
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
- Yale Genome Editing Center, Yale School of Medicine, New Haven, CT, USA.
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA.
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT, USA.
- Kavli Institute for Neuroscience, Yale University, New Haven, CT, USA.
| |
Collapse
|
17
|
Derk J, Jones HE, Como C, Pawlikowski B, Siegenthaler JA. Living on the Edge of the CNS: Meninges Cell Diversity in Health and Disease. Front Cell Neurosci 2021; 15:703944. [PMID: 34276313 PMCID: PMC8281977 DOI: 10.3389/fncel.2021.703944] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/08/2021] [Indexed: 12/30/2022] Open
Abstract
The meninges are the fibrous covering of the central nervous system (CNS) which contain vastly heterogeneous cell types within its three layers (dura, arachnoid, and pia). The dural compartment of the meninges, closest to the skull, is predominantly composed of fibroblasts, but also includes fenestrated blood vasculature, an elaborate lymphatic system, as well as immune cells which are distinct from the CNS. Segregating the outer and inner meningeal compartments is the epithelial-like arachnoid barrier cells, connected by tight and adherens junctions, which regulate the movement of pathogens, molecules, and cells into and out of the cerebral spinal fluid (CSF) and brain parenchyma. Most proximate to the brain is the collagen and basement membrane-rich pia matter that abuts the glial limitans and has recently be shown to have regional heterogeneity within the developing mouse brain. While the meninges were historically seen as a purely structural support for the CNS and protection from trauma, the emerging view of the meninges is as an essential interface between the CNS and the periphery, critical to brain development, required for brain homeostasis, and involved in a variety of diseases. In this review, we will summarize what is known regarding the development, specification, and maturation of the meninges during homeostatic conditions and discuss the rapidly emerging evidence that specific meningeal cell compartments play differential and important roles in the pathophysiology of a myriad of diseases including: multiple sclerosis, dementia, stroke, viral/bacterial meningitis, traumatic brain injury, and cancer. We will conclude with a list of major questions and mechanisms that remain unknown, the study of which represent new, future directions for the field of meninges biology.
Collapse
Affiliation(s)
- Julia Derk
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Aurora, CO, United States
| | - Hannah E. Jones
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Aurora, CO, United States
- Cell Biology, Stem Cells and Development Graduate Program, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| | - Christina Como
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Aurora, CO, United States
- Neuroscience Graduate Program, University of Colorado, Aurora, CO, United States
| | - Bradley Pawlikowski
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Aurora, CO, United States
| | - Julie A. Siegenthaler
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Aurora, CO, United States
- Cell Biology, Stem Cells and Development Graduate Program, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
- Neuroscience Graduate Program, University of Colorado, Aurora, CO, United States
| |
Collapse
|
18
|
Mosleth EF, Vedeler CA, Liland KH, McLeod A, Bringeland GH, Kroondijk L, Berven FS, Lysenko A, Rawlings CJ, Eid KEH, Opsahl JA, Gjertsen BT, Myhr KM, Gavasso S. Cerebrospinal fluid proteome shows disrupted neuronal development in multiple sclerosis. Sci Rep 2021; 11:4087. [PMID: 33602999 PMCID: PMC7892850 DOI: 10.1038/s41598-021-82388-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/18/2021] [Indexed: 12/11/2022] Open
Abstract
Despite intensive research, the aetiology of multiple sclerosis (MS) remains unknown. Cerebrospinal fluid proteomics has the potential to reveal mechanisms of MS pathogenesis, but analyses must account for disease heterogeneity. We previously reported explorative multivariate analysis by hierarchical clustering of proteomics data of MS patients and controls, which resulted in two groups of individuals. Grouping reflected increased levels of intrathecal inflammatory response proteins and decreased levels of proteins involved in neural development in one group relative to the other group. MS patients and controls were present in both groups. Here we reanalysed these data and we also reanalysed data from an independent cohort of patients diagnosed with clinically isolated syndrome (CIS), who have symptoms of MS without evidence of dissemination in space and/or time. Some, but not all, CIS patients had intrathecal inflammation. The analyses reported here identified a common protein signature of MS/CIS that was not linked to elevated intrathecal inflammation. The signature included low levels of complement proteins, semaphorin-7A, reelin, neural cell adhesion molecules, inter-alpha-trypsin inhibitor heavy chain H2, transforming growth factor beta 1, follistatin-related protein 1, malate dehydrogenase 1 cytoplasmic, plasma retinol-binding protein, biotinidase, and transferrin, all known to play roles in neural development. Low levels of these proteins suggest that MS/CIS patients suffer from abnormally low oxidative capacity that results in disrupted neural development from an early stage of the disease.
