1
|
Kang GS, Jo HJ, Lee YR, Oh T, Park HJ, Ahn GO. Sensing the oxygen and temperature in the adipose tissues - who's sensing what? Exp Mol Med 2023; 55:2300-2307. [PMID: 37907745 PMCID: PMC10689767 DOI: 10.1038/s12276-023-01113-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 11/02/2023] Open
Abstract
Adipose tissues, composed of various cell types, including adipocytes, endothelial cells, neurons, and immune cells, are organs that are exposed to dynamic environmental challenges. During diet-induced obesity, white adipose tissues experience hypoxia due to adipocyte hypertrophy and dysfunctional vasculature. Under these conditions, cells in white adipose tissues activate hypoxia-inducible factor (HIF), a transcription factor that activates signaling pathways involved in metabolism, angiogenesis, and survival/apoptosis to adapt to such an environment. Exposure to cold or activation of the β-adrenergic receptor (through catecholamines or chemicals) leads to heat generation, mainly in brown adipose tissues through activating uncoupling protein 1 (UCP1), a proton uncoupler in the inner membrane of the mitochondria. White adipose tissues can undergo a similar process under this condition, a phenomenon known as 'browning' of white adipose tissues or 'beige adipocytes'. While UCP1 expression has largely been confined to adipocytes, HIF can be expressed in many types of cells. To dissect the role of HIF in specific types of cells during diet-induced obesity, researchers have generated tissue-specific knockout (KO) mice targeting HIF pathways, and many studies have commonly revealed that intact HIF-1 signaling in adipocytes and adipose tissue macrophages exacerbates tissue inflammation and insulin resistance. In this review, we highlight some of the key findings obtained from these transgenic mice, including Ucp1 KO mice and other models targeting the HIF pathway in adipocytes, macrophages, or endothelial cells, to decipher their roles in diet-induced obesity.
Collapse
Affiliation(s)
- Gi-Sue Kang
- College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
| | - Hye-Ju Jo
- College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
| | - Ye-Rim Lee
- College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
| | - Taerim Oh
- College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
| | - Hye-Joon Park
- College of Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
| | - G-One Ahn
- College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea.
- College of Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea.
| |
Collapse
|
2
|
Li J, Gong SH, He YL, Cao Y, Chen Y, Huang GH, Wang YF, Zhao M, Cheng X, Zhou YZ, Zhao T, Zhao YQ, Fan M, Wu HT, Zhu LL, Wu LY. Autophagy Is Essential for Neural Stem Cell Proliferation Promoted by Hypoxia. Stem Cells 2023; 41:77-92. [PMID: 36208284 DOI: 10.1093/stmcls/sxac076] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 09/06/2022] [Indexed: 02/02/2023]
Abstract
Hypoxia as a microenvironment or niche stimulates proliferation of neural stem cells (NSCs). However, the underlying mechanisms remain elusive. Autophagy is a protective mechanism by which recycled cellular components and energy are rapidly supplied to the cell under stress. Whether autophagy mediates the proliferation of NSCs under hypoxia and how hypoxia induces autophagy remain unclear. Here, we report that hypoxia facilitates embryonic NSC proliferation through HIF-1/mTORC1 signaling pathway-mediated autophagy. Initially, we found that hypoxia greatly induced autophagy in NSCs, while inhibition of autophagy severely impeded the proliferation of NSCs in hypoxia conditions. Next, we demonstrated that the hypoxia core regulator HIF-1 was necessary and sufficient for autophagy induction in NSCs. Considering that mTORC1 is a key switch that suppresses autophagy, we subsequently analyzed the effect of HIF-1 on mTORC1 activity. Our results showed that the mTORC1 activity was negatively regulated by HIF-1. Finally, we provided evidence that HIF-1 regulated mTORC1 activity via its downstream target gene BNIP3. The increased expression of BNIP3 under hypoxia enhanced autophagy activity and proliferation of NSCs, which was mediated by repressing the activity of mTORC1. We further illustrated that BNIP3 can interact with Rheb, a canonical activator of mTORC1. Thus, we suppose that the interaction of BNIP3 with Rheb reduces the regulation of Rheb toward mTORC1 activity, which relieves the suppression of mTORC1 on autophagy, thereby promoting the rapid proliferation of NSCs. Altogether, this study identified a new HIF-1/BNIP3-Rheb/mTORC1 signaling axis, which regulates the NSC proliferation under hypoxia through induction of autophagy.
