1
|
Yavitt FM, Khang A, Bera K, McNally DL, Blatchley MR, Gallagher AP, Klein OD, Castillo-Azofeifa D, Dempsey PJ, Anseth KS. Engineered epithelial curvature controls Paneth cell localization in intestinal organoids. CELL BIOMATERIALS 2025; 1:100046. [PMID: 40270579 PMCID: PMC12013698 DOI: 10.1016/j.celbio.2025.100046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
The cellular organization within organoid models is important to regulate tissue specific function, yet few engineering approaches can control or direct cellular organization. Here, a photodegradable hydrogel is used to create softened regions that direct crypt formation within intestinal organoids, where the dimensions of the photosoftened regions generate predictable and defined crypt architectures. Guided by in vivo metrics of crypt morphology, this photopatterning method is used to control the width and length of in vitro organoid crypts, which ultimately defines the curvature of the epithelium. By tracking expression of differentiated Paneth cell markers in real-time, we show that epithelial curvature directs the localization of Paneth cells within engineered crypts, providing user-directed control over organoid functionality. We anticipate that our improved control over organoid architecture and thus Paneth cell localization will lead to more consistent in vitro organoid models for both mechanistic studies and translational applications.
Collapse
Affiliation(s)
- F. Max Yavitt
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Alex Khang
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Kaustav Bera
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Delaney L. McNally
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Michael R. Blatchley
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Aaron P. Gallagher
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, 90089, USA
- School of Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Ophir D. Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, 90089, USA
- Department of Pediatrics and Guerin Children’s, Cedars-Sinai Medical Center, Los Angeles, CA, 90505, USA
- Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - David Castillo-Azofeifa
- Department of Regenerative Medicine, Genentech, Inc., South San Francisco, California, 94080, USA
| | - Peter J. Dempsey
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Denver, CO, 80045, USA
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| |
Collapse
|
2
|
Xue SL, Yang Q, Liberali P, Hannezo E. Mechanochemical bistability of intestinal organoids enables robust morphogenesis. NATURE PHYSICS 2025; 21:608-617. [PMID: 40248571 PMCID: PMC11999871 DOI: 10.1038/s41567-025-02792-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/16/2025] [Indexed: 04/19/2025]
Abstract
Reproducible pattern and form generation during embryogenesis is poorly understood. Intestinal organoid morphogenesis involves a number of mechanochemical regulators such as cell-type-specific cytoskeletal forces and osmotically driven lumen volume changes. It is unclear how these forces are coordinated in time and space to ensure robust morphogenesis. Here we show how mechanosensitive feedback on cytoskeletal tension gives rise to morphological bistability in a minimal model of organoid morphogenesis. In the model, lumen volume changes can impact the epithelial shape via both direct mechanical and indirect mechanosensitive mechanisms. We find that both bulged and budded crypt states are possible and dependent on the history of volume changes. We test key modelling assumptions via biophysical and pharmacological experiments to demonstrate how bistability can explain experimental observations, such as the importance of the timing of lumen shrinkage and robustness of the final morphogenetic state to mechanical perturbations. This suggests that bistability arising from feedback between cellular tensions and fluid pressure could be a general mechanism that coordinates multicellular shape changes in developing systems.
Collapse
Affiliation(s)
- Shi-Lei Xue
- Department of Materials Science and Engineering, School of Engineering, Westlake University, Hangzhou, China
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Qiutan Yang
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, China
| | - Prisca Liberali
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Edouard Hannezo
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
3
|
Kyriazi D, Voth L, Bader A, Ewert W, Gerlach J, Elfrink K, Franz P, Tsap MI, Schirmer B, Damiano-Guercio J, Hartmann FK, Plenge M, Salari A, Schöttelndreier D, Strienke K, Bresch N, Salinas C, Gutzeit HO, Schaumann N, Hussein K, Bähre H, Brüsch I, Claus P, Neumann D, Taft MH, Shcherbata HR, Ngezahayo A, Bähler M, Amiri M, Knölker HJ, Preller M, Tsiavaliaris G. An allosteric inhibitor of RhoGAP class-IX myosins suppresses the metastatic features of cancer cells. Nat Commun 2024; 15:9947. [PMID: 39550360 PMCID: PMC11569205 DOI: 10.1038/s41467-024-54181-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 11/01/2024] [Indexed: 11/18/2024] Open
Abstract
Aberrant Ras homologous (Rho) GTPase signalling is a major driver of cancer metastasis, and GTPase-activating proteins (GAPs), the negative regulators of RhoGTPases, are considered promising targets for suppressing metastasis, yet drug discovery efforts have remained elusive. Here, we report the identification and characterization of adhibin, a synthetic allosteric inhibitor of RhoGAP class-IX myosins that abrogates ATPase and motor function, suppressing RhoGTPase-mediated modes of cancer cell metastasis. In human and murine adenocarcinoma and melanoma cell models, including three-dimensional spheroid cultures, we reveal anti-migratory and anti-adhesive properties of adhibin that originate from local disturbances in RhoA/ROCK-regulated signalling, affecting actin-dynamics and actomyosin-based cell-contractility. Adhibin blocks membrane protrusion formation, disturbs remodelling of cell-matrix adhesions, affects contractile ring formation, and disrupts epithelial junction stability; processes severely impairing single/collective cell migration and cytokinesis. Combined with the non-toxic, non-pathological signatures of adhibin validated in organoids, mouse and Drosophila models, this mechanism of action provides the basis for developing anti-metastatic cancer therapies.
