1
|
Puig-Barbe A, Dettmann S, Nirello VD, Moor H, Azami S, Edgar BA, Varga-Weisz P, Korzelius J, de Navascués J. A bHLH interaction code controls bipotential differentiation and self-renewal in the Drosophila gut. Cell Rep 2025; 44:115398. [PMID: 40089983 DOI: 10.1016/j.celrep.2025.115398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/04/2025] [Accepted: 02/14/2025] [Indexed: 03/18/2025] Open
Abstract
Multipotent adult stem cells balance self-renewal with differentiation into various cell types. How this balance is regulated at the transcriptional level is poorly understood. Here, we show that a network of basic helix-loop-helix (bHLH) transcription factors controls both stemness and bipotential differentiation in the Drosophila adult intestine. We find that homodimers of Daughterless (Da), a homolog of mammalian E proteins, maintain self-renewal of intestinal stem cells (ISCs), antagonizing the enteroendocrine fate promoted by heterodimers of Da and Scute (Sc; homolog of ASCL). The HLH factor Extramacrochaetae (Emc; homologous to Id proteins) promotes absorptive differentiation by titrating Da and Sc. Emc prevents the committed absorptive progenitor from dedifferentiating, underscoring the plasticity of these cells. Switching physical interaction partners in this way enables the active maintenance of stemness while priming stem cells for differentiation along two alternative fates. Such regulatory logic is likely operative in other bipotent stem cell systems.
Collapse
Affiliation(s)
- Aleix Puig-Barbe
- School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| | - Svenja Dettmann
- DKFZ/ZMBH Alliance, University of Heidelberg, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; AbbVie Germany GmbH & Co. KG, 81 Mainzer Str., 65189 Wiesbaden, Frankfurt, Germany
| | - Vinícius Dias Nirello
- International Laboratory for Microbiome Host Epigenetics, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP 13083-862, Brazil
| | - Helen Moor
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Sina Azami
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Straße 9B, 50931 Köln, Germany
| | - Bruce A Edgar
- DKFZ/ZMBH Alliance, University of Heidelberg, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Huntsman Cancer Institute & Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Patrick Varga-Weisz
- International Laboratory for Microbiome Host Epigenetics, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP 13083-862, Brazil; School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Jerome Korzelius
- DKFZ/ZMBH Alliance, University of Heidelberg, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Straße 9B, 50931 Köln, Germany; School of Biosciences, University of Kent, Canterbury CT2 7NZ, UK
| | - Joaquín de Navascués
- School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK; School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK.
| |
Collapse
|
2
|
Cheng Y, Wang X, Ding Y, Zhang H, Jia Z, Raikhel AS. The AaFoxA factor regulates female reproduction through chromatin remodeling in the mosquito vector Aedes aegypti. Proc Natl Acad Sci U S A 2025; 122:e2411758122. [PMID: 39993202 DOI: 10.1073/pnas.2411758122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 01/14/2025] [Indexed: 02/26/2025] Open
Abstract
Female mosquitoes are vectors of many devastating human diseases because they require blood feeding to initiate reproduction. Thus, elucidation of molecular mechanisms managing female mosquito reproduction is essential. Although the regulation of gene expression during the mosquito gonadotrophic cycle has been studied in detail, how this process is controlled at the chromatin level remains unclear. Chromatin must be accessible for transcription factors (TFs) governing gene expression. A specialized class of TFs, called pioneer factors (PFs), binds and remodels closed chromatin, permitting other TFs to bind DNA and activate the gene expression. Here, we identified a homolog of the vertebrate PF FoxA in the mosquito Aedes aegypti and used the CRISPR-Cas9 system to generate mosquitoes deficient in AaFoxA. We found that ovary development was severely retarded in mutant females. Multiomics and molecular biology analyses have shown that AaFoxA increased histone acetylation and decreased methylation of H3K27 by controlling the chromatin accessibility of histone modification enzymes and chromatin remodelers. AaFoxA is bound to the loci of chromatin remodelers, changing their chromatin accessibility and modulating their temporal expression patterns. AaFoxA increased the accessibility of the ecdysone receptor (EcR) and E74 loci, indicating the important role of AaFoxA in the hormonal regulation of mosquito reproductive events. Further, the CUT&RUN and ATAC-seq analyses revealed that AaFoxA temporarily bound closed chromatin, making it differentially accessible during the mosquito gonadotrophic cycle. Hence, this study demonstrates that AaFoxA modulates chromatin dynamics throughout female mosquito reproduction.