Collapse
Affiliation(s)
- Jian Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Sheng-Hui Gong
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Yun-Ling He
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Yan Cao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Ying Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Guang-Hai Huang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Yu-Fei Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Ming Zhao
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Xiang Cheng
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Yan-Zhao Zhou
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Tong Zhao
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Yong-Qi Zhao
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Ming Fan
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Hai-Tao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Ling-Ling Zhu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China.,Department of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, People's Republic of China.,Department of Pharmacology, University of Nanhua, Hengyang, China
| | - Li-Ying Wu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.,Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
3
|
Exploiting Bacteria for Improving Hypoxemia of COVID-19 Patients. Biomedicines 2022; 10:biomedicines10081851. [PMID: 36009399 PMCID: PMC9405060 DOI: 10.3390/biomedicines10081851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Although useful in the time-race against COVID-19, CPAP cannot provide oxygen over the physiological limits imposed by severe pulmonary impairments. In previous studies, we reported that the administration of the SLAB51 probiotics reduced risk of developing respiratory failure in severe COVID-19 patients through the activation of oxygen sparing mechanisms providing additional oxygen to organs critical for survival. Methods: This “real life” study is a retrospective analysis of SARS-CoV-2 infected patients with hypoxaemic acute respiratory failure secondary to COVID-19 pneumonia undergoing CPAP treatment. A group of patients managed with ad interim routinely used therapy (RUT) were compared to a second group treated with RUT associated with SLAB51 oral bacteriotherapy (OB). Results: At baseline, patients receiving SLAB51 showed significantly lower blood oxygenation than controls. An opposite condition was observed after 3 days of treatment, despite the significantly reduced amount of oxygen received by patients taking SLAB51. At 7 days, a lower prevalence of COVID-19 patients needing CPAP in the group taking probiotics was observed. The administration of SLAB51 is a complementary approach for ameliorating oxygenation conditions at the systemic level. Conclusion: This study proves that probiotic administration results in an additional boost in alleviating hypoxic conditions, permitting to limit on the use of CPAP and its contraindications.
Collapse
|
4
|
Hypoxia-Inducible Factors and Burn-Associated Acute Kidney Injury-A New Paradigm? Int J Mol Sci 2022; 23:ijms23052470. [PMID: 35269613 PMCID: PMC8910144 DOI: 10.3390/ijms23052470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 12/10/2022] Open
Abstract
O2 deprivation induces stress in living cells linked to free-radical accumulation and oxidative stress (OS) development. Hypoxia is established when the overall oxygen pressure is less than 40 mmHg in cells or tissues. However, tissues and cells have different degrees of hypoxia. Hypoxia or low O2 tension may be present in both physiological (during embryonic development) and pathological circumstances (ischemia, wound healing, and cancer). Meanwhile, the kidneys are major energy-consuming organs, being second only to the heart, with an increased mitochondrial content and O2 consumption. Furthermore, hypoxia-inducible factors (HIFs) are the key players that orchestrate the mammalian response to hypoxia. HIFs adapt cells to low oxygen concentrations by regulating transcriptional programs involved in erythropoiesis, angiogenesis, and metabolism. On the other hand, one of the life-threatening complications of severe burns is acute kidney injury (AKI). The dreaded functional consequence of AKI is an acute decline in renal function. Taking all these aspects into consideration, the aim of this review is to describe the role and underline the importance of HIFs in the development of AKI in patients with severe burns, because kidney hypoxia is constant in the presence of severe burns, and HIFs are major players in the adaptative response of all tissues to hypoxia.
