1
|
Ru Y, Ma M, Zhou X, Kriti D, Cohen N, D'Souza S, Schaniel C, Motch Perrine SM, Kuo S, Pichurin O, Pinto D, Housman G, Holmes G, Schadt E, van Bakel H, Zhang B, Jabs EW, Wu M. Integrated transcriptomic analysis of human induced pluripotent stem cell-derived osteogenic differentiation reveals a regulatory role of KLF16. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.02.11.579844. [PMID: 38405902 PMCID: PMC10888757 DOI: 10.1101/2024.02.11.579844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Osteogenic differentiation is essential for bone development, metabolism, and repair; however, the underlying regulatory relationships among genes remain poorly understood. To elucidate the transcriptomic changes and identify novel regulatory genes involved in osteogenic differentiation, we differentiated mesenchymal stem cells (MSCs) derived from 20 human iPSC lines into preosteoblasts (preOBs) and osteoblasts (OBs). We then performed transcriptome profiling of MSCs, preOBs and OBs. The iPSC-derived MSCs and OBs showed similar transcriptome profiles to those of primary human MSCs and OBs, respectively. Differential gene expression analysis revealed global changes in the transcriptomes from MSCs to preOBs, and then to OBs, including the differential expression of 840 genes encoding transcription factors (TFs). TF regulatory network analysis uncovered a network comprising 451 TFs, organized into five interactive modules. Multiscale embedded gene co-expression network analysis (MEGENA) identified gene co-expression modules and key network regulators (KNRs). From these analyses, KLF16 emerged as an important TF in osteogenic differentiation. We demonstrate that overexpression of Klf16 in vitro inhibited osteogenic differentiation and mineralization, while Klf16 +/- mice exhibited increased bone mineral density, trabecular number, and cortical bone area. Our study underscores the complexity of osteogenic differentiation and identifies novel regulatory genes such as KLF16, which plays an inhibitory role in osteogenic differentiation both in vitro and in vivo.
Collapse
Affiliation(s)
- Ying Ru
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Meng Ma
- Mount Sinai Genomics, Sema4, Stamford, CT, 06902, USA
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Divya Kriti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Present address: Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of British Columbia, Vancouver, BC V6T 2G3, Canada
| | - Ninette Cohen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Present address: Division of Cytogenetics and Molecular Pathology, Zucker School of Medicine at Hofstra/Northwell, Northwell Health Laboratories, Lake Success, NY, 11030, USA
| | - Sunita D'Souza
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Present address: St Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Christoph Schaniel
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Susan M Motch Perrine
- Department of Anthropology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Sharon Kuo
- Department of Biomedical Sciences, University of Minnesota, Duluth, MN, 55812, USA
- Technological Primates Research Group, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany
| | - Oksana Pichurin
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Dalila Pinto
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Genevieve Housman
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany
| | - Greg Holmes
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ethylin Wang Jabs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Meng Wu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|
2
|
Qu Z, Zhang B, Kong L, Zhang Y, Zhao Y, Gong Y, Gao X, Feng M, Zhang J, Yan L. Myeloid zinc finger 1 knockdown promotes osteoclastogenesis and bone loss in part by regulating RANKL-induced ferroptosis of osteoclasts through Nrf2/GPX4 signaling pathway. J Leukoc Biol 2024; 115:946-957. [PMID: 38266238 DOI: 10.1093/jleuko/qiae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
The overactivation of the osteoclasts is a crucial pathological factor in the development of osteoporosis. MZF1, belonging to the scan-zinc finger family, plays a significant role in various processes associated with tumor malignant progression and acts as an essential transcription factor regulating osteoblast expression. However, the exact role of MZF1 in osteoclasts has not been determined. In this study, the purpose of our study was to elucidate the role of MZF1 in osteoclastogenesis. First, we established MZF1-deficient female mice and evaluated the femur bone phenotype by micro-computed tomography and histological staining. Our findings indicate that MZF1-/- mice exhibited a low bone mass osteoporosis phenotype. RANKL could independently induce the differentiation of RAW264.7 cells into osteoclasts, and we found that the expression level of MZF1 protein decreased gradually. Then, the CRISPR/Cas 9 gene-editing technique was used to build a RAW264.7 cell model with MZF1 knockout, and RANKL was used to independently induce MZF1-/- and wild-type cells to differentiate into mature osteoclasts. Tartrate-resistant acid phosphatase staining and F-actin fluorescence results showed that the MZF1-/- group produced more tartrate-resistant acid phosphatase-positive mature osteoclasts and larger actin rings. The expression of osteoclast-associated genes (including tartrate-resistant acid phosphatase, CTSK, c-Fos, and NFATc1) was evaluated by reverse transcription quantitative polymerase chain reaction and Western blot. The expression of key genes of osteoclast differentiation in the MZF1-/- group was significantly increased. Furthermore, we found that cell viability was increased in the early stages of RANKL-induced cell differentiation in the MZF1-/- group cells. We examined some prevalent ferroptosis markers, including malondialdehyde, glutathione, and intracellular Fe, the active form of iron in the cytoplasm during the early stages of osteoclastogenesis. The results suggest that MZF1 may be involved in osteoclast differentiation by regulating RANKL-induced ferroptosis of osteoclasts. Collectively, our findings shed light on the essential involvement of MZF1 in the regulation of osteoclastogenesis in osteoporosis and provide insights into its potential underlying mechanism.
Collapse
Affiliation(s)
- Zechao Qu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao University, No. 555 East Youyi Road, Beilin District, Xi'an City, Shaanxi Province 710054, China
| | - Bo Zhang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao University, No. 555 East Youyi Road, Beilin District, Xi'an City, Shaanxi Province 710054, China
| | - Lingbo Kong
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao University, No. 555 East Youyi Road, Beilin District, Xi'an City, Shaanxi Province 710054, China
| | - Yong Zhang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao University, No. 555 East Youyi Road, Beilin District, Xi'an City, Shaanxi Province 710054, China
| | - Yiwei Zhao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao University, No. 555 East Youyi Road, Beilin District, Xi'an City, Shaanxi Province 710054, China
| | - Yining Gong
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao University, No. 555 East Youyi Road, Beilin District, Xi'an City, Shaanxi Province 710054, China
| | - Xiangcheng Gao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao University, No. 555 East Youyi Road, Beilin District, Xi'an City, Shaanxi Province 710054, China
| | - Mingzhe Feng
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao University, No. 555 East Youyi Road, Beilin District, Xi'an City, Shaanxi Province 710054, China
| | - Jingjun Zhang
- Health Science Centre, Xi'an Jiaotong University, No. 76, Yanta West Road, Yanta District, Xi'an City, Shaanxi Province 710061, China
| | - Liang Yan
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao University, No. 555 East Youyi Road, Beilin District, Xi'an City, Shaanxi Province 710054, China
| |
Collapse
|
3
|
Xu QR, Du XH, Huang TT, Zheng YC, Li YL, Huang DY, Dai HQ, Li EM, Fang WK. Role of Cell-Cell Junctions in Oesophageal Squamous Cell Carcinoma. Biomolecules 2022; 12:biom12101378. [PMID: 36291586 PMCID: PMC9599896 DOI: 10.3390/biom12101378] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 02/05/2023] Open
Abstract
Cell-cell junctions comprise various structures, including adherens junctions, tight junctions, desmosomes, and gap junctions. They link cells to each other in tissues and regulate tissue homeostasis in critical cellular processes. Recent advances in cell-cell junction research have led to critical discoveries. Cell-cell adhesion components are important for the invasion and metastasis of tumour cells, which are not only related to cell-cell adhesion changes, but they are also involved in critical molecular signal pathways. They are of great significance, especially given that relevant molecular mechanisms are being discovered, there are an increasing number of emerging biomarkers, targeted therapies are becoming a future therapeutic concern, and there is an increased number of therapeutic agents undergoing clinical trials. Oesophageal squamous cell carcinoma (ESCC), the most common histological subtype of oesophageal cancer, is one of the most common cancers to affect epithelial tissue. ESCC progression is accompanied by the abnormal expression or localisation of components at cell-cell junctions. This review will discuss the recent scientific developments related to the molecules at cell-cell junctions and their role in ESCC to offer valuable insights for readers, provide a global view of the relationships between position, construction, and function, and give a reference for future mechanistic studies, diagnoses, and therapeutic developments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - En-Min Li
- Correspondence: (E.-M.L.); (W.-K.F.)
| | | |
Collapse
|
4
|
Cai J, Li C, Li S, Yi J, Wang J, Yao K, Gan X, Shen Y, Yang P, Jing D, Zhao Z. A Quartet Network Analysis Identifying Mechanically Responsive Long Noncoding RNAs in Bone Remodeling. Front Bioeng Biotechnol 2022; 10:780211. [PMID: 35356768 PMCID: PMC8959777 DOI: 10.3389/fbioe.2022.780211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/20/2022] [Indexed: 12/13/2022] Open
Abstract
Mechanical force, being so ubiquitous that it is often taken for granted and overlooked, is now gaining the spotlight for reams of evidence corroborating their crucial roles in the living body. The bone, particularly, experiences manifold extraneous force like strain and compression, as well as intrinsic cues like fluid shear stress and physical properties of the microenvironment. Though sparkled in diversified background, long noncoding RNAs (lncRNAs) concerning the mechanotransduction process that bone undergoes are not yet detailed in a systematic way. Our principal goal in this research is to highlight the potential lncRNA-focused mechanical signaling systems which may be adapted by bone-related cells for biophysical environment response. Based on credible lists of force-sensitive mRNAs and miRNAs, we constructed a force-responsive competing endogenous RNA network for lncRNA identification. To elucidate the underlying mechanism, we then illustrated the possible crosstalk between lncRNAs and mRNAs as well as transcriptional factors and mapped lncRNAs to known signaling pathways involved in bone remodeling and mechanotransduction. Last, we developed combinative analysis between predicted and established lncRNAs, constructing a pathway–lncRNA network which suggests interactive relationships and new roles of known factors such as H19. In conclusion, our work provided a systematic quartet network analysis, uncovered candidate force-related lncRNAs, and highlighted both the upstream and downstream processes that are possibly involved. A new mode of bioinformatic analysis integrating sequencing data, literature retrieval, and computational algorithm was also introduced. Hopefully, our work would provide a moment of clarity against the multiplicity and complexity of the lncRNA world confronting mechanical input.