Collapse
Affiliation(s)
- Yang Cheng
- Department of Entomology and Institute of Integrative Genome Biology, University of California, Riverside, CA 92521
- Department of Biotechnology, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Xuesong Wang
- Interdepartmental Graduate Program of Genetics, Genomics and Bioinformatics, University of California, Riverside, CA 92521
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
| | - Yike Ding
- Department of Entomology and Institute of Integrative Genome Biology, University of California, Riverside, CA 92521
| | - Houhong Zhang
- Department of Entomology and Institute of Integrative Genome Biology, University of California, Riverside, CA 92521
| | - Zhenyu Jia
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
| | - Alexander S Raikhel
- Department of Entomology and Institute of Integrative Genome Biology, University of California, Riverside, CA 92521
| |
Collapse
|
3
|
Trubin S, Patel DB, Tian A. Regulation of the Intestinal Stem Cell Pool and Proliferation in Drosophila. Cells 2024; 13:1856. [PMID: 39594605 PMCID: PMC11592481 DOI: 10.3390/cells13221856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Understanding the regulation of somatic stem cells, both during homeostasis and in response to environmental challenges like injury, infection, chemical exposure, and nutritional changes, is critical because their dysregulation can result in tissue degeneration or tumorigenesis. The use of models such as the Drosophila and mammalian adult intestines offers valuable insights into tissue homeostasis and regeneration, advancing our knowledge of stem cell biology and cancer development. This review highlights significant findings from recent studies, unveiling the molecular mechanisms that govern self-renewal, proliferation, differentiation, and regeneration of intestinal stem cells (ISCs). These insights not only enhance our understanding of normal tissue maintenance but also provide critical perspectives on how ISC dysfunction can lead to pathological conditions such as colorectal cancer (CRC).
Collapse
Affiliation(s)
- Simona Trubin
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Dhruv B. Patel
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Aiguo Tian
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
- Tulane Aging Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
4
|
Jin Z, Che M, Xi R. Identification of progenitor cells and their progenies in adult Drosophila midgut. Methods Cell Biol 2022; 170:169-187. [DOI: 10.1016/bs.mcb.2022.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Bolukbasi E, Woodling NS, Ivanov DK, Adcott J, Foley A, Rajasingam A, Gittings LM, Aleyakpo B, Niccoli T, Thornton JM, Partridge L. Cell type-specific modulation of healthspan by Forkhead family transcription factors in the nervous system. Proc Natl Acad Sci U S A 2021; 118:2011491118. [PMID: 33593901 PMCID: PMC7923679 DOI: 10.1073/pnas.2011491118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Reduced activity of insulin/insulin-like growth factor signaling (IIS) increases healthy lifespan among diverse animal species. Downstream of IIS, multiple evolutionarily conserved transcription factors (TFs) are required; however, distinct TFs are likely responsible for these effects in different tissues. Here we have asked which TFs can extend healthy lifespan within distinct cell types of the adult nervous system in Drosophila Starting from published single-cell transcriptomic data, we report that forkhead (FKH) is endogenously expressed in neurons, whereas forkhead-box-O (FOXO) is expressed in glial cells. Accordingly, we find that neuronal FKH and glial FOXO exert independent prolongevity effects. We have further explored the role of neuronal FKH in a model of Alzheimer's disease-associated neuronal dysfunction, where we find that increased neuronal FKH preserves behavioral function and reduces ubiquitinated protein aggregation. Finally, using transcriptomic profiling, we identify Atg17, a member of the Atg1 autophagy initiation family, as one FKH-dependent target whose neuronal overexpression is sufficient to extend healthy lifespan. Taken together, our results underscore the importance of cell type-specific mapping of TF activity to preserve healthy function with age.