Collapse
|
5
|
Chen Q, Liu W, Sun X, Liu KJ, Pan R. Endogenous reactive oxygen species and nitric oxide have opposite roles in regulating HIF-1alpha expression in hypoxic astrocytes. BIOPHYSICS REPORTS 2021; 7:239-249. [PMID: 37287488 PMCID: PMC10244794 DOI: 10.52601/bpr.2021.200016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 01/29/2021] [Indexed: 11/05/2022] Open
Abstract
Ischemic stroke results in cerebral tissue hypoxia and increased expression of hypoxia-inducible factor (HIF), which is critically implicated in ischemic brain injury. Understanding the mechanisms of HIF-1alpha regulation in the ischemic brain has been an important research focus. The generation of both nitric oxide (NO) and reactive oxygen species (ROS) is increased under hypoxic/ischemic conditions and each of them has been independently shown to regulate HIF-1alpha expression. In this study, we investigated the cross-effects of NO and ROS on the expression of HIF-1alpha in hypoxic astrocytes. Exposure of astrocytes to 2 h-hypoxia remarkably increased HIF-1alpha protein levels, which was accompanied by increased NO and ROS production. Decreasing ROS with NAC, NADPH oxidase inhibitor DPI, or SOD mimetic MnTMPyP decreased hypoxia-induced HIF-1alpha protein accumulation and increased NO level in hypoxic astrocytes. The NO synthase (NOS) inhibitor L-NAME inhibited ROS generation, which led to a reduction in hypoxia-induced HIF-1alpha protein expression. Although NOS inhibitor or ROS scavengers alone reduced HIF-1alpha protein levels, the reduction was reversed when NOS inhibitor and ROS scavenger present together. The NO scavenger PTIO increased hypoxia-induced HIF-1alpha protein expression and ROS production, while HIF-1alpha protein level was decreased in the presence of NO scavenger and ROS scavenger together. These results suggest that ROS, NO, and their interaction critically contribute to the regulation of hypoxia-induced HIF-1alpha protein accumulation under hypoxic condition. Furthermore, our results indicate that hypoxia-induced NO generation may represent an endogenous mechanism for balancing ROS-mediated hypoxic stress, as reflected by inhibiting hypoxia-induced HIF-1alpha protein accumulation.
Collapse
Affiliation(s)
- Qingquan Chen
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Wenlan Liu
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Xi Sun
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Rong Pan
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
6
|
Inhibition of hypoxia-inducible factor 1α accumulation by glyceryl trinitrate and cyclic guanosine monophosphate. Biosci Rep 2021; 40:221809. [PMID: 31912870 PMCID: PMC6981098 DOI: 10.1042/bsr20192345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/12/2022] Open
Abstract
A key mechanism mediating cellular adaptive responses to hypoxia involves the activity of hypoxia-inducible factor 1 (HIF-1), a transcription factor composed of HIF-1α, and HIF-1β subunits. The classical mechanism of regulation of HIF-1 activity involves destabilisation of HIF-1α via oxygen-dependent hydroxylation of proline residues and subsequent proteasomal degradation. Studies from our laboratory revealed that nitric oxide (NO)-mediated activation of cyclic guanosine monophosphate (cGMP) signalling inhibits the acquisition of hypoxia-induced malignant phenotypes in tumour cells. The present study aimed to elucidate a mechanism of HIF-1 regulation involving NO/cGMP signalling. Using human DU145 prostate cancer cells, we assessed the effect of the NO mimetic glyceryl trinitrate (GTN) and the cGMP analogue 8-Bromo-cGMP on hypoxic accumulation of HIF-1α. Concentrations of GTN known to primarily activate the NO/cGMP pathway (100 nM–1 µM) inhibited hypoxia-induced HIF-1α protein accumulation in a time-dependent manner. Incubation with 8-Bromo-cGMP (1 nM–10 µM) also attenuated HIF-1α accumulation, while levels of HIF-1α mRNA remained unaltered by exposure to GTN or 8-Bromo-cGMP. Furthermore, treatment of cells with the calpain (Ca2+-activated proteinase) inhibitor calpastatin attenuated the effects of GTN and 8-Bromo-cGMP on HIF-1α accumulation. However, since calpain activity was not affected by incubation of DU145 cells with various concentrations of GTN or 8-Bromo-cGMP (10 nM or 1 µM) under hypoxic or well-oxygenated conditions, it is unlikely that NO/cGMP signalling inhibits HIF-1α accumulation via regulation of calpain activity. These findings provide evidence for a role of NO/cGMP signalling in the regulation of HIF-1α, and hence HIF-1-mediated hypoxic responses, via a mechanism dependent on calpain.
