1
|
Kamizaki K, Katsukawa M, Yamamoto A, Fukada SI, Uezumi A, Endo M, Minami Y. Ror2 signaling regulated by differential Wnt proteins determines pathological fate of muscle mesenchymal progenitors. Cell Death Dis 2024; 15:784. [PMID: 39468010 PMCID: PMC11519583 DOI: 10.1038/s41419-024-07173-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
Skeletal muscle mesenchymal progenitors (MPs) play a critical role in supporting muscle regeneration. However, under pathological conditions, they contribute to intramuscular adipose tissue accumulation, involved in muscle diseases, including muscular dystrophy and sarcopenia, age-related muscular atrophy. How MP fate is determined in these different contexts remains unelucidated. Here, we report that Ror2, a non-canonical Wnt signaling receptor, is selectively expressed in MPs and regulates their pathological features in a differential ligand-dependent manner. We identified Wnt11 and Wnt5b as ligands of Ror2. In vitro, Wnt11 inhibited MP senescence, which is required for normal muscle regeneration, and Wnt5b promoted MP proliferation. We further found that both Wnts are abundant in degenerating muscle and synergistically stimulate Ror2, leading to unwanted MP proliferation and eventually intramuscular adipose tissue accumulation. These findings provide evidence that Ror2-mediated signaling elicited by differential Wnts plays a critical role in determining the pathological fate of MPs.
Collapse
Affiliation(s)
- Koki Kamizaki
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Mitsuko Katsukawa
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Ayano Yamamoto
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - So-Ichiro Fukada
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Akiyoshi Uezumi
- Division of Cell Heterogeneity, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Mitsuharu Endo
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan.
| |
Collapse
|
2
|
Zhang L, Saito H, Higashimoto T, Kaji T, Nakamura A, Iwamori K, Nagano R, Motooka D, Okuzaki D, Uezumi A, Seno S, Fukada SI. Regulation of muscle hypertrophy through granulin: Relayed communication among mesenchymal progenitors, macrophages, and satellite cells. Cell Rep 2024; 43:114052. [PMID: 38573860 DOI: 10.1016/j.celrep.2024.114052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 02/14/2024] [Accepted: 03/19/2024] [Indexed: 04/06/2024] Open
Abstract
Skeletal muscles exert remarkable regenerative or adaptive capacities in response to injuries or mechanical loads. However, the cellular networks underlying muscle adaptation are poorly understood compared to those underlying muscle regeneration. We employed single-cell RNA sequencing to investigate the gene expression patterns and cellular networks activated in overloaded muscles and compared these results with those observed in regenerating muscles. The cellular composition of the 4-day overloaded muscle, when macrophage infiltration peaked, closely resembled that of the 10-day regenerating muscle. In addition to the mesenchymal progenitor-muscle satellite cell (MuSC) axis, interactome analyses or targeted depletion experiments revealed communications between mesenchymal progenitors-macrophages and macrophages-MuSCs. Furthermore, granulin, a macrophage-derived factor, inhibited MuSC differentiation, and Granulin-knockout mice exhibited blunted muscle hypertrophy due to the premature differentiation of overloaded MuSCs. These findings reveal the critical role of granulin through the relayed communications of mesenchymal progenitors, macrophages, and MuSCs in facilitating efficient muscle hypertrophy.
Collapse
Affiliation(s)
- Lidan Zhang
- Center for Medical Epigenetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 40016, China; Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hayato Saito
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Tatsuyoshi Higashimoto
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Takayuki Kaji
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Ayasa Nakamura
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kanako Iwamori
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Ryoko Nagano
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan; Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka 812-8582, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Akiyoshi Uezumi
- Division of Cell Heterogeneity, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, 3-1-1, Maidashi, Higashi, Fukuoka 812-8582, Japan
| | - Shigeto Seno
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - So-Ichiro Fukada
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
3
|
Takahashi Y, Yoda M, Tsuji O, Horiuchi K, Watanabe K, Nakamura M. IL-33-ST2 signaling in fibro-adipogenic progenitors alleviates immobilization-induced muscle atrophy in mice. Skelet Muscle 2024; 14:6. [PMID: 38561845 PMCID: PMC10983726 DOI: 10.1186/s13395-024-00338-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND The regenerative and adaptive capacity of skeletal muscles reduces with age, leading to severe disability and frailty in the elderly. Therefore, development of effective therapeutic interventions for muscle wasting is important both medically and socioeconomically. In the present study, we aimed to elucidate the potential contribution of fibro-adipogenic progenitors (FAPs), which are mesenchymal stem cells in skeletal muscles, to immobilization-induced muscle atrophy. METHODS Young (2-3 months), adult (12-14 months), and aged (20-22 months) mice were used for analysis. Muscle atrophy was induced by immobilizing the hind limbs with a steel wire. FAPs were isolated from the hind limbs on days 0, 3, and 14 after immobilization for transcriptome analysis. The expression of ST2 and IL-33 in FAPs was evaluated by flow cytometry and immunostaining, respectively. To examine the role of IL-33-ST2 signaling in vivo, we intraperitoneally administered recombinant IL-33 or soluble ST2 (sST2) twice a week throughout the 2-week immobilization period. After 2-week immobilization, the tibialis anterior muscles were harvested and the cross-sectional area of muscle fibers was evaluated. RESULTS The number of FAPs increased with the progression of muscle atrophy after immobilization in all age-groups. Transcriptome analysis of FAPs collected before and after immobilization revealed that Il33 and Il1rl1 transcripts, which encode the IL-33 receptor ST2, were transiently induced in young mice and, to a lesser extent, in aged mice. The number of FAPs positive for ST2 increased after immobilization in young mice. The number of ST2-positive FAPs also increased after immobilization in aged mice, but the difference from the baseline was not statistically significant. Immunostaining for IL-33 in the muscle sections revealed a significant increase in the number of FAPs expressing IL-33 after immobilization. Administration of recombinant IL-33 suppressed immobilization-induced muscle atrophy in aged mice but not in young mice. CONCLUSIONS Our data reveal a previously unknown protective role of IL-33-ST2 signaling against immobilization-induced muscle atrophy in FAPs and suggest that IL-33-ST2 signaling is a potential new therapeutic target for alleviating disuse muscle atrophy, particularly in older adults.
Collapse
Affiliation(s)
- Yoshiyuki Takahashi
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Masaki Yoda
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Osahiko Tsuji
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Keisuke Horiuchi
- Department of Orthopedic Surgery, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama, 359-8513, Japan
| | - Kota Watanabe
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan.
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| |
Collapse
|
4
|
Lee JH, Kim TK, Kang MC, Park M, Choi YS. Methods to Isolate Muscle Stem Cells for Cell-Based Cultured Meat Production: A Review. Animals (Basel) 2024; 14:819. [PMID: 38473203 DOI: 10.3390/ani14050819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Cultured meat production relies on various cell types, including muscle stem cells (MuSCs), embryonic stem cell lines, induced pluripotent cell lines, and naturally immortalized cell lines. MuSCs possess superior muscle differentiation capabilities compared to the other three cell lines, making them key for cultured meat development. Therefore, to produce cultured meat using MuSCs, they must first be effectively separated from muscles. At present, the methods used to isolate MuSCs from muscles include (1) the pre-plating method, using the ability of cells to adhere differently, which is a biological characteristic of MuSCs; (2) the density gradient centrifugation method, using the intrinsic density difference of cells, which is a physical characteristic of MuSCs; and (3) fluorescence- and magnetic-activated cell sorting methods, using the surface marker protein on the cell surface of MuSCs, which is a molecular characteristic of MuSCs. Further efficient and valuable methods for separating MuSCs are expected to be required as the cell-based cultured meat industry develops. Thus, we take a closer look at the four methods currently in use and discuss future development directions in this review.
Collapse
Affiliation(s)
- Jae-Hoon Lee
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Tae-Kyung Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Min-Cheol Kang
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Minkyung Park
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| |
Collapse
|
5
|
Ito Y, Yamagata M, Yamamoto T, Hirasaka K, Nikawa T, Sato T. The reciprocal regulation between mitochondrial-associated membranes and Notch signaling in skeletal muscle atrophy. eLife 2023; 12:RP89381. [PMID: 38099641 PMCID: PMC10723794 DOI: 10.7554/elife.89381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
Skeletal muscle atrophy and the inhibition of muscle regeneration are known to occur as a natural consequence of aging, yet the underlying mechanisms that lead to these processes in atrophic myofibers remain largely unclear. Our research has revealed that the maintenance of proper mitochondrial-associated endoplasmic reticulum membranes (MAM) is vital for preventing skeletal muscle atrophy in microgravity environments. We discovered that the deletion of the mitochondrial fusion protein Mitofusin2 (MFN2), which serves as a tether for MAM, in human induced pluripotent stem (iPS) cells or the reduction of MAM in differentiated myotubes caused by microgravity interfered with myogenic differentiation process and an increased susceptibility to muscle atrophy, as well as the activation of the Notch signaling pathway. The atrophic phenotype of differentiated myotubes in microgravity and the regenerative capacity of Mfn2-deficient muscle stem cells in dystrophic mice were both ameliorated by treatment with the gamma-secretase inhibitor DAPT. Our findings demonstrate how the orchestration of mitochondrial morphology in differentiated myotubes and regenerating muscle stem cells plays a crucial role in regulating Notch signaling through the interaction of MAM.
Collapse
Affiliation(s)
- Yurika Ito
- Faculty of Medical Sciences, Fujita Health UniversityToyoakeJapan
| | - Mari Yamagata
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha UniversityKyotanabeJapan
| | - Takuya Yamamoto
- Center for iPS Cell Research and Application, Kyoto UniversityKyotoJapan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto UniversityKyotoJapan
- Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP)KyotoJapan
| | - Katsuya Hirasaka
- Organization for Marine Science and Technology, Nagasaki University Graduate SchoolNagasakiJapan
| | - Takeshi Nikawa
- Department of Nutritional Physiology, Institute of Medical Nutrition, Tokushima University Graduate SchoolTokushimaJapan
| | - Takahiko Sato
- Department of Ophthalmology, Kyoto Prefectural University of MedicineKyotoJapan
- Department of Anatomy, Faculty of Medicine, Fujita Health UniversityToyoakeJapan
- International Center for Cell and Gene Therapy, Fujita Health UniversityToyoakeJapan
| |
Collapse
|
6
|
Tavakoli S, Garcia V, Gähwiler E, Adatto I, Rangan A, Messemer KA, Kakhki SA, Yang S, Chan VS, Manning ME, Fotowat H, Zhou Y, Wagers AJ, Zon LI. Transplantation-based screen identifies inducers of muscle progenitor cell engraftment across vertebrate species. Cell Rep 2023; 42:112365. [PMID: 37018075 PMCID: PMC10548355 DOI: 10.1016/j.celrep.2023.112365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/06/2023] [Accepted: 03/22/2023] [Indexed: 04/06/2023] Open
Abstract
Stem cell transplantation presents a potentially curative strategy for genetic disorders of skeletal muscle, but this approach is limited by the deleterious effects of cell expansion in vitro and consequent poor engraftment efficiency. In an effort to overcome this limitation, we sought to identify molecular signals that enhance the myogenic activity of cultured muscle progenitors. Here, we report the development and application of a cross-species small-molecule screening platform employing zebrafish and mice, which enables rapid, direct evaluation of the effects of chemical compounds on the engraftment of transplanted muscle precursor cells. Using this system, we screened a library of bioactive lipids to discriminate those that could increase myogenic engraftment in vivo in zebrafish and mice. This effort identified two lipids, lysophosphatidic acid and niflumic acid, both linked to the activation of intracellular calcium-ion flux, which showed conserved, dose-dependent, and synergistic effects in promoting muscle engraftment across these vertebrate species.