Collapse
Affiliation(s)
- Ellen F Mosleth
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Osloveien 1, 1430, Ås, Norway.
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK.
| | - Christian Alexander Vedeler
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Kristian Hovde Liland
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Osloveien 1, 1430, Ås, Norway
- Faculty of Science and Technology, Norwegian University of Life Sciences, 1430, Ås, Norway
| | - Anette McLeod
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Osloveien 1, 1430, Ås, Norway
- Center for Laboratory Medicine, Østfold Hospital Trust, Grålum, Norway
| | - Gerd Haga Bringeland
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Liesbeth Kroondijk
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | | | - Artem Lysenko
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | | | - Karim El-Hajj Eid
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Osloveien 1, 1430, Ås, Norway
- Faculty of Science and Technology, Norwegian University of Life Sciences, 1430, Ås, Norway
| | - Jill Anette Opsahl
- Proteomics Unit (PROBE), Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Bjørn Tore Gjertsen
- Center for Cancer Biomarkers (CCBIO), Department of Clinical Science, Precision Oncology Research Group, University of Bergen, Bergen, Norway
- Department of Medicine, Haematology Section, Haukeland University Hospital, Bergen, Norway
| | - Kjell-Morten Myhr
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Sonia Gavasso
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
19
|
Llorca A, Marín O. Orchestrated freedom: new insights into cortical neurogenesis. Curr Opin Neurobiol 2020; 66:48-56. [PMID: 33096393 DOI: 10.1016/j.conb.2020.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/03/2020] [Accepted: 09/02/2020] [Indexed: 11/17/2022]
Abstract
In mammals, the construction of the cerebral cortex involves the coordinated output of large populations of apical progenitor cells. Cortical progenitor cells use intrinsic molecular programs and complex regulatory mechanisms to generate a large diversity of excitatory projection neurons in appropriate numbers. In this review, we summarize recent findings regarding the neurogenic behavior of cortical progenitors during neurogenesis. We describe alternative models explaining the generation of neuronal diversity among excitatory projection neurons and the role of intrinsic and extrinsic signals in the modulation of the individual output of apical progenitor cells.
Collapse
Affiliation(s)
- Alfredo Llorca
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Oscar Marín
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom.
| |
Collapse
|
20
|
Ferent J, Zaidi D, Francis F. Extracellular Control of Radial Glia Proliferation and Scaffolding During Cortical Development and Pathology. Front Cell Dev Biol 2020; 8:578341. [PMID: 33178693 PMCID: PMC7596222 DOI: 10.3389/fcell.2020.578341] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/08/2020] [Indexed: 01/14/2023] Open
Abstract
During the development of the cortex, newly generated neurons migrate long-distances in the expanding tissue to reach their final positions. Pyramidal neurons are produced from dorsal progenitors, e.g., radial glia (RGs) in the ventricular zone, and then migrate along RG processes basally toward the cortex. These neurons are hence dependent upon RG extensions to support their migration from apical to basal regions. Several studies have investigated how intracellular determinants are required for RG polarity and subsequent formation and maintenance of their processes. Fewer studies have identified the influence of the extracellular environment on this architecture. This review will focus on extracellular factors which influence RG morphology and pyramidal neuronal migration during normal development and their perturbations in pathology. During cortical development, RGs are present in different strategic positions: apical RGs (aRGs) have their cell bodies located in the ventricular zone with an apical process contacting the ventricle, while they also have a basal process extending radially to reach the pial surface of the cortex. This particular conformation allows aRGs to be exposed to long range and short range signaling cues, whereas basal RGs (bRGs, also known as outer RGs, oRGs) have their cell bodies located throughout the cortical wall, limiting their access to ventricular factors. Long range signals impacting aRGs include secreted molecules present in the embryonic cerebrospinal fluid (e.g., Neuregulin, EGF, FGF, Wnt, BMP). Secreted molecules