Collapse
Affiliation(s)
- Ekin Bolukbasi
- Institute of Healthy Ageing, University College London, London WC1E 6BT, United Kingdom
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| | - Nathaniel S Woodling
- Institute of Healthy Ageing, University College London, London WC1E 6BT, United Kingdom
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| | - Dobril K Ivanov
- European Bioinformatics Institute, European Molecular Biology Laboratory, Cambridge CB10 1SD, United Kingdom
- UK Dementia Research Institute, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| | - Jennifer Adcott
- Institute of Healthy Ageing, University College London, London WC1E 6BT, United Kingdom
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| | - Andrea Foley
- Institute of Healthy Ageing, University College London, London WC1E 6BT, United Kingdom
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| | - Arjunan Rajasingam
- Institute of Healthy Ageing, University College London, London WC1E 6BT, United Kingdom
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| | - Lauren M Gittings
- Institute of Healthy Ageing, University College London, London WC1E 6BT, United Kingdom
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| | - Benjamin Aleyakpo
- Institute of Healthy Ageing, University College London, London WC1E 6BT, United Kingdom
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| | - Teresa Niccoli
- Institute of Healthy Ageing, University College London, London WC1E 6BT, United Kingdom
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| | - Janet M Thornton
- European Bioinformatics Institute, European Molecular Biology Laboratory, Cambridge CB10 1SD, United Kingdom
| | - Linda Partridge
- Institute of Healthy Ageing, University College London, London WC1E 6BT, United Kingdom;
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
- Department of Biological Mechanisms of Ageing, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| |
Collapse
|
6
|
Grinat J, Heuberger J, Vidal RO, Goveas N, Kosel F, Berenguer-Llergo A, Kranz A, Wulf-Goldenberg A, Behrens D, Melcher B, Sauer S, Vieth M, Batlle E, Stewart AF, Birchmeier W. The epigenetic regulator Mll1 is required for Wnt-driven intestinal tumorigenesis and cancer stemness. Nat Commun 2020; 11:6422. [PMID: 33349639 PMCID: PMC7752919 DOI: 10.1038/s41467-020-20222-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/16/2020] [Indexed: 12/30/2022] Open
Abstract
Wnt/β-catenin signaling is crucial for intestinal carcinogenesis and the maintenance of intestinal cancer stem cells. Here we identify the histone methyltransferase Mll1 as a regulator of Wnt-driven intestinal cancer. Mll1 is highly expressed in Lgr5+ stem cells and human colon carcinomas with increased nuclear β-catenin. High levels of MLL1 are associated with poor survival of colon cancer patients. The genetic ablation of Mll1 in mice prevents Wnt/β-catenin-driven adenoma formation from Lgr5+ intestinal stem cells. Ablation of Mll1 decreases the self-renewal of human colon cancer spheres and halts tumor growth of xenografts. Mll1 controls the expression of stem cell genes including the Wnt/β-catenin target gene Lgr5. Upon the loss of Mll1, histone methylation at the stem cell promoters switches from activating H3K4 tri-methylation to repressive H3K27 tri-methylation, indicating that Mll1 sustains stem cell gene expression by antagonizing gene silencing through polycomb repressive complex 2 (PRC2)-mediated H3K27 tri-methylation. Transcriptome profiling of Wnt-mutated intestinal tumor-initiating cells reveals that Mll1 regulates Gata4/6 transcription factors, known to sustain cancer stemness and to control goblet cell differentiation. Our results demonstrate that Mll1 is an essential epigenetic regulator of Wnt/β-catenin-induced intestinal tumorigenesis and cancer stemness. Intestinal cancer stem cells (CSC) are associated with colon cancer. Here, the authors show that Wnt/beta-catenin signalling in CSC requires the epigenetic regulator Mll1 to promote stemness and tumourigenesis in murine and human colon cancer models.