Collapse
Affiliation(s)
- Sahar Tavakoli
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Vivian Garcia
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Eric Gähwiler
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Institute for Regenerative Medicine, University of Zurich, ETH Zurich, Zurich, Switzerland
| | - Isaac Adatto
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Apoorva Rangan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Stanford Medicine, Stanford University, Stanford, CA 94305, USA
| | - Kathleen A Messemer
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Sara Ashrafi Kakhki
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Song Yang
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Victoria S Chan
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Margot E Manning
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Haleh Fotowat
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Yi Zhou
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Amy J Wagers
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115, USA; Joslin Diabetes Center, Boston, MA 02215, USA.
| | - Leonard I Zon
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Yamashita Y, Nakada S, Nakamura K, Sakurai H, Ohno K, Goto T, Mabuchi Y, Akazawa C, Hattori N, Arikawa-Hirasawa E. Evaluation of Human-Induced Pluripotent Stem Cells Derived from a Patient with Schwartz–Jampel Syndrome Revealed Distinct Hyperexcitability in the Skeletal Muscles. Biomedicines 2023; 11:biomedicines11030814. [PMID: 36979792 PMCID: PMC10045278 DOI: 10.3390/biomedicines11030814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 03/10/2023] Open
Abstract
Schwartz–Jampel syndrome (SJS) is an autosomal recessive disorder caused by loss-of-function mutations in heparan sulfate proteoglycan 2 (HSPG2), which encodes the core basement membrane protein perlecan. Myotonia is a major criterion for the diagnosis of SJS; however, its evaluation is based solely on physical examination and can be challenging in neonates and young children. Furthermore, the pathomechanism underlying SJS-related myotonia is not fully understood, and effective treatments for SJS are limited. Here, we established a cellular model of SJS using patient-derived human-induced pluripotent stem cells. This model exhibited hyper-responsiveness to acetylcholine as a result of abnormalities in the perlecan molecule, which were confirmed via comparison of their calcium imaging with calcium imaging of satellite cells derived from Hspg2−/−-Tg mice, which exhibit myotonic symptoms similar to SJS symptoms. Therefore, our results confirm the utility of creating cellular models for investigating SJS and their application in evaluating myotonia in clinical cases, while also providing a useful tool for the future screening of SJS therapies.
Collapse
Affiliation(s)
- Yuri Yamashita
- Aging Biology in Health and Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Satoshi Nakada
- Japanese Center for Research on Women in Sport, Juntendo University Graduate School of Health and Sports Science, Chiba 270-1695, Japan
| | - Kyoko Nakamura
- Department of Physiology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Hidetoshi Sakurai
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Tomohide Goto
- Department of Neurology, Kanagawa Children’s Medical Center, Yokohama 232-8555, Japan
| | - Yo Mabuchi
- Intractable Disease Research Centre, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Chihiro Akazawa
- Intractable Disease Research Centre, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Nobutaka Hattori
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Eri Arikawa-Hirasawa
- Aging Biology in Health and Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan
- Japanese Center for Research on Women in Sport, Juntendo University Graduate School of Health and Sports Science, Chiba 270-1695, Japan
- Correspondence: ; Tel.: +81-3-3813-3111
| |
Collapse
|
8
|
Ikemoto-Uezumi M, Kurosawa T, Minato K, Uezumi A. Analyses of Mesenchymal Progenitors in Skeletal Muscle by Fluorescence-Activated Cell Sorting and Tissue Clearing. Methods Mol Biol 2023; 2640:117-127. [PMID: 36995591 DOI: 10.1007/978-1-0716-3036-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Mesenchymal progenitors, which are resident progenitor populations residing in skeletal muscle interstitial space, contribute to pathogeneses such as fat infiltration, fibrosis, and heterotopic ossification. In addition to their pathological roles, mesenchymal progenitors have also been shown to play important roles for successful muscle regeneration and homeostatic muscle maintenance. Therefore, detailed and accurate analyses of these progenitors are essential for the research on muscle diseases and health. Here, we describe a method for purification of mesenchymal progenitors based on the expression of PDGFRα, which is a specific and well-established marker for mesenchymal progenitors, using fluorescence-activated cell sorting (FACS). Purified cells can be used in several downstream experiments including cell culture, cell transplantation, and gene expression analysis. We also describe the method for whole-mount 3-dimensional imaging of mesenchymal progenitors by utilizing tissue clearing. The methods described herein provide a powerful platform for studying mesenchymal progenitors in skeletal muscle.
Collapse
Affiliation(s)
- Madoka Ikemoto-Uezumi
- Muscle Aging and Regenerative Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Tamaki Kurosawa
- Muscle Aging and Regenerative Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Keitaro Minato
- Muscle Aging and Regenerative Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Akiyoshi Uezumi
- Muscle Aging and Regenerative Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.
| |
Collapse
|
9
|
Kubota M, Zhang L, Fukada SI. Flow Cytometer Analyses, Isolation, and Staining of Murine Muscle Satellite Cells. Methods Mol Biol 2023; 2640:3-11. [PMID: 36995583 DOI: 10.1007/978-1-0716-3036-5_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Fluorescence-activated cell sorting (FACS) is a powerful and requisite tool for the analysis and purification of adult stem cells. However, it is difficult to separate adult stem cells from solid organs than from immune-related tissues/organs. This is because of the presence of large amounts of debris, which increases noise in the FACS profiles. In particular, it is extremely difficult for unfamiliar researchers to identify muscle stem cell (also known as muscle satellite cell: MuSC) fraction because all myofibers, which are mainly composed of skeletal muscle tissues, become debris during cell preparation. This chapter describes our FACS protocol, which we have used for more than a decade, to identify and purify MuSCs.
Collapse
Affiliation(s)
- Manami Kubota
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Lidan Zhang
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - So-Ichiro Fukada
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.
| |
Collapse
|
10
|
MSTN Regulatory Network in Mongolian Horse Muscle Satellite Cells Revealed with miRNA Interference Technologies. Genes (Basel) 2022; 13:genes13101836. [PMID: 36292721 PMCID: PMC9601437 DOI: 10.3390/genes13101836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 12/05/2022] Open
Abstract
Myostatin (MSTN), a member of the transforming growth factor-β superfamily, inhibits the activation of muscle satellite cells. However, the role and regulatory network of MSTN in equine muscle cells are not well understood yet. We discovered that MSTN knockdown significantly reduces the proliferation rate of equine muscle satellite cells. In addition, after the RNA sequencing of equine satellite cells transfected with MSTN-interference plasmid and control plasmid, an analysis of the differentially expressed genes was carried out. It was revealed that MSTN regulatory networks mainly involve genes related to muscle function and cell-cycle regulation, and signaling pathways, such as Notch, MAPK, and WNT. Subsequent real-time PCR in equine satellite cells and immunohistochemistry on newborn and adult muscle also verified the MSTN regulatory network found in RNA sequencing analysis. The results of this study provide new insight into the regulatory mechanism of equine MSTN.
Collapse
|
11
|
Shams AS, Arpke RW, Gearhart MD, Weiblen J, Mai B, Oyler D, Bosnakovski D, Mahmoud OM, Hassan GM, Kyba M. The chemokine receptor CXCR4 regulates satellite cell activation, early expansion, and self-renewal, in response to skeletal muscle injury. Front Cell Dev Biol 2022; 10:949532. [PMID: 36211464 PMCID: PMC9536311 DOI: 10.3389/fcell.2022.949532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Acute skeletal muscle injury is followed by satellite cell activation, proliferation, and differentiation to replace damaged fibers with newly regenerated muscle fibers, processes that involve satellite cell interactions with various niche signals. Here we show that satellite cell specific deletion of the chemokine receptor CXCR4, followed by suppression of recombination escapers, leads to defects in regeneration and satellite cell pool repopulation in both the transplantation and in situ injury contexts. Mechanistically, we show that endothelial cells and FAPs express the gene for the ligand, SDF1α, and that CXCR4 is principally required for proper activation and for transit through the first cell division, and to a lesser extent the later cell divisions. In the absence of CXCR4, gene expression in quiescent satellite cells is not severely disrupted, but in activated satellite cells a subset of genes normally induced by activation fail to upregulate normally. These data demonstrate that CXCR4 signaling is essential to normal early activation, proliferation, and self-renewal of satellite cells.
Collapse
Affiliation(s)
- Ahmed S. Shams
- Lillehei Heart Institute, Minneapolis, MN, United States
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
- Department of Human Anatomy and Embryology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Robert W. Arpke
- Lillehei Heart Institute, Minneapolis, MN, United States
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Micah D. Gearhart
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States
| | - Johannes Weiblen
- Lillehei Heart Institute, Minneapolis, MN, United States
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Ben Mai
- Lillehei Heart Institute, Minneapolis, MN, United States
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - David Oyler
- Lillehei Heart Institute, Minneapolis, MN, United States
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Darko Bosnakovski
- Lillehei Heart Institute, Minneapolis, MN, United States
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Omayma M. Mahmoud
- Department of Human Anatomy and Embryology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Gamal M. Hassan
- Department of Human Anatomy and Embryology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Michael Kyba
- Lillehei Heart Institute, Minneapolis, MN, United States
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
- *Correspondence: Michael Kyba,
| |
Collapse
|
12
|
Transplantation of human iPSC-derived muscle stem cells in the diaphragm of Duchenne muscular dystrophy model mice. PLoS One 2022; 17:e0266391. [PMID: 35377913 PMCID: PMC8979463 DOI: 10.1371/journal.pone.0266391] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/20/2022] [Indexed: 12/12/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an intractable genetic muscular disorder characterized by the loss of DYSTROPHIN. The restoration of DYSTROPHIN is expected to be a curative therapy for DMD. Because muscle stem cells (MuSCs) can regenerate damaged myofibers with full-length DYSTROPHIN in vivo, their transplantation is being explored as such a therapy. As for the transplanted cells, primary satellite cells have been considered, but donor shortage limits their clinical application. We previously developed a protocol that differentiates induced pluripotent stem cells (iPSCs) to MuSCs (iMuSCs). To ameliorate the respiratory function of DMD patients, cell transplantation to the diaphragm is necessary but difficult, because the diaphragm is thin and rapidly moves. In the present study, we explored the transplantation of iMuSCs into the diaphragm. First, we show direct cell injection into the diaphragm of mouse was feasible. Then, to enhance the engraftment of the transplanted cells in a rapidly moving diaphragm, we mixed polymer solutions of hyaluronic acid, alginate and gelatin to the cell suspension, finding a solution of 20% dissolved hyaluronic acid and 80% dissolved gelatin improved the engraftment. Thus, we established a method for cell transplantation into mouse diaphragm and show that an injectable hyaluronic acid-gelatin solution enables the engraftment of iMuSCs in the diaphragm.
Collapse
|
13
|
Takada N, Takasugi M, Nonaka Y, Kamiya T, Takemura K, Satoh J, Ito S, Fujimoto K, Uematsu S, Yoshida K, Morita T, Nakamura H, Uezumi A, Ohtani N. Galectin-3 promotes the adipogenic differentiation of PDGFRα+ cells and ectopic fat formation in regenerating muscle. Development 2022; 149:274217. [DOI: 10.1242/dev.199443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 12/16/2021] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Worldwide prevalence of obesity is associated with the increase of lifestyle-related diseases. The accumulation of intermuscular adipose tissue (IMAT) is considered a major problem whereby obesity leads to sarcopenia and metabolic disorders and thus is a promising target for treating these pathological conditions. However, whereas obesity-associated IMAT is suggested to originate from PDGFRα+ mesenchymal progenitors, the processes underlying this adipogenesis remain largely unexplored. Here, we comprehensively investigated intra- and extracellular changes associated with these processes using single-cell RNA sequencing and mass spectrometry. Our single-cell RNA sequencing analysis identified a small PDGFRα+ cell population in obese mice directed strongly toward adipogenesis. Proteomic analysis showed that the appearance of this cell population is accompanied by an increase in galectin-3 in interstitial environments, which was found to activate adipogenic PPARγ signals in PDGFRα+ cells. Moreover, IMAT formation during muscle regeneration was significantly suppressed in galectin-3 knockout mice. Our findings, together with these multi-omics datasets, could unravel microenvironmental networks during muscle regeneration highlighting possible therapeutic targets against IMAT formation in obesity.