also contribute to the extracellular matrix (fibronectin, laminin, reelin). Classical short range factors include cell to cell signaling, adhesion molecules and mechano-transduction mechanisms (e.g., TAG1, Notch, cadherins, mechanical tension). Changes in one or several of these components influencing the RG extracellular environment can disrupt the development or maintenance of RG architecture on which neuronal migration relies, leading to a range of cortical malformations. First, we will detail the known long range signaling cues impacting RG. Then, we will review how short range cell contacts are also important to instruct the RG framework. Understanding how RG processes are structured by their environment to maintain and support radial migration is a critical part of the investigation of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Julien Ferent
- Inserm, U 1270, Paris, France.,Sorbonne University, UMR-S 1270, IFM, Paris, France.,Institut du Fer á Moulin, Paris, France
| | - Donia Zaidi
- Inserm, U 1270, Paris, France.,Sorbonne University, UMR-S 1270, IFM, Paris, France.,Institut du Fer á Moulin, Paris, France
| | - Fiona Francis
- Inserm, U 1270, Paris, France.,Sorbonne University, UMR-S 1270, IFM, Paris, France.,Institut du Fer á Moulin, Paris, France
| |
Collapse
|
21
|
Leszczyński P, Śmiech M, Salam Teeli A, Haque E, Viger R, Ogawa H, Pierzchała M, Taniguchi H. Deletion of the Prdm3 Gene Causes a Neuronal Differentiation Deficiency in P19 Cells. Int J Mol Sci 2020; 21:ijms21197192. [PMID: 33003409 PMCID: PMC7582457 DOI: 10.3390/ijms21197192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/29/2022] Open
Abstract
PRDM (PRDI-BF1 (positive regulatory domain I-binding factor 1) and RIZ1 (retinoblastoma protein-interacting zinc finger gene 1) homologous domain-containing) transcription factors are a group of proteins that have a significant impact on organ development. In our study, we assessed the role of Prdm3 in neurogenesis and the mechanisms regulating its expression. We found that Prdm3 mRNA expression was induced during neurogenesis and that Prdm3 gene knockout caused premature neuronal differentiation of the P19 cells and enhanced the growth of non-neuronal cells. Interestingly, we found that Gata6 expression was also significantly upregulated during neurogenesis. We further studied the regulatory mechanism of Prdm3 expression. To determine the role of GATA6 in the regulation of Prdm3 mRNA expression, we used a luciferase-based reporter assay and found that Gata6 overexpression significantly increased the activity of the Prdm3 promoter. Finally, the combination of retinoic acid receptors α and β, along with Gata6 overexpression, further increased the activity of the luciferase reporter. Taken together, our results suggest that in the P19 cells, PRDM3 contributed to neurogenesis and its expression was stimulated by the synergism between GATA6 and the retinoic acid signaling pathway.
Collapse
Affiliation(s)
- Paweł Leszczyński
- Institute of Genetics and Animal Biotechnology, Laboratory for Genome Editing and Transcriptional Regulation, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (P.L.); (M.Ś.); (A.S.T.); (E.H.)
| | - Magdalena Śmiech
- Institute of Genetics and Animal Biotechnology, Laboratory for Genome Editing and Transcriptional Regulation, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (P.L.); (M.Ś.); (A.S.T.); (E.H.)
| | - Aamir Salam Teeli
- Institute of Genetics and Animal Biotechnology, Laboratory for Genome Editing and Transcriptional Regulation, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (P.L.); (M.Ś.); (A.S.T.); (E.H.)
| | - Effi Haque
- Institute of Genetics and Animal Biotechnology, Laboratory for Genome Editing and Transcriptional Regulation, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (P.L.); (M.Ś.); (A.S.T.); (E.H.)
| | - Robert Viger
- Reproduction, Mother and Child Health, Centre de Recherche du CHU de Québec-Université Laval and Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Quebec, QC GIV4G2, Canada;
- Department of Obstetrics, Gynecology, and Reproduction, Université Laval, Quebec, QC G1V0A6, Canada
| | - Hidesato Ogawa
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan;
| | - Mariusz Pierzchała
- Institute of Genetics and Animal Biotechnology, Department of Genomics and Biodiversity, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland;
| | - Hiroaki Taniguchi
- Institute of Genetics and Animal Biotechnology, Laboratory for Genome Editing and Transcriptional Regulation, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (P.L.); (M.Ś.); (A.S.T.); (E.H.)