Collapse
Affiliation(s)
- Despoina Kyriazi
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Lea Voth
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Almke Bader
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Wiebke Ewert
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
- Institute for Functional Gene Analytics (IFGA), Bonn-Rhein-Sieg University of Applied Sciences, Rheinbach, Germany
| | | | - Kerstin Elfrink
- Institute of Integrative Cell Biology and Physiology, University of Münster, Münster, Germany
| | - Peter Franz
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Mariana I Tsap
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Bastian Schirmer
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | | | - Falk K Hartmann
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Masina Plenge
- Department of Cell Physiology and Biophysics, Institute of Cell Biology and Biophysics, Leibniz Universität Hannover, Hannover, Germany
| | - Azam Salari
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | | | - Katharina Strienke
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Nadine Bresch
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Claudio Salinas
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | | | - Nora Schaumann
- Institute for Pathology, Hannover Medical School, Hannover, Germany
| | - Kais Hussein
- Institute of Pathology, KRH Klinikum Nordstadt, Hannover, Germany
| | - Heike Bähre
- Research Core Unit Mass Spectrometry-Metabolomics, Hannover Medical School, Hanover, Germany
| | - Inga Brüsch
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Peter Claus
- SMATHERIA gGmbH-Non-Profit Biomedical Research Institute, Hannover, Germany
| | - Detlef Neumann
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Manuel H Taft
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | | | - Anaclet Ngezahayo
- Department of Cell Physiology and Biophysics, Institute of Cell Biology and Biophysics, Leibniz Universität Hannover, Hannover, Germany
| | - Martin Bähler
- Institute of Integrative Cell Biology and Physiology, University of Münster, Münster, Germany
| | - Mahdi Amiri
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | | | - Matthias Preller
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
- Institute for Functional Gene Analytics (IFGA), Bonn-Rhein-Sieg University of Applied Sciences, Rheinbach, Germany
| | | |
Collapse
|
4
|
Warder BN, Nelson KA, Sui J, Anllo L, DiNardo S. An actomyosin network organizes niche morphology and responds to feedback from recruited stem cells. Curr Biol 2024; 34:3917-3930.e6. [PMID: 39137785 PMCID: PMC11387155 DOI: 10.1016/j.cub.2024.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/18/2024] [Accepted: 07/10/2024] [Indexed: 08/15/2024]
Abstract
Stem cells often rely on signals from a niche, which in many tissues adopts a precise morphology. What remains elusive is how niches are formed and how morphology impacts function. To address this, we leverage the Drosophila gonadal niche, which affords genetic tractability and live-imaging. We have previously shown mechanisms dictating niche cell migration to their appropriate position within the gonad and the resultant consequences on niche function. Here, we show that once positioned, niche cells robustly polarize filamentous actin (F-actin) and non-muscle myosin II (MyoII) toward neighboring germ cells. Actomyosin tension along the niche periphery generates a highly reproducible smoothened contour. Without contractility, niches are misshapen and exhibit defects in their ability to regulate germline stem cell behavior. We additionally show that germ cells aid in polarizing MyoII within niche cells and that extrinsic input is required for niche morphogenesis and function. Our work reveals a feedback mechanism where stem cells shape the niche that guides their behavior.