Collapse
Affiliation(s)
- Johanna Grinat
- Cancer Research Program, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, 13125, Berlin, Germany
| | - Julian Heuberger
- Cancer Research Program, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, 13125, Berlin, Germany. .,Division of Gastroenterology and Hepatology, Medical Department, Charité University Medicine, 13353, Berlin, Germany.
| | - Ramon Oliveira Vidal
- Laboratory of Functional Genomics, Nutrigenomics and Systems Biology, Scientific Genomics Platforms, Max Delbrück Center for Molecular Medicine (BIMSB/BIH), 13092, Berlin, Germany
| | - Neha Goveas
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307, Dresden, Germany
| | - Frauke Kosel
- Cancer Research Program, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, 13125, Berlin, Germany
| | - Antoni Berenguer-Llergo
- Biostatistics and Bioinformatics Unit, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Andrea Kranz
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307, Dresden, Germany
| | | | - Diana Behrens
- Experimental Pharmacology & Oncology (EPO), 13125, Berlin, Germany
| | - Bálint Melcher
- Institute for Pathology, Klinikum Bayreuth, 95445, Bayreuth, Germany
| | - Sascha Sauer
- Laboratory of Functional Genomics, Nutrigenomics and Systems Biology, Scientific Genomics Platforms, Max Delbrück Center for Molecular Medicine (BIMSB/BIH), 13092, Berlin, Germany
| | - Michael Vieth
- Institute for Pathology, Klinikum Bayreuth, 95445, Bayreuth, Germany
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,ICREA, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - A Francis Stewart
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307, Dresden, Germany
| | - Walter Birchmeier
- Cancer Research Program, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, 13125, Berlin, Germany.
| |
Collapse
|
7
|
Coutinho-Abreu IV, Serafim TD, Meneses C, Kamhawi S, Oliveira F, Valenzuela JG. Leishmania infection induces a limited differential gene expression in the sand fly midgut. BMC Genomics 2020; 21:608. [PMID: 32887545 PMCID: PMC7487717 DOI: 10.1186/s12864-020-07025-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 08/25/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Sand flies are the vectors of Leishmania parasites. To develop in the sand fly midgut, Leishmania multiplies and undergoes various stage differentiations giving rise to the infective form, the metacyclic promastigotes. To determine the changes in sand fly midgut gene expression caused by the presence of Leishmania, we performed RNA-Seq of uninfected and Leishmania infantum-infected Lutzomyia longipalpis midguts from seven different libraries corresponding to time points which cover the various Leishmania developmental stages. RESULTS The combined transcriptomes resulted in the de novo assembly of 13,841 sand fly midgut transcripts. Importantly, only 113 sand fly transcripts, about 1%, were differentially expressed in the presence of Leishmania parasites. Further, we observed distinct differentially expressed sand fly midgut transcripts corresponding to the presence of each of the various Leishmania stages suggesting that each parasite stage influences midgut gene expression in a specific manner. Two main patterns of sand fly gene expression modulation were noted. At early time points (days 1-4), more transcripts were down-regulated by Leishmania infection at large fold changes (> 32 fold). Among the down-regulated genes, the transcription factor Forkhead/HNF-3 and hormone degradation enzymes were differentially regulated on day 2 and appear to be the upstream regulators of nutrient transport, digestive enzymes, and peritrophic matrix proteins. Conversely, at later time points (days 6 onwards), most of the differentially expressed transcripts were up-regulated by Leishmania infection with small fold changes (< 32 fold). The molecular functions of these genes have been associated with the metabolism of lipids and detoxification of xenobiotics. CONCLUSION Overall, our data suggest that the presence of Leishmania produces a limited change in the midgut transcript expression profile in sand flies. Further, Leishmania modulates sand fly gene expression early on in the developmental cycle in order to overcome the barriers imposed by the midgut, yet it behaves like a commensal at later time points where a massive number of parasites in the anterior midgut results only in modest changes in midgut gene expression.