Collapse
Affiliation(s)
- Naoki Takada
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka City University, Osaka, 545-8585, Japan
- Department of Pathophysiology, Graduate School of Medicine, Osaka City University, Osaka, 545-8585, Japan
| | - Masaki Takasugi
- Department of Pathophysiology, Graduate School of Medicine, Osaka City University, Osaka, 545-8585, Japan
| | - Yoshiki Nonaka
- Department of Pathophysiology, Graduate School of Medicine, Osaka City University, Osaka, 545-8585, Japan
| | - Tomonori Kamiya
- Department of Pathophysiology, Graduate School of Medicine, Osaka City University, Osaka, 545-8585, Japan
| | - Kazuaki Takemura
- Department of Pathophysiology, Graduate School of Medicine, Osaka City University, Osaka, 545-8585, Japan
| | - Junko Satoh
- Division for Mass Spectrometry, Medical Research Support Center, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Shinji Ito
- Division for Mass Spectrometry, Medical Research Support Center, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Kosuke Fujimoto
- Department of Immunology and Genomics, Graduate School of Medicine, Osaka City University, Osaka, 545-8585, Japan
- Division of Metagenome Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Satoshi Uematsu
- Department of Immunology and Genomics, Graduate School of Medicine, Osaka City University, Osaka, 545-8585, Japan
- Division of Metagenome Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Kayo Yoshida
- Department of Laboratory Animal Science, Graduate School of Medicine, Osaka City University, Osaka, 545-8585, Japan
- Facility of Laboratory Animals, Graduate School of Medicine, Osaka City University, Osaka, 545-8585, Japan
| | - Takashi Morita
- Facility of Laboratory Animals, Graduate School of Medicine, Osaka City University, Osaka, 545-8585, Japan
| | - Hiroaki Nakamura
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka City University, Osaka, 545-8585, Japan
| | - Akiyoshi Uezumi
- Muscle Aging and Regenerative Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Naoko Ohtani
- Department of Pathophysiology, Graduate School of Medicine, Osaka City University, Osaka, 545-8585, Japan
- AMED-CREST, AMED, Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan
| |
Collapse
|
14
|
Romagnoli C, Iantomasi T, Brandi ML. Available In Vitro Models for Human Satellite Cells from Skeletal Muscle. Int J Mol Sci 2021; 22:ijms222413221. [PMID: 34948017 PMCID: PMC8706222 DOI: 10.3390/ijms222413221] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle accounts for almost 40% of the total adult human body mass. This tissue is essential for structural and mechanical functions such as posture, locomotion, and breathing, and it is endowed with an extraordinary ability to adapt to physiological changes associated with growth and physical exercise, as well as tissue damage. Moreover, skeletal muscle is the most age-sensitive tissue in mammals. Due to aging, but also to several diseases, muscle wasting occurs with a loss of muscle mass and functionality, resulting from disuse atrophy and defective muscle regeneration, associated with dysfunction of satellite cells, which are the cells responsible for maintaining and repairing adult muscle. The most established cell lines commonly used to study muscle homeostasis come from rodents, but there is a need to study skeletal muscle using human models, which, due to ethical implications, consist primarily of in vitro culture, which is the only alternative way to vertebrate model organisms. This review will survey in vitro 2D/3D models of human satellite cells to assess skeletal muscle biology for pre-clinical investigations and future directions.
Collapse
Affiliation(s)
- Cecilia Romagnoli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.R.); (T.I.)
| | - Teresa Iantomasi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.R.); (T.I.)
| | - Maria Luisa Brandi
- F.I.R.M.O. Italian Foundation for the Research on Bone Diseases, Via Reginaldo Giuliani 195/A, 50141 Florence, Italy
- Correspondence:
| |
Collapse
|
15
|
Kaneshige A, Kaji T, Zhang L, Saito H, Nakamura A, Kurosawa T, Ikemoto-Uezumi M, Tsujikawa K, Seno S, Hori M, Saito Y, Matozaki T, Maehara K, Ohkawa Y, Potente M, Watanabe S, Braun T, Uezumi A, Fukada SI. Relayed signaling between mesenchymal progenitors and muscle stem cells ensures adaptive stem cell response to increased mechanical load. Cell Stem Cell 2021; 29:265-280.e6. [PMID: 34856120 DOI: 10.1016/j.stem.2021.11.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/24/2021] [Accepted: 11/09/2021] [Indexed: 11/29/2022]
Abstract
Adaptation to mechanical load, leading to enhanced force and power output, is a characteristic feature of skeletal muscle. Formation of new myonuclei required for efficient muscle hypertrophy relies on prior activation and proliferation of muscle stem cells (MuSCs). However, the mechanisms controlling MuSC expansion under conditions of increased load are not fully understood. Here we demonstrate that interstitial mesenchymal progenitors respond to mechanical load and stimulate MuSC proliferation in a surgical mouse model of increased muscle load. Mechanistically, transcriptional activation of Yes-associated protein 1 (Yap1)/transcriptional coactivator with PDZ-binding motif (Taz) in mesenchymal progenitors results in local production of thrombospondin-1 (Thbs1), which, in turn, drives MuSC proliferation through CD47 signaling. Under homeostatic conditions, however, CD47 signaling is insufficient to promote MuSC proliferation and instead depends on prior downregulation of the Calcitonin receptor. Our results suggest that relayed signaling between mesenchymal progenitors and MuSCs through a Yap1/Taz-Thbs1-CD47 pathway is critical to establish the supply of MuSCs during muscle hypertrophy.
Collapse
Affiliation(s)
- Akihiro Kaneshige
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan; Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan; Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Takayuki Kaji
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Lidan Zhang
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hayato Saito
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Ayasa Nakamura
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Tamaki Kurosawa
- Muscle Aging and Regenerative Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi, Tokyo 173-0015, Japan; Laboratory of Veterinary Pharmacology, Department of Veterinary Medical Sciences, Graduate School of Agriculture and Life Sciences, Tokyo University, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Madoka Ikemoto-Uezumi
- Muscle Aging and Regenerative Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi, Tokyo 173-0015, Japan
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Shigeto Seno
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Masatoshi Hori
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medical Sciences, Graduate School of Agriculture and Life Sciences, Tokyo University, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasuyuki Saito
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Takashi Matozaki
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Kazumitsu Maehara
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Michael Potente
- Angiogenesis & Metabolism Laboratory, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany; Berlin Institute of Health at Charité (BIH) - Universitätsmedizin Berlin, 13125 Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Shuichi Watanabe
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Akiyoshi Uezumi
- Muscle Aging and Regenerative Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi, Tokyo 173-0015, Japan.
| | - So-Ichiro Fukada
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
16
|
Rigillo G, Basile V, Belluti S, Ronzio M, Sauta E, Ciarrocchi A, Latella L, Saclier M, Molinari S, Vallarola A, Messina G, Mantovani R, Dolfini D, Imbriano C. The transcription factor NF-Y participates to stem cell fate decision and regeneration in adult skeletal muscle. Nat Commun 2021; 12:6013. [PMID: 34650038 PMCID: PMC8516959 DOI: 10.1038/s41467-021-26293-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/27/2021] [Indexed: 12/22/2022] Open
Abstract
The transcription factor NF-Y promotes cell proliferation and its activity often declines during differentiation through the regulation of NF-YA, the DNA binding subunit of the complex. In stem cell compartments, the shorter NF-YA splice variant is abundantly expressed and sustains their expansion. Here, we report that satellite cells, the stem cell population of adult skeletal muscle necessary for its growth and regeneration, express uniquely the longer NF-YA isoform, majorly associated with cell differentiation. Through the generation of a conditional knock out mouse model that selectively deletes the NF-YA gene in satellite cells, we demonstrate that NF-YA expression is fundamental to preserve the pool of muscle stem cells and ensures robust regenerative response to muscle injury. In vivo and ex vivo, satellite cells that survive to NF-YA loss exit the quiescence and are rapidly committed to early differentiation, despite delayed in the progression towards later states. In vitro results demonstrate that NF-YA-depleted muscle stem cells accumulate DNA damage and cannot properly differentiate. These data highlight a new scenario in stem cell biology for NF-Y activity, which is required for efficient myogenic differentiation.
Collapse
Affiliation(s)
- Giovanna Rigillo
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, Modena, Italy
| | - Valentina Basile
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, Modena, Italy
| | - Silvia Belluti
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, Modena, Italy
| | - Mirko Ronzio
- Department of Biosciences, University of Milan, via Celoria 26, Milan, Italy
| | - Elisabetta Sauta
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda USL-IRCCS, Reggio Emilia, Italy
| | - Lucia Latella
- Department of Medicine, Institute of Translational Pharmacology, Italian National Research Council and Epigenetics and Regenerative Medicine, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Marielle Saclier
- Department of Biosciences, University of Milan, via Celoria 26, Milan, Italy
| | - Susanna Molinari
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, Modena, Italy
| | - Antonio Vallarola
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, Modena, Italy
| | - Graziella Messina
- Department of Biosciences, University of Milan, via Celoria 26, Milan, Italy
| | - Roberto Mantovani
- Department of Biosciences, University of Milan, via Celoria 26, Milan, Italy
| | - Diletta Dolfini
- Department of Biosciences, University of Milan, via Celoria 26, Milan, Italy
| | - Carol Imbriano
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, Modena, Italy.
| |
Collapse
|
17
|
Sato T. Induction of Skeletal Muscle Progenitors and Stem Cells from human induced Pluripotent Stem Cells. J Neuromuscul Dis 2021; 7:395-405. [PMID: 32538862 PMCID: PMC7592659 DOI: 10.3233/jnd-200497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Induced pluripotent stem cells (iPSCs) have the potential to differentiate into various types of cells and tissues including skeletal muscle. The approach to convert these stem cells into skeletal muscle cells offers hope for patients afflicted with skeletal muscle diseases such as Duchenne muscular dystrophy (DMD). Several methods have been reported to induce myogenic differentiation with iPSCs derived from myogenic patients. An important point for generating skeletal muscle cells from iPSCs is to understand in vivo myogenic induction in development and regeneration. Current protocols of myogenic induction utilize techniques with overexpression of myogenic transcription factors such as Myod1(MyoD), Pax3, Pax7, and others, using recombinant proteins or small molecules to induce mesodermal cells followed by myogenic progenitors, and adult muscle stem cells. This review summarizes the current approaches used for myogenic induction and highlights recent improvements.
Collapse
Affiliation(s)
- Takahiko Sato
- Department of Anatomy, Fujita Health University, Toyoake, Japan.,AMED-CREST, AMED, Otemachi, Chiyoda, Tokyo, Japan
| |
Collapse
|
18
|
Roy N, Sundar S, Pillai M, Patell-Socha F, Ganesh S, Aloysius A, Rumman M, Gala H, Hughes SM, Zammit PS, Dhawan J. mRNP granule proteins Fmrp and Dcp1a differentially regulate mRNP complexes to contribute to control of muscle stem cell quiescence and activation. Skelet Muscle 2021; 11:18. [PMID: 34238354 PMCID: PMC8265057 DOI: 10.1186/s13395-021-00270-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 04/28/2021] [Indexed: 01/28/2023] Open
Abstract
Background During skeletal muscle regeneration, satellite stem cells use distinct pathways to repair damaged myofibers or to self-renew by returning to quiescence. Cellular/mitotic quiescence employs mechanisms that promote a poised or primed state, including altered RNA turnover and translational repression. Here, we investigate the role of mRNP granule proteins Fragile X Mental Retardation Protein (Fmrp) and Decapping protein 1a (Dcp1a) in muscle stem cell quiescence and differentiation. Methods Using isolated single muscle fibers from adult mice, we established differential enrichment of mRNP granule proteins including Fmrp and Dcp1a in muscle stem cells vs. myofibers. We investigated muscle tissue homeostasis in adult Fmr1-/- mice, analyzing myofiber cross-sectional area in vivo and satellite cell proliferation ex vivo. We explored the molecular mechanisms of Dcp1a and Fmrp function in quiescence, proliferation and differentiation in a C2C12 culture model. Here, we used polysome profiling, imaging and RNA/protein expression analysis to establish the abundance and assembly status of mRNP granule proteins in different cellular states, and the phenotype of knockdown cells. Results Quiescent muscle satellite cells are enriched for puncta containing the translational repressor Fmrp, but not the mRNA decay factor Dcp1a. MuSC isolated from Fmr1-/- mice exhibit defective proliferation, and mature myofibers show reduced cross-sectional area, suggesting a role for Fmrp in muscle homeostasis. Expression and organization of Fmrp and Dcp1a varies during primary MuSC activation on myofibers, with Fmrp puncta prominent in quiescence, but Dcp1a puncta appearing during activation/proliferation. This reciprocal expression of Fmrp and Dcp1a puncta is recapitulated in a C2C12 culture model of quiescence and activation: consistent with its role as a translational repressor, Fmrp is enriched in non-translating mRNP complexes abundant in quiescent myoblasts; Dcp1a puncta are lost in quiescence, suggesting stabilized and repressed transcripts. The function of each protein differs during proliferation; whereas Fmrp knockdown led to decreased proliferation and lower cyclin expression, Dcp1a knockdown led to increased cell proliferation and higher cyclin expression. However, knockdown of either Fmrp or Dcp1a led to compromised differentiation. We also observed cross-regulation of decay versus storage mRNP granules; knockdown of Fmrp enhances accumulation of Dcp1a puncta, whereas knockdown of Dcp1a leads to increased Fmrp in puncta. Conclusions Taken together, our results provide evidence that the balance of mRNA turnover versus utilization is specific for distinct cellular states. Supplementary Information The online version contains supplementary material available at 10.1186/s13395-021-00270-9.