- Correspondence: ; Tel.: +48-22-736-70-95
| |
Collapse
|
22
|
Harkins D, Cooper HM, Piper M. The role of lipids in ependymal development and the modulation of adult neural stem cell function during aging and disease. Semin Cell Dev Biol 2020; 112:61-68. [PMID: 32771376 DOI: 10.1016/j.semcdb.2020.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/24/2020] [Accepted: 07/29/2020] [Indexed: 01/10/2023]
Abstract
Within the adult mammalian central nervous system, the ventricular-subventricular zone (V-SVZ) lining the lateral ventricles houses neural stem cells (NSCs) that continue to produce neurons throughout life. Developmentally, the V-SVZ neurogenic niche arises during corticogenesis following the terminal differentiation of telencephalic radial glial cells (RGCs) into either adult neural stem cells (aNSCs) or ependymal cells. In mice, these two cellular populations form rosettes during the late embryonic and early postnatal period, with ependymal cells surrounding aNSCs. These aNSCs and ependymal cells serve a number of key purposes, including the generation of neurons throughout life (aNSCs), and acting as a barrier between the CSF and the parenchyma and promoting CSF bulk flow (ependymal cells). Interestingly, the development of this neurogenic niche, as well as its ongoing function, has been shown to be reliant on different aspects of lipid biology. In this review we discuss the developmental origins of the rodent V-SVZ neurogenic niche, and highlight research which has implicated a role for lipids in the physiology of this part of the brain. We also discuss the role of lipids in the maintenance of the V-SVZ niche, and discuss new research which has suggested that alterations to lipid biology could contribute to ependymal cell dysfunction in aging and disease.
Collapse
Affiliation(s)
- Danyon Harkins
- School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Helen M Cooper
- Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Australia
| | - Michael Piper
- School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Australia.
| |
Collapse
|
23
|
Vaid S, Huttner WB. Transcriptional Regulators and Human-Specific/Primate-Specific Genes in Neocortical Neurogenesis. Int J Mol Sci 2020; 21:ijms21134614. [PMID: 32610533 PMCID: PMC7369782 DOI: 10.3390/ijms21134614] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/09/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022] Open
Abstract
During development, starting from a pool of pluripotent stem cells, tissue-specific genetic programs help to shape and develop functional organs. To understand the development of an organ and its disorders, it is important to understand the spatio-temporal dynamics of the gene expression profiles that occur during its development. Modifications in existing genes, the de-novo appearance of new genes, or, occasionally, even the loss of genes, can greatly affect the gene expression profile of any given tissue and contribute to the evolution of organs or of parts of organs. The neocortex is evolutionarily the most recent part of the brain, it is unique to mammals, and is the seat of our higher cognitive abilities. Progenitors that give rise to this tissue undergo sequential waves of differentiation to produce the complete sets of neurons and glial cells that make up a functional neocortex. We will review herein our understanding of the transcriptional regulators that control the neural precursor cells (NPCs) during the generation of the most abundant class of neocortical neurons, the glutametergic neurons. In addition, we will discuss the roles of recently-identified human- and primate-specific genes in promoting neurogenesis, leading to neocortical expansion.
Collapse
|
24
|
Chui A, Zhang Q, Dai Q, Shi SH. Oxidative stress regulates progenitor behavior and cortical neurogenesis. Development 2020; 147:dev.184150. [PMID: 32041791 DOI: 10.1242/dev.184150] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/17/2020] [Indexed: 12/13/2022]
Abstract
Orderly division of radial glial progenitors (RGPs) in the developing mammalian cerebral cortex generates deep and superficial layer neurons progressively. However, the mechanisms that control RGP behavior and precise neuronal output remain elusive. Here, we show that the oxidative stress level progressively increases in the developing mouse cortex and regulates RGP behavior and neurogenesis. As development proceeds, numerous gene pathways linked to reactive oxygen species (ROS) and oxidative stress exhibit drastic changes in RGPs. Selective removal of PRDM16, a transcriptional regulator highly expressed in RGPs, elevates ROS level and induces expression of oxidative stress-responsive genes. Coinciding with an enhanced level of oxidative stress, RGP behavior was altered, leading to abnormal deep and superficial layer neuron generation. Simultaneous expression of mitochondrially targeted catalase to reduce cellular ROS levels significantly suppresses cortical defects caused by PRDM16 removal. Together, these findings suggest that oxidative stress actively regulates RGP behavior to ensure proper neurogenesis in the mammalian cortex.
Collapse
Affiliation(s)
- Angela Chui
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA .,Neuroscience Graduate Program, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Qiangqiang Zhang
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Qi Dai
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Song-Hai Shi
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA .,Neuroscience Graduate Program, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA.,IDG/McGovern Institute for Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Center of Biological Molecules, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
25
|
Cavallucci V, Fidaleo M, Pani G. Nutrients and neurogenesis: the emerging role of autophagy and gut microbiota. Curr Opin Pharmacol 2019; 50:46-52. [PMID: 31869664 DOI: 10.1016/j.coph.2019.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 12/18/2022]
Abstract
Adult neurogenesis, the generation of mature functional neurons from neural stem cells in specific regions of the adult mammalian brain, is implicated in brain physiology, neurodegeneration and mood disorders. Among the many intrinsic and extrinsic factors that modulate neurogenic activity, the role of nutrients, energy metabolism, and gut microbiota has recently emerged. It is increasingly evident that excessive calorie intake accelerates the age-dependent decline of neurogenesis, while calorie restriction and physical exercise have the opposite effect. Mechanistically, nutrient availability could affect neurogenesis by modulating autophagy, a cell-rejuvenating process, in neural stem cells. In parallel, diet can alter the composition of gut microbiota thus impacting the intestine-neurogenic niche communication. These exciting breakthroughs are here concisely reviewed.