Collapse
|
7
|
Singhal R, Shah YM. Oxygen battle in the gut: Hypoxia and hypoxia-inducible factors in metabolic and inflammatory responses in the intestine. J Biol Chem 2020; 295:10493-10505. [PMID: 32503843 DOI: 10.1074/jbc.rev120.011188] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/04/2020] [Indexed: 12/13/2022] Open
Abstract
The gastrointestinal tract is a highly proliferative and regenerative tissue. The intestine also harbors a large and diverse microbial population collectively called the gut microbiome (microbiota). The microbiome-intestine cross-talk includes a dynamic exchange of gaseous signaling mediators generated by bacterial and intestinal metabolisms. Moreover, the microbiome initiates and maintains the hypoxic environment of the intestine that is critical for nutrient absorption, intestinal barrier function, and innate and adaptive immune responses in the mucosal cells of the intestine. The response to hypoxia is mediated by hypoxia-inducible factors (HIFs). In hypoxic conditions, the HIF activation regulates the expression of a cohort of genes that promote adaptation to hypoxia. Physiologically, HIF-dependent genes contribute to the aforementioned maintenance of epithelial barrier function, nutrient absorption, and immune regulation. However, chronic HIF activation exacerbates disease conditions, leading to intestinal injury, inflammation, and colorectal cancer. In this review, we aim to outline the major roles of physiological and pathological hypoxic conditions in the maintenance of intestinal homeostasis and in the onset and progression of disease with a major focus on understanding the complex pathophysiology of the intestine.
Collapse
Affiliation(s)
- Rashi Singhal
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA .,Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Pfeifhofer-Obermair C, Tymoszuk P, Petzer V, Weiss G, Nairz M. Iron in the Tumor Microenvironment-Connecting the Dots. Front Oncol 2018; 8:549. [PMID: 30534534 PMCID: PMC6275298 DOI: 10.3389/fonc.2018.00549] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/06/2018] [Indexed: 12/18/2022] Open
Abstract
Iron metabolism and tumor biology are intimately linked. Iron facilitates the production of oxygen radicals, which may either result in iron-induced cell death, ferroptosis, or contribute to mutagenicity and malignant transformation. Once transformed, malignant cells require high amounts of iron for proliferation. In addition, iron has multiple regulatory effects on the immune system, thus affecting tumor surveillance by immune cells. For these reasons, inconsiderate iron supplementation in cancer patients has the potential of worsening disease course and outcome. On the other hand, chronic immune activation in the setting of malignancy alters systemic iron homeostasis and directs iron fluxes into myeloid cells. While this response aims at withdrawing iron from tumor cells, it may impair the effector functions of tumor-associated macrophages and will result in iron-restricted erythropoiesis and the development of anemia, subsequently. This review summarizes our current knowledge of the interconnections of iron homeostasis with cancer biology, discusses current clinical controversies in the treatment of anemia of cancer and focuses on the potential roles of iron in the solid tumor microenvironment, also speculating on yet unknown molecular mechanisms.
Collapse
Affiliation(s)
- Christa Pfeifhofer-Obermair
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria
| | - Piotr Tymoszuk
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria
| | - Verena Petzer
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| | - Manfred Nairz
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
9
|
Hu J, Wang W, Zhang F, Li PL, Boini KM, Yi F, Li N. Hypoxia inducible factor-1α mediates the profibrotic effect of albumin in renal tubular cells. Sci Rep 2017; 7:15878. [PMID: 29158549 PMCID: PMC5696482 DOI: 10.1038/s41598-017-15972-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/06/2017] [Indexed: 12/30/2022] Open
Abstract
Proteinuria is closely associated with the progression of chronic kidney diseases (CKD) by producing renal tubulointerstitial fibrosis. Over-activation of hypoxia inducible factor (HIF)-1α has been implicated in the progression of CKD. The present study tested the hypothesis that HIF-1α mediates albumin-induced profibrotic effect in cultured renal proximal tubular cells. Incubation of the cells with albumin (40 μg/ml) for 72 hrs significantly increased the protein levels of HIF-1α, tissue inhibitor of metalloproteinase (TIMP)-1 and collagen-I, which were blocked by HIF-1α shRNA. Albumin also stimulated an epithelial-mesenchymal transition (EMT) as indicated by the decrease in epithelial marker E-cadherin, and the increase in mesenchymal markers α-smooth muscle actin and fibroblast-specific protein 1. HIF-1α shRNA blocked albumin-induced changes in these EMT markers as well. Furthermore, albumin reduced the level of hydroxylated HIF-1α, indicating an inhibition of the activity of prolyl-hydroxylases, enzymes promoting the degradation of HIF-1α. An anti-oxidant ascorbate reversed albumin-induced inhibition of prolyl-hydroxylase activity. Overexpression of prolyl-hydroxylase 2 (PHD2) transgene, a predominant isoform of PHDs in renal tubules, to reduce HIF-1α level significantly attenuated albumin-induced increases in TIMP-1 and collagen-I levels. These results suggest that albumin-induced oxidative stress inhibits PHD activity to accumulate HIF-1α, which mediates albumin-induced profibrotic effects in renal tubular cells.