Collapse
Affiliation(s)
- Bailey N Warder
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kara A Nelson
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Justin Sui
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lauren Anllo
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen DiNardo
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
5
|
Warder BN, Nelson KA, Sui J, Anllo L, DiNardo S. An actomyosin network organizes niche morphology and responds to feedback from recruited stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.08.556877. [PMID: 38746236 PMCID: PMC11092431 DOI: 10.1101/2023.09.08.556877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Stem cells often rely on signals from a niche, which in many tissues adopts a precise morphology. What remains elusive is how niches are formed, and how morphology impacts function. To address this, we leverage the Drosophila gonadal niche, which affords genetic tractability and live-imaging. We have previously shown mechanisms dictating niche cell migration to their appropriate position within the gonad, and the resultant consequences on niche function. Here, we show that once positioned, niche cells robustly polarize filamentous actin (F-actin) and Non-muscle Myosin II (MyoII) towards neighboring germ cells. Actomyosin tension along the niche periphery generates a highly reproducible smoothened contour. Without contractility, niches are misshapen and exhibit defects in their ability to regulate germline stem cell behavior. We additionally show that germ cells aid in polarizing MyoII within niche cells, and that extrinsic input is required for niche morphogenesis and function. Our work reveals a feedback mechanism where stem cells shape the niche that guides their behavior.
Collapse
Affiliation(s)
- Bailey N. Warder
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kara A. Nelson
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Justin Sui
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lauren Anllo
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen DiNardo
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Urciuolo A, Giobbe GG, Dong Y, Michielin F, Brandolino L, Magnussen M, Gagliano O, Selmin G, Scattolini V, Raffa P, Caccin P, Shibuya S, Scaglioni D, Wang X, Qu J, Nikolic M, Montagner M, Galea GL, Clevers H, Giomo M, De Coppi P, Elvassore N. Hydrogel-in-hydrogel live bioprinting for guidance and control of organoids and organotypic cultures. Nat Commun 2023; 14:3128. [PMID: 37253730 PMCID: PMC10229611 DOI: 10.1038/s41467-023-37953-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/06/2023] [Indexed: 06/01/2023] Open
Abstract
Three-dimensional hydrogel-based organ-like cultures can be applied to study development, regeneration, and disease in vitro. However, the control of engineered hydrogel composition, mechanical properties and geometrical constraints tends to be restricted to the initial time of fabrication. Modulation of hydrogel characteristics over time and according to culture evolution is often not possible. Here, we overcome these limitations by developing a hydrogel-in-hydrogel live bioprinting approach that enables the dynamic fabrication of instructive hydrogel elements within pre-existing hydrogel-based organ-like cultures. This can be achieved by crosslinking photosensitive hydrogels via two-photon absorption at any time during culture. We show that instructive hydrogels guide neural axon directionality in growing organotypic spinal cords, and that hydrogel geometry and mechanical properties control differential cell migration in developing cancer organoids. Finally, we show that hydrogel constraints promote cell polarity in liver organoids, guide small intestinal organoid morphogenesis and control lung tip bifurcation according to the hydrogel composition and shape.
Collapse
Affiliation(s)
- Anna Urciuolo
- Dept. of Molecular Medicine, University of Padova, Padova, Italy.
- Istituto di Ricerca Pediatrica, Città della Speranza, Padova, Italy.
| | - Giovanni Giuseppe Giobbe
- GOSICH Zayed Centre for Research into Rare Disease in Children, University College London, London, UK
| | - Yixiao Dong
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China
| | - Federica Michielin
- GOSICH Zayed Centre for Research into Rare Disease in Children, University College London, London, UK
| | - Luca Brandolino
- Dept. of Industrial Engineering, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Michael Magnussen
- GOSICH Zayed Centre for Research into Rare Disease in Children, University College London, London, UK
| | - Onelia Gagliano
- Dept. of Industrial Engineering, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Giulia Selmin
- GOSICH Zayed Centre for Research into Rare Disease in Children, University College London, London, UK
| | | | - Paolo Raffa
- Istituto di Ricerca Pediatrica, Città della Speranza, Padova, Italy
| | - Paola Caccin
- Dept. of Biomedical Science, University of Padova, Padova, Italy
| | - Soichi Shibuya
- GOSICH Zayed Centre for Research into Rare Disease in Children, University College London, London, UK
| | - Dominic Scaglioni
- GOSICH Zayed Centre for Research into Rare Disease in Children, University College London, London, UK
| | - Xuechun Wang
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China
| | - Ju Qu
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China
| | - Marko Nikolic
- GOSICH Zayed Centre for Research into Rare Disease in Children, University College London, London, UK
| | - Marco Montagner
- Dept. of Molecular Medicine, University of Padova, Padova, Italy
| | - Gabriel L Galea
- GOSICH Zayed Centre for Research into Rare Disease in Children, University College London, London, UK
| | - Hans Clevers
- Hubrecht Institute, KNAW and University Medical Center, Utrecht, The Netherlands
- Pharma Research and Early Development (pRED) of Roche, Basel, Switzerland
| | - Monica Giomo
- Dept. of Industrial Engineering, University of Padova, Padova, Italy
| | - Paolo De Coppi
- GOSICH Zayed Centre for Research into Rare Disease in Children, University College London, London, UK
- Dept. of Specialist Neonatal and Paediatric Surgery, Great Ormond Street Hospital, London, UK
| | - Nicola Elvassore
- GOSICH Zayed Centre for Research into Rare Disease in Children, University College London, London, UK.