Collapse
Affiliation(s)
- Nainita Roy
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Swetha Sundar
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Malini Pillai
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Farah Patell-Socha
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Sravya Ganesh
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Ajoy Aloysius
- National Center for Biological Sciences, Bangalore, India
| | - Mohammed Rumman
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Hardik Gala
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India.,Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Simon M Hughes
- King's College London, Randall Centre for Cell & Molecular Biophysics, New Hunt's House, Guy's Campus, London, UK
| | - Peter S Zammit
- King's College London, Randall Centre for Cell & Molecular Biophysics, New Hunt's House, Guy's Campus, London, UK
| | - Jyotsna Dhawan
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India. .,Centre for Cellular and Molecular Biology, Hyderabad, India.
| |
Collapse
|
19
|
Blackburn DM, Lazure F, Soleimani VD. SMART approaches for genome-wide analyses of skeletal muscle stem and niche cells. Crit Rev Biochem Mol Biol 2021; 56:284-300. [PMID: 33823731 DOI: 10.1080/10409238.2021.1908950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Muscle stem cells (MuSCs) also called satellite cells are the building blocks of skeletal muscle, the largest tissue in the human body which is formed primarily of myofibers. While MuSCs are the principal cells that directly contribute to the formation of the muscle fibers, their ability to do so depends on critical interactions with a vast array of nonmyogenic cells within their niche environment. Therefore, understanding the nature of communication between MuSCs and their niche is of key importance to understand how the skeletal muscle is maintained and regenerated after injury. MuSCs are rare and therefore difficult to study in vivo within the context of their niche environment. The advent of single-cell technologies, such as switching mechanism at 5' end of the RNA template (SMART) and tagmentation based technologies using hyperactive transposase, afford the unprecedented opportunity to perform whole transcriptome and epigenome studies on rare cells within their niche environment. In this review, we will delve into how single-cell technologies can be applied to the study of MuSCs and muscle-resident niche cells and the impact this can have on our understanding of MuSC biology and skeletal muscle regeneration.
Collapse
Affiliation(s)
- Darren M Blackburn
- Department of Human Genetics, McGill University, Montreal, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
| | - Felicia Lazure
- Department of Human Genetics, McGill University, Montreal, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
| | - Vahab D Soleimani
- Department of Human Genetics, McGill University, Montreal, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
| |
Collapse
|
20
|
Benedetti A, Cera G, De Meo D, Villani C, Bouche M, Lozanoska-Ochser B. A novel approach for the isolation and long-term expansion of pure satellite cells based on ice-cold treatment. Skelet Muscle 2021; 11:7. [PMID: 33731194 PMCID: PMC7968259 DOI: 10.1186/s13395-021-00261-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/18/2021] [Indexed: 01/07/2023] Open
Abstract
Satellite cells (SCs) are muscle stem cells capable of regenerating injured muscle. The study of their functional potential depends on the availability of methods for the isolation and expansion of pure SCs with preserved myogenic properties after serial passages in vitro. Here, we describe the ice-cold treatment (ICT) method, which is a simple, economical, and efficient method for the isolation and in vitro expansion of highly pure mouse and human SCs. It involves a brief (15-30 min) incubation on ice (0 °C) of a dish containing a heterogeneous mix of adherent muscle mononuclear cells, which leads to the detachment of only the SCs, and gives rise to cultures of superior purity compared to other commonly used isolation methods. The ICT method doubles up as a gentle passaging technique, allowing SC expansion over extended periods of time without compromising their proliferation and differentiation potential. Moreover, SCs isolated and expanded using the ICT method are capable of regenerating injured muscle in vivo. The ICT method involves minimal cell manipulation, does not require any expertise or expensive reagents, it is fast, and highly reproducible, and greatly reduces the number of animals or human biopsies required in order to obtain sufficient number of SCs. The cost-effectiveness, accessibility, and technical simplicity of this method, as well as its remarkable efficiency, will no doubt accelerate SC basic and translational research bringing their therapeutic use closer to the clinic.
Collapse
Affiliation(s)
- Anna Benedetti
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, Rome, Italy
| | - Gianluca Cera
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Orthopedics, Sapienza University of Rome, Rome, Italy
- Department of Orthopaedics and Traumatology, Policlinico Umberto I, Rome, Italy
| | - Daniele De Meo
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Orthopedics, Sapienza University of Rome, Rome, Italy
- Department of Orthopaedics and Traumatology, Policlinico Umberto I, Rome, Italy
| | - Ciro Villani
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Orthopedics, Sapienza University of Rome, Rome, Italy
- Department of Orthopaedics and Traumatology, Policlinico Umberto I, Rome, Italy
| | - Marina Bouche
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, Rome, Italy
| | - Biliana Lozanoska-Ochser
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
21
|
Zhang L, Kubota M, Nakamura A, Kaji T, Seno S, Uezumi A, Andersen DC, Jensen CH, Fukada SI. Dlk1 regulates quiescence in calcitonin receptor-mutant muscle stem cells. Stem Cells 2021; 39:306-317. [PMID: 33295098 DOI: 10.1002/stem.3312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/20/2020] [Indexed: 12/30/2022]
Abstract
Muscle stem cells, also called muscle satellite cells (MuSCs), are responsible for skeletal muscle regeneration and are sustained in an undifferentiated and quiescent state under steady conditions. The calcitonin receptor (CalcR)-protein kinase A (PKA)-Yes-associated protein 1 (Yap1) axis is one pathway that maintains quiescence in MuSCs. Although CalcR signaling in MuSCs has been identified, the critical CalcR signaling targets are incompletely understood. Here, we show the relevance between the ectopic expression of delta-like non-canonical Notch ligand 1 (Dlk1) and the impaired quiescent state in CalcR-conditional knockout (cKO) MuSCs. Dlk1 expression was rarely detected in both quiescent and proliferating MuSCs in control mice, whereas Dlk1 expression was remarkably increased in CalcR-cKO MuSCs at both the mRNA and protein levels. It is noteworthy that all Ki67+ non-quiescent CalcR-cKO MuSCs express Dlk1, and non-quiescent CalcR-cKO MuSCs are enriched in the Dlk1+ fraction by cell sorting. Using mutant mice, we demonstrated that PKA-activation or Yap1-depletion suppressed Dlk1 expression in CalcR-cKO MuSCs, which suggests that the CalcR-PKA-Yap1 axis inhibits the expression of Dlk1 in quiescent MuSCs. Moreover, the loss of Dlk1 rescued the quiescent state in CalcR-cKO MuSCs, which indicates that the ectopic expression of Dlk1 disturbs quiescence in CalcR-cKO. Collectively, our results suggest that ectopically expressed Dlk1 is responsible for the impaired quiescence in CalcR-cKO MuSCs.
Collapse
Affiliation(s)
- Lidan Zhang
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Manami Kubota
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Ayasa Nakamura
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Takayuki Kaji
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Shigeto Seno
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka, Japan
| | - Akiyoshi Uezumi
- Muscle Aging and Regenerative Medicine, Tokyo Metropolitan Institute of Gerontology (TMIG), Itabashi, Tokyo, Japan
| | - Ditte Caroline Andersen
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense C, Denmark
- Clinical Institute, University of Southern Denmark, Odense C, Denmark
| | - Charlotte Harken Jensen
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense C, Denmark
| | - So-Ichiro Fukada
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
22
|
Yoshimoto Y, Ikemoto-Uezumi M, Hitachi K, Fukada SI, Uezumi A. Methods for Accurate Assessment of Myofiber Maturity During Skeletal Muscle Regeneration. Front Cell Dev Biol 2020; 8:267. [PMID: 32391357 PMCID: PMC7188918 DOI: 10.3389/fcell.2020.00267] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/30/2020] [Indexed: 01/23/2023] Open
Abstract
Adult skeletal muscle has a remarkable ability to regenerate. Regeneration of mature muscle fibers is dependent on muscle stem cells called satellite cells. Although they are normally in a quiescent state, satellite cells are rapidly activated after injury, and subsequently proliferate and differentiate to make new muscle fibers. Myogenesis is a highly orchestrated biological process and has been extensively studied, and therefore many parameters that can precisely evaluate regenerating events have been established. However, in some cases, it is necessary to evaluate the completion of regeneration rather than ongoing regeneration. In this study, we establish methods for assessing the myofiber maturation during muscle regeneration. By carefully comparing expression patterns of several muscle regeneration-related genes, we found that expression of Myozenin (Myoz1 and Myoz3), Troponin I (Tnni2), and Dystrophin (Dmd) is gradually increased as muscle regeneration proceeds. In contrast, commonly used regeneration markers such as Myh3 and Myh8 are transiently upregulated after muscle injury but their expression decreases as regeneration progresses. Intriguingly, upregulation of Myoz1, Myoz3 and Tnni2 cannot be achieved in cultured myotubes, indicating that these markers are excellent indicators to assess myofiber maturity. We also show that analyzing re-expression of Myoz1 and dystrophin in individual fiber during regeneration enables accurate assessment of myofiber maturity at the single-myofiber level. Together, our study provides valuable methods that are useful in evaluating muscle regeneration and the efficacy of therapeutic strategies for muscle diseases.
Collapse
Affiliation(s)
- Yuki Yoshimoto
- Muscle Aging and Regenerative Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Madoka Ikemoto-Uezumi
- Muscle Aging and Regenerative Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Keisuke Hitachi
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - So-Ichiro Fukada
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Akiyoshi Uezumi
- Muscle Aging and Regenerative Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
23
|
Adipose Stem Cell-Based Clinical Strategy for Neural Regeneration: A Review of Current Opinion. Stem Cells Int 2019; 2019:8502370. [PMID: 31827536 PMCID: PMC6885831 DOI: 10.1155/2019/8502370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/02/2019] [Accepted: 11/11/2019] [Indexed: 02/05/2023] Open
Abstract
Nerve injury is a critical problem in the clinic. Nerve injury causes serious clinic issues including pain and dysfunctions for patients. The disconnection between damaged neural fibers and muscles will result in muscle atrophy in a few weeks if no treatment is applied. Moreover, scientists have discovered that nerve injury can affect the osteogenic differentiation of skeletal stem cells (SSCs) and the fracture repairing. In plastic surgery, muscle atrophy and bone fracture after nerve injury have plagued clinicians for many years. How to promote neural regeneration is the core issue of research in the recent years. Without obvious effects of traditional neurosurgical treatments, research on stem cells in the past 10 years has provided a new therapeutic strategy for us to address this problem. Adipose stem cells (ASCs) are a kind of mesenchymal stem cells that have differentiation potential in adipose tissue. In the recent years, ASCs have become the focus of regenerative medicine. They play a pivotal role in tissue regeneration engineering. As a type of stem cell, ASCs are becoming popular for neuroregenerative medicine due to their advantages and characteristics. In the various diseases of the nervous system, ASCs are gradually applied to treat the related diseases. This review article focuses on the mechanism and clinical application of ASCs in nerve regeneration as well as the related research on ASCs over the past decades.
Collapse
|
24
|
Zhang L, Noguchi YT, Nakayama H, Kaji T, Tsujikawa K, Ikemoto-Uezumi M, Uezumi A, Okada Y, Doi T, Watanabe S, Braun T, Fujio Y, Fukada SI. The CalcR-PKA-Yap1 Axis Is Critical for Maintaining Quiescence in Muscle Stem Cells. Cell Rep 2019; 29:2154-2163.e5. [DOI: 10.1016/j.celrep.2019.10.057] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 09/06/2019] [Accepted: 10/14/2019] [Indexed: 01/07/2023] Open
|
25
|
Fukuda S, Kaneshige A, Kaji T, Noguchi YT, Takemoto Y, Zhang L, Tsujikawa K, Kokubo H, Uezumi A, Maehara K, Harada A, Ohkawa Y, Fukada SI. Sustained expression of HeyL is critical for the proliferation of muscle stem cells in overloaded muscle. eLife 2019; 8:48284. [PMID: 31545169 PMCID: PMC6768661 DOI: 10.7554/elife.48284] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/19/2019] [Indexed: 12/20/2022] Open
Abstract
In overloaded and regenerating muscle, the generation of new myonuclei depends on muscle satellite cells (MuSCs). Because MuSC behaviors in these two environments have not been considered separately, MuSC behaviors in overloaded muscle remain unexamined. Here, we show that most MuSCs in overloaded muscle, unlike MuSCs in regenerating muscle, proliferate in the absence of MyoD expression. Mechanistically, MuSCs in overloaded muscle sustain the expression of Heyl, a Notch effector gene, to suppress MyoD expression, which allows effective MuSC proliferation on myofibers and beneath the basal lamina. Although Heyl-knockout mice show no impairment in an injury model, in a hypertrophy model, their muscles harbor fewer new MuSC-derived myonuclei due to increased MyoD expression and diminished proliferation, which ultimately causes blunted hypertrophy. Our results show that sustained HeyL expression is critical for MuSC proliferation specifically in overloaded muscle, and thus indicate that the MuSC-proliferation mechanism differs in overloaded and regenerating muscle.