Collapse
Affiliation(s)
- Jingyi Cai
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chaoyuan Li
- Department of Oral Implantology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School and Hospital of Stomatology, Tongji University, Shanghai, China
| | - Shun Li
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Jianru Yi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ke Yao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinyan Gan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Shen
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Pu Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dian Jing
- Department of Orthodontics, China Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Dian Jing, ; Zhihe Zhao,
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Dian Jing, ; Zhihe Zhao,
| |
Collapse
|
5
|
Haussler MR, Livingston S, Sabir ZL, Haussler CA, Jurutka PW. Vitamin D Receptor Mediates a Myriad of Biological Actions Dependent on Its 1,25-Dihydroxyvitamin D Ligand: Distinct Regulatory Themes Revealed by Induction of Klotho and Fibroblast Growth Factor-23. JBMR Plus 2021; 5:e10432. [PMID: 33553988 PMCID: PMC7839824 DOI: 10.1002/jbm4.10432] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/01/2020] [Indexed: 11/21/2022] Open
Abstract
The hormonal vitamin D metabolite, 1,25‐dihydroxyvitamin D [1,25(OH)2D], produced in kidney, acts in numerous end organs via the nuclear vitamin D receptor (VDR) to trigger molecular events that orchestrate bone mineral homeostasis. VDR is a ligand‐controlled transcription factor that obligatorily heterodimerizes with retinoid X receptor (RXR) to target vitamin D responsive elements (VDREs) in the vicinity of vitamin D‐regulated genes. Circulating 1,25(OH)2D concentrations are governed by PTH, an inducer of renal D‐hormone biosynthesis catalyzed by CYP27B1 that functions as the key player in a calcemic endocrine circuit, and by fibroblast growth factor‐23 (FGF23), a repressor of the CYP27B1 renal enzyme, creating a hypophosphatemic endocrine loop. 1,25(OH)2D/VDR–RXR acts in kidney to induce Klotho (a phosphaturic coreceptor for FGF23) to correct hyperphosphatemia, NPT2a/c to correct hypophosphatemia, and TRPV5 and CaBP28k to enhance calcium reabsorption. 1,25(OH)2D‐liganded VDR–RXR functions in osteoblasts/osteocytes by augmenting RANK‐ligand expression to paracrine signal osteoclastic bone resorption, while simultaneously inducing FGF23, SPP1, BGLP, LRP5, ANK1, ENPP1, and TNAP, and conversely repressing RUNX2 and PHEX expression, effecting localized control of mineralization to sculpt the skeleton. Herein, we document the history of 1,25(OH)2D/VDR and summarize recent advances in characterizing their physiology, biochemistry, and mechanism of action by highlighting two examples of 1,25(OH)2D/VDR molecular function. The first is VDR‐mediated primary induction of Klotho mRNA by 1,25(OH)2D in kidney via a mechanism initiated by the docking of liganded VDR–RXR on a VDRE at −35 kb in the mouse Klotho gene. In contrast, the secondary induction of FGF23 by 1,25(OH)2D in bone is proposed to involve rapid nongenomic action of 1,25(OH)2D/VDR to acutely activate PI3K, in turn signaling the induction of MZF1, a transcription factor that, in cooperation with c‐ets1‐P, binds to an enhancer element centered at −263 bp in the promoter‐proximal region of the mouse fgf23 gene. Chronically, 1,25(OH)2D‐induced osteopontin apparently potentiates MZF1. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Mark R Haussler
- Department of Basic Medical Sciences University of Arizona College of Medicine-Phoenix Phoenix AZ
| | - Sarah Livingston
- School of Mathematical and Natural Sciences Arizona State University Glendale AZ
| | - Zhela L Sabir
- School of Mathematical and Natural Sciences Arizona State University Glendale AZ
| | - Carol A Haussler
- Department of Basic Medical Sciences University of Arizona College of Medicine-Phoenix Phoenix AZ
| | - Peter W Jurutka
- Department of Basic Medical Sciences University of Arizona College of Medicine-Phoenix Phoenix AZ.,School of Mathematical and Natural Sciences Arizona State University Glendale AZ
| |
Collapse
|
6
|
Shima A, Matsuoka H, Yamaoka A, Michihara A. Transcription of CLDND1 in human brain endothelial cells is regulated by the myeloid zinc finger 1. Clin Exp Pharmacol Physiol 2021; 48:260-269. [PMID: 33037622 DOI: 10.1111/1440-1681.13416] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/12/2020] [Accepted: 10/05/2020] [Indexed: 12/01/2022]
Abstract
Increased permeability of endothelial cells lining the blood vessels in the brain leads to vascular oedema and, potentially, to stroke. The tight junctions (TJs), primarily responsible for the regulation of vascular permeability, are multi-protein complexes comprising the claudin family of proteins and occludin. Several studies have reported that downregulation of the claudin domain containing 1 (CLDND1) gene enhances vascular permeability, which consequently increases the risk of stroke. However, the transcriptional regulation of CLDND1 has not been studied extensively. Therefore, this study aimed to identify the transcription factors (TFs) regulating CLDND1 expression. A luciferase reporter assay identified a silencer within the first intron of CLDND1, which was identified as a potential binding site of the myeloid zinc finger 1 (MZF1) through in silico and TFBIND software analyses, and confirmed through a reporter assay using the MZF1 expression vector and chromatin immunoprecipitation (ChIP) assays. Moreover, the transient overexpression of MZF1 significantly increased the mRNA and protein expression levels of CLDND1, conversely, which were suppressed through the siRNA-mediated MZF1 knockdown. Furthermore, the permeability of FITC-dextran was observed to be increased on MZF1 knockdown as compared to that of the siGFP control. Our data revealed the underlying mechanism of the transcriptional regulation of CLDND1 by the MZF1. The findings suggest a potential role of MZF1 in TJ formation, which could be studied further and applied to prevent cerebral haemorrhage.
Collapse
Affiliation(s)
- Akiho Shima
- Laboratory of Genomic Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Japan
| | - Hiroshi Matsuoka
- Laboratory of Genomic Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Japan
| | - Alice Yamaoka
- Laboratory of Genomic Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Japan
| | - Akihiro Michihara
- Laboratory of Genomic Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Japan
| |
Collapse
|
7
|
Brix DM, Bundgaard Clemmensen KK, Kallunki T. Zinc Finger Transcription Factor MZF1-A Specific Regulator of Cancer Invasion. Cells 2020; 9:cells9010223. [PMID: 31963147 PMCID: PMC7016646 DOI: 10.3390/cells9010223] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 12/11/2022] Open
Abstract
Over 90% of cancer deaths are due to cancer cells metastasizing into other organs. Invasion is a prerequisite for metastasis formation. Thus, inhibition of invasion can be an efficient way to prevent disease progression in these patients. This could be achieved by targeting the molecules regulating invasion. One of these is an oncogenic transcription factor, Myeloid Zinc Finger 1 (MZF1). Dysregulated transcription factors represent a unique, increasing group of drug targets that are responsible for aberrant gene expression in cancer and are important nodes driving cancer malignancy. Recent studies report of a central involvement of MZF1 in the invasion and metastasis of various solid cancers. In this review, we summarize the research on MZF1 in cancer including its function and role in lysosome-mediated invasion and in the expression of genes involved in epithelial to mesenchymal transition. We also discuss possible means to target it on the basis of the current knowledge of its function in cancer.
Collapse
Affiliation(s)
- Ditte Marie Brix
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; (D.M.B.); (K.K.B.C.)
- Danish Medicines Council, Dampfærgevej 27-29, 2100 Copenhagen, Denmark
| | - Knut Kristoffer Bundgaard Clemmensen
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; (D.M.B.); (K.K.B.C.)
| | - Tuula Kallunki
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; (D.M.B.); (K.K.B.C.)
- Department of Drug Design and Pharmacology, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence: ; Tel.: +45-35-25-7746
| |
Collapse
|
8
|
Lee EJ, Hwang I, Kim GH, Moon D, Kang SY, Hwang IC, Lee SY, Marie PJ, Kim HS. Endothelin-1 Augments Therapeutic Potency of Human Mesenchymal Stem Cells via CDH2 and VEGF Signaling. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 13:503-511. [PMID: 31194009 PMCID: PMC6545354 DOI: 10.1016/j.omtm.2019.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/03/2019] [Indexed: 12/12/2022]
Abstract
In our previous study, we identified differences in the levels of CDH2 and vascular endothelial growth factor (VEGF) between effective and ineffective clones of human umbilical cord blood (hUCB) mesenchymal stem cells (MSCs), with regard to the infarcted rat myocardium. In this study, we compared gene expression profiles between the effective and ineffective clones and identified that endothelin-1 (EDN1) is enriched in the effective clone. In the mechanistic analyses, EDN1 significantly increased expression of CDH2 and VEGF through endothelin receptor A (EDNRA), which was prevented by EDNRA blocker, BQ123. To decipher how EDN1 induced gene expression of CDH2, we performed a promoter activity assay and identified GATA2 and MZF1 as inducers of CDH2. EDN1 significantly enhanced the promoter activity of the CDH2 gene, which was obliterated by the deletion or point mutation at GATA2 or MZF1 binding sequence. Next, therapeutic efficacy of EDN1-priming of hUCB-MSCs was tested in a rat myocardial infarction (MI) model. EDN1-primed MSCs were superior to naive MSCs at 8 weeks after MI in improving myocardial contractility (p < 0.05), reducing fibrosis area (p < 0.05), increasing engraftment efficiency (p < 0.05), and improving capillary density (p < 0.05). In conclusion, EDN1 induces CDH2 and VEGF expression in hUCB-MSCs, leading to the improved therapeutic efficacy in rat MI, suggesting that EDN1 is a potential priming agent for MSCs in regenerative medicine.
Collapse
Affiliation(s)
- Eun Ju Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Injoo Hwang
- Molecular Medicine & Biopharmaceutical Sciences, Seoul National University, Seoul 03080, Republic of Korea
| | - Gi-Hwan Kim
- Molecular Medicine & Biopharmaceutical Sciences, Seoul National University, Seoul 03080, Republic of Korea
| | - Dodam Moon
- Molecular Medicine & Biopharmaceutical Sciences, Seoul National University, Seoul 03080, Republic of Korea
| | - Su Yeon Kang
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - In-Chang Hwang
- Division of Cardiology, Cardiovascular Center, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Seo-Yeon Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.,Korean Medical Science Research Center for Healthy-Aging, Graduate Training Program of Korean Medicine for Healthy-Aging, Pusan National University, Yangsan, Republic of Korea
| | - P J Marie
- UMR-1132 INSERM and University Paris Diderot, Sorbonne Paris Cité, Hôpital Lariboisiére, Paris, France
| | - Hyo-Soo Kim
- Molecular Medicine & Biopharmaceutical Sciences, Seoul National University, Seoul 03080, Republic of Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
9
|
Gap junction protein Connexin-43 is a direct transcriptional regulator of N-cadherin in vivo. Nat Commun 2018; 9:3846. [PMID: 30242148 PMCID: PMC6155008 DOI: 10.1038/s41467-018-06368-x] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/29/2018] [Indexed: 11/16/2022] Open
Abstract
Connexins are the primary components of gap junctions, providing direct links between cells under many physiological processes. Here, we demonstrate that in addition to this canonical role, Connexins act as transcriptional regulators. We show that Connexin 43 (Cx43) controls neural crest cell migration in vivo by directly regulating N-cadherin transcription. This activity requires interaction between Cx43 carboxy tail and the basic transcription factor-3, which drives the translocation of Cx43 tail to the nucleus. Once in the nucleus they form a complex with PolII which directly binds to the N-cadherin promoter. We found that this mechanism is conserved between amphibian and mammalian cells. Given the strong evolutionary conservation of connexins across vertebrates, this may reflect a common mechanism of gene regulation by a protein whose function was previously ascribed only to gap junctional communication. Connexins are components of gap junctions that link cells and allow intercellular communication. Here, the authors show that the Connexin 43 carboxy tail interacts with basic transcription factor-3, leading to nuclear translocation and direct regulation of N-cadherin expression and neural crest migration.
Collapse
|
10
|
Burmistrova OA, Nikulin SV, Zakharova GS, Fomicheva KA, Alekseev BY, Shkurnikov MY. New Fluorescent Reporter Systems for Evaluation of the Expression of E- and N-Cadherins. Bull Exp Biol Med 2018; 165:88-93. [DOI: 10.1007/s10517-018-4106-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Indexed: 02/06/2023]
|
11
|
Phosphorylation-dependent stabilization of MZF1 upregulates N-cadherin expression during protein kinase CK2-mediated epithelial-mesenchymal transition. Oncogenesis 2018. [PMID: 29540671 PMCID: PMC5852951 DOI: 10.1038/s41389-018-0035-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a critical process in invasion and metastasis of cancer cells. E-cadherin to N-cadherin switching is considered a molecular hallmark of EMT. Recently, we reported that increased CK2 activity fully induces E-cadherin to N-cadherin switching, but the molecular mechanisms of N-cadherin upregulation are unknown. In this study, we examined how N-cadherin is upregulated by CK2. N-cadherin promoter analysis and ChIP analysis identified and confirmed myeloid zinc finger 1 (MZF1) as an N-cadherin transcription factor. Molecular analysis showed that MZF1 directly interacts with CK2 and is phosphorylated at serine 27. Phosphorylation stabilizes MZF1 and induces transcription of N-cadherin. MZF1 knockdown (MKD) in N-cadherin-expressing cancer cells downregulates N-cadherin expression and reverts the morphology from spindle and fibroblast-like to a rounded, epithelial shape. In addition, we showed that that MKD reduced the motility and invasiveness of N-cadherin-expressing cancer cells. Collectively, these data indicate that N-cadherin upregulation in CK2-mediated E-cadherin to N-cadherin switching is dependent on phosphorylation-mediated MZF1 stabilization. CK2 could be a good therapeutic target for the prevention of metastasis.