- Dept. of Industrial Engineering, University of Padova, Padova, Italy.
- Veneto Institute of Molecular Medicine, Padova, Italy.
| |
Collapse
|
7
|
Yavitt FM, Kirkpatrick BE, Blatchley MR, Speckl KF, Mohagheghian E, Moldovan R, Wang N, Dempsey PJ, Anseth KS. In situ modulation of intestinal organoid epithelial curvature through photoinduced viscoelasticity directs crypt morphogenesis. SCIENCE ADVANCES 2023; 9:eadd5668. [PMID: 36662859 PMCID: PMC9858500 DOI: 10.1126/sciadv.add5668] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Spatiotemporally coordinated transformations in epithelial curvature are necessary to generate crypt-villus structures during intestinal development. However, the temporal regulation of mechanotransduction pathways that drive crypt morphogenesis remains understudied. Intestinal organoids have proven useful to study crypt morphogenesis in vitro, yet the reliance on static culture scaffolds limits the ability to assess the temporal effects of changing curvature. Here, a photoinduced hydrogel cross-link exchange reaction is used to spatiotemporally alter epithelial curvature and study how dynamic changes in curvature influence mechanotransduction pathways to instruct crypt morphogenesis. Photopatterned curvature increased membrane tension and depolarization, which was required for subsequent nuclear localization of yes-associated protein 1 (YAP) observed 24 hours following curvature change. Curvature-directed crypt morphogenesis only occurred following a delay in the induction of differentiation that coincided with the delay in spatially restricted YAP localization, indicating that dynamic changes in curvature initiate epithelial curvature-dependent mechanotransduction pathways that temporally regulate crypt morphogenesis.
Collapse
Affiliation(s)
- F. Max Yavitt
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Bruce E. Kirkpatrick
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309, USA
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael R. Blatchley
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Kelly F. Speckl
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Erfan Mohagheghian
- Department of Mechanical Science and Engineering, The Grainger College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Radu Moldovan
- Advanced Light Microscopy Core Facility, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ning Wang
- Department of Mechanical Science and Engineering, The Grainger College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Peter J. Dempsey
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Denver, CO 80204, USA
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
8
|
Dalleywater W, Wheat F, Sculthorpe D, Hyland G, Ilyas M. In Vitro Culture and Histological Evaluation of 3D Organotypic Cultures. Methods Mol Biol 2023; 2650:155-170. [PMID: 37310631 DOI: 10.1007/978-1-0716-3076-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Organotypic cultures allow cells to grow in a system which mimics in vivo tissue organization. Here we describe a method for establishing 3D organotypic cultures (using intestine as an example system), followed by methods for demonstrating cell morphology and tissue architecture using histological techniques and molecular expression analysis using immunohistochemistry, though the system is also amenable to molecular expression analysis, such as by PCR, RNA sequencing, or FISH.
Collapse
Affiliation(s)
- William Dalleywater
- Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK.
- Department of Cellular Pathology, Nottingham University Hospitals NHS Trust, Nottingham, UK.
| | - Francesca Wheat
- Department of Cellular Pathology, University Hospitals of Leicester NHS Trust, Nottingham, UK
| | - Declan Sculthorpe
- Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Georgina Hyland
- Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Mohammad Ilyas
- Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
- Department of Cellular Pathology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| |
Collapse
|
9
|
Corominas-Murtra B, Hannezo E. Modelling the dynamics of mammalian gut homeostasis. Semin Cell Dev Biol 2022:S1084-9521(22)00317-2. [DOI: 10.1016/j.semcdb.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/26/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
|
10
|
Wang Y, Stonehouse-Smith D, Cobourne MT, Green JBA, Seppala M. Cellular mechanisms of reverse epithelial curvature in tissue morphogenesis. Front Cell Dev Biol 2022; 10:1066399. [PMID: 36518538 PMCID: PMC9742543 DOI: 10.3389/fcell.2022.1066399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/09/2022] [Indexed: 08/24/2023] Open
Abstract
Epithelial bending plays an essential role during the multiple stages of organogenesis and can be classified into two types: invagination and evagination. The early stages of invaginating and evaginating organs are often depicted as simple concave and convex curves respectively, but in fact majority of the epithelial organs develop through a more complex pattern of curvature: concave flanked by convex and vice versa respectively. At the cellular level, this is far from a geometrical truism: locally cells must passively adapt to, or actively create such an epithelial structure that is typically composed of opposite and connected folds that form at least one s-shaped curve that we here, based on its appearance, term as "reverse curves." In recent years, invagination and evagination have been studied in increasing cellular detail. A diversity of mechanisms, including apical/basal constriction, vertical telescoping and extrinsic factors, all orchestrate epithelial bending to give different organs their final shape. However, how cells behave collectively to generate reverse curves remains less well-known. Here we review experimental models that characteristically form reverse curves during organogenesis. These include the circumvallate papillae in the tongue, crypt-villus structure in the intestine, and early tooth germ and describe how, in each case, reverse curves form to connect an invaginated or evaginated placode or opposite epithelial folds. Furthermore, by referring to the multicellular system that occur in the invagination and evagination, we attempt to provide a summary of mechanisms thought to be involved in reverse curvature consisting of apical/basal constriction, and extrinsic factors. Finally, we describe the emerging techniques in the current investigations, such as organoid culture, computational modelling and live imaging technologies that have been utilized to improve our understanding of the cellular mechanisms in early tissue morphogenesis.