Collapse
Affiliation(s)
- Sumiaki Fukuda
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc, Takatsuki, Japan.,Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Akihiro Kaneshige
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc, Takatsuki, Japan.,Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Takayuki Kaji
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Yu-Taro Noguchi
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Yusei Takemoto
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Lidan Zhang
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Hiroki Kokubo
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Akiyoshi Uezumi
- Muscle Aging and Regenerative Medicine, Research Team for Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Kazumitsu Maehara
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Akihito Harada
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - So-Ichiro Fukada
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| |
Collapse
|
26
|
Militello G, Hosen MR, Ponomareva Y, Gellert P, Weirick T, John D, Hindi SM, Mamchaoui K, Mouly V, Döring C, Zhang L, Nakamura M, Kumar A, Fukada SI, Dimmeler S, Uchida S. A novel long non-coding RNA Myolinc regulates myogenesis through TDP-43 and Filip1. J Mol Cell Biol 2019; 10:102-117. [PMID: 29618024 DOI: 10.1093/jmcb/mjy025] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/29/2018] [Indexed: 12/15/2022] Open
Abstract
Myogenesis is a complex process required for skeletal muscle formation during embryonic development and for regeneration and growth of myofibers in adults. Accumulating evidence suggests that long non-coding RNAs (lncRNAs) play key roles in regulating cell fate decision and function in various tissues. However, the role of lncRNAs in the regulation of myogenesis remains poorly understood. In this study, we identified a novel muscle-enriched lncRNA called 'Myolinc (AK142388)', which we functionally characterized in the C2C12 myoblast cell line. Myolinc is predominately localized in the nucleus, and its levels increase upon induction of the differentiation. Knockdown of Myolinc impairs the expression of myogenic regulatory factors and formation of multi-nucleated myotubes in cultured myoblasts. Myolinc also regulates the expression of Filip1 in a cis-manner. Similar to Myolinc, knockdown of Filip1 inhibits myogenic differentiation. Furthermore, Myolinc binds to TAR DNA-binding protein 43 (TDP-43), a DNA/RNA-binding protein that regulates the expression of muscle genes (e.g. Acta1 and MyoD). Knockdown of TDP-43 inhibits myogenic differentiation. We also show that Myolinc-TDP-43 interaction is essential for the binding of TDP-43 to the promoter regions of muscle marker genes. Finally, we show that silencing of Myolinc inhibits skeletal muscle regeneration in adult mice. Altogether, our study identifies a novel lncRNA that controls key regulatory networks of myogenesis.
Collapse
Affiliation(s)
- Giuseppe Militello
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main 60590, Germany.,German Center for Cardiovascular Research, Partner side Rhein-Main, Frankfurt am Main 60590, Germany.,Department of Biosciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany.,Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40202, USA
| | - Mohammed Rabiul Hosen
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main 60590, Germany.,German Center for Cardiovascular Research, Partner side Rhein-Main, Frankfurt am Main 60590, Germany.,Department of Biosciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany
| | - Yuliya Ponomareva
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main 60590, Germany.,German Center for Cardiovascular Research, Partner side Rhein-Main, Frankfurt am Main 60590, Germany.,Department of Biosciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany
| | - Pascal Gellert
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London SW3 6JB, UK
| | - Tyler Weirick
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main 60590, Germany.,German Center for Cardiovascular Research, Partner side Rhein-Main, Frankfurt am Main 60590, Germany.,Department of Biosciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany.,Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40202, USA
| | - David John
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main 60590, Germany.,German Center for Cardiovascular Research, Partner side Rhein-Main, Frankfurt am Main 60590, Germany.,Department of Biosciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany
| | - Sajedah Mahmoud Hindi
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Kamel Mamchaoui
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris 75013, France
| | - Vincent Mouly
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris 75013, France
| | - Claudia Döring
- Dr. Senckenberg Institute of Pathology, Goethe University Frankfurt, Frankfurt am Main 60590, Germany
| | - Lidan Zhang
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Miki Nakamura
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Ashok Kumar
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - So-Ichiro Fukada
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main 60590, Germany.,German Center for Cardiovascular Research, Partner side Rhein-Main, Frankfurt am Main 60590, Germany
| | - Shizuka Uchida
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main 60590, Germany.,German Center for Cardiovascular Research, Partner side Rhein-Main, Frankfurt am Main 60590, Germany.,Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
27
|
Zhang L, Uezumi A, Kaji T, Tsujikawa K, Andersen DC, Jensen CH, Fukada SI. Expression and Functional Analyses of Dlk1 in Muscle Stem Cells and Mesenchymal Progenitors during Muscle Regeneration. Int J Mol Sci 2019; 20:ijms20133269. [PMID: 31277245 PMCID: PMC6650828 DOI: 10.3390/ijms20133269] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 11/16/2022] Open
Abstract
Delta like non-canonical Notch ligand 1 (Dlk1) is a paternally expressed gene which is also known as preadipocyte factor 1 (Pref-1). The accumulation of adipocytes and expression of Dlk1 in regenerating muscle suggests a correlation between fat accumulation and Dlk1 expression in the muscle. Additionally, mice overexpressing Dlk1 show increased muscle weight, while Dlk1-null mice exhibit decreased body weight and muscle mass, indicating that Dlk1 is a critical factor in regulating skeletal muscle mass during development. The muscle regeneration process shares some features with muscle development. However, the role of Dlk1 in regeneration processes remains controversial. Here, we show that mesenchymal progenitors also known as adipocyte progenitors exclusively express Dlk1 during muscle regeneration. Eliminating developmental effects, we used conditional depletion models to examine the specific roles of Dlk1 in muscle stem cells or mesenchymal progenitors. Unexpectedly, deletion of Dlk1 in neither the muscle stem cells nor the mesenchymal progenitors affected the regenerative ability of skeletal muscle. In addition, fat accumulation was not increased by the loss of Dlk1. Collectively, Dlk1 plays essential roles in muscle development, but does not greatly impact regeneration processes and adipogenic differentiation in adult skeletal muscle regeneration.
Collapse
Affiliation(s)
- Lidan Zhang
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akiyoshi Uezumi
- Muscle Aging and Regenerative Medicine, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo 173-0015, Japan
| | - Takayuki Kaji
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ditte Caroline Andersen
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Winsloewparken 21 3rd, 5000 Odense C, Denmark
- Clinical Institute, University of Southern Denmark, Winsloewparken 21 3rd, 5000 Odense C, Denmark
| | - Charlotte Harken Jensen
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Winsloewparken 21 3rd, 5000 Odense C, Denmark
| | - So-Ichiro Fukada
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
28
|
Wang J, Cheng J, Li Y, Yan H, Wu P, Zhu X, Liu L, Chen L, Chu W, Zhang J. Gene structure, recombinant expression and function characterization of Siniperca chuatsi Fsrp-3. JOURNAL OF FISH BIOLOGY 2019; 94:714-724. [PMID: 30756375 DOI: 10.1111/jfb.13931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
A full-length complementary (c)DNA sequence encoding follistatin-related protein 3 (fsrp-3) was determined from skeletal muscle in Chinese mandarin fish Siniperca chuatsi, its molecular structure was characterised and its function suggested. The putative structure of S. chuatsi Fsrp-3 contains an N-terminal domain and two follistatin domains. Quantitative reverse-transcription (qRT)-PCR assays revealed that fsrp-3 messenger (m)RNA was differentially expressed among assayed tissues and was highly expressed in heart and intestine. fsrp-3 mRNA exhibited increasing expression from the larval to the juvenile stage (500 g). To investigate the potential function of S. chuatsi fsrp-3 in muscle growth, we constructed a Fsrp-3 prokaryotic expression system and injected the purified Fsrp-3 fusion protein into the dorsal muscle. Fsrp-3 administration significantly influenced cross-section area, satellite cell activation frequency and nuclear density of S. chuatsi muscle fibres. Following Fsrp-3 treatment, the expression of myogenic regulatory factors was up-regulated and decline in the expression of myostatin was observed. The study revealed that Fsrp-3 may affect muscle growth by regulating myogenic regulatory factor expression and antagonizing myostatin function to initiate satellite cell activation and differentiation in S. chuatsi.
Collapse
Affiliation(s)
- Jianhua Wang
- Department of Bioscience and Environmental Engineering, Changsha University, Changsha, China
- College of Life Science, Guangxi Normal University, Guilin, China
| | - Jia Cheng
- Department of Bioscience and Environmental Engineering, Changsha University, Changsha, China
| | - Yulong Li
- Department of Bioscience and Environmental Engineering, Changsha University, Changsha, China
| | - Huiling Yan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Ping Wu
- Department of Bioscience and Environmental Engineering, Changsha University, Changsha, China
| | - Xin Zhu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Li Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Lin Chen
- Department of Bioscience and Environmental Engineering, Changsha University, Changsha, China
| | - Wuying Chu
- Department of Bioscience and Environmental Engineering, Changsha University, Changsha, China
| | - Jianshe Zhang
- Department of Bioscience and Environmental Engineering, Changsha University, Changsha, China
| |
Collapse
|
29
|
Hori S, Hiramuki Y, Nishimura D, Sato F, Sehara-Fujisawa A. PDH‐mediated metabolic flow is critical for skeletal muscle stem cell differentiation and myotube formation during regeneration in mice. FASEB J 2019; 33:8094-8109. [DOI: 10.1096/fj.201802479r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Shimpei Hori
- Department of Growth RegulationInstitute for Frontier Life and Medical SciencesKyoto University Kyoto Japan
| | - Yosuke Hiramuki
- Department of Growth RegulationInstitute for Frontier Life and Medical SciencesKyoto University Kyoto Japan
- Human Biology DivisionFred Hutchinson Cancer Research Center Seattle Washington USA
| | - Daigo Nishimura
- Department of Growth RegulationInstitute for Frontier Life and Medical SciencesKyoto University Kyoto Japan
| | - Fuminori Sato
- Department of Growth RegulationInstitute for Frontier Life and Medical SciencesKyoto University Kyoto Japan
| | - Atsuko Sehara-Fujisawa
- Department of Growth RegulationInstitute for Frontier Life and Medical SciencesKyoto University Kyoto Japan
| |
Collapse
|
30
|
Teng S, Huang P. The effect of type 2 diabetes mellitus and obesity on muscle progenitor cell function. Stem Cell Res Ther 2019; 10:103. [PMID: 30898146 PMCID: PMC6427880 DOI: 10.1186/s13287-019-1186-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In addition to its primary function to provide movement and maintain posture, the skeletal muscle plays important roles in energy and glucose metabolism. In healthy humans, skeletal muscle is the major site for postprandial glucose uptake and impairment of this process contributes to the pathogenesis of type 2 diabetes mellitus (T2DM). A key component to the maintenance of skeletal muscle integrity and plasticity is the presence of muscle progenitor cells, including satellite cells, fibroadipogenic progenitors, and some interstitial progenitor cells associated with vessels (myo-endothelial cells, pericytes, and mesoangioblasts). In this review, we aim to discuss the emerging concepts related to these progenitor cells, focusing on the identification and characterization of distinct progenitor cell populations, and the impact of obesity and T2DM on these cells. The recent advances in stem cell therapies by targeting diabetic and obese muscle are also discussed.
Collapse
Affiliation(s)
- Shuzhi Teng
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, 126 Xinmin Street, Changchun, Jilin, 130021, People's Republic of China.
| | - Ping Huang
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, 126 Xinmin Street, Changchun, Jilin, 130021, People's Republic of China.
| |
Collapse
|
31
|
Perdiguero E, Moiseeva V, Muñoz-Cánoves P. Simultaneous Isolation of Stem and Niche Cells of Skeletal Muscle: Applicability for Aging Studies. Methods Mol Biol 2019; 2045:13-23. [PMID: 30771188 DOI: 10.1007/7651_2019_210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The maintenance of adult stem cells in their normal quiescent state depends on intrinsic factors and extrinsic signals originating from their microenvironment (also known as the stem cell niche). In skeletal muscle, its stem cells (satellite cells) lose their regenerative potential with aging, and this has been attributed, at least in part, to both age-associated changes in the satellite cells as in the niche cells, which include resident fibro-adipogenic progenitors (FAPs), macrophages, and endothelial cells, among others. To understand the regenerative decline of skeletal muscle with aging, there is a need for methods to specifically isolate stem and niche cells from resting muscle. Here we describe a fluorescence-activated cell sorting (FACS) protocol to simultaneously isolate discrete populations of satellite cells and niche cells from skeletal muscle of aging mice.