Collapse
Affiliation(s)
- Virve Cavallucci
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Institute of General Pathology, Università Cattolica del Sacro Cuore, Roma, Italy.
| | - Marco Fidaleo
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Institute of General Pathology, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Giovambattista Pani
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Institute of General Pathology, Università Cattolica del Sacro Cuore, Roma, Italy.
| |
Collapse
|
26
|
Two Opposing Faces of Retinoic Acid: Induction of Stemness or Induction of Differentiation Depending on Cell-Type. Biomolecules 2019; 9:biom9100567. [PMID: 31590252 PMCID: PMC6843238 DOI: 10.3390/biom9100567] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022] Open
Abstract
Stem cells have the capacity of self-renewal and, through proliferation and differentiation, are responsible for the embryonic development, postnatal development, and the regeneration of tissues in the adult organism. Cancer stem cells, analogous to the physiological stem cells, have the capacity of self-renewal and may account for growth and recurrence of tumors. Development and regeneration of healthy tissues and tumors depend on the balance of different genomic and nongenomic signaling pathways that regulate stem cell quiescence, proliferation, and differentiation. During evolution, this balance became dependent on all-trans retinoic acid (RA), a molecule derived from the environmental factor vitamin A. Here we summarize some recent findings on the prominent role of RA on the proliferation of stem and progenitor cells, in addition to its well-known function as an inductor of cell differentiation. A better understanding of the regulatory mechanisms of stemness and cell differentiation by RA may improve the therapeutic options of this molecule in regenerative medicine and cancer.
Collapse
|
27
|
Electrophoretic mobility of neuron-like cells regenerated from iPSCs with induction of retinoic acid- and nerve growth factor-loaded solid lipid nanoparticles. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Parekh PA, Garcia TX, Waheeb R, Jain V, Gandhi P, Meistrich ML, Shetty G, Hofmann MC. Undifferentiated spermatogonia regulate Cyp26b1 expression through NOTCH signaling and drive germ cell differentiation. FASEB J 2019; 33:8423-8435. [PMID: 30991836 DOI: 10.1096/fj.201802361r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cytochrome P450 family 26 subfamily B member 1 (CYP26B1) regulates the concentration of all-trans retinoic acid (RA) and plays a key role in germ cell differentiation by controlling local distribution of RA. The mechanisms regulating Cyp26b1 expression in postnatal Sertoli cells, the main components of the stem cell niche, are so far unknown. During gonad development, expression of Cyp26b1 is maintained by Steroidogenic Factor 1 (SF-1) and Sex-Determining Region Y Box-9 (SOX9), which ensure that RA is degraded and germ cell differentiation is blocked. Here, we show that the NOTCH target Hairy/Enhancer-of-Split Related with YRPW Motif 1 (HEY1), a transcriptional repressor, regulates germ cell differentiation via direct binding to the Cyp26b1 promoter and thus inhibits its expression in Sertoli cells. Further, using in vivo germ cell ablation, we demonstrate that undifferentiated type A spermatogonia are the cells that activate NOTCH signaling in Sertoli cells through their expression of the NOTCH ligand JAGGED-1 (JAG1) at stage VIII of the seminiferous epithelium cycle, therefore mediating germ cell differentiation by a ligand concentration-dependent process. These data therefore provide more insights into the mechanisms of germ cell differentiation after birth and potentially explain the spatiotemporal RA pulses driving the transition between undifferentiated to differentiating spermatogonia.-Parekh, P. A., Garcia, T. X., Waheeb, R., Jain, V., Gandhi, P., Meistrich, M. L., Shetty, G., Hofmann, M.-C. Undifferentiated spermatogonia regulate Cyp26b1 expression through NOTCH signaling and drive germ cell differentiation.