Collapse
Affiliation(s)
- Yiran Wang
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Daniel Stonehouse-Smith
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
- Department of Orthodontics, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Martyn T. Cobourne
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
- Department of Orthodontics, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Jeremy B. A. Green
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Maisa Seppala
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
- Department of Orthodontics, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
11
|
Abdul L, Xu J, Sotra A, Chaudary A, Gao J, Rajasekar S, Anvari N, Mahyar H, Zhang B. D-CryptO: deep learning-based analysis of colon organoid morphology from brightfield images. LAB ON A CHIP 2022; 22:4118-4128. [PMID: 36200406 DOI: 10.1039/d2lc00596d] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Stem cell-derived organoids are a promising tool to model native human tissues as they resemble human organs functionally and structurally compared to traditional monolayer cell-based assays. For instance, colon organoids can spontaneously develop crypt-like structures similar to those found in the native colon. While analyzing the structural development of organoids can be a valuable readout, using traditional image analysis tools makes it challenging because of the heterogeneities and the abstract nature of organoid morphologies. To address this limitation, we developed and validated a deep learning-based image analysis tool, named D-CryptO, for the classification of organoid morphology. D-CryptO can automatically assess the crypt formation and opacity of colorectal organoids from brightfield images to determine the extent of organoid structural maturity. To validate this tool, changes in organoid morphology were analyzed during organoid passaging and short-term forskolin stimulation. To further demonstrate the potential of D-CryptO for drug testing, organoid structures were analyzed following treatments with a panel of chemotherapeutic drugs. With D-CryptO, subtle variations in how colon organoids responded to the different chemotherapeutic drugs were detected, which suggest potentially distinct mechanisms of action. This tool could be expanded to other organoid types, like intestinal organoids, to facilitate 3D tissue morphological analysis.
Collapse
Affiliation(s)
- Lyan Abdul
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada.
| | - Jocelyn Xu
- Faculty of Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Alexander Sotra
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada.
| | - Abbas Chaudary
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Jerry Gao
- Faculty of Science, McGill University, 845 Sherbrooke Street West, Montreal, QC H3A 0G4, Canada
| | - Shravanthi Rajasekar
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Nicky Anvari
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada.
| | - Hamidreza Mahyar
- W Booth School of Engineering Practice and Technology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Boyang Zhang
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada.
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| |
Collapse
|
12
|
Felsenthal N, Vignjevic DM. Stand by me: Fibroblasts regulation of the intestinal epithelium during development and homeostasis. Curr Opin Cell Biol 2022; 78:102116. [PMID: 35914344 DOI: 10.1016/j.ceb.2022.102116] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/16/2022] [Accepted: 06/23/2022] [Indexed: 01/31/2023]
Abstract
The epithelium of the small intestine is composed of a single layer of cells that line two functionally distinct compartments, the villi that project into the lumen of the gut and the crypts that descend into the underlying connective tissue. Stem cells are located in crypts, where they divide and give rise to transit-amplifying cells that differentiate into secretory and absorptive epithelial cells. Most differentiated cells travel upwards from the crypt towards the villus tip, where they shed into the lumen. While some of these cell behaviors are an intrinsic property of the epithelium, it is becoming evident that tight coordination between the epithelium and the underlying fibroblasts plays a critical role in tissue morphogenesis, stem-cell niche maintenance and regionalized gene expression along the crypt-villus axis. Here, we will review the current literature describing the interaction between epithelium and fibroblasts during crypt-villus axis development and intestinal epithelium renewal during homeostasis.