Collapse
Affiliation(s)
- Iliano V Coutinho-Abreu
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| | - Tiago Donatelli Serafim
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Claudio Meneses
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Fabiano Oliveira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|
8
|
Jin Z, Chen J, Huang H, Wang J, Lv J, Yu M, Guo X, Zhang Y, Cai T, Xi R. The Drosophila Ortholog of Mammalian Transcription Factor Sox9 Regulates Intestinal Homeostasis and Regeneration at an Appropriate Level. Cell Rep 2020; 31:107683. [DOI: 10.1016/j.celrep.2020.107683] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/13/2020] [Accepted: 05/02/2020] [Indexed: 01/05/2023] Open
|
9
|
Sox100B Regulates Progenitor-Specific Gene Expression and Cell Differentiation in the Adult Drosophila Intestine. Stem Cell Reports 2020; 14:226-240. [PMID: 32032550 PMCID: PMC7013235 DOI: 10.1016/j.stemcr.2020.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 01/30/2023] Open
Abstract
Robust production of terminally differentiated cells from self-renewing resident stem cells is essential to maintain proper tissue architecture and physiological functions, especially in high-turnover tissues. However, the transcriptional networks that precisely regulate cell transition and differentiation are poorly understood in most tissues. Here, we identified Sox100B, a Drosophila Sox E family transcription factor, as a critical regulator of adult intestinal stem cell differentiation. Sox100B is expressed in stem and progenitor cells and required for differentiation of enteroblast progenitors into absorptive enterocytes. Mechanistically, Sox100B regulates the expression of another critical stem cell differentiation factor, Sox21a. Supporting a direct control of Sox21a by Sox100B, we identified a Sox21a intronic enhancer that is active in all intestinal progenitors and directly regulated by Sox100B. Taken together, our results demonstrate that the activity and regulation of two Sox transcription factors are essential to coordinate stem cell differentiation and proliferation and maintain intestinal tissue homeostasis. Sox100B is expressed in progenitor cells in the adult intestine Sox100B is required for stem cell differentiation Sox100B is required for Sox21a expression Sox100B directly controls the activity of a Sox21a intronic enhancer
Collapse
|
10
|
Li Z, Guo X, Huang H, Wang C, Yang F, Zhang Y, Wang J, Han L, Jin Z, Cai T, Xi R. A Switch in Tissue Stem Cell Identity Causes Neuroendocrine Tumors in Drosophila Gut. Cell Rep 2020; 30:1724-1734.e4. [DOI: 10.1016/j.celrep.2020.01.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/15/2019] [Accepted: 01/13/2020] [Indexed: 12/12/2022] Open
|
11
|
Wu S, Zhang Y, Li Y, Wei H, Guo Z, Wang S, Zhang L, Bao Z. Identification and expression profiles of Fox transcription factors in the Yesso scallop (Patinopecten yessoensis). Gene 2020; 733:144387. [PMID: 31972308 DOI: 10.1016/j.gene.2020.144387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 02/07/2023]
Abstract
The forkhead box (Fox) gene family is a family of transcription factors that play important roles in a variety of biological processes in vertebrates, including early development and cell proliferation and differentiation. However, at present, studies on the mollusk Fox family are relatively lacking. In the present study, the Fox gene family of the Yesso scallop (Patinopecten yessoensis) was systematically identified. In addition, the expression profiles of the Fox gene family in early development and adult tissues were analyzed. The results showed that there were 26 Fox genes in P. yessoensis. Of the 26 genes, 24 belonged to 20 subfamilies. The Fox genes belonging to the I, Q1, R and S subfamilies were absent in P. yessoensis. The other 2 genes formed 2 independent clades with the Fox genes of other mollusks and protostomes. They might be new members of the Fox family and were named FoxY and FoxZ. P. yessoensis contained a FoxC-FoxL1 gene cluster similar in structure to that of Branchiostoma floridae, suggesting that the cluster might already exist in the ancestors of bilaterally symmetrical animals. The gene expression analysis of Fox showed that most of the genes were continuously expressed in multiple stages of early development, suggesting that Fox genes might be widely involved in the regulation of embryo and larval development of P. yessoensis. Nine Fox genes were specifically expressed in certain tissues, such as the nerve ganglia, foot, ovary, testis, and gills. For the 9 genes that were differentially expressed between the testis and ovary, their expression levels were analyzed during the 4 developmental stages of gonads. The results showed that FoxL2, FoxE and FoxY were highly expressed in the ovary during all developmental stages, while FoxZ was highly expressed in the testis during all developmental stages. The results suggested that these genes might play an important role in sex maintenance or gametogenesis. The present study could provide a reference for evolutionary and functional studies of the Fox family in metazoans.
Collapse
Affiliation(s)
- Shaoxuan Wu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yang Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yajuan Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Huilan Wei
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Zhenyi Guo
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, Shandong, China
| | - Lingling Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, Shandong, China.