Collapse
Affiliation(s)
- Eusebio Perdiguero
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain.
| | - Victoria Moiseeva
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Pura Muñoz-Cánoves
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain.
- Spanish National Center on Cardiovascular Research (CNIC), Madrid, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
32
|
Noguchi YT, Nakamura M, Hino N, Nogami J, Tsuji S, Sato T, Zhang L, Tsujikawa K, Tanaka T, Izawa K, Okada Y, Doi T, Kokubo H, Harada A, Uezumi A, Gessler M, Ohkawa Y, Fukada SI. Cell-autonomous and redundant roles of Hey1 and HeyL in muscle stem cells: HeyL requires Hes1 to bind diverse DNA sites. Development 2019; 146:dev.163618. [DOI: 10.1242/dev.163618] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 01/31/2019] [Indexed: 12/20/2022]
Abstract
The undifferentiated state of muscle stem (satellite) cells (MuSCs) is maintained by the canonical Notch pathway. Although three bHLH transcriptional factors, Hey1, HeyL, and Hes1, are considered to be potential effectors of the Notch pathway exerting anti-myogenic effects, neither HeyL nor Hes1 inhibits myogenic differentiation of myogenic cell lines. Furthermore, whether these factors work redundantly or cooperatively is unknown. Here, we showed cell-autonomous functions of Hey1 and HeyL in MuSCs using conditional and genetic null mice. Analysis of cultured MuSCs revealed anti-myogenic activity of both HeyL and Hes1. We found that HeyL forms heterodimeric complexes with Hes1 in living cells. Moreover, our ChIP-Seq experiments demonstrated that, compared with HeyL alone, HeyL-Hes1 heterodimer bound with high affinity to specific sites in the chromatin including the cis-element of Hey1. Finally, the analyses of myogenin promoter activity showed that HeyL and Hes1 acted synergistically to suppress myogenic differentiation. Collectively, those results suggest that HeyL and Hey1 function redundantly in MuSCs, and that HeyL requires Hes1 for effective DNA binding and biological activity.
Collapse
Affiliation(s)
- Yu-taro Noguchi
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Miki Nakamura
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Nobumasa Hino
- Laboratory of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Jumpei Nogami
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Sayaka Tsuji
- Laboratory of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takahiko Sato
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Lidan Zhang
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toru Tanaka
- Laboratory of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kohei Izawa
- Laboratory of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshiaki Okada
- Laboratory of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takefumi Doi
- Laboratory of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroki Kokubo
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minamiku, Hiroshima 734-8551, Japan
| | - Akihito Harada
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Akiyoshi Uezumi
- Department of Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo 173-0015, Japan
| | - Manfred Gessler
- Developmental Biochemistry, Theodor-Boveri-Institute / Biocenter, and Comprehensive Cancer Center Mainfranken, University of Wuerzburg, 97074 Wuerzburg, Germany
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - So-ichiro Fukada
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
33
|
Muscle regeneration is disrupted by cancer cachexia without loss of muscle stem cell potential. PLoS One 2018; 13:e0205467. [PMID: 30300394 PMCID: PMC6177180 DOI: 10.1371/journal.pone.0205467] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/25/2018] [Indexed: 01/01/2023] Open
Abstract
Cancer cachexia is a severe, debilitating condition characterized by progressive body wasting associated with remarkable loss of skeletal muscle weight. It has been reported that cancer cachexia disturbs the regenerative ability of skeletal muscle, but the cellular mechanisms are still unknown. Here, we investigated the skeletal muscle regenerative process in mouse colon-26 (C26) tumor cell-bearing mice as a C26 cancer cachexia model. Although the proliferation and differentiation abilities of muscle stem cells derived from the C26 tumor cell-bearing mice were sustained in vitro, the proliferation and differentiation were severely impaired in the cachexic mice. The numbers of both macrophages and mesenchymal progenitors, which are critical players in muscle regeneration, were reduced in the cancer cachexic mice, indicating that the skeletal muscle regeneration process was disrupted by cancer cachexia. Furthermore, the number of infiltrated neutrophils was also reduced in cancer cachexia mice 24 hours after muscle injury, and the expression of critical chemokines for muscle regeneration was reduced in cancer cachexia model mice compared to control mice. Collectively, although the ability to regeneration of MuSCs was retained, cancer cachexia disturbed skeletal muscle regenerative ability by inhibiting the orchestrated muscle regeneration processes.
Collapse
|
34
|
Mademtzoglou D, Asakura Y, Borok MJ, Alonso-Martin S, Mourikis P, Kodaka Y, Mohan A, Asakura A, Relaix F. Cellular localization of the cell cycle inhibitor Cdkn1c controls growth arrest of adult skeletal muscle stem cells. eLife 2018; 7:33337. [PMID: 30284969 PMCID: PMC6172026 DOI: 10.7554/elife.33337] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 09/02/2018] [Indexed: 01/01/2023] Open
Abstract
Adult skeletal muscle maintenance and regeneration depend on efficient muscle stem cell (MuSC) functions. The mechanisms coordinating cell cycle with activation, renewal, and differentiation of MuSCs remain poorly understood. Here, we investigated how adult MuSCs are regulated by CDKN1c (p57kip2), a cyclin-dependent kinase inhibitor, using mouse molecular genetics. In the absence of CDKN1c, skeletal muscle repair is severely impaired after injury. We show that CDKN1c is not expressed in quiescent MuSCs, while being induced in activated and proliferating myoblasts and maintained in differentiating myogenic cells. In agreement, isolated Cdkn1c-deficient primary myoblasts display differentiation defects and increased proliferation. We further show that the subcellular localization of CDKN1c is dynamic; while CDKN1c is initially localized to the cytoplasm of activated/proliferating myoblasts, progressive nuclear translocation leads to growth arrest during differentiation. We propose that CDKN1c activity is restricted to differentiating myoblasts by regulated cyto-nuclear relocalization, coordinating the balance between proliferation and growth arrest.
Collapse
Affiliation(s)
- Despoina Mademtzoglou
- Inserm, IMRB U955-E10, F-94010, Créteil, France.,Ecole Nationale Veterinaire d'Alfort, Faculté de medecine, F-94000, Université Paris-Est Creteil, Maison Alfort, France
| | - Yoko Asakura
- Stem Cell Institute, Paul and Sheila Wellstone Muscular Dystrophy Center, Department of Neurology, University of Minnesota Medical School, Minneapolis, United States
| | - Matthew J Borok
- Inserm, IMRB U955-E10, F-94010, Créteil, France.,Ecole Nationale Veterinaire d'Alfort, Faculté de medecine, F-94000, Université Paris-Est Creteil, Maison Alfort, France
| | - Sonia Alonso-Martin
- Inserm, IMRB U955-E10, F-94010, Créteil, France.,Ecole Nationale Veterinaire d'Alfort, Faculté de medecine, F-94000, Université Paris-Est Creteil, Maison Alfort, France
| | - Philippos Mourikis
- Inserm, IMRB U955-E10, F-94010, Créteil, France.,Ecole Nationale Veterinaire d'Alfort, Faculté de medecine, F-94000, Université Paris-Est Creteil, Maison Alfort, France
| | - Yusaku Kodaka
- Stem Cell Institute, Paul and Sheila Wellstone Muscular Dystrophy Center, Department of Neurology, University of Minnesota Medical School, Minneapolis, United States
| | - Amrudha Mohan
- Stem Cell Institute, Paul and Sheila Wellstone Muscular Dystrophy Center, Department of Neurology, University of Minnesota Medical School, Minneapolis, United States
| | - Atsushi Asakura
- Stem Cell Institute, Paul and Sheila Wellstone Muscular Dystrophy Center, Department of Neurology, University of Minnesota Medical School, Minneapolis, United States
| | - Frederic Relaix
- Inserm, IMRB U955-E10, F-94010, Créteil, France.,Ecole Nationale Veterinaire d'Alfort, Faculté de medecine, F-94000, Université Paris-Est Creteil, Maison Alfort, France.,Etablissement Français du Sang, Créteil, France.,APHP, Hopitaux Universitaires Henri Mondor, DHU Pepsy & Centre de Référence des Maladies Neuromusculaires GNMH, Créteil, France
| |
Collapse
|
35
|
Takemoto Y, Inaba S, Zhang L, Tsujikawa K, Uezumi A, Fukada SI. Implication of basal lamina dependency in survival of Nrf2-null muscle stem cells via an antioxidative-independent mechanism. J Cell Physiol 2018; 234:1689-1698. [PMID: 30070693 DOI: 10.1002/jcp.27040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/25/2018] [Indexed: 12/25/2022]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a master regulator for the induction of antioxidative genes and plays roles in diverse cellular functions. The roles of Nrf2 in muscle regeneration have been investigated, and both important and unimportant roles of Nrf2 for muscle regeneration have been reported. Here, using aged Nrf2-null and Nrf2-dystrophic double-null mice, we showed nonsignificant phenotypes in the muscle regeneration ability of Nrf2-null mice. In contrast with these results, strikingly, almost all Nrf2-null muscle stem cells (MuSCs) isolated by fluorescence-activated cell sorting died in vitro of apoptosis and were not rescued by antioxidative reagents. Although their proliferation was still impaired, the Nrf2-null MuSCs attached to myofibers activated and divided normally, at least in the first round. To elucidate these discrepancies of MuSCs behaviors, we focused on the basal lamina, because both in vivo and single myofiber culture allow MuSCs within the basal lamina to become activated. In a basal lamina-disrupted model, Nrf2-null mice exhibited remarkable regeneration defects without increased levels of reactive oxidative species in MuSCs, suggesting that the existence of the basal lamina affects the survival of Nrf2-null MuSCs. Taken together, these results suggest that the basal lamina compensates for the loss of Nrf2, independent of the antioxidative roles of Nrf2. In addition, experimental conditions might explain the discrepant results of Nrf2-null regenerative ability.
Collapse
Affiliation(s)
- Yusei Takemoto
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Shoya Inaba
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Lidan Zhang
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Akiyoshi Uezumi
- Department of Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - So-Ichiro Fukada
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| |
Collapse
|
36
|
Wosczyna MN, Rando TA. A Muscle Stem Cell Support Group: Coordinated Cellular Responses in Muscle Regeneration. Dev Cell 2018; 46:135-143. [PMID: 30016618 PMCID: PMC6075730 DOI: 10.1016/j.devcel.2018.06.018] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 06/12/2018] [Accepted: 06/20/2018] [Indexed: 01/11/2023]
Abstract
Skeletal muscle has an extraordinary regenerative capacity due to the activity of tissue-specific muscle stem cells. Consequently, these cells have received the most attention in studies investigating the cellular processes of skeletal muscle regeneration. However, efficient capacity to rebuild this tissue also depends on additional cells in the local milieu, as disrupting their normal contributions often leads to incomplete regeneration. Here, we review these additional cells that contribute to the regenerative process. Understanding the complex interactions between and among these cell populations has the potential to lead to therapies that will help promote normal skeletal muscle regeneration under conditions in which this process is suboptimal.