Collapse
|
12
|
Di Nunno V, Cubelli M, Massari F. The role of the MET/AXL pathway as a new target for multikinase inhibitors in renal cell carcinoma. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2017. [DOI: 10.1080/23808993.2017.1347481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Marta Cubelli
- Division of Oncology, S.Orsola-Malpighi Hospital, Bologna, Italy
| | | |
Collapse
|
13
|
Kang X, Liu Y, Zhang J, Xu Q, Liu C, Fang M. Characteristics and Expression Profile of KRT71 Screened by Suppression Subtractive Hybridization cDNA Library in Curly Fleece Chinese Tan Sheep. DNA Cell Biol 2017; 36:552-564. [PMID: 28509589 DOI: 10.1089/dna.2017.3718] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
As an important commercial trait for sheep, curly fleece has a great economic impact on production costs and efficiency in sheep industry. To identify genes that are important for curly fleece formation in mammals, a suppression subtractive hybridization analysis was performed on the shoulder skin tissues exposed to two different growth stages of Chinese Tan sheep with different phenotypes (curly fleece and noncurling fleece). BLAST analysis identified 67 differentially expressed genes, of which 31 were expressed lower and 36 were expressed higher in lambs than in adult sheep. Differential expressions of seven randomly selected genes were verified using quantitative real-time polymerase chain reaction (qRT-PCR). KRT71 gene was selected for further study due to its high correlation with the curly hair phenotype in various mammal species. Semi-qPCR showed distinctively high expression of KRT71 in skin tissues. Moreover, qPCR result showed a significantly higher expression of KRT71 in curly fleece than noncurling Tan sheep. The luciferase assay and electrophoresis mobility shift assay showed that there were transcription factor binding sites in the promoter region of KRT71 related to the differential expression of KRT71 at the two growth stages of Tan sheep. Online bioinformation tools predicted MFZ1 as a transcriptional factor that regulates the expression of KRT71. These studies on KRT71 gene revealed some mechanisms underlying the relationship between the KRT71 gene and the curly fleece phenotype of Tan sheep.
Collapse
Affiliation(s)
- Xiaolong Kang
- 1 National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University , Beijing, People's Republic of China .,2 College of Agriculture, Ningxia University , Yinchuan, People's Republic of China
| | - Yufang Liu
- 1 National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University , Beijing, People's Republic of China
| | - Jibin Zhang
- 3 Department of Animal Science, Iowa State University , Ames, Iowa
| | - Qinqin Xu
- 1 National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University , Beijing, People's Republic of China
| | - Chengkun Liu
- 1 National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University , Beijing, People's Republic of China
| | - Meiying Fang
- 1 National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University , Beijing, People's Republic of China .,4 Beijing Key Laboratory for Animal Genetic Improvement, Beijing, People's Republic of China
| |
Collapse
|
14
|
Jacqueroud L, Bouard C, Richard G, Payen L, Devouassoux-Shisheboran M, Spicer DB, Caramel J, Collin G, Puisieux A, Tissier A, Ansieau S. The Heterodimeric TWIST1-E12 Complex Drives the Oncogenic Potential of TWIST1 in Human Mammary Epithelial Cells. Neoplasia 2017; 18:317-327. [PMID: 27237323 PMCID: PMC4887617 DOI: 10.1016/j.neo.2016.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/18/2016] [Accepted: 03/28/2016] [Indexed: 11/26/2022] Open
Abstract
The TWIST1 embryonic transcription factor displays biphasic functions during the course of carcinogenesis. It facilitates the escape of cells from oncogene-induced fail-safe programs (senescence, apoptosis) and their consequent neoplastic transformation. Additionally, it promotes the epithelial-to-mesenchymal transition and the initiation of the metastatic spread of cancer cells. Interestingly, cancer cells recurrently remain dependent on TWIST1 for their survival and/or proliferation, making TWIST1 their Achilles’ heel. TWIST1 has been reported to form either homodimeric or heterodimeric complexes mainly in association with the E bHLH class I proteins. These complexes display distinct, sometimes even antagonistic, functions during development and unequal prometastatic functions in prostate cancer cells. Using a tethered dimer strategy, we successively assessed the ability of TWIST1 dimers to cooperate with an activated version of RAS in human mammary epithelial cell transformation, to provide mice with the ability to spontaneously develop breast tumors, and lastly to maintain a senescence program at a latent state in several breast cancer cell lines. We demonstrate that the TWIST1-E12 complex, unlike the homodimer, is an oncogenic form of TWIST1 in mammary epithelial cells and that efficient binding of both partners is a prerequisite for its activity. The detection of the heterodimer in human premalignant lesions by a proximity ligation assay, at a stage preceding the initiation of the metastatic cascade, is coherent with such an oncogenic function. TWIST1-E protein heterodimeric complexes may thus constitute the main active forms of TWIST1 with regard to senescence inhibition over the time course of breast tumorigenesis.
Collapse
Affiliation(s)
- Laurent Jacqueroud
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, France; LabEX DEVweCAN, Lyon, France; UNIV UMR1052, Lyon, France; Centre Léon Bérard, Lyon, France
| | - Charlotte Bouard
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, France; LabEX DEVweCAN, Lyon, France; UNIV UMR1052, Lyon, France; Centre Léon Bérard, Lyon, France
| | - Geoffrey Richard
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, France; LabEX DEVweCAN, Lyon, France; UNIV UMR1052, Lyon, France; Centre Léon Bérard, Lyon, France
| | - Léa Payen
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, France; LabEX DEVweCAN, Lyon, France; UNIV UMR1052, Lyon, France; Centre Léon Bérard, Lyon, France; Université de Lyon 1, ISPB, Lyon, France; Hospices Civils de Lyon, Lyon, France
| | - Mojgan Devouassoux-Shisheboran
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, France; LabEX DEVweCAN, Lyon, France; UNIV UMR1052, Lyon, France; Centre Léon Bérard, Lyon, France; Université de Lyon 1, ISPB, Lyon, France; Hospices Civils de Lyon, Lyon, France; Hôpital de la Croix-Rousse, Lyon, France
| | - Douglas B Spicer
- Center for Molecular Medicine, Main Medical Center Research Institute, Scarborough, ME, USA
| | - Julie Caramel
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, France; LabEX DEVweCAN, Lyon, France; UNIV UMR1052, Lyon, France; Centre Léon Bérard, Lyon, France; Université de Lyon 1, ISPB, Lyon, France
| | - Guillaume Collin
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, France; LabEX DEVweCAN, Lyon, France; UNIV UMR1052, Lyon, France; Centre Léon Bérard, Lyon, France
| | - Alain Puisieux
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, France; LabEX DEVweCAN, Lyon, France; UNIV UMR1052, Lyon, France; Centre Léon Bérard, Lyon, France; Université de Lyon 1, ISPB, Lyon, France; Institut Universitaire de France, Paris, France
| | - Agnès Tissier
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, France; LabEX DEVweCAN, Lyon, France; UNIV UMR1052, Lyon, France; Centre Léon Bérard, Lyon, France
| | - Stéphane Ansieau
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, France; LabEX DEVweCAN, Lyon, France; UNIV UMR1052, Lyon, France; Centre Léon Bérard, Lyon, France.
| |
Collapse
|
15
|
Piszczatowski RT, Rafferty BJ, Rozado A, Parziale JV, Lents NH. Myeloid Zinc Finger 1 (MZF-1) Regulates Expression of the CCN2/CTGF and CCN3/NOV Genes in the Hematopoietic Compartment. J Cell Physiol 2015; 230:2634-9. [PMID: 25899830 DOI: 10.1002/jcp.25021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 04/15/2015] [Indexed: 02/06/2023]
Abstract
Connective Tissue Growth Factor (CCN2/CTGF) and Nephroblastoma Overexpressed (CCN3/NOV) execute key functions within the hematopoietic compartment. Both are abundant in the bone marrow stroma, which is a niche for hematopoiesis and supports marrow function. Roles for 1,25-dihydroxyvitamin D3 (calcitriol) and all-trans retinoic acid in the bone marrow have also been elucidated. Interestingly, some of the annotated roles of these vitamins overlap with established functions of CCN2 and CCN3. Yet, no factor has been identified that unifies these observations. In this study, we report the regulation of the CTGF and NOV genes by Myeloid Zinc Finger-1 (MZF-1), a hematopoietic transcription factor. We show the interaction of MZF-1 with the CTGF and NOV promoters in several cell types. Up-regulation of MZF-1 via calcitriol and vitamin A induces expression of CTGF and NOV, implicating a role for these vitamins in the functions of these two genes. Lastly, knockdown of MZF1 reduces levels of CTGF and NOV. Collectively, our results argue that MZF-1 regulates the CTGF and NOV genes in the hematopoietic compartment, and may be involved in their respective functions in the stroma.
Collapse
Affiliation(s)
- Richard T Piszczatowski
- Department of Sciences, John Jay College, The City University of New York, New York.,Albert Einstein College of Medicine, Yeshiva University, New York, New York
| | - Brian J Rafferty
- Department of Science, Borough of Manhattan Community College, The City University of New York, New York
| | - Andre Rozado
- Department of Sciences, John Jay College, The City University of New York, New York
| | - James V Parziale
- Department of Sciences, John Jay College, The City University of New York, New York
| | - Nathan H Lents
- Department of Sciences, John Jay College, The City University of New York, New York
| |
Collapse
|
16
|
Expression of myeloid zinc finger 1 and the correlation to clinical aspects of oral squamous cell carcinoma. Tumour Biol 2015; 36:7099-105. [DOI: 10.1007/s13277-015-3419-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 03/31/2015] [Indexed: 01/14/2023] Open
|
17
|
TGF-β-activated SMAD3/4 complex transcriptionally upregulates N-cadherin expression in non-small cell lung cancer. Lung Cancer 2015; 87:249-57. [PMID: 25595426 DOI: 10.1016/j.lungcan.2014.12.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/15/2014] [Accepted: 12/26/2014] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Epithelial-mesenchymal transition (EMT) is a key process in early stage of cancer metastasis. TGF-β-mediated EMT is characterized by repression of E-cadherin and induction of N-cadherin (CDH2) in various cancers. Although many investigations have focused on the regulation of E-cadherin expression, the transcription-mediated events that directly induce N-cadherin expression in TGF-β-induced EMT are not fully clear. Here, we mainly focus on non-small cell lung cancer (NSCLC) cells, in which expression of CDH2 can be activated upon TGF-β stimulation, to investigate the underlying mechanisms of CDH2 expression regulation. MATERIALS AND METHODS Western blot analysis, real-time quantitative reverse transcriptase PCR, luciferase reporter gene assays, RNA interference and in vivo chromatin immunoprecipitation (ChIP) assay were performed on human NSCLC cell lines A549 and SPC-A1. Twenty-six paired NSCLC tissues and adjacent noncancerous lung tissues were collected. RESULTS Luciferase reporter assay revealed that a functional TGF-β-response element was located at position -1078 to -891 in the CDH2 promoter region. Furthermore, in vivo ChIP experiment indicated that TGF-β-activated SMAD3/4 complex was directly recruited to CDH2 promoter region (-1078 to -891). Upon TGF-β1 stimulation, knockdown of SMAD3 or/and SMAD4 led to a significant reduction in CDH2 promoter activity, and silencing of SMAD3 or SMAD4 significantly inhibited CDH2 mRNA and protein expression in A549 and SPC-A1 cells. In human NSCLC tissues, SMAD3 or SMAD4 mRNA level was positively correlated with CDH2 mRNA level, respectively. CONCLUSIONS We found that TGF-β-activated SMAD3/4 complex may upregulate CDH2 expression by directly interacting with a specific SMAD-binding element in CDH2 promoter. Our findings provide insights into mechanisms underlying the transcriptional regulation of CDH2 expression in TGF-β-induced EMT and SMADs-based therapeutic strategies for NSCLCs.