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, Shandong, China
| |
Collapse
|
12
|
Missaoui N, Chouaibi S, Limam S, Mhamdi N, Zahmoul T, Hamchi H, Mokni M, Hmissa S. Signification of forkhead box A1 (FOXA1) expression in thyroid cancers. J Egypt Natl Canc Inst 2019; 31:11. [PMID: 32372175 DOI: 10.1186/s43046-019-0011-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/19/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Forkhead box A1 (FOXA1) plays an important role in several tumors. This study investigated the potential role of FOXA1 expression in thyroid tumors. We conducted a retrospective study of 110 thyroid lesions and tumors diagnosed during 1995-2018. The expression of FOXA1 was analyzed by immunohistochemistry on archival material. RESULTS No FOXA1 immunostaining was observed in all cases of Graves' disease, Hashimoto's disease, multi-nodular goiter, and adenoma. FOXA1 expression was absent as well in all papillary and follicular carcinomas, Hurthle cell carcinoma, and undifferentiated sarcoma. Only three anaplastic carcinomas exhibited focally FOXA1 staining. However, FOXA1 was expressed in all medullary carcinomas. No significant correlation was found with all clinicopathological features (p > 0.05 for all). The pattern of FOXA1 staining was similar to that of calcitonin and chromogranin A (p = 0.04 and p = 0.003, respectively). CONCLUSIONS FOXA1 is expressed mostly in all medullary thyroid carcinomas. Hence, FOXA1 could serve as an additional marker for refining the diagnosis of medullary thyroid carcinoma.
Collapse
Affiliation(s)
- Nabiha Missaoui
- Research Unit UR14ES17, Medicine Faculty, University of Sousse, Sousse, Tunisia. .,Pathology Department, Farhat Hached University Hospital, Sousse, Tunisia. .,Faculty of Sciences and Techniques of Sidi Bouzid, Kairouan University, Kairouan, Tunisia. .,Pathology Department, Sahloul University Hospital, Sousse, Tunisia.
| | - Sameh Chouaibi
- Research Unit UR14ES17, Medicine Faculty, University of Sousse, Sousse, Tunisia
| | - Sarra Limam
- Pathology Department, Farhat Hached University Hospital, Sousse, Tunisia
| | - Nozha Mhamdi
- Pathology Department, Farhat Hached University Hospital, Sousse, Tunisia
| | - Thouraya Zahmoul
- Research Unit UR14ES17, Medicine Faculty, University of Sousse, Sousse, Tunisia.,Pathology Department, Farhat Hached University Hospital, Sousse, Tunisia
| | - Hajer Hamchi
- Research Unit UR14ES17, Medicine Faculty, University of Sousse, Sousse, Tunisia.,Pathology Department, Farhat Hached University Hospital, Sousse, Tunisia
| | - Moncef Mokni
- Pathology Department, Farhat Hached University Hospital, Sousse, Tunisia
| | - Sihem Hmissa
- Research Unit UR14ES17, Medicine Faculty, University of Sousse, Sousse, Tunisia.,Pathology Department, Sahloul University Hospital, Sousse, Tunisia
| |
Collapse
|
13
|
Huang C, Liu J, Xiong B, Yonemura Y, Yang X. Expression and prognosis analyses of forkhead box A (FOXA) family in human lung cancer. Gene 2018; 685:202-210. [PMID: 30415009 DOI: 10.1016/j.gene.2018.11.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/04/2018] [Accepted: 11/08/2018] [Indexed: 01/04/2023]
Abstract
Despite advances in early diagnosis and treatment, cancer still remains the major reason of mortality worldwide. The forkhead box A (FOXA) family is reported to participate in diverse human diseases. However, little is known about their expression and prognostic values in human lung cancer. Herein, we conducted a detailed cancer vs. normal analysis. The mRNA expression levels of FOXA family in numerous kind of cancers, including lung cancer, were analyzed using the Oncomine and GEPIA database. We observed that the mRNA expression levels of FOXA1, and FOXA3 were all increased while FOXA2 were decreased in most cancers compared with normal tissues, especially in lung cancer. Moreover, the expression levels of FOXA1, and FOXA3 are also highly expressed, while FOXA2 were decreased in almost all cancer cell lines, particularly in lung cancer cell lines, analyzing by Cancer Cell Line Encyclopedia (CCLE) and EMBL-EBI databases. Furthermore, the LinkedOmics database was used to evaluate the prognostic values, indicating that higher expression of FOXA1, FOXA3 indicated a poor overall survival (OS), while increased FOXA2 revealed a better OS in lung cancer. To conclusion, FOXA family showed significant expression differences between cancer and normal tissues, especially lung cancer, and FOXA1, FOXA3 could be promising prognostic biomarkers for lung cancer.