Collapse
Affiliation(s)
- Neta Felsenthal
- Institut Curie, PSL Research University, CNRS UMR 144, F-75005 Paris, France.
| | | |
Collapse
|
13
|
Abstract
The vertebrate intestine experiences a range of intrinsically generated and external forces during both development and adult homeostasis. It is increasingly understood how the coordination of these forces shapes the intestine through organ-scale folding and epithelial organization into crypt-villus compartments. Moreover, accumulating evidence shows that several cell types in the adult intestine can sense and respond to forces to regulate key cellular processes underlying adult intestinal functions and self-renewal. In this way, transduction of forces may direct both intestinal homeostasis as well as adaptation to external stimuli, such as food ingestion or injury. In this review, we will discuss recent insights from complementary model systems into the force-dependent mechanisms that establish and maintain the unique architecture of the intestine, as well as its homeostatic regulation and function throughout adult life.
Collapse
|
14
|
Petzold J, Gentleman E. Intrinsic Mechanical Cues and Their Impact on Stem Cells and Embryogenesis. Front Cell Dev Biol 2021; 9:761871. [PMID: 34820380 PMCID: PMC8606660 DOI: 10.3389/fcell.2021.761871] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/14/2021] [Indexed: 12/25/2022] Open
Abstract
Although understanding how soluble cues direct cellular processes revolutionised the study of cell biology in the second half of the 20th century, over the last two decades, new insights into how mechanical cues similarly impact cell fate decisions has gained momentum. During development, extrinsic cues such as fluid flow, shear stress and compressive forces are essential for normal embryogenesis to proceed. Indeed, both adult and embryonic stem cells can respond to applied forces, but they can also detect intrinsic mechanical cues from their surrounding environment, such as the stiffness of the extracellular matrix, which impacts differentiation and morphogenesis. Cells can detect changes in their mechanical environment using cell surface receptors such as integrins and focal adhesions. Moreover, dynamic rearrangements of the cytoskeleton have been identified as a key means by which forces are transmitted from the extracellular matrix to the cell and vice versa. Although we have some understanding of the downstream mechanisms whereby mechanical cues are translated into changes in cell behaviour, many of the signalling pathways remain to be defined. This review discusses the importance of intrinsic mechanical cues on adult cell fate decisions, the emerging roles of cell surface mechano-sensors and the cytoskeleton in enabling cells to sense its microenvironment, and the role of intracellular signalling in translating mechanical cues into transcriptional outputs. In addition, the contribution of mechanical cues to fundamental processes during embryogenesis such as apical constriction and convergent extension is discussed. The continued development of tools to measure the biomechanical properties of soft tissues in vivo is likely to uncover currently underestimated contributions of these cues to adult stem cell fate decisions and embryogenesis, and may inform on regenerative strategies for tissue repair.
Collapse
Affiliation(s)
- Jonna Petzold
- Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
| | - Eileen Gentleman
- Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
| |
Collapse
|
15
|
Yang Q, Xue SL, Chan CJ, Rempfler M, Vischi D, Maurer-Gutierrez F, Hiiragi T, Hannezo E, Liberali P. Cell fate coordinates mechano-osmotic forces in intestinal crypt formation. Nat Cell Biol 2021; 23:733-744. [PMID: 34155381 PMCID: PMC7611267 DOI: 10.1038/s41556-021-00700-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 05/14/2021] [Indexed: 02/06/2023]
Abstract
Intestinal organoids derived from single cells undergo complex crypt-villus patterning and morphogenesis. However, the nature and coordination of the underlying forces remains poorly characterized. Here, using light-sheet microscopy and large-scale imaging quantification, we demonstrate that crypt formation coincides with a stark reduction in lumen volume. We develop a 3D biophysical model to computationally screen different mechanical scenarios of crypt morphogenesis. Combining this with live-imaging data and multiple mechanical perturbations, we show that actomyosin-driven crypt apical contraction and villus basal tension work synergistically with lumen volume reduction to drive crypt morphogenesis, and demonstrate the existence of a critical point in differential tensions above which crypt morphology becomes robust to volume changes. Finally, we identified a sodium/glucose cotransporter that is specific to differentiated enterocytes that modulates lumen volume reduction through cell swelling in the villus region. Together, our study uncovers the cellular basis of how cell fate modulates osmotic and actomyosin forces to coordinate robust morphogenesis.