Collapse
|
18
|
He L, Xue X, Wang Z, Hou E, Liu Y, Liang M, Zhang Y, Tian Z. Transcriptional regulation of heterogeneous nuclear ribonucleoprotein K gene expression. Biochimie 2014; 109:27-35. [PMID: 25497182 DOI: 10.1016/j.biochi.2014.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 12/03/2014] [Indexed: 01/05/2023]
Abstract
Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is importantly involved in the regulation of development, DNA damage response, and several human diseases. The molecular mechanisms that control the expression of hnRNP K are largely unknown. In the present study, we investigated the detailed mechanism of the transcriptional regulation of human hnRNP K gene. Two activating and one repressive elements located in the proximal segment of the transcriptional initiation site were identified in hnRNP K gene. A 19 bp-region was responsible for the inhibitory activities of the repressor element. Twenty proteins were identified by DNA-affinity purification and mass spectrometry analyses as binding partners of the primary activating element in the hnRNP K promoter. Chromatin immunoprecipitation and EMSA analysis confirmed the binding of Sp1 with hnRNP K promoter. Sp1 enhanced the promoter activity, increased the expression of hnRNP K, and reduced the mRNA level of angiotensinogen, a gene known to be negatively regulated by hnRNP K. In summary, the current study characterized the promoter elements that regulate the transcription of human hnRNP K gene, identified 20 proteins that bind to the primary activating element of hnRNP K promoter, and demonstrated a functional effect of Sp1 on hnRNP K transcription.
Collapse
Affiliation(s)
- Liqing He
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China; State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Xiaochang Xue
- State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Zhengjun Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Entai Hou
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yong Liu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mingyu Liang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Yingqi Zhang
- State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China.
| | - Zhongmin Tian
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
19
|
Suzuki T, Mizutani K, Minami A, Nobutani K, Kurita S, Nagino M, Shimono Y, Takai Y. Suppression of the TGF-β1-induced protein expression of SNAI1 and N-cadherin by miR-199a. Genes Cells 2014; 19:667-75. [PMID: 25041364 DOI: 10.1111/gtc.12166] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 06/10/2014] [Indexed: 02/04/2023]
Abstract
MicroRNA miR-199a is clustered with miR-214 on chromosome 1 and its expression is up-regulated by various factors that are associated with epithelial-to-mesenchymal transition (EMT), such as a transcriptional repressor Twist1 and transforming growth factor (TGF)-β. miR-199a is either up-regulated or down-regulated in a variety of cancers, although EMT is associated with the progression of cancer. We found here that miR-199a suppressed the translation of SNAI1, a transcriptional repressor that plays a role in EMT, by targeting the sequence within the 3'UTR of the SNAI1 mRNA, and reduced the protein level of SNAI1. miR-199a increased the protein level of claudin-1 in both the TGF-β1-treated and -untreated cells at least partly by decreasing the protein level of SNAI1, a transcriptional repressor for claudin-1. In addition, miR-199a targeted the sequence within the 3'UTR of the N-cadherin mRNA and suppressed the TGF-β1-induced increase in the protein level of N-cadherin in a manner independent of SNAI1. These results indicate that miR-199a suppresses the TGF-β1-induced protein expression of SNAI1 and N-cadherin.
Collapse
Affiliation(s)
- Toshihiro Suzuki
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan; Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan; Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Kim DH, Kim HR, Choi EJ, Kim DY, Kim KK, Kim BS, Park JW, Lee BJ. Neural epidermal growth factor-like like protein 2 (NELL2) promotes aggregation of embryonic carcinoma P19 cells by inducing N-cadherin expression. PLoS One 2014; 9:e85898. [PMID: 24465772 PMCID: PMC3897553 DOI: 10.1371/journal.pone.0085898] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 12/03/2013] [Indexed: 11/18/2022] Open
Abstract
NELL2 was first identified as a mammalian homolog of chick NEL (Neural EGF-like) protein. It is almost exclusively expressed in neurons of the rat brain and has been suggested to play a role in neural differentiation. However, there is still no clear evidence for the detailed function of NELL2 in the differentiation of neurons. In this study, we identified NELL2 function during neural differentiation of mouse embryonic carcinoma P19 cells. Endogenous expression of NELL2 in the P19 cells increased in parallel with the neuronal differentiation induced by retinoic acid (RA). We found that the mouse NELL2 promoter contains RA response elements (RAREs) and that treatment with RA increased NELL2 promoter activity. Transfection of P19 cells with NELL2 expression vectors induced a dramatic increase in cell aggregation, resulting in the facilitation of neural differentiation. Moreover, NELL2 significantly increased N-cadherin expression in the P19 cell. These data suggest that NELL2 plays an important role in the regulation of neuronal differentiation via control of N-cadherin expression and cell aggregation.
Collapse
Affiliation(s)
- Dong Hee Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Han Rae Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Eun Jung Choi
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Dong Yeol Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Kwang Kon Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Byung Sam Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Jeong Woo Park
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Byung Ju Lee
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
- * E-mail:
| |
Collapse
|
21
|
SH2B1β interacts with STAT3 and enhances fibroblast growth factor 1-induced gene expression during neuronal differentiation. Mol Cell Biol 2014; 34:1003-19. [PMID: 24396070 DOI: 10.1128/mcb.00940-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neurite outgrowth is an essential process during neuronal differentiation as well as neuroregeneration. Thus, understanding the molecular and cellular control of neurite outgrowth will benefit patients with neurological diseases. We have previously shown that overexpression of the signaling adaptor protein SH2B1β promotes fibroblast growth factor 1 (FGF1)-induced neurite outgrowth (W. F. Lin, C. J. Chen, Y. J. Chang, S. L. Chen, I. M. Chiu, and L. Chen, Cell. Signal. 21:1060-1072, 2009). SH2B1β also undergoes nucleocytoplasmic shuttling and regulates a subset of neurotrophin-induced genes. Although these findings suggest that SH2B1β regulates gene expression, the nuclear role of SH2B1β was not known. In this study, we show that SH2B1β interacts with the transcription factor, signal transducer, and activator of transcription 3 (STAT3) in neuronal PC12 cells, cortical neurons, and COS7 fibroblasts. By affecting the subcellular distribution of STAT3, SH2B1β increased serine phosphorylation and the concomitant transcriptional activity of STAT3. As a result, overexpressing SH2B1β enhanced FGF1-induced expression of STAT3 target genes Egr1 and Cdh2. Chromatin immunoprecipitation assays further reveal that, in response to FGF1, overexpression of SH2B1β promotes the in vivo occupancy of STAT3-Sp1 heterodimers at the promoter of Egr1 and Cdh2. These findings establish a central role of SH2B1β in orchestrating signaling events to transcriptional activation through interacting and regulating STAT3-containing complexes during neuronal differentiation.
Collapse
|
22
|
Zhang Z, Tan EP, VandenHull NJ, Peterson KR, Slawson C. O-GlcNAcase Expression is Sensitive to Changes in O-GlcNAc Homeostasis. Front Endocrinol (Lausanne) 2014; 5:206. [PMID: 25520704 PMCID: PMC4249489 DOI: 10.3389/fendo.2014.00206] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 11/17/2014] [Indexed: 12/31/2022] Open
Abstract
O-linked N-acetylglucosamine (O-GlcNAc) is a post-translational modification involving an attachment of a single β-N-acetylglucosamine moiety to serine or threonine residues in nuclear and cytoplasmic proteins. Cellular O-GlcNAc levels are regulated by two enzymes: O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), which add and remove the modification, respectively. The levels of O-GlcNAc can rapidly change in response to fluctuations in the extracellular environment; however, O-GlcNAcylation returns to a baseline level quickly after stimulus removal. This process termed O-GlcNAc homeostasis appears to be critical to the regulation of many cellular functions including cell cycle progress, stress response, and gene transcription. Disruptions in O-GlcNAc homeostasis are proposed to lead to the development of diseases, such as cancer, diabetes, and Alzheimer's disease. O-GlcNAc homeostasis is correlated with the expression of OGT and OGA. We reason that alterations in O-GlcNAc levels affect OGA and OGT transcription. We treated several human cell lines with Thiamet-G (TMG, an OGA inhibitor) to increase overall O-GlcNAc levels resulting in decreased OGT protein expression and increased OGA protein expression. OGT transcript levels slightly declined with TMG treatment, but OGA transcript levels were significantly increased. Pretreating cells with protein translation inhibitor cycloheximide did not stabilize OGT or OGA protein expression in the presence of TMG; nor did TMG stabilize OGT and OGA mRNA levels when cells were treated with RNA transcription inhibitor actinomycin D. Finally, we performed RNA Polymerase II chromatin immunoprecipitation at the OGA promoter and found that RNA Pol II occupancy at the transcription start site was lower after prolonged TMG treatment. Together, these data suggest that OGA transcription was sensitive to changes in O-GlcNAc homeostasis and was potentially regulated by O-GlcNAc.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ee Phie Tan
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Nicole J. VandenHull
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Kenneth R. Peterson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
- KUMC Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA
- Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Chad Slawson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
- KUMC Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA
- Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, KS, USA
- KU Alzheimer’s Disease Center, University of Kansas Medical Center, Kansas City, KS, USA
- *Correspondence: Chad Slawson, Laboratory of Slawson, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, MS3030, 3901 Rainbow Blvd, Kansas City, KS 66160, USA e-mail:
| |
Collapse
|
23
|
Marie PJ, Haÿ E, Modrowski D, Revollo L, Mbalaviele G, Civitelli R. Cadherin-mediated cell-cell adhesion and signaling in the skeleton. Calcif Tissue Int 2014; 94:46-54. [PMID: 23657489 PMCID: PMC4272239 DOI: 10.1007/s00223-013-9733-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 04/08/2013] [Indexed: 01/01/2023]
Abstract
Direct cell-to-cell interactions via cell adhesion molecules, in particular cadherins, are critical for morphogenesis, tissue architecture, and cell sorting and differentiation. Partially overlapping, yet distinct roles of N-cadherin (cadherin-2) and cadherin-11 in the skeletal system have emerged from mouse genetics and in vitro studies. Both cadherins are important for precursor commitment to the osteogenic lineage, and genetic ablation of Cdh2 and Cdh11 results in skeletal growth defects and impaired bone formation. While Cdh11 defines the osteogenic lineage, persistence of Cdh2 in osteoblasts in vivo actually inhibits their terminal differentiation and impairs bone formation. The action of cadherins involves both cell-cell adhesion and interference with intracellular signaling, and in particular the Wnt/β-catenin pathway. Both cadherin-2 and cadherin-11 bind to β-catenin, thus modulating its cytoplasmic pools and transcriptional activity. Recent data demonstrate that cadherin-2 also interferes with Lrp5/6 signaling by sequestering these receptors in inactive pools via axin binding. These data extend the biologic action of cadherins in bone forming cells, and provide novel mechanisms for development of therapeutic strategies aimed at enhancing bone formation.