Collapse
Affiliation(s)
- Michael N Wosczyna
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305, USA; Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| |
Collapse
|
37
|
Čamernik K, Barlič A, Drobnič M, Marc J, Jeras M, Zupan J. Mesenchymal Stem Cells in the Musculoskeletal System: From Animal Models to Human Tissue Regeneration? Stem Cell Rev Rep 2018; 14:346-369. [DOI: 10.1007/s12015-018-9800-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Garcia SM, Tamaki S, Lee S, Wong A, Jose A, Dreux J, Kouklis G, Sbitany H, Seth R, Knott PD, Heaton C, Ryan WR, Kim EA, Hansen SL, Hoffman WY, Pomerantz JH. High-Yield Purification, Preservation, and Serial Transplantation of Human Satellite Cells. Stem Cell Reports 2018; 10:1160-1174. [PMID: 29478895 PMCID: PMC5918346 DOI: 10.1016/j.stemcr.2018.01.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/19/2018] [Accepted: 01/22/2018] [Indexed: 02/03/2023] Open
Abstract
Investigation of human muscle regeneration requires robust methods to purify and transplant muscle stem and progenitor cells that collectively constitute the human satellite cell (HuSC) pool. Existing approaches have yet to make HuSCs widely accessible for researchers, and as a result human muscle stem cell research has advanced slowly. Here, we describe a robust and predictable HuSC purification process that is effective for each human skeletal muscle tested and the development of storage protocols and transplantation models in dystrophin-deficient and wild-type recipients. Enzymatic digestion, magnetic column depletion, and 6-marker flow-cytometric purification enable separation of 104 highly enriched HuSCs per gram of muscle. Cryostorage of HuSCs preserves viability, phenotype, and transplantation potential. Development of enhanced and species-specific transplantation protocols enabled serial HuSC xenotransplantation and recovery. These protocols and models provide an accessible system for basic and translational investigation and clinical development of HuSCs. High-efficiency purification permits serial transplantation of human satellite stem cells Cryopreservation preserves satellite cell function and phenotype 1 gram of adult skeletal muscle yields 104 highly purified satellite cells Purified uncultured endogenous human satellite cells can be stored and shared
Collapse
Affiliation(s)
- Steven M Garcia
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of California, San Francisco, CA 94143, USA
| | - Stanley Tamaki
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of California, San Francisco, CA 94143, USA
| | - Solomon Lee
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of California, San Francisco, CA 94143, USA
| | - Alvin Wong
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of California, San Francisco, CA 94143, USA
| | - Anthony Jose
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of California, San Francisco, CA 94143, USA
| | - Joanna Dreux
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of California, San Francisco, CA 94143, USA
| | - Gayle Kouklis
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of California, San Francisco, CA 94143, USA
| | - Hani Sbitany
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of California, San Francisco, CA 94143, USA
| | - Rahul Seth
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, CA 94143, USA
| | - P Daniel Knott
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, CA 94143, USA
| | - Chase Heaton
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, CA 94143, USA
| | - William R Ryan
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, CA 94143, USA
| | - Esther A Kim
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of California, San Francisco, CA 94143, USA
| | - Scott L Hansen
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of California, San Francisco, CA 94143, USA
| | - William Y Hoffman
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of California, San Francisco, CA 94143, USA
| | - Jason H Pomerantz
- Departments of Surgery and Orofacial Sciences, Division of Plastic and Reconstructive Surgery, Program in Craniofacial Biology, Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
39
|
Recapitulation of Extracellular LAMININ Environment Maintains Stemness of Satellite Cells In Vitro. Stem Cell Reports 2018; 10:568-582. [PMID: 29337118 PMCID: PMC5830886 DOI: 10.1016/j.stemcr.2017.12.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 12/15/2017] [Accepted: 12/15/2017] [Indexed: 12/15/2022] Open
Abstract
Satellite cells function as precursor cells in mature skeletal muscle homeostasis and regeneration. In healthy tissue, these cells are maintained in a state of quiescence by a microenvironment formed by myofibers and basement membrane in which LAMININs (LMs) form a major component. In the present study, we evaluated the satellite cell microenvironment in vivo and found that these cells are encapsulated by LMα2–5. We sought to recapitulate this satellite cell niche in vitro by culturing satellite cells in the presence of recombinant LM-E8 fragments. We show that treatment with LM-E8 promotes proliferation of satellite cells in an undifferentiated state, through reduced phosphorylation of JNK and p38. On transplantation into injured muscle tissue, satellite cells cultured with LM-E8 promoted the regeneration of skeletal muscle. These findings represent an efficient method of culturing satellite cells for use in transplantation through the recapitulation of the satellite cell niche using recombinant LM-E8 fragments. Satellite cells are encapsulated by LMα2–5 LM-E8 promotes proliferation of satellite cells in an undifferentiated state Satellite cells cultured with LM-E8 enhanced the regeneration of skeletal muscle
Collapse
|
40
|
Li EW, McKee-Muir OC, Gilbert PM. Cellular Biomechanics in Skeletal Muscle Regeneration. Curr Top Dev Biol 2018; 126:125-176. [DOI: 10.1016/bs.ctdb.2017.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
Tirone M, Tran NL, Ceriotti C, Gorzanelli A, Canepari M, Bottinelli R, Raucci A, Di Maggio S, Santiago C, Mellado M, Saclier M, François S, Careccia G, He M, De Marchis F, Conti V, Ben Larbi S, Cuvellier S, Casalgrandi M, Preti A, Chazaud B, Al-Abed Y, Messina G, Sitia G, Brunelli S, Bianchi ME, Vénéreau E. High mobility group box 1 orchestrates tissue regeneration via CXCR4. J Exp Med 2017; 215:303-318. [PMID: 29203538 PMCID: PMC5748844 DOI: 10.1084/jem.20160217] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 09/11/2017] [Accepted: 11/03/2017] [Indexed: 02/06/2023] Open
Abstract
Inflammation and tissue regeneration follow tissue damage, but little is known about how these processes are coordinated. Tirone et al. show that alternative redox forms of high mobility group box 1 (HMGB1), the “alarmin” signal released by damaged cells, trigger inflammation or tissue repair after injury by interacting with distinct receptors and that a nonoxidizable HMGB1 mutant promotes regeneration without exacerbating inflammation. Inflammation and tissue regeneration follow tissue damage, but little is known about how these processes are coordinated. High Mobility Group Box 1 (HMGB1) is a nuclear protein that, when released on injury, triggers inflammation. We previously showed that HMGB1 with reduced cysteines is a chemoattractant, whereas a disulfide bond makes it a proinflammatory cytokine. Here we report that fully reduced HMGB1 orchestrates muscle and liver regeneration via CXCR4, whereas disulfide HMGB1 and its receptors TLR4/MD-2 and RAGE (receptor for advanced glycation end products) are not involved. Injection of HMGB1 accelerates tissue repair by acting on resident muscle stem cells, hepatocytes, and infiltrating cells. The nonoxidizable HMGB1 mutant 3S, in which serines replace cysteines, promotes muscle and liver regeneration more efficiently than the wild-type protein and without exacerbating inflammation by selectively interacting with CXCR4. Overall, our results show that the reduced form of HMGB1 coordinates tissue regeneration and suggest that 3S may be used to safely accelerate healing after injury in diverse clinical contexts.
Collapse
Affiliation(s)
- Mario Tirone
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.,Division of Genetics and Cell Biology, Chromatin Dynamics Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ngoc Lan Tran
- Division of Immunology, Transplantation and Infectious Diseases, Experimental Hepatology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Ceriotti
- Division of Genetics and Cell Biology, Chromatin Dynamics Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Gorzanelli
- Division of Genetics and Cell Biology, Chromatin Dynamics Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Monica Canepari
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Roberto Bottinelli
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Interdepartmental Centre for the Study of Biology and Sports Medicine, University of Pavia, Fondazione Salvatore Maugeri (IRCCS), Scientific Institute of Pavia, Pavia, Italy
| | - Angela Raucci
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Stefania Di Maggio
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - César Santiago
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Mario Mellado
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | | | | | - Giorgia Careccia
- Division of Genetics and Cell Biology, Chromatin Dynamics Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mingzhu He
- The Feinstein Institute for Medical Research, Manhasset, NY
| | - Francesco De Marchis
- Division of Genetics and Cell Biology, Chromatin Dynamics Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Valentina Conti
- Neural Stem Cell Biology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sabrina Ben Larbi
- Institut NeuroMyogène, CNRS UMR5310, INSERM U1217, Université Lyon 1 Claude Bernard, Lyon, France
| | - Sylvain Cuvellier
- INSERM U1016, Institut Cochin, CNRS, UMR8104, Université Paris Descartes, Paris, France
| | | | | | - Bénédicte Chazaud
- Institut NeuroMyogène, CNRS UMR5310, INSERM U1217, Université Lyon 1 Claude Bernard, Lyon, France
| | - Yousef Al-Abed
- The Feinstein Institute for Medical Research, Manhasset, NY
| | | | - Giovanni Sitia
- Division of Immunology, Transplantation and Infectious Diseases, Experimental Hepatology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Brunelli
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Marco Emilio Bianchi
- Division of Genetics and Cell Biology, Chromatin Dynamics Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy .,San Raffaele University, Milan, Italy
| | - Emilie Vénéreau
- Division of Genetics and Cell Biology, Chromatin Dynamics Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy .,HMGBiotech S.r.l., Milan, Italy
| |
Collapse
|
42
|
Kamizaki K, Doi R, Hayashi M, Saji T, Kanagawa M, Toda T, Fukada SI, Ho HYH, Greenberg ME, Endo M, Minami Y. The Ror1 receptor tyrosine kinase plays a critical role in regulating satellite cell proliferation during regeneration of injured muscle. J Biol Chem 2017; 292:15939-15951. [PMID: 28790171 DOI: 10.1074/jbc.m117.785709] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 08/07/2017] [Indexed: 12/31/2022] Open
Abstract
The Ror family receptor tyrosine kinases, Ror1 and Ror2, play important roles in regulating developmental morphogenesis and tissue- and organogenesis, but their roles in tissue regeneration in adult animals remain largely unknown. In this study, we examined the expression and function of Ror1 and Ror2 during skeletal muscle regeneration. Using an in vivo skeletal muscle injury model, we show that expression of Ror1 and Ror2 in skeletal muscles is induced transiently by the inflammatory cytokines, TNF-α and IL-1β, after injury and that inhibition of TNF-α and IL-1β by neutralizing antibodies suppresses expression of Ror1 and Ror2 in injured muscles. Importantly, expression of Ror1, but not Ror2, was induced primarily in Pax7-positive satellite cells (SCs) after muscle injury, and administration of neutralizing antibodies decreased the proportion of Pax7-positive proliferative SCs after muscle injury. We also found that stimulation of a mouse myogenic cell line, C2C12 cells, with TNF-α or IL-1β induced expression of Ror1 via NF-κB activation and that suppressed expression of Ror1 inhibited their proliferative responses in SCs. Intriguingly, SC-specific depletion of Ror1 decreased the number of Pax7-positive SCs after muscle injury. Collectively, these findings indicate for the first time that Ror1 has a critical role in regulating SC proliferation during skeletal muscle regeneration. We conclude that Ror1 might be a suitable target in the development of diagnostic and therapeutic approaches to manage muscular disorders.
Collapse
Affiliation(s)
- Koki Kamizaki
- From the Division of Cell Physiology, Department of Physiology and Cell Biology, and
| | - Ryosuke Doi
- From the Division of Cell Physiology, Department of Physiology and Cell Biology, and
| | - Makoto Hayashi
- From the Division of Cell Physiology, Department of Physiology and Cell Biology, and
| | - Takeshi Saji
- From the Division of Cell Physiology, Department of Physiology and Cell Biology, and
| | - Motoi Kanagawa
- Division of Neurology/Molecular Brain Science, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Tatsushi Toda
- Division of Neurology/Molecular Brain Science, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - So-Ichiro Fukada
- the Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan, and
| | - Hsin-Yi Henry Ho
- the Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | | | - Mitsuharu Endo
- From the Division of Cell Physiology, Department of Physiology and Cell Biology, and
| | - Yasuhiro Minami
- From the Division of Cell Physiology, Department of Physiology and Cell Biology, and
| |
Collapse
|
43
|
Ishii K, Suzuki N, Mabuchi Y, Sekiya I, Akazawa C. Technical advantage of recombinant collagenase for isolation of muscle stem cells. Regen Ther 2017; 7:1-7. [PMID: 30271846 PMCID: PMC6134918 DOI: 10.1016/j.reth.2017.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 05/19/2017] [Accepted: 06/02/2017] [Indexed: 02/07/2023] Open
Abstract
Background Muscle satellite cells are resident skeletal muscle stem cells responsible for muscle regeneration. Isolation of satellite cells is a critical process for clinical application such as drug screening and cell transplantation. Fluorescence-activated cell sorting (FACS) enables the direct isolation of satellite cells from muscle tissue. During the process used to isolate satellite cells from skeletal muscle, enzymatic digestion is the first step. Therefore, the evaluation and standardization of enzymes is important not only for reproducibility of cellular yield and viability, but also for traceability of material used in protocols. Methods The comparison of muscle digestion was performed either by a mixture of recombinant collagenase G (ColG) and collagenase H (ColH) or by a conventional collagenase II. The degree of cell damage and surface antigen expression upon collagenase treatment were analyzed by FACS. To investigate whether satellite cells isolated using recombinant collagenase can regenerate injured muscle, satellite cells were cultured, transplanted into injured muscles, and analyzed by immunostaining. Results We show that ColG and ColH were efficient to isolate satellite cells from mouse skeletal muscle tissue. Digestion with a combination of ColG and ColH enriched satellite cells with intact surface antigens such as α7 and β1 integrins. Furthermore, satellite cells isolated using ColG and ColH dramatically proliferated and remained undifferentiated in vitro. When transplanted, satellite cells isolated using ColG and ColH enhanced the therapeutic efficacy in vivo. Conclusions Our results provide an efficient method of satellite cell preparation using recombinant collagenases with a high cell yield, viability of cells, and regeneration potency to fit the biological raw material criteria.