Collapse
Affiliation(s)
- Qiutan Yang
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland.
| | - Shi-Lei Xue
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Chii Jou Chan
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Markus Rempfler
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | - Dario Vischi
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | | | | | - Edouard Hannezo
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| | - Prisca Liberali
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
16
|
Bacterial detection by NAIP/NLRC4 elicits prompt contractions of intestinal epithelial cell layers. Proc Natl Acad Sci U S A 2021; 118:2013963118. [PMID: 33846244 PMCID: PMC8072224 DOI: 10.1073/pnas.2013963118] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The gut epithelium serves to maximize the surface for nutrient and fluid uptake, but at the same time must provide a tight barrier to pathogens and remove damaged intestinal epithelial cells (IECs) without jeopardizing barrier integrity. How the epithelium coordinates these tasks remains a question of significant interest. We used imaging and an optical flow analysis pipeline to study the dynamicity of untransformed murine and human intestinal epithelia, cultured atop flexible hydrogel supports. Infection with the pathogen Salmonella Typhimurium (STm) within minutes elicited focal contractions with inward movements of up to ∼1,000 IECs. Genetics approaches and chimeric epithelial monolayers revealed contractions to be triggered by the NAIP/NLRC4 inflammasome, which sensed type-III secretion system and flagellar ligands upon bacterial invasion, converting the local tissue into a contraction epicenter. Execution of the response required swift sublytic Gasdermin D pore formation, ion fluxes, and the propagation of a myosin contraction pulse across the tissue. Importantly, focal contractions preceded, and could be uncoupled from, the death and expulsion of infected IECs. In both two-dimensional monolayers and three-dimensional enteroids, multiple infection-elicited contractions coalesced to produce shrinkage of the epithelium as a whole. Monolayers deficient for Caspase-1(-11) or Gasdermin D failed to elicit focal contractions but were still capable of infected IEC death and expulsion. Strikingly, these monolayers lost their integrity to a markedly higher extent than wild-type counterparts. We propose that prompt NAIP/NLRC4/Caspase-1/Gasdermin D/myosin-dependent contractions allow the epithelium to densify its cell packing in infected regions, thereby preventing tissue disintegration due to the subsequent IEC death and expulsion process.
Collapse
|
17
|
Yang X, Xu X, Zhu H, Wang M, Wang D. Organoid research in digestive system tumors. Oncol Lett 2021; 21:308. [PMID: 33732384 PMCID: PMC7905586 DOI: 10.3892/ol.2021.12569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Digestive system tumors are the most common cause of cancer-associated mortality worldwide, although their underlying biological behavior still requires further investigation. Most of the in vitro studies that have been published have been based on the two-dimensional (2D) culture system. However, digestive system tumors exhibit considerable histological and functional heterogeneity, and clonal diversity and heterogeneity cannot be entirely reflected in the 2D culture system. Recently, the development of organoids appears to have shed some light on this area of cancer research. The present review discusses the recent advancements that have been made in the development of several specific organoids in digestive system solid tumors.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- Department of Radiology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212031, P.R. China
| | - Xuewen Xu
- Department of Radiology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212031, P.R. China
| | - Haitao Zhu
- Department of Radiology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212031, P.R. China
| | - Ming Wang
- Department of Radiology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212031, P.R. China
| | - Dongqing Wang
- Department of Radiology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212031, P.R. China
| |
Collapse
|
18
|
Sprangers J, Zaalberg IC, Maurice MM. Organoid-based modeling of intestinal development, regeneration, and repair. Cell Death Differ 2021; 28:95-107. [PMID: 33208888 PMCID: PMC7852609 DOI: 10.1038/s41418-020-00665-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
The intestinal epithelium harbors a remarkable adaptability to undergo injury-induced repair. A key part of the regenerative response is the transient reprogramming of epithelial cells into a fetal-like state, which drives uniform proliferation, tissue remodeling, and subsequent restoration of the homeostatic state. In this review, we discuss how Wnt and YAP signaling pathways control the intestinal repair response and the transitioning of cell states, in comparison with the process of intestinal development. Furthermore, we highlight how organoid-based applications have contributed to the characterization of the mechanistic principles and key players that guide these developmental and regenerative events.