Collapse
Affiliation(s)
- Junping Hu
- Department of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Weili Wang
- Department of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Fan Zhang
- Department of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Pin-Lan Li
- Department of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Krishna M Boini
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, USA
| | - Fan Yi
- Department of Pharmacology, Shandong University School of Medicine, Jinan, Shandong, P.R. China
| | - Ningjun Li
- Department of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA.
| |
Collapse
|
10
|
Strzelak K, Rybkowska N, Wiśniewska A, Koncki R. Photometric flow analysis system for biomedical investigations of iron/transferrin speciation in human serum. Anal Chim Acta 2017; 995:43-51. [PMID: 29126480 DOI: 10.1016/j.aca.2017.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/11/2017] [Accepted: 10/17/2017] [Indexed: 01/28/2023]
Abstract
The Multicommutated Flow Analysis (MCFA) system for the estimation of clinical iron parameters: Serum Iron (SI), Unsaturated Iron Binding Capacity (UIBC) and Total Iron Binding Capacity (TIBC) has been proposed. The developed MCFA system based on simple photometric detection of iron with chromogenic agent (ferrozine) enables a speciation of transferrin (determination of free and Fe-bound protein) in human serum. The construction of manifold was adapted to the requirements of measurements under changing conditions. In the course of studies, a different effect of proteins on SI and UIBC determination has been proven. That was in turn the reason to perform two kinds of calibration methods. For measurements in acidic medium for SI/holotransferrin determination, the calibration curve method was applied, characterized by limit of determination and limit of quantitation on the level of 3.4 μmol L-1 and 9.1 μmol L-1, respectively. The determination method for UIBC parameter (related to apotransferrin level) in physiological medium of pH 7.4 forced the use of standard addition method due to the strong influence of proteins on obtaining analytical signals. These two different methodologies, performed in the presented system, enabled the estimation of all three clinical iron/transferrin parameters in human serum samples. TIBC corresponding to total transferrin level was calculated as a sum of SI and UIBC.
Collapse
Affiliation(s)
- Kamil Strzelak
- University of Warsaw, Department of Chemistry, Pasteura 1, 02-093 Warsaw, Poland.
| | - Natalia Rybkowska
- University of Warsaw, Department of Chemistry, Pasteura 1, 02-093 Warsaw, Poland
| | - Agnieszka Wiśniewska
- Medical University of Warsaw, Faculty of Health Sciences, Department of Laboratory Diagnostics, Banacha 1a, 02-097 Warsaw, Poland
| | - Robert Koncki
- University of Warsaw, Department of Chemistry, Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
11
|
Das B, Rajagopalan S, Joshi GS, Xu L, Luo D, Andersen JK, Todi SV, Dutta AK. A novel iron (II) preferring dopamine agonist chelator D-607 significantly suppresses α-syn- and MPTP-induced toxicities in vivo. Neuropharmacology 2017; 123:88-99. [PMID: 28533164 DOI: 10.1016/j.neuropharm.2017.05.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 05/17/2017] [Accepted: 05/18/2017] [Indexed: 12/28/2022]
Abstract
Here, we report the characterization of a novel hybrid D2/D3 agonist and iron (II) specific chelator, D-607, as a multi-target-directed ligand against Parkinson's disease (PD). In our previously published report, we showed that D-607 is a potent agonist of dopamine (DA) D2/D3 receptors, exhibits efficacy in a reserpinized PD animal model and preferentially chelates to iron (II). As further evidence of its potential as a neuroprotective agent in PD, the present study reveals D-607 to be protective in neuronal PC12 cells against 6-OHDA toxicity. In an in vivo Drosophila melanogaster model expressing a disease-causing variant of α-synuclein (α-Syn) protein in fly eyes, the compound was found to significantly suppress toxicity compared to controls, concomitant with reduced levels of aggregated α-Syn. Furthermore, D-607 was able to rescue DAergic neurons from MPTP toxicity in mice, a well-known PD neurotoxicity model, following both sub-chronic and chronic MPTP administration. Mechanistic studies indicated that possible protection of mitochondria, up-regulation of hypoxia-inducible factor, reduction in formation of α-Syn aggregates and antioxidant activity may underlie the observed neuroprotection effects. These observations strongly suggest that D-607 has potential as a promising multifunctional lead molecule for viable symptomatic and disease-modifying therapy for PD.