Collapse
Affiliation(s)
- Pierre J Marie
- Laboratory of Osteoblast Biology and Pathology, Inserm UMR-606, Hôpital Lariboisière, 2 rue Ambroise Paré, 75475, Paris Cedex 10, France,
| | | | | | | | | | | |
Collapse
|
24
|
Magaña JJ, Muñoz B, Borgonio-Cuadra VM, Razo-Estrada C, González-Huerta C, Cortés-González S, Albores A, Miranda-Duarte A. The association of single nucleotide polymorphisms in the calcitonin gene with primary osteoarthritis of the knee in Mexican mestizo population. Rheumatol Int 2013; 33:2483-91. [PMID: 23575548 DOI: 10.1007/s00296-013-2740-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 03/27/2013] [Indexed: 10/27/2022]
Abstract
Primary osteoarthritis (OA) is a multifactorial disorder with several genetics factors involved. Calcitonin (CT) has been suggested to possess chondroprotective effects and could play an important role in the pathogenesis of OA. The aim of this study was to investigate whether genetic variations in or adjacent to the CT gene may be associated with primary OA of the knee in Mexican mestizo population. We conducted a case-control study to investigate the association between six single nucleotide polymorphisms at the CT locus and OA of the knee in 107 cases and 106 controls. Cases were patients >40 years of age, with a body mass index (BMI) ≤ 27 and a radiologic score for OA of the knee ≥ 2. Controls were subjects >40 years of age with a radiologic score <2. Non-conditional logistic regression was developed to evaluate risk magnitude. The G allele and GT genotype frequencies of the G-706T polymorphism and the C allele and CC genotype of the C-778T polymorphism were significantly higher in patients with OA than in control subjects. The GG genotype of the G-706T was associated with lower risk of the development of OA of the knee. According to the results, the G-706T and the C-778T polymorphisms were related to the Cdx1 and Mzf1 transcription factor binding sites, respectively. Therefore, these could be related to regulation sequences in the CT gene promoter. In conclusion, G-706T and C-778T polymorphisms in the CT gene are significantly associated with the development of primary OA of the knee.
Collapse
Affiliation(s)
- J J Magaña
- Department of Genetics, Instituto Nacional de Rehabilitación (INR), Calzada México-Xochimilco No. 289, Col. Arenal Guadalupe, Deleg. Tlalpan, 14389, Mexico, DF, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Kasaai B, Gaumond MH, Moffatt P. Regulation of the bone-restricted IFITM-like (Bril) gene transcription by Sp and Gli family members and CpG methylation. J Biol Chem 2013; 288:13278-94. [PMID: 23530031 DOI: 10.1074/jbc.m113.457010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND BRIL is a bone-specific membrane protein that is involved in osteogenesis imperfecta type V. RESULTS Bril transcription is activated by Sp1, Sp3, OSX, and GLI2 and by CpG demethylation. CONCLUSION Regulation of Bril involves trans-acting factors integrating at conserved promoter elements and epigenetic modifications. SIGNIFICANCE Identification of the mechanisms governing Bril transcription is important to understand its role in skeletal biology. Bril encodes a small membrane protein present in osteoblasts. In humans, a single recurrent mutation in the 5'-UTR of BRIL causes osteogenesis imperfecta type V. The exact function of BRIL and the mechanism by which it contributes to disease are still unknown. The goal of the current study was to characterize the mechanisms governing Bril transcription in humans, rats, and mice. In the three species, as detected by luciferase reporter assays in UMR106 cells, we found that most of the base-line regulatory activity was localized within ∼250 bp upstream of the coding ATG. Co-transfection experiments indicated that Sp1 and Sp3 were potent inducers of the promoter activity, through the binding of several GC-rich boxes. Osterix was a weak activator but acted cooperatively with Sp1 and GLI2 to synergistically induce the BRIL promoter. GLI2, a mediator of hedgehog signaling pathway, was also a potent activator of BRIL through a single GLI binding site. Correspondingly, agonists of the hedgehog pathway (purmorphamine and Indian hedgehog) in MC3T3 osteoblasts led to increased BRIL levels. The BRIL promoter activity was also found to be negatively modulated through two different mechanisms. First, the ZFP354C zinc finger protein repressed basal and Sp1-induced activity. Second, CpG methylation of the promoter region correlated with an inactive state and prevented Sp1 activation. The data provide the very first analyses of the cis- and trans-acting factors regulating Bril transcription. They revealed key roles for the Sp members and GLI2 that possibly cooperate to activate Bril when the promoter becomes demethylated.
Collapse
Affiliation(s)
- Bahar Kasaai
- Shriners Hospital for Children, Montreal, Quebec H3G 1A6, Canada
| | | | | |
Collapse
|
26
|
Transglutaminase-2 induces N-cadherin expression in TGF-β1-induced epithelial mesenchymal transition via c-Jun-N-terminal kinase activation by protein phosphatase 2A down-regulation. Eur J Cancer 2013; 49:1692-705. [PMID: 23290789 DOI: 10.1016/j.ejca.2012.11.036] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 10/24/2012] [Accepted: 11/30/2012] [Indexed: 01/08/2023]
Abstract
Epithelial-mesenchymal-transition (EMT) is a key event for tumour cells to initiate metastasis leading to switching of E-cadherin to N-cadherin. Transglutaminase-2 (Tgase-2) expression is increased in TGF-β1-induced EMT in A549 lung cancer cells or other lung cancer cells. The role and underlying mechanism of Tgase-2 in N-cadherin switching of TGF-β1-induced EMT are not known. The involvement and mechanisms of Tgase-2 were investigated in A549 cells using chemical inhibitors, gene silencing and over-expression. TGF-β1-induced EMT was suppressed by cystamine or gene silencing of Tgase-2. Suppression of Tgase-2 or the c-Jun-N-terminal kinase (JNK) inhibitor, SP600125, significantly reduced and over-expression of Tgase-2 increased the expression of N-cadherin. The relationship between Tgase-2 and JNK in the TGF-β1-induced EMT of A549 cells was examined using Tgase-2 over-expressed A549 cells (A549(TG2)) and Tgase-2 silenced A549 cells (A549(shTG2)). JNK activation was significantly increased in A549(TG2) cells and decreased in A549(shTG2) cells. In contrast, PP2A expression was decreased in A549(TG2) and A549 cells and increased in A549(shTG2) cells. The involvement of Tgase-2 in N-cadherin expression was also confirmed in an in vivo lung cancer orthotopic model by injection of A549(WT) and A549(shTG2) cells into SCID mice. Tgase-2 expressing A549(WT) cells-injected mice group showed increased expressions of N-cadherin and JNK activation, but decreased expression of PP2A in lung cancer tissue comparing with the A549(shTG2) cells-injected group. These results suggested that Tgase-2 induces N-cadherin expression of TGF-β1-induced EMT via JNK activation by PP2A down-regulation, and Tgase-2/PP2A/JNK might be a novel axis that affects N-cadherin switching in the EMT of A549 lung cancer cells.
Collapse
|
27
|
Martiáñez T, Lamarca A, Casals N, Gella A. N-cadherin expression is regulated by UTP in schwannoma cells. Purinergic Signal 2012; 9:259-70. [PMID: 23271561 DOI: 10.1007/s11302-012-9348-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 12/12/2012] [Indexed: 12/21/2022] Open
Abstract
Schwann cells (SCs) are peripheral myelinating glial cells that express the neuronal Ca(2+)-dependent cell adhesion molecule, neural cadherin (N-cadherin). N-cadherin is involved in glia-glia and axon-glia interactions and participates in many key events, which range from the control of axonal growth and guidance to synapse formation and plasticity. Extracellular UTP activates P2Y purinergic receptors and exerts short- and long-term effects on several tissues to promote wound healing. Nevertheless, the contribution of P2Y receptors in peripheral nervous system functions is not completely understood. The current study demonstrated that UTP induced a dose- and time-dependent increase in N-cadherin expression in SCs. Furthermore, N-cadherin expression was blocked by the P2 purinoceptor antagonist suramin. The increased N-cadherin expression induced by UTP was mediated by phosphorylation of mitogen-activated protein kinases (MAPKs), such as Jun N-terminal kinase, extracellular-regulated kinase and p38 kinase. Moreover, the Rho kinase inhibitor Y27632, the phospholipase C inhibitor U73122 and the protein kinase C inhibitor calphostin C attenuated the UTP-induced activation of MAPKs significantly. Extracellular UTP also modulated increased in the expression of the early transcription factors c-Fos and c-Jun. We also demonstrated that the region of the N-cadherin promoter between nucleotide positions -3698 and -2620, which contained one activator protein-1-binding site, was necessary for UTP-induced gene expression. These results suggest a novel role for P2Y purinergic receptors in the regulation of N-cadherin expression in SCs.
Collapse
Affiliation(s)
- Tania Martiáñez
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat International de Catalunya, Sant Cugat del Vallès, Spain
| | | | | | | |
Collapse
|
28
|
Cloning of the human activated leukocyte cell adhesion molecule promoter and identification of its tissue-independent transcriptional activation by Sp1. Cell Mol Biol Lett 2012; 17:571-85. [PMID: 22941204 PMCID: PMC3683579 DOI: 10.2478/s11658-012-0028-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 08/23/2012] [Indexed: 11/20/2022] Open
Abstract
Activated leukocyte cell adhesion molecule (ALCAM) belongs to the immunoglobulin cell adhesion molecule super family. ALCAM is implicated in tumor progression, inflammation, and the differentiation of hematopoietic stem cells. Hitherto, the identity of regulatory DNA elements and cognate transcription factors responsible for ALCAM gene expression remained unknown. In this report, the human ALCAM promoter was cloned and its transcriptional mechanisms elucidated. The promoter is TATA-less and contains multiple GC-boxes. A proximal 650-bp promoter fragment conferred tissue-independent activation, whereas two contiguous regions upstream of this region negatively influenced promoter activity in a tissue-specific manner. The positive regulatory promoter region was mapped to a core 50 base pair sequence containing a conical Sp1 element. Mutation analysis revealed that this element alone or in tandem with elements immediately upstream was required for maximal promoter activity. Chromatin analysis revealed that Sp1 binds exclusively to the canonical binding sequence in vivo, but not to DNA sequence immediately upstream. Finally, we showed that over-expression of Sp1 significantly increased the basal promoter activity. Thus, Sp1 activated the ALCAM promoter in most cells. These findings have important ramifications for unraveling the roles of ALCAM in inflammation and tumorigenesis.
Collapse
|
29
|
Ko H, Kim S, Jin CH, Lee E, Ham S, Yook JI, Kim K. Protein kinase casein kinase 2-mediated upregulation of N-cadherin confers anoikis resistance on esophageal carcinoma cells. Mol Cancer Res 2012; 10:1032-8. [PMID: 22767590 DOI: 10.1158/1541-7786.mcr-12-0261] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previously, we reported that high PKCK2 activity could protect cancer cells from death receptor-mediated apoptosis through phosphorylation of procaspase-2. Because anoikis is another form of apoptosis, we asked whether PKCK2 could similarly confer resistance to anoikis on cancer cells. Human esophageal squamous cancer cell lines with high PKCK2 activity (HCE4 and HCE7) were anoikis-resistant, whereas cell lines with low PKCK2 activity (TE2 and TE3) were anoikis-sensitive. Because the cells showed different sensitivity to anoikis, we compared the expression of cell adhesion molecules between anoikis-sensitive TE2 and anoikis-resistant HCE4 cells using cDNA microarray. We found that E-cadherin is expressed only in TE2 cells; whereas N-cadherin is expressed instead of E-cadherin in HCE4 cells. To examine whether PKCK2 activity could determine the type of cadherin expressed, we first increased intracellular PKCK2 activity in TE2 cells by overexpressing the PKCK2α catalytic subunit using lentivirus and found that high PKCK2 activity could switch cadherin expression from type E to N and confer anoikis resistance. Conversely, a decrease in PKCK2 activity in HCE4 cells by knockdown of PKCK2α catalytic subunit using shRNA induced N- to E-cadherin switching and the anoikis-resistant cells became sensitive. In addition, N-cadherin expression correlated with PKB/Akt activation and increased invasiveness. We conclude that high intracellular PKCK2 activity confers anoikis resistance on esophageal cancer cells by inducing E- to N-cadherin switching.