Collapse
Affiliation(s)
- Parag A Parekh
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Thomas X Garcia
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA.,Department of Biology and Biotechnology, University of Houston-Clear Lake, Houston, Texas, USA
| | - Reham Waheeb
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA.,Department of Theriogenology, University of Alexandria, Alexandria, Egypt
| | - Vivek Jain
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA.,Department of Biology and Biotechnology, University of Houston-Clear Lake, Houston, Texas, USA
| | - Pooja Gandhi
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Marvin L Meistrich
- Department of Experimental Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Gunapala Shetty
- Department of Experimental Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Marie-Claude Hofmann
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
29
|
Gasperi V, Sibilano M, Savini I, Catani MV. Niacin in the Central Nervous System: An Update of Biological Aspects and Clinical Applications. Int J Mol Sci 2019; 20:ijms20040974. [PMID: 30813414 PMCID: PMC6412771 DOI: 10.3390/ijms20040974] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022] Open
Abstract
Niacin (also known as "vitamin B₃" or "vitamin PP") includes two vitamers (nicotinic acid and nicotinamide) giving rise to the coenzymatic forms nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP). The two coenzymes are required for oxidative reactions crucial for energy production, but they are also substrates for enzymes involved in non-redox signaling pathways, thus regulating biological functions, including gene expression, cell cycle progression, DNA repair and cell death. In the central nervous system, vitamin B₃ has long been recognized as a key mediator of neuronal development and survival. Here, we will overview available literature data on the neuroprotective role of niacin and its derivatives, especially focusing especially on its involvement in neurodegenerative diseases (Alzheimer's, Parkinson's, and Huntington's diseases), as well as in other neuropathological conditions (ischemic and traumatic injuries, headache and psychiatric disorders).
Collapse
Affiliation(s)
- Valeria Gasperi
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy.
| | - Matteo Sibilano
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy.
| | - Isabella Savini
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy.
| | - Maria Valeria Catani
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|
30
|
Petrelli B, Bendelac L, Hicks GG, Fainsod A. Insights into retinoic acid deficiency and the induction of craniofacial malformations and microcephaly in fetal alcohol spectrum disorder. Genesis 2019; 57:e23278. [DOI: 10.1002/dvg.23278] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Berardino Petrelli
- Regenerative Medicine Program and the Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health SciencesUniversity of Manitoba Winnipeg Manitoba Canada
| | - Liat Bendelac
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel‐CanadaFaculty of Medicine, Hebrew University Jerusalem Israel
| | - Geoffrey G. Hicks
- Regenerative Medicine Program and the Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health SciencesUniversity of Manitoba Winnipeg Manitoba Canada
| | - Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel‐CanadaFaculty of Medicine, Hebrew University Jerusalem Israel
| |
Collapse
|
31
|
Lombardi VC, De Meirleir KL, Subramanian K, Nourani SM, Dagda RK, Delaney SL, Palotás A. Nutritional modulation of the intestinal microbiota; future opportunities for the prevention and treatment of neuroimmune and neuroinflammatory disease. J Nutr Biochem 2018; 61:1-16. [PMID: 29886183 PMCID: PMC6195483 DOI: 10.1016/j.jnutbio.2018.04.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 01/09/2023]
Abstract
The gut-brain axis refers to the bidirectional communication between the enteric nervous system and the central nervous system. Mounting evidence supports the premise that the intestinal microbiota plays a pivotal role in its function and has led to the more common and perhaps more accurate term gut-microbiota-brain axis. Numerous studies have identified associations between an altered microbiome and neuroimmune and neuroinflammatory diseases. In most cases, it is unknown if these associations are cause or effect; notwithstanding, maintaining or restoring homeostasis of the microbiota may represent future opportunities when treating or preventing these diseases. In recent years, several studies have identified the diet as a primary contributing factor in shaping the composition of the gut microbiota and, in turn, the mucosal and systemic immune systems. In this review, we will discuss the potential opportunities and challenges with respect to modifying and shaping the microbiota through diet and nutrition in order to treat or prevent neuroimmune and neuroinflammatory disease.