Collapse
Affiliation(s)
- Banibrata Das
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48202, USA
| | | | - Gnanada S Joshi
- Department of Pharmacology, Wayne State University, Detroit, MI 48201, USA
| | - Liping Xu
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Dan Luo
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Julie K Andersen
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, USA
| | - Sokol V Todi
- Department of Pharmacology, Wayne State University, Detroit, MI 48201, USA
| | - Aloke K Dutta
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
12
|
Fagundes RR, Taylor CT. Determinants of hypoxia-inducible factor activity in the intestinal mucosa. J Appl Physiol (1985) 2017; 123:1328-1334. [PMID: 28408694 DOI: 10.1152/japplphysiol.00203.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 03/28/2017] [Accepted: 04/07/2017] [Indexed: 12/16/2022] Open
Abstract
The intestinal mucosa is exposed to fluctuations in oxygen levels due to constantly changing rates of oxygen demand and supply and its juxtaposition with the anoxic environment of the intestinal lumen. This frequently results in a state of hypoxia in the healthy mucosa even in the physiologic state. Furthermore, pathophysiologic hypoxia (which is more severe and extensive) is associated with chronic inflammatory diseases including inflammatory bowel disease (IBD). The hypoxia-inducible factor (HIF), a ubiquitously expressed regulator of cellular adaptation to hypoxia, is central to both the adaptive and the inflammatory responses of cells of the intestinal mucosa in IBD patients. In this review, we discuss the microenvironmental factors which influence the level of HIF activity in healthy and inflamed intestinal mucosae and the consequences that increased HIF activity has for tissue function and disease progression.
Collapse
Affiliation(s)
- Raphael R Fagundes
- Graduate School of Medical Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; and.,UCD Conway Institute, Systems Biology Ireland and School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Cormac T Taylor
- UCD Conway Institute, Systems Biology Ireland and School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
13
|
Stoehr A, Yang Y, Patel S, Evangelista AM, Aponte A, Wang G, Liu P, Boylston J, Kloner PH, Lin Y, Gucek M, Zhu J, Murphy E. Prolyl hydroxylation regulates protein degradation, synthesis, and splicing in human induced pluripotent stem cell-derived cardiomyocytes. Cardiovasc Res 2016; 110:346-58. [PMID: 27095734 DOI: 10.1093/cvr/cvw081] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/12/2016] [Indexed: 12/12/2022] Open
Abstract
AIMS Protein hydroxylases are oxygen- and α-ketoglutarate-dependent enzymes that catalyse hydroxylation of amino acids such as proline, thus linking oxygen and metabolism to enzymatic activity. Prolyl hydroxylation is a dynamic post-translational modification that regulates protein stability and protein-protein interactions; however, the extent of this modification is largely uncharacterized. The goals of this study are to investigate the biological consequences of prolyl hydroxylation and to identify new targets that undergo prolyl hydroxylation in human cardiomyocytes. METHODS AND RESULTS We used human induced pluripotent stem cell-derived cardiomyocytes in combination with pulse-chase amino acid labelling and proteomics to analyse the effects of prolyl hydroxylation on protein degradation and synthesis. We identified 167 proteins that exhibit differences in degradation with inhibition of prolyl hydroxylation by dimethyloxalylglycine (DMOG); 164 were stabilized. Proteins involved in RNA splicing such as serine/arginine-rich splicing factor 2 (SRSF2) and splicing factor and proline- and glutamine-rich (SFPQ) were stabilized with DMOG. DMOG also decreased protein translation of cytoskeletal and sarcomeric proteins such as α-cardiac actin. We searched the mass spectrometry data for proline hydroxylation and identified 134 high confidence peptides mapping to 78 unique proteins. We identified SRSF2, SFPQ, α-cardiac actin, and cardiac titin as prolyl hydroxylated. We identified 29 prolyl hydroxylated proteins that showed a significant difference in either protein degradation or synthesis. Additionally, we performed next-generation RNA sequencing and showed that the observed decrease in protein synthesis was not due to changes in mRNA levels. Because RNA splicing factors were prolyl hydroxylated, we investigated splicing ± inhibition of prolyl hydroxylation and detected 369 alternative splicing events, with a preponderance of exon skipping. CONCLUSIONS This study provides the first extensive characterization of the cardiac prolyl hydroxylome and demonstrates that inhibition of α-ketoglutarate hydroxylases alters protein stability, translation, and splicing