Collapse
Affiliation(s)
- Hyeonseok Ko
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
30
|
Radich JP. The Biology of Chronic Myelogenous Leukemia Progression: Who, What, Where, and Why? Hematol Oncol Clin North Am 2011; 25:967-80, v. [DOI: 10.1016/j.hoc.2011.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Nuessle JM, Giehl K, Herzog R, Stracke S, Menke A. TGFβ1 suppresses vascular smooth muscle cell motility by expression of N-cadherin. Biol Chem 2011; 392:461-74. [PMID: 21375457 DOI: 10.1515/bc.2011.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neointimal formation in atheromatous blood vessels is associated with both growth factor-induced differentiation of smooth muscle cells and endothelial-to-mesenchymal transition. Transforming growth factor beta (TGFβ)-signaling is well known to play a critical role in the regulation of vessel remodeling as well as in atherosclerosis and restenosis. Here, we investigated the role of TGFβ1 and N-cadherin on the differentiation and migration of human vascular smooth muscle cells (VSMC). TGFβ1-treatment of cultured VSMC reduced their migratory activity as determined in cell migration assays. This reduced migration correlated with increased concentration of N-cadherin on mRNA and protein level. The TGFβ1-induced increase of N-cadherin was sensitive against pharmacological inhibition of the ALK5 TGFβ receptor and was accompanied by TGFβ1-induced expression of the transcription factor snail1. Activation of N-cadherin by using a HAV-containing peptide of N-cadherin also decreased the migration of VSMC. N-cadherin-mediated suppression of VSMC migration was associated with an increased activity of RhoA, which is activated by binding of the HAV peptide to N-cadherin. Our results demonstrate that TGFβ1 induces the differentiation of primary VSMC cells by Smad2/3-dependent up-regulation of the transcription factor snail1 and subsequently of N-cadherin, leading to inhibition of VSMC migration by RhoA-dependent modulation of the actin cytoskeleton.
Collapse
Affiliation(s)
- Johannes M Nuessle
- Internal Medicine I, Nephrology, University of Ulm, Albert-Einstein-Allee, Germany
| | | | | | | | | |
Collapse
|
32
|
Liu GE, Brown T, Hebert DA, Cardone MF, Hou Y, Choudhary RK, Shaffer J, Amazu C, Connor EE, Ventura M, Gasbarre LC. Initial analysis of copy number variations in cattle selected for resistance or susceptibility to intestinal nematodes. Mamm Genome 2011; 22:111-121. [PMID: 21125402 DOI: 10.1007/s00335-010-9308-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Accepted: 11/11/2010] [Indexed: 01/10/2023]
Abstract
Genomic structural variation is an important and abundant source of genetic and phenotypic variation. We report an initial analysis of copy number variations (CNVs) in cattle selected for resistance or susceptibility to intestinal nematodes. We performed three array comparative genomic hybridization (CGH) experiments to compare Angus cattle with extreme phenotypes for fecal egg count and serum pepsinogen level. We identified 20 CNVs in total, of which 12 were within known chromosomes harboring or adjacent to gains or losses. About 85% of the CNV identified (17/20) overlapped with cattle CNV regions that were reported recently. Selected CNVs were further validated by independent methods using quantitative PCR (qPCR) and FISH. Pathway analyses indicated that annotated cattle genes within these variable regions are particularly enriched for immune function affecting receptor activities, signal transduction, and transcription. Analysis of transcription factor binding sites (TFBS) within the promoter regions of differentially expressed genes suggested that common transcription factors are probably involved in parasite resistance. These results provide valuable hypotheses for the future study of cattle CNVs underlying economically important health and production traits.
Collapse
Affiliation(s)
- George E Liu
- Bovine Functional Genomics Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD 20705, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Li Z, Xie J, Li W, Tang A, Li X, Jiang Z, Han Y, Ye J, Jing J, Gui Y, Cai Z. Identification and characterization of human PCDH10 gene promoter. Gene 2011; 475:49-56. [PMID: 21237250 DOI: 10.1016/j.gene.2011.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 12/30/2010] [Accepted: 01/03/2011] [Indexed: 01/16/2023]
Abstract
Recent studies have suggested roles for PCDH10 as a novel tumor suppressor gene. In our previous work, we located the core promoter of PCDH10 to a 462-bp segment of 5'-flanking region characterized by a high GC content. Here we further identified and characterized the promoter for PCDH10. Transient transfection of PC3 and LNCaP cells with a series of deleted promoter constructs indicated that the minimal promoter region was between nucleotides -144 and -99. This segment contained a CAAT box, a GT box, and a putative transcription factor binding site for AP-4. Mutational analysis identified that the CAAT box and GT box are necessary for promoter activity. Ectopic expression of NF-Ys increased reporter gene activity, whereas expression of a dominant-negative NF-YA decreased reporter gene activity. Co-transfection of Sp1/Sp3 expression plasmids enhanced reporter gene activity in a dose-dependent manner. Mithramycin A, an inhibitor of Sp-DNA interaction, reduced PCDH10 promoter activity. Electrophoretic mobility shift assays and chromatin immunoprecipitation demonstrated binding of transcription factors Sp1/Sp3 to the promoter region in vitro and in vivo. Our data show that Sp1/Sp3 and CBF/NF-Y transcription factors play a crucial role in the basal expression of the human PCDH10 gene.
Collapse
Affiliation(s)
- Zesong Li
- Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, 1120 Lianhua Road, Shenzhen, Guangdong, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kamata Y, Yamamoto M, Kawakami F, Tsuboi R, Takeda A, Ishihara K, Hibino T. Bleomycin hydrolase is regulated biphasically in a differentiation- and cytokine-dependent manner: relevance to atopic dermatitis. J Biol Chem 2010; 286:8204-8212. [PMID: 21190945 DOI: 10.1074/jbc.m110.169292] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Loss-of-function mutation in the profilaggrin gene is a major risk factor for atopic dermatitis (AD). Previously, we showed that a neutral cysteine protease, bleomycin hydrolase (BH), has a role in generating natural moisturizing factors, and calpain I is an upstream protease in the filaggrin degradation pathway. Here, we investigated the transcriptional regulatory mechanisms of BH and the relevance of BH to AD. First, we cloned the 5'-flanking region of BH. Deletion analyses identified a critical region for BH promoter activity within -216 bp upstream. Electrophoretic mobility shift assay revealed that MZF-1, Sp-1, and interferon regulatory factor-1/2 could bind to this region in vitro. Moreover, site-directed mutagenesis of the MZF-1 and Sp-1 motifs markedly reduced BH promoter activity. These data indicate that BH expression is up-regulated via MZF-1 and Sp-1. Interestingly, a Th1 cytokine, IFN-γ, significantly reduced the expression of BH. Analyses with site-directed mutagenesis and small interference RNA supported the suppressing effect of IFN-γ on BH expression. On the other hand, a Th2 cytokine, IL-4, did not show any direct effect on BH expression. However, it down-regulated MZF-1 and Sp-1 in cultured keratinocytes, indicating that IL-4 could work as a suppressor in BH regulation. Lastly, we examined expression of BH in skins of patients with AD. BH activity and expression were markedly decreased in AD lesional skin, suggesting a defect of the filaggrin degradation pathway in AD. Our results suggest that BH transcription would be modulated during both differentiation and inflammation.
Collapse
Affiliation(s)
- Yayoi Kamata
- From the Department of Regulation Biochemistry, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan,; the Shiseido Research Center, Yokohama, Kanagawa 238-8643, Japan
| | - Mami Yamamoto
- the Shiseido Research Center, Yokohama, Kanagawa 238-8643, Japan,; the Department of Dermatology, Tokyo Medical University, Shinjuku, Tokyo 160-8402, Japan
| | - Fumitaka Kawakami
- From the Department of Regulation Biochemistry, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Ryoji Tsuboi
- the Department of Dermatology, Tokyo Medical University, Shinjuku, Tokyo 160-8402, Japan
| | - Atsushi Takeda
- the Laboratory of Biochemistry, Faculty of Nutritional Sciences, Sagami Women's University, Sagamihara, Kanagawa 252-0383, Japan
| | - Kazuhiko Ishihara
- From the Department of Regulation Biochemistry, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Toshihiko Hibino
- the Shiseido Research Center, Yokohama, Kanagawa 238-8643, Japan,.
| |
Collapse
|
35
|
Linger RM, Keating AK, Earp HS, Graham DK. Taking aim at Mer and Axl receptor tyrosine kinases as novel therapeutic targets in solid tumors. Expert Opin Ther Targets 2010; 14:1073-90. [PMID: 20809868 PMCID: PMC3342018 DOI: 10.1517/14728222.2010.515980] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
IMPORTANCE OF THE FIELD Axl and/or Mer expression correlates with poor prognosis in several cancers. Until recently, the role of these receptor tyrosine kinases (RTKs) in development and progression of cancer remained unexplained. Studies demonstrating that Axl and Mer contribute to cell survival, migration, invasion, metastasis and chemosensitivity justify further investigation of Axl and Mer as novel therapeutic targets in cancer. AREAS COVERED IN THIS REVIEW Axl and Mer signaling pathways in cancer cells are summarized and evidence validating these RTKs as therapeutic targets in glioblastoma multiforme, NSCLC, and breast cancer is examined. A discussion of Axl and/or Mer inhibitors in development is provided. WHAT THE READER WILL GAIN Potential toxicities associated with Axl or Mer inhibition are addressed. We propose that the probable action of Mer and Axl inhibitors on cells within the tumor microenvironment will provide a therapeutic opportunity to target both tumor cells and the stromal components that facilitate disease progression. TAKE HOME MESSAGE Axl and Mer mediate multiple oncogenic phenotypes and activation of these RTKs constitutes a mechanism of chemoresistance in a variety of solid tumors. Targeted inhibition of these RTKs may be effective as anti-tumor and/or anti-metastatic therapy, particularly if combined with standard cytotoxic therapies.
Collapse
Affiliation(s)
- Rachel M.A. Linger
- Department of Pediatrics, University of Colorado Denver School of Medicine, Mail Stop 8302, 12800 E. 19 Avenue, Room 4401A, Aurora, CO 80045
| | - Amy K. Keating
- Department of Pediatrics, University of Colorado Denver School of Medicine, Mail Stop 8302, 12800 E. 19 Avenue, Room 4405, Aurora, CO 80045
| | - H. Shelton Earp
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, 450 West Drive, CB 7295, Chapel Hill, NC 27599
| | - Douglas K. Graham
- Department of Pediatrics, University of Colorado Denver School of Medicine, Mail Stop 8302, 12800 E. 19 Avenue, Room 4408, Aurora, CO 80045, Phone: 303-724-4006, Fax: 303-724-4015
| |
Collapse
|
36
|
Mudduluru G, Vajkoczy P, Allgayer H. Myeloid zinc finger 1 induces migration, invasion, and in vivo metastasis through Axl gene expression in solid cancer. Mol Cancer Res 2010; 8:159-69. [PMID: 20145042 DOI: 10.1158/1541-7786.mcr-09-0326] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Myeloid zinc finger 1 (MZF1) is a member of the SCAN domain family transcription factors that form dimers through their highly conserved SCAN motifs. Silencing of MZF1 inhibits cell proliferation, and abnormal expression of MZF1 results in cancer development. However, a potential role of MZF1 in metastasis remains unclear. Axl is a receptor tyrosine kinase and was first identified as a transforming gene in chronic myeloid leukemia. Axl overexpression induces proliferation, migration, and invasion and is highly expressed in different human cancers. In this study, we show that overexpression of MZF1 induces migration and invasion in colorectal (Rko, SW480) and cervical (HeLa) cancer cells. In addition, we show that MZF1 binds to the Axl promoter, transactivates promoter activity, and enhances Axl-mRNA and protein expression in a dose-dependent manner. In vitro, sh-RNA knockdown of Axl reduced MZF1-induced migration and invasion in HeLa and Rko cells (P = 0.05). Additionally, Rko cells overexpressing MZF1 showed increased tumor formation and liver metastasis in the chicken-embryo-metastasis assay in vivo. Furthermore, the expression of MZF1 and Axl was significantly higher in resected colorectal tumors compared with corresponding normal tissues (P = 0.02; P = 0.05), and MZF1 expression was positively correlated with Axl gene expression in tumor tissues (P < 0.01). Taken together, this is the first study to show that MZF1 induces invasion and in vivo metastasis in colorectal and cervical cancer, at least in part by regulating Axl gene expression.