Collapse
Affiliation(s)
- Chaoqun Huang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, PR China; Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, 430071 Wuhan, Hubei, PR China
| | - Jiuyang Liu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, PR China
| | - Bin Xiong
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, PR China; Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, 430071 Wuhan, Hubei, PR China
| | - Yutaka Yonemura
- Peritoneal Dissemination Center, Kishiwada Tokushukai Hospital, Kishiwada 596-0032, Japan; Department of Surgery, Kusatsu General Hospital, Shiga 600-8189, Japan
| | - Xiaojun Yang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, PR China; Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, 430071 Wuhan, Hubei, PR China.
| |
Collapse
|
14
|
Paese CLB, Schoenauer A, Leite DJ, Russell S, McGregor AP. A SoxB gene acts as an anterior gap gene and regulates posterior segment addition in a spider. eLife 2018; 7:e37567. [PMID: 30126532 PMCID: PMC6167052 DOI: 10.7554/elife.37567] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 08/10/2018] [Indexed: 01/08/2023] Open
Abstract
Sox genes encode a set of highly conserved transcription factors that regulate many developmental processes. In insects, the SoxB gene Dichaete is the only Sox gene known to be involved in segmentation. To determine if similar mechanisms are used in other arthropods, we investigated the role of Sox genes during segmentation in the spider Parasteatoda tepidariorum. While Dichaete does not appear to be involved in spider segmentation, we found that the closely related Sox21b-1 gene acts as a gap gene during formation of anterior segments and is also part of the segmentation clock for development of the segment addition zone and sequential addition of opisthosomal segments. Thus, we have found that two different mechanisms of segmentation in a non-mandibulate arthropod are regulated by a SoxB gene. Our work provides new insights into the function of an important and conserved gene family, and the evolution of the regulation of segmentation in arthropods.
Collapse
Affiliation(s)
- Christian Louis Bonatto Paese
- Laboratory of Evolutionary Developmental BiologyDepartment of Biological and Medical Sciences, Oxford Brookes UniversityOxfordUnited Kingdom
| | - Anna Schoenauer
- Laboratory of Evolutionary Developmental BiologyDepartment of Biological and Medical Sciences, Oxford Brookes UniversityOxfordUnited Kingdom
| | - Daniel J Leite
- Laboratory of Evolutionary Developmental BiologyDepartment of Biological and Medical Sciences, Oxford Brookes UniversityOxfordUnited Kingdom
| | - Steven Russell
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Alistair P McGregor
- Laboratory of Evolutionary Developmental BiologyDepartment of Biological and Medical Sciences, Oxford Brookes UniversityOxfordUnited Kingdom
| |
Collapse
|
15
|
Abstract
Stem cells have emerged as a promising cell source to heal, replace or regenerate tissue and organs damaged by aging, injury or diseases. The intestinal epithelium is the most rapidly renewing tissue in our body, which is maintained by intestinal stem cells (ISCs), located at the bottom of the crypts. ISCs continuously replace lost or injured intestinal epithelial cells in organisms ranging from Drosophila to humans. The adult Drosophila midgut provides an excellent in vivo model system to study ISC behavior during stress, regeneration, aging and infection. There are several signaling pathways/genes have been identified to regulate ISCs self-renewal and differentiation during normal and pathological conditions. A significant number of genetic tools and markers have been developed in the last one decade to study Drosophila ISCs behavior. Here, we describe some of the markers and methods used to study ISCs behavior in adult midgut of Drosophila.
Collapse
|