Collapse
Affiliation(s)
- Joep Sprangers
- Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Irene C Zaalberg
- Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Madelon M Maurice
- Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
19
|
Kwon O, Han TS, Son MY. Intestinal Morphogenesis in Development, Regeneration, and Disease: The Potential Utility of Intestinal Organoids for Studying Compartmentalization of the Crypt-Villus Structure. Front Cell Dev Biol 2020; 8:593969. [PMID: 33195268 PMCID: PMC7644937 DOI: 10.3389/fcell.2020.593969] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/05/2020] [Indexed: 12/19/2022] Open
Abstract
The morphology and structure of the intestinal epithelium are rearranged dynamically during development, tissue regeneration, and disease progression. The most important characteristic of intestinal epithelial morphogenesis is the repetitive compartmentalized structures of crypt-villus units, which are crucial for maintaining intestinal homeostasis and functions. Abnormal structures are known to be closely associated with disease development and progression. Therefore, understanding how intestinal crypt-villus structures are formed and grown is essential for elucidating the physiological and pathophysiological roles of the intestinal epithelium. However, a critical knowledge gap in understanding the compartmentalization of the crypt-villus axis remains when using animal models, due to obvious inter-species differences and difficulty in real-time monitoring. Recently, emerging technologies such as organoid culture, lineage tracing, and single cell sequencing have enabled the assessment of the intrinsic mechanisms of intestinal epithelial morphogenesis. In this review, we discuss the latest research on the regulatory factors and signaling pathways that play a central role in the formation, maintenance, and regeneration of crypt-villus structures in the intestinal epithelium. Furthermore, we discuss how these factors and pathways play a role in development, tissue regeneration, and disease. We further explore how the current technology of three-dimensional intestinal organoids has contributed to the understanding of crypt-villus compartmentalization, highlighting new findings related to the self-organizing-process-driven initiation and propagation of crypt-villus structures. We also discuss intestinal diseases featuring abnormalities of the crypt-villus structure to provide insights for the development of novel therapeutic strategies targeting intestinal morphogenesis and crypt-villus formation.
Collapse
Affiliation(s)
- Ohman Kwon
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Tae-Su Han
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Mi-Young Son
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
20
|
Kelley CA, De Henau S, Bell L, Dansen TB, Cram EJ. Redox signaling modulates Rho activity and tissue contractility in the Caenorhabditis elegans spermatheca. Mol Biol Cell 2020; 31:1486-1497. [PMID: 32374641 PMCID: PMC7359568 DOI: 10.1091/mbc.e20-04-0236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Actomyosin-based contractility in smooth muscle and nonmuscle cells is regulated by signaling through the small GTPase Rho and by calcium-activated pathways. We use the myoepithelial cells of the Caenorhabditis elegans spermatheca to study the mechanisms of coordinated myosin activation in vivo. Here, we show that redox signaling modulates RHO-1/Rho activity in this contractile tissue. Exogenously added as well as endogenously generated hydrogen peroxide decreases spermathecal contractility by inhibition of RHO-1, which depends on a conserved cysteine in its nucleotide binding site (C20). Further, we identify an endogenous gradient of H2O2 across the spermathecal tissue, which depends on the activity of cytosolic superoxide dismutase, SOD-1. Collectively, we show that SOD-1-mediated H2O2 production regulates the redox environment and fine tunes Rho activity across the spermatheca through oxidation of RHO-1 C20.
Collapse
Affiliation(s)
| | - Sasha De Henau
- Center for Molecular Medicine, Molecular Cancer Research Section, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Liam Bell
- Department of Biology, Northeastern University, Boston, MA 02115
| | - Tobias B Dansen
- Center for Molecular Medicine, Molecular Cancer Research Section, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Erin J Cram
- Department of Biology, Northeastern University, Boston, MA 02115
| |
Collapse
|
21
|
Xia X, Li F, He J, Aji R, Gao D. Organoid technology in cancer precision medicine. Cancer Lett 2019; 457:20-27. [PMID: 31078736 DOI: 10.1016/j.canlet.2019.04.039] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/22/2019] [Accepted: 04/25/2019] [Indexed: 12/13/2022]
Abstract
Organoid technology has been remarkably improved over the last decade. Various organoids have been derived from different types of tissues and recapitulate their organ-specific gene expression signatures, particular tissue spatial structures and functions of their original tissue. The patient-derived organoids (PDOs) have been used to elucidate crucial scientific questions, including the relationships between genetic/epigenetic alterations and drug responses, cell plasticity during disease progressions, and mechanisms of drug resistances. With the great expectations, PDOs will be widely used to facilitate the personalized medical decisions, which have the potential to profoundly improve patient outcomes. In this review, we will discuss the developmental details, current achievements, applications and challenges of organoid technology in precision cancer medicine.
Collapse
Affiliation(s)
- Xinyi Xia
- State Key Laboratory of Cell Biology, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China; CAS Key Laboratory of Systems Biology, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Fei Li
- State Key Laboratory of Cell Biology, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China; CAS Key Laboratory of Systems Biology, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Juan He
- State Key Laboratory of Cell Biology, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China; CAS Key Laboratory of Systems Biology, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Rebiguli Aji
- State Key Laboratory of Cell Biology, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China; CAS Key Laboratory of Systems Biology, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Dong Gao
- State Key Laboratory of Cell Biology, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China; CAS Key Laboratory of Systems Biology, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
| |
Collapse
|