Collapse
Affiliation(s)
- Giridhar Mudduluru
- Department of Experimental Surgery/Molecular Oncology of Solid Tumors, DKFZ and University of Heidelberg, Heidelberg, Germany
| | | | | |
Collapse
|
37
|
Prognostic and Predictive Markers of Benefit from Adjuvant Chemotherapy in Early-Stage Non-small Cell Lung Cancer. J Thorac Oncol 2009; 4:891-910. [DOI: 10.1097/jto.0b013e3181a4b8fb] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Quan JX, Zheng F, Li XX, Hu LL, Sun ZY, Jiao YL, Wang BL. Cloning and analysis of rat osteoclast inhibitory lectin gene promoter. J Cell Biochem 2009; 106:599-607. [PMID: 19127542 DOI: 10.1002/jcb.22036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Osteoclast inhibitory lectin (OCIL) is a novel regulator of bone remodeling, however, little is known concerning how OCIL is regulated to date. In this study, approximately 4.4 kb of the 5'-flanking sequence of rat OCIL gene was cloned into the promoter-less reporter vector pGL3-basic and transiently transfected into three different cell lines. The differences in the levels of luciferase activity paralleled well with the levels of OCIL mRNA expression in these cells, suggesting that the regulation of rat OCIL gene expression occurs mainly at the transcriptional level. Additional luciferase assays using a series of constructs containing unidirectionally deleted fragments showed that the construct-1819/pGL3 (-1819 to +118) exhibited the highest luciferase activity, suggesting the presence of functional promoter in this region. The region from -4370 to -2805 might contain negative regulatory elements, while the region from -1819 to -1336 might have important positive regulatory elements that enhance OCIL transcription. Sequence analysis of the promoter revealed the absence of both TATA and CAAT boxes. However, in the proximal promoter region (-81 to +118), several potential transcription factor binding sites that may be responsible for the basal transcriptional activity of rat OCIL promoter were observed. The promoter contains several potential Sp1 binding sites, and cotransfection of a shRNA expression plasmid that knockdowns Sp1 significantly reduced OCIL promoter activity and endogenous gene expression and moreover, overexpressing Sp7, a Sp1 family member that also binds to Sp1 binding sequence, increased OCIL promoter activity and gene expression, suggesting a role of Sp1 family proteins in regulation of OCIL transcription.
Collapse
Affiliation(s)
- Jin-Xing Quan
- Key Lab of Ministry of Health for Hormone and Development, Institute of Endocrinology, Tianjin Medical University, Tianjin, PR China
| | | | | | | | | | | | | |
Collapse
|
39
|
Involvement of Sp1 binding sequences in basal transcription of the rat fibroblast growth factor-2 gene in neonatal cardiomyocytes. Life Sci 2009; 84:421-7. [DOI: 10.1016/j.lfs.2009.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 12/21/2008] [Accepted: 01/14/2009] [Indexed: 11/17/2022]
|
40
|
Luo X, Zhang X, Shao W, Yin Y, Zhou J. Crucial roles of MZF-1 in the transcriptional regulation of apomorphine-induced modulation of FGF-2 expression in astrocytic cultures. J Neurochem 2009; 108:952-61. [DOI: 10.1111/j.1471-4159.2008.05845.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
41
|
Koh SWM, Chandrasekara K, Abbondandolo CJ, Coll TJ, Rutzen AR. VIP and VIP gene silencing modulation of differentiation marker N-cadherin and cell shape of corneal endothelium in human corneas ex vivo. Invest Ophthalmol Vis Sci 2008; 49:3491-8. [PMID: 18441300 PMCID: PMC2574685 DOI: 10.1167/iovs.07-1543] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
PURPOSE Vasoactive intestinal peptide (VIP) is expressed by corneal endothelial (CE) cells and is present in the aqueous humor, which bathes CE cells in vivo. This study demonstrated the role of CE cell VIP in maintaining the expression level of a CE differentiation marker, N-cadherin, and the hexagonal cell shape. METHODS To determine the most effective VIP concentration, bovine corneoscleral explants were treated with 0 (control) and 10(-12) to 10(-6) M VIP. Paired human corneas (nine donors) from an eye bank were used as control; the other corneas were treated with VIP. To silence endogenous VIP, paired fresh human donor corneas (from seven cadavers) were transduced with VIP shRNA or the control lentiviral particles and then bisected/quartered for quantitative analysis by semiquantitative RT-PCR (for mRNA) and Western blot analysis/immunocytochemistry (for protein), whereas alizarin red S staining revealed CE cell shape. RESULTS VIP concentration dependently increased bovine CE cell N-cadherin mRNA levels, with the maximal effect observed between 10(-10) (1.47 +/- 0.06-fold; P = 0.002) and 10(-8) M VIP (1.48 +/- 0.18-fold; P = 0.012). VIP (10(-8) M) treatment increased N-cadherin protein levels in bovine and human CE cells to 1.98 +/- 0.28-fold (P = 0.005) and 1.17 +/- 0.10 (range, 0.91-1.87)-fold (P = 0.050) of their respective controls. VIP antagonist (SN)VIPhyb diminished the VIP effect. VIP silencing resulted in deterioration of the hexagonal cell shape and decreased levels of VIP protein and mRNA, N-cadherin (but not connexin-43) mRNA and protein, and the antiapoptotic Bcl-2 protein. CONCLUSIONS Through its autocrine VIP, CE cells play an active role in maintaining the differentiated state and suppressing apoptosis in the corneal endothelium in situ.
Collapse
Affiliation(s)
- Shay-Whey M Koh
- Department of Ophthalmology and Visual Sciences, University of Maryland, Baltimore, Maryland 21201, USA.
| | | | | | | | | |
Collapse
|
42
|
Rieger-Christ KM, Hanley R, Lodowsky C, Bernier T, Vemulapalli P, Roth M, Kim J, Yee AS, Le SM, Marie PJ, Libertino JA, Summerhayes IC. The green tea compound, (-)-epigallocatechin-3-gallate downregulates N-cadherin and suppresses migration of bladder carcinoma cells. J Cell Biochem 2008; 102:377-88. [PMID: 17348027 DOI: 10.1002/jcb.21299] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Green tea has been reported as potential dietary protection against numerous cancers and has been shown to have activity in bladder tumor inhibition in different animal models. The goal of this study was to examine the effects of (-)-epigallocatechin gallate (EGCG-the major phytochemical in green tea) on growth inhibition and behavior of human bladder carcinoma cells and to identify the altered signaling pathway(s) underlying the response to EGCG exposure. EGCG inhibited the in vitro growth of invasive bladder carcinoma cells with an IC(50) range of 70-87 microM. At a concentration of 20 microM, EGCG decreased the migratory potential of bladder carcinoma cells with concomitant activation of p42/44 MAPK and STAT3 and inactivation of Akt. Using biochemical inhibitors of MAPK/ERK, and siRNA to knockdown STAT3 and Akt, inhibition of migration was recorded associated with Akt but not MAPK/ERK or STAT3 signaling in bladder cells. In addition, EGCG downregulated N-cadherin in a dose-dependent manner where reduction in N-cadherin expression paralleled declining migratory potential. Continuous feeding of EGCG to mice prior to and during the establishment of bladder carcinoma xenografts in vivo revealed >50% reduction in mean final tumor volume (P </= 0.05) with no detectable toxicity. EGCG inhibited bladder carcinoma cell growth and suppressed the in vitro migration capacity of cells via downregulation of N-cadherin and inactivation of Akt signaling. Continuous administration of EGCG to mice revealed significant inhibition of tumor growth in vivo indicating a possible preventative role for green tea in bladder cancer.
Collapse
Affiliation(s)
- Kimberly M Rieger-Christ
- Cell and Molecular Biology Laboratory, Robert E. Wise Research and Education Institute, Lahey Clinic Medical Center, 31 Mall Road, Burlington, Massachusetts 01805, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Hu Z, Hu B, Collins JF. Prediction of synergistic transcription factors by function conservation. Genome Biol 2008; 8:R257. [PMID: 18053230 PMCID: PMC2246259 DOI: 10.1186/gb-2007-8-12-r257] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 10/19/2007] [Accepted: 12/05/2007] [Indexed: 11/30/2022] Open
Abstract
A new strategy is proposed for identifying synergistic transcription factors by function conservation, leading to the identification of 51 homotypic transcription-factor combinations. Background Previous methods employed for the identification of synergistic transcription factors (TFs) are based on either TF enrichment from co-regulated genes or phylogenetic footprinting. Despite the success of these methods, both have limitations. Results We propose a new strategy to identify synergistic TFs by function conservation. Rather than aligning the regulatory sequences from orthologous genes and then identifying conserved TF binding sites (TFBSs) in the alignment, we developed computational approaches to implement the novel strategy. These methods include combinatorial TFBS enrichment utilizing distance constraints followed by enrichment of overlapping orthologous genes from human and mouse, whose regulatory sequences contain the enriched TFBS combinations. Subsequently, integration of function conservation from both TFBS and overlapping orthologous genes was achieved by correlation analyses. These techniques have been used for genome-wide promoter analyses, which have led to the identification of 51 homotypic TF combinations; the validity of these approaches has been exemplified by both known TF-TF interactions and function coherence analyses. We further provide computational evidence that our novel methods were able to identify synergistic TFs to a much greater extent than phylogenetic footprinting. Conclusion Function conservation based on the concordance of combinatorial TFBS enrichment along with enrichment of overlapping orthologous genes has been proven to be a successful means for the identification of synergistic TFs. This approach avoids the limitations of phylogenetic footprinting as it does not depend upon sequence alignment. It utilizes existing gene annotation data, such as those available in GO, thus providing an alternative method for functional TF discovery and annotation.
Collapse
Affiliation(s)
- Zihua Hu
- New York State Center of Excellence in Bioinformatics and Life Sciences, Department of Biostatistics, Department of Medicine, University at Buffalo, State University of New York (SUNY), Buffalo, NY 14260, USA.
| | | | | |
Collapse
|
44
|
Dong S, Ying S, Kojima T, Shiraiwa M, Kawada A, Méchin MC, Adoue V, Chavanas S, Serre G, Simon M, Takahara H. Crucial Roles of MZF1 and Sp1 in the Transcriptional Regulation of the Peptidylarginine Deiminase Type I Gene (PADI1) in Human Keratinocytes. J Invest Dermatol 2008; 128:549-57. [PMID: 17851584 DOI: 10.1038/sj.jid.5701048] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Peptidylarginine deiminases (PADs) catalyze the conversion of protein-bound arginine residues into citrulline residues in a calcium-dependent manner. The PAD1 gene (PADI1) is expressed in a few tissues, including the epidermis, where the protein is detected with a higher level in the more differentiated keratinocytes. Using quantitative reverse transcription-PCR experiments, we show that PADI1 mRNAs are more abundant in keratinocytes cultured with 1.2 than 0.15 mM calcium. We cloned and characterized the promoter region using human keratinocytes transfected with variously deleted fragments of the 5'-upstream region of PADI1 coupled to the luciferase gene. We found that as few as 195 bp upstream from the transcription initiation site were sufficient to direct transcription of the reporter gene. Mutations of MZF1- or Sp1-binding sites markedly reduced PADI1 promoter activity. Chromatin immunoprecipitation assays revealed that MZF1 and Sp1/Sp3 bind to this region in vivo. Furthermore, MZF1 or Sp1 small interfering RNAs (siRNAs) effectively diminished PADI1 expression in keratinocytes cultured in both low- and high-calcium-containing medium. In addition, the expression of MZF1 and PAD1 increased in parallel when normal human epidermal keratinocytes underwent differentiation. These data indicate that MZF1 and Sp1/Sp3 binding to the promoter region drive the PADI1 expression.