Collapse
Key Words
- CTX, cardiotoxin
- ColG, collagenase G
- ColH, collagenase H
- Collagenase
- Ct, cycle threshold
- ECM, extracellular matrix
- FACS, fluorescence-activated cell sorting
- Muscle stem cell
- PBS, phosphate-buffered saline
- PE, phycoerythrin
- PI, propidium iodide
- Regeneration
- Satellite cell
- TA, tibialis anterior
- Transplantation
Collapse
Affiliation(s)
- Kana Ishii
- Department of Biochemistry and Biophysics, Graduate School of Health Care Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Nobuharu Suzuki
- Department of Biochemistry and Biophysics, Graduate School of Health Care Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yo Mabuchi
- Department of Biochemistry and Biophysics, Graduate School of Health Care Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Chihiro Akazawa
- Department of Biochemistry and Biophysics, Graduate School of Health Care Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
44
|
Skeletal Muscle Cell Induction from Pluripotent Stem Cells. Stem Cells Int 2017; 2017:1376151. [PMID: 28529527 PMCID: PMC5424488 DOI: 10.1155/2017/1376151] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 03/28/2017] [Indexed: 12/19/2022] Open
Abstract
Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have the potential to differentiate into various types of cells including skeletal muscle cells. The approach of converting ESCs/iPSCs into skeletal muscle cells offers hope for patients afflicted with the skeletal muscle diseases such as the Duchenne muscular dystrophy (DMD). Patient-derived iPSCs are an especially ideal cell source to obtain an unlimited number of myogenic cells that escape immune rejection after engraftment. Currently, there are several approaches to induce differentiation of ESCs and iPSCs to skeletal muscle. A key to the generation of skeletal muscle cells from ESCs/iPSCs is the mimicking of embryonic mesodermal induction followed by myogenic induction. Thus, current approaches of skeletal muscle cell induction of ESCs/iPSCs utilize techniques including overexpression of myogenic transcription factors such as MyoD or Pax3, using small molecules to induce mesodermal cells followed by myogenic progenitor cells, and utilizing epigenetic myogenic memory existing in muscle cell-derived iPSCs. This review summarizes the current methods used in myogenic differentiation and highlights areas of recent improvement.
Collapse
|
45
|
Abstract
Primary myoblasts can be isolated from mouse muscle cell extracts and cultured in vitro. Muscle cells are usually dissociated manually by mincing with razor blades or scissors in a collagenase/dispase solution. Primary myoblasts are then gradually enriched by pre-plating on collagen-coated plates, based on the observation that mouse fibroblasts attach quickly to collagen-coated plates, and are less adherent. Here, we describe an automated muscle dissociation protocol. We also propose an alternative to pre-plating using magnetic bead separation of primary myoblasts, which improve myoblast purity by minimizing fibroblast contamination.
Collapse
Affiliation(s)
- Marie Claude Sincennes
- Sprott Center For Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, 501 Smyth, Box 511, Ottawa, ON, Canada, K1H 8L6
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Yu Xin Wang
- Sprott Center For Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, 501 Smyth, Box 511, Ottawa, ON, Canada, K1H 8L6
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Michael A Rudnicki
- Sprott Center For Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, 501 Smyth, Box 511, Ottawa, ON, Canada, K1H 8L6.
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
46
|
Gayraud-Morel B, Pala F, Sakai H, Tajbakhsh S. Isolation of Muscle Stem Cells from Mouse Skeletal Muscle. Methods Mol Biol 2017; 1556:23-39. [PMID: 28247343 DOI: 10.1007/978-1-4939-6771-1_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Isolation of muscle stem cells from skeletal muscle is a critical step for the study of skeletal myogenesis and regeneration. Although stem cell isolation has been performed for decades, the emergence of flow cytometry with defined cell surface markers, or transgenic mouse models, has allowed the efficient isolation of highly enriched stem cell populations. Here, we describe the isolation of mouse muscle stem cells using two different combinations of enzyme treatments allowing the release of mononucleated muscle stem cells from their niche. Mouse muscle stem cells can be further isolated as a highly enriched population by flow cytometry using fluorescent reporters or cell surface markers. We will present advantages and drawbacks of these different approaches.
Collapse
Affiliation(s)
- Barbara Gayraud-Morel
- Department of Developmental and Stem Cell Biology, Stem Cells and Development, CNRS URA 2578, Institut Pasteur, 25 rue du Dr. Roux, Paris, 75015, France.
| | - Francesca Pala
- Department of Developmental and Stem Cell Biology, Stem Cells and Development, CNRS URA 2578, Institut Pasteur, 25 rue du Dr. Roux, Paris, 75015, France
| | - Hiroshi Sakai
- Department of Developmental and Stem Cell Biology, Stem Cells and Development, CNRS URA 2578, Institut Pasteur, 25 rue du Dr. Roux, Paris, 75015, France
| | - Shahragim Tajbakhsh
- Department of Developmental and Stem Cell Biology, Stem Cells and Development, CNRS URA 2578, Institut Pasteur, 25 rue du Dr. Roux, Paris, 75015, France
| |
Collapse
|
47
|
Abstract
Skeletal muscle stem cell (MuSC) isolation and transplantation are invaluable tools to assess their capacity for self-renewal and tissue repair. Significant technical advances in recent years have led to the optimization of these approaches, improving our ability to assess MuSC regenerative potential. Here, we describe the procedures for Fluorescent Activated Cell Sorting (FACS)-based isolation of MuSC, their intramuscular transplantation, and analysis of their engraftment into host tissues.
Collapse
Affiliation(s)
- Matthew Tierney
- Graduate School of Biomedical Sciences, Sanford-Burnham-Prebys Medical Discovery Institute, 10901 N Torrey Pines Road, La Jolla, CA, 92037, USA
- Development, Aging and Regeneration Program, Sanford Children's Health Research Center, Sanford-Burnham-Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Alessandra Sacco
- Development, Aging and Regeneration Program, Sanford Children's Health Research Center, Sanford-Burnham-Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA, 92037, USA.
| |
Collapse
|
48
|
Maesner CC, Almada AE, Wagers AJ. Established cell surface markers efficiently isolate highly overlapping populations of skeletal muscle satellite cells by fluorescence-activated cell sorting. Skelet Muscle 2016; 6:35. [PMID: 27826411 PMCID: PMC5100091 DOI: 10.1186/s13395-016-0106-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/24/2016] [Indexed: 01/27/2023] Open
Abstract
Background Fluorescent-activated cell sorting (FACS) has enabled the direct isolation of highly enriched skeletal muscle stem cell, or satellite cell, populations from postnatal tissue. Several distinct surface marker panels containing different positively selecting surface antigens have been used to distinguish muscle satellite cells from other non-myogenic cell types. Because functional and transcriptional heterogeneity is known to exist within the satellite cell population, a direct comparison of results obtained in different laboratories has been complicated by a lack of clarity as to whether commonly utilized surface marker combinations select for distinct or overlapping subsets of the satellite cell pool. This study therefore sought to evaluate phenotypic and functional overlap among popular satellite cell sorting paradigms. Methods Utilizing a transgenic Pax7-zsGreen reporter mouse, we compared the overlap between the fluorescent signal of canonical paired homeobox protein 7 (Pax7) expressing satellite cells to cells identified by combinations of surface markers previously published for satellite cells isolation. We designed two panels for mouse skeletal muscle analysis, each composed of markers that exclude hematopoietic and stromal cells (CD45, CD11b, Ter119, CD31, and Sca1), combined with previously published antibody clones recognizing surface markers present on satellite cells (β1-integrin/CXCR4, α7-integrin/CD34, and Vcam1). Cell populations were comparatively analyzed by flow cytometry and FACS sorted for functional assessment of myogenic activity. Results Consistent with prior reports, each of the commonly used surface marker schemes evaluated here identified a highly enriched satellite cell population, with 89–90 % positivity for Pax7 expression based on zsGreen fluorescence. Distinct surface marker panels were also equivalent in their ability to identify the majority of the satellite cell pool, with 90–93 % of all Pax7-zsGreen positive cells marked by each of the surface marker schemes. The direct comparison among surface marker schemes validated their selection for highly overlapping subsets of cells. Functional analysis in vitro showed no differences in the abilities of cells sorted by these different methods to grow in culture and differentiate. Conclusions This study demonstrates the equivalency of several previously published and widely utilized surface marker schemes for isolating a highly purified and myogenically active population of satellite cells from the mouse skeletal muscle, which should facilitate cross-comparison of data across laboratories. Electronic supplementary material The online version of this article (doi:10.1186/s13395-016-0106-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Claire C Maesner
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138 USA
| | - Albert E Almada
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138 USA
| | - Amy J Wagers
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138 USA.,Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
49
|
Yao Y, Norris EH, Mason CE, Strickland S. Laminin regulates PDGFRβ(+) cell stemness and muscle development. Nat Commun 2016; 7:11415. [PMID: 27138650 PMCID: PMC4857399 DOI: 10.1038/ncomms11415] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/22/2016] [Indexed: 12/15/2022] Open
Abstract
Muscle-resident PDGFRβ+ cells, which include pericytes and PW1+ interstitial cells (PICs), play a dual role in muscular dystrophy. They can either undergo myogenesis to promote muscle regeneration or differentiate into adipocytes and other cells to compromise regeneration. How the differentiation and fate determination of PDGFRβ+ cells are regulated, however, remains unclear. Here, by utilizing a conditional knockout mouse line, we report that PDGFRβ+ cell-derived laminin inhibits their proliferation and adipogenesis, but is indispensable for their myogenesis. In addition, we show that laminin alone is able to partially reverse the muscle dystrophic phenotype in these mice at the molecular, structural and functional levels. Further RNAseq analysis reveals that laminin regulates PDGFRβ+ cell differentiation/fate determination via gpihbp1. These data support a critical role of laminin in the regulation of PDGFRβ+ cell stemness, identify an innovative target for future drug development and may provide an effective treatment for muscular dystrophy. Muscle PDGFRβ+ cells are interstitial stem/progenitor cells with myogenic potential. Here, Yao et al. show that PDGFRβ+ cell-derived laminin actively regulates their proliferation, differentiation and fate determination.
Collapse
Affiliation(s)
- Yao Yao
- Laboratory of Neurobiology and Genetics, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA.,College of Pharmacy, University of Minnesota, 1110 Kirby Drive, Duluth, Minnesota 55812, USA
| | - Erin H Norris
- Laboratory of Neurobiology and Genetics, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York 10065, USA.,The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, New York, New York 10065, USA.,Tri-Institutional Training Program in Computational Biology and Medicine, New York, New York 10065, USA.,The Feil Family Brain and Mind Research Institute, New York, New York 10065, USA
| | - Sidney Strickland
- Laboratory of Neurobiology and Genetics, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| |
Collapse
|
50
|
Juhas M, Ye J, Bursac N. Design, evaluation, and application of engineered skeletal muscle. Methods 2016; 99:81-90. [PMID: 26455485 PMCID: PMC4821818 DOI: 10.1016/j.ymeth.2015.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 09/03/2015] [Accepted: 10/04/2015] [Indexed: 12/17/2022] Open
Abstract
For over two decades, research groups have been developing methods to engineer three-dimensional skeletal muscle tissues. These tissues hold great promise for use in disease modeling and pre-clinical drug development, and have potential to serve as therapeutic grafts for functional muscle repair. Recent advances in the field have resulted in the engineering of regenerative muscle constructs capable of survival, vascularization, and functional maturation in vivo as well as the first-time creation of functional human engineered muscles for screening of therapeutics in vitro. In this review, we will discuss the methodologies that have progressed work in the muscle tissue engineering field to its current state. The emphasis will be placed on the existing procedures to generate myogenic cell sources and form highly functional muscle tissues in vitro, techniques to monitor and evaluate muscle maturation and performance in vitro and in vivo, and surgical strategies to both create diseased environments and ensure implant survival and rapid integration into the host. Finally, we will suggest the most promising methodologies that will enable continued progress in the field.
Collapse
Affiliation(s)
- Mark Juhas
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Jean Ye
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, United States.
| |
Collapse
|