Collapse
Affiliation(s)
- Vincent C Lombardi
- Nevada Center for Biomedical Research, University of Nevada, Reno, 1664 N. Virginia St. MS 0552, Reno, NV, 89557, USA; University of Nevada, Reno, School of Medicine, Department of Pathology, 1664 N. Virginia St. MS 0357, Reno, NV, 89557, USA.
| | - Kenny L De Meirleir
- Nevada Center for Biomedical Research, University of Nevada, Reno, 1664 N. Virginia St. MS 0552, Reno, NV, 89557, USA.
| | - Krishnamurthy Subramanian
- Nevada Center for Biomedical Research, University of Nevada, Reno, 1664 N. Virginia St. MS 0552, Reno, NV, 89557, USA.
| | - Sam M Nourani
- University of Nevada, Reno, School of Medicine, Department of Internal Medicine, 1664 N. Virginia St. MS 0357, Reno, NV, 89557, USA; Advanced Therapeutic, General Gastroenterology & Hepatology Digestive Health Associates, Reno, NV, USA.
| | - Ruben K Dagda
- University of Nevada, Reno, School of Medicine, Department of Pharmacology, 1664 N. Virginia St. MS 0318, Reno, NV, 89557, USA.
| | | | - András Palotás
- Kazan Federal University, Institute of Fundamental Medicine and Biology, (Volga Region) 18 Kremlyovskaya St., Kazan, 420008, Republic of Tatarstan, Russian Federation; Asklepios-Med (private medical practice and research center), Kossuth Lajos sgt. 23, Szeged, H-6722, Hungary.
| |
Collapse
|
32
|
Hasenpusch-Theil K, West S, Kelman A, Kozic Z, Horrocks S, McMahon AP, Price DJ, Mason JO, Theil T. Gli3 controls the onset of cortical neurogenesis by regulating the radial glial cell cycle through Cdk6 expression. Development 2018; 145:dev.163147. [PMID: 30093555 PMCID: PMC6141774 DOI: 10.1242/dev.163147] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 07/13/2018] [Indexed: 01/03/2023]
Abstract
The cerebral cortex contains an enormous number of neurons, allowing it to perform highly complex neural tasks. Understanding how these neurons develop at the correct time and place and in accurate numbers constitutes a major challenge. Here, we demonstrate a novel role for Gli3, a key regulator of cortical development, in cortical neurogenesis. We show that the onset of neuron formation is delayed in Gli3 conditional mouse mutants. Gene expression profiling and cell cycle measurements indicate that shortening of the G1 and S phases in radial glial cells precedes this delay. Reduced G1 length correlates with an upregulation of the cyclin-dependent kinase gene Cdk6, which is directly regulated by Gli3. Moreover, pharmacological interference with Cdk6 function rescues the delayed neurogenesis in Gli3 mutant embryos. Overall, our data indicate that Gli3 controls the onset of cortical neurogenesis by determining the levels of Cdk6 expression, thereby regulating neuronal output and cortical size.
Collapse
Affiliation(s)
- Kerstin Hasenpusch-Theil
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Stephen West
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Alexandra Kelman
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Zrinko Kozic
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Sophie Horrocks
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - David J Price
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - John O Mason
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Thomas Theil
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK
| |
Collapse
|
33
|
Uzquiano A, Gladwyn-Ng I, Nguyen L, Reiner O, Götz M, Matsuzaki F, Francis F. Cortical progenitor biology: key features mediating proliferation versus differentiation. J Neurochem 2018; 146:500-525. [PMID: 29570795 DOI: 10.1111/jnc.14338] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/26/2018] [Accepted: 03/08/2018] [Indexed: 12/18/2022]
Abstract
The cerebral cortex is a highly organized structure whose development depends on diverse progenitor cell types, namely apical radial glia, intermediate progenitors, and basal radial glia cells, which are responsible for the production of the correct neuronal output. In recent years, these progenitor cell types have been deeply studied, particularly basal radial glia and their role in cortical expansion and gyrification. We review here a broad series of factors that regulate progenitor behavior and daughter cell fate. We first describe the different neuronal progenitor types, emphasizing the differences between lissencephalic and gyrencephalic species. We then review key factors shown to influence progenitor proliferation versus differentiation, discussing their roles in progenitor dynamics, neuronal production, and potentially brain size and complexity. Although spindle orientation has been considered a critical factor for mode of division and daughter cell output, we discuss other features that are emerging as crucial for these processes such as organelle and cell cycle dynamics. Additionally, we highlight the importance of adhesion molecules and the polarity complex for correct cortical development. Finally, we briefly discuss studies assessing progenitor multipotency and its possible contribution to the production of specific neuronal populations. This review hence summarizes recent aspects of cortical progenitor cell biology, and pinpoints emerging features critical for their behavior.