Collapse
Affiliation(s)
- Sijun Dong
- Department of Applied Biological Resource Sciences, School of Agriculture, Ibaraki University, Ami-machi, Inashiki-gun, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Morgan XC, Ni S, Miranker DP, Iyer VR. Predicting combinatorial binding of transcription factors to regulatory elements in the human genome by association rule mining. BMC Bioinformatics 2007; 8:445. [PMID: 18005433 PMCID: PMC2211755 DOI: 10.1186/1471-2105-8-445] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 11/15/2007] [Indexed: 12/20/2022] Open
Abstract
Background Cis-acting transcriptional regulatory elements in mammalian genomes typically contain specific combinations of binding sites for various transcription factors. Although some cis-regulatory elements have been well studied, the combinations of transcription factors that regulate normal expression levels for the vast majority of the 20,000 genes in the human genome are unknown. We hypothesized that it should be possible to discover transcription factor combinations that regulate gene expression in concert by identifying over-represented combinations of sequence motifs that occur together in the genome. In order to detect combinations of transcription factor binding motifs, we developed a data mining approach based on the use of association rules, which are typically used in market basket analysis. We scored each segment of the genome for the presence or absence of each of 83 transcription factor binding motifs, then used association rule mining algorithms to mine this dataset, thus identifying frequently occurring pairs of distinct motifs within a segment. Results Support for most pairs of transcription factor binding motifs was highly correlated across different chromosomes although pair significance varied. Known true positive motif pairs showed higher association rule support, confidence, and significance than background. Our subsets of high-confidence, high-significance mined pairs of transcription factors showed enrichment for co-citation in PubMed abstracts relative to all pairs, and the predicted associations were often readily verifiable in the literature. Conclusion Functional elements in the genome where transcription factors bind to regulate expression in a combinatorial manner are more likely to be predicted by identifying statistically and biologically significant combinations of transcription factor binding motifs than by simply scanning the genome for the occurrence of binding sites for a single transcription factor.
Collapse
Affiliation(s)
- Xochitl C Morgan
- Institute for Cellular and Molecular Biology and Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712-0159, USA.
| | | | | | | |
Collapse
|
46
|
Rosell R, Skrzypski M, Jassem E, Taron M, Bartolucci R, Sanchez JJ, Mendez P, Chaib I, Perez-Roca L, Szymanowska A, Rzyman W, Puma F, Kobierska-Gulida G, Farabi R, Jassem J. BRCA1: a novel prognostic factor in resected non-small-cell lung cancer. PLoS One 2007; 2:e1129. [PMID: 17987116 PMCID: PMC2042516 DOI: 10.1371/journal.pone.0001129] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Accepted: 08/01/2007] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Although early-stage non-small-cell lung cancer (NSCLC) is considered a potentially curable disease following complete resection, patients have a wide spectrum of survival according to stage (IB, II, IIIA). Within each stage, gene expression profiles can identify patients with a higher risk of recurrence. We hypothesized that altered mRNA expression in nine genes could help to predict disease outcome: excision repair cross-complementing 1 (ERCC1), myeloid zinc finger 1 (MZF1) and Twist1 (which regulate N-cadherin expression), ribonucleotide reductase subunit M1 (RRM1), thioredoxin-1 (TRX1), tyrosyl-DNA phosphodiesterase (Tdp1), nuclear factor of activated T cells (NFAT), BRCA1, and the human homolog of yeast budding uninhibited by benzimidazole (BubR1). METHODOLOGY AND PRINCIPAL FINDINGS We performed real-time quantitative polymerase chain reaction (RT-QPCR) in frozen lung cancer tissue specimens from 126 chemonaive NSCLC patients who had undergone surgical resection and evaluated the association between gene expression levels and survival. For validation, we used paraffin-embedded specimens from 58 other NSCLC patients. A strong inter-gene correlation was observed between expression levels of all genes except NFAT. A Cox proportional hazards model indicated that along with disease stage, BRCA1 mRNA expression significantly correlated with overall survival (hazard ratio [HR], 1.98 [95% confidence interval (CI), 1.11-6]; P = 0.02). In the independent cohort of 58 patients, BRCA1 mRNA expression also significantly correlated with survival (HR, 2.4 [95%CI, 1.01-5.92]; P = 0.04). CONCLUSIONS Overexpression of BRCA1 mRNA was strongly associated with poor survival in NSCLC patients, and the validation of this finding in an independent data set further strengthened this association. Since BRCA1 mRNA expression has previously been linked to differential sensitivity to cisplatin and antimicrotubule drugs, BRCA1 mRNA expression may provide additional information for customizing adjuvant antimicrotubule-based chemotherapy, especially in stage IB, where the role of adjuvant chemotherapy has not been clearly demonstrated.
Collapse
Affiliation(s)
- Rafael Rosell
- Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Akintola AD, Crislip ZL, Catania JM, Chen G, Zimmer WE, Burghardt RC, Parrish AR. Promoter methylation is associated with the age-dependent loss of N-cadherin in the rat kidney. Am J Physiol Renal Physiol 2007; 294:F170-6. [PMID: 17959753 DOI: 10.1152/ajprenal.00285.2007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cadherins are cell adhesion molecules required for cellular homeostasis, and N-cadherin is the predominant cadherin expressed in proximal tubular epithelial cells in humans and rats. Our laboratory previously reported an age-dependent decrease in renal N-cadherin expression; the levels of N-cadherin mRNA and protein expression decreased in parallel, implicating a transcriptional mechanism in the age-dependent loss of expression (19). In this study, we examined the hypothesis that promoter hypermethylation underlies the loss of N-cadherin expression in aging rat kidney. We cloned the 5' flanking region of the rat N-cadherin gene and observed basic promoter activity in a 3,992-bp region localized immediately upstream of the ATG start site. Nucleotide analysis revealed 87% identity with the human N-cadherin minimal promoter region. Consistent with a role for regulation by DNA methylation, we found that a dense CpG island, which spans 1,104 bp (-1,158 to -55), flanks the rat N-cadherin gene; a similar CpG profile was found in the human N-cadherin 5' flanking region. Methylation-specific PCR analysis demonstrated that the promoter region of N-cadherin is heavily methylated in aged, but not young, rat kidney. Interestingly, the promoter is not methylated in age-matched, calorically restricted animals. In contrast, the promoter region is not methylated in either young or aged rat liver; this corresponds to the finding that aging is not associated with decreased N-cadherin expression in the liver. In addition, N-cadherin expression is markedly induced in NRK-52E cells treated with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine, further suggesting that methylation at CpG in the promoter region may underlie the age-dependent decrease in renal N-cadherin expression.
Collapse
Affiliation(s)
- Adebayo D Akintola
- Department of Systems Biology and Translational Medicine, College of Medicine, Texas A & M Health Science Center, College Station, TX 77843-1114, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Hirano M, Kanaide H, Hirano K. Rac1-dependent transcriptional up-regulation of p27Kip1 by homophilic cell-cell contact in vascular endothelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:1500-10. [PMID: 17868934 DOI: 10.1016/j.bbamcr.2007.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 07/18/2007] [Accepted: 08/01/2007] [Indexed: 01/24/2023]
Abstract
The mechanism for the transcriptional up-regulation of p27Kip1 due to the formation of the cell-cell contact was investigated in vascular endothelial cells. The induction of the cell-cell contact by adding an extra number of endothelial cells activated Rac1, up-regulated p27Kip1 mRNA and protein, and also facilitated the cell cycle arrest. Transduction of the Rac1 inhibitor protein using the cell-penetrating peptide or treatment with a Rac1 inhibitor NSC23766 inhibited the p27Kip1 up-regulation and delayed the cell cycle arrest. Rac1 was therefore suggested to mediate the contact-induced transcriptional up-regulation of p27Kip1. The role of Rac1 in the regulation of the p27Kip1 promoter activity was next examined with a luciferase reporter assay. The promoter activity was increased by inducing the cell-cell contact, which was significantly inhibited by the Rac1 inhibitory protein and NSC23766. The evaluation of various truncated promoter regions determined region -620 to -573 nucleotides from the initiation codon to be responsible for the contact-induced, Rac1-dependent activation of the p27Kip1 promoter. The present study thus demonstrated for the first time that the activation of Rac1 due to the cell-cell contact plays a critical role in the transcriptional up-regulation of p27Kip1 in vascular endothelial cells.
Collapse
Affiliation(s)
- Mayumi Hirano
- Division of Molecular Cardiology, Research Institute of Angiocardiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | | | | |
Collapse
|
49
|
Hua P, Xu H, Uno JK, Lipko MA, Dong J, Kiela PR, Ghishan FK. Sp1 and Sp3 mediate NHE2 gene transcription in the intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2007; 293:G146-53. [PMID: 17379926 DOI: 10.1152/ajpgi.00443.2006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Our previous studies have identified a minimal Sp1-driven promoter region (nt -36/+116) directing NHE2 expression in mouse renal epithelial cells. However, this minimal promoter region was not sufficient to support active transcription of NHE2 gene in the intestinal epithelial cells, suggesting the need for additional upstream regulatory elements. In the present study, we used nontransformed rat intestinal epithelial (RIE) cells as a model to identify the minimal promoter region and transcription factors necessary for the basal transcription of rat NHE2 gene in the intestinal epithelial cells. We identified a region within the rat NHE2 gene promoter located within nt -67/-43 upstream of transcription initiation site as indispensable for the promoter function in intestinal epithelial cells. Mutations at nt -56/-51 not only abolished the DNA-protein interaction in this region, but also completely abolished NHE2 gene promoter activity in RIE cells. Supershift assays revealed that Sp1 and Sp3 interact with this promoter region, but, contrary to the minimal promoter indispensable for renal expression of NHE2, both transcription factors expressed individually in Drosophila SL2 cells activated rat NHE2 gene promoter. Moreover, Sp1 was a weaker transactivator and when coexpressed in SL2 cells it reduced Sp3-mediated NHE2 basal promoter activity. Furthermore, DNase I footprinting confirmed that nt -58/-51 is protected by nuclear protein from RIE cells. We conclude that the mechanism of basal control of rat NHE2 gene promoter activity is different in the renal and intestinal epithelium, with Sp3 being the major transcriptional activator of NHE2 gene transcription in the intestinal epithelial cells.
Collapse
Affiliation(s)
- Ping Hua
- Department of Pediatrics, Steele Memorial Children's Research Center, 1501 N. Campbell Ave., Tucson, AZ 85724, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Fries F, Nazarenko I, Hess J, Claas A, Angel P, Zöller M. CEBPbeta, JunD and c-Jun contribute to the transcriptional activation of the metastasis-associated C4.4A gene. Int J Cancer 2007; 120:2135-47. [PMID: 17278103 DOI: 10.1002/ijc.22447] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The glycosylphosphatidylinositol-anchored molecule C4.4A, which shares structural features with uPAR, is frequently expressed on carcinomas with upregulated expression during tumor progression. Moreover, rare expression on nontransformed epithelial cells is strongly increased during tissue remodeling, e.g., during wound healing. This strictly regulated expression prompted us to define transcriptional activation of the C4.4A gene. C4.4A transcription was analyzed in 2 syngenic rat tumor cell lines with low or high metastatic potential, respectively. Though genomic C4.4A DNA was present in both lines, C4.4A mRNA and transcription of a reporter construct containing the C4.4A promoter was only observed in the metastasizing subline. Deletions and point mutations in the C4.4A promoter-driven reporter construct revealed that activation of the TATA-less, GC-rich core promoter (-1 to -50 bp) does not suffice to initiate transcription that requires coactivation of a proximal response element (-71 to -88 bp) and can be further increased by more distal response elements (-89 to -133 bp). Mobility-shift and cotransfection studies showed that Sp3 binding enhances C4.4A transcription, whereas potential Sp1 binding sites were ineffective. C4.4A transcription essentially requires C/EBPbeta binding to a TRE/CCAAT composite element (-71 to -88 bp) as measured by ChIP assay. C4.4A transcription is strikingly enhanced by cotransfection with JunD or c-Jun, such that C4.4A is most strongly transcribed even in the C4.4A-negative tumor cell line after cotransfection with C/EBPbeta plus JunD or c-Jun. Thus, upregulation of C/EBPbeta during tumor progression and wound repair may well provide a sufficient trigger for transcription of the C4.4A gene.
Collapse
Affiliation(s)
- Frank Fries
- Departments of Tumor Progression and Immune Defense, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|