Collapse
Affiliation(s)
- Ana Uzquiano
- INSERM, UMR-S 839, Paris, France.,Sorbonne Université, Université Pierre et Marie Curie, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Ivan Gladwyn-Ng
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège, Belgium
| | - Laurent Nguyen
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège, Belgium
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Magdalena Götz
- Physiological Genomics, Biomedical Center, Ludwig Maximilians University Munich, Planegg/Munich, Germany.,Institute for Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.,SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center, Ludwig-Maximilian University Munich, Planegg/Munich, Germany
| | - Fumio Matsuzaki
- Laboratory for Cell Asymmetry, Center for Developmental Biology, RIKEN Kobe Institute, Kobe, Hyogo, Japan
| | - Fiona Francis
- INSERM, UMR-S 839, Paris, France.,Sorbonne Université, Université Pierre et Marie Curie, Paris, France.,Institut du Fer à Moulin, Paris, France
| |
Collapse
|
34
|
Mukhtar T, Taylor V. Untangling Cortical Complexity During Development. J Exp Neurosci 2018; 12:1179069518759332. [PMID: 29551911 PMCID: PMC5846925 DOI: 10.1177/1179069518759332] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 01/23/2018] [Indexed: 12/23/2022] Open
Abstract
The cerebral cortex is composed of billions of morphologically and functionally distinct neurons. These neurons are produced and organized in a regimental fashion during development. The ability of neurons to encode and elicit complex cognitive and motor functions depends on their precise molecular processes, identity, and connectivity established during development. Elucidating the cellular and molecular mechanisms that regulate development of the neocortex has been a challenge for many years. The cerebral cortical neuronal subtypes are classified based on morphology, function, intrinsic synaptic properties, location, connectivity, and marker gene expression. Development of the neocortex requires an orchestration of a series of processes including the appropriate determination, migration and positioning of the neurons, acquisition of layer-specific transcriptional hallmarks, and formation of precise axonal projections and networks. Historically, fate mapping, genome-wide analysis, and transcriptome profiling have provided many opportunities for the characterization of neuronal subtypes. During the course of this review, we will address the regimental organization of the cerebral cortex, dissect the cellular subtypes that contribute to cortical complexity, and outline their molecular hallmarks to understand cellular diversity in the cerebral cortex with a focus on the excitatory neurons.
Collapse
Affiliation(s)
- Tanzila Mukhtar
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Verdon Taylor
- Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
35
|
Massimino L, Flores-Garcia L, Di Stefano B, Colasante G, Icoresi-Mazzeo C, Zaghi M, Hamilton BA, Sessa A. TBR2 antagonizes retinoic acid dependent neuronal differentiation by repressing Zfp423 during corticogenesis. Dev Biol 2018; 434:231-248. [PMID: 29305158 PMCID: PMC7032051 DOI: 10.1016/j.ydbio.2017.12.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/26/2017] [Accepted: 12/28/2017] [Indexed: 01/14/2023]
Abstract
During cerebral cortex development, neural progenitors are required to elaborate a variety of cell differentiation signals to which they are continuously exposed. RA acid is a potent inducer of neuronal differentiation as it was found to influence cortical development. We report herein that TBR2, a transcription factor specific to Intermediate (Basal) Neural Progenitors (INPs), represses activation of the RA responsive element and expression of RA target genes in cell lines. This repressive action on RA signaling was functionally confirmed by the decrease of RA-mediated neuronal differentiation in neural stem cells stably overexpressing TBR2. In vivo mapping of RA activity in the developing cortex indicated that RA activity is detected in radial glial cells and subsequently downregulated in INPs, revealing a fine cell-type specific regulation of its signaling. Thus, TBR2 might be a molecular player in opposing RA signaling in INPs. Interestingly, this negative regulation is achieved at least in part by directly repressing the critical nuclear RA co-factor ZFP423. Indeed, we found ZFP423 to be expressed in the developing cortex and promote RA-dependent neuronal differentiation. These data indicate that TBR2 contributes to suppressing RA signaling in INPs, thereby enabling them to re-enter the cell cycle and delay neuronal differentiation.
Collapse
Affiliation(s)
- Luca Massimino
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Lisbeth Flores-Garcia
- Departments of Cellular&Molecular Medicine and Medicine, Moores Cancer Center, and Institute for Genomic Medicine, University of California, 9500 Gilman Drive, La Jolla, San Diego, CA 92093-0644, USA
| | - Bruno Di Stefano
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gaia Colasante
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Cecilia Icoresi-Mazzeo
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Mattia Zaghi
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Bruce A Hamilton
- Departments of Cellular&Molecular Medicine and Medicine, Moores Cancer Center, and Institute for Genomic Medicine, University of California, 9500 Gilman Drive, La Jolla, San Diego, CA 92093-0644, USA
| | - Alessandro Sessa
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy.
| |
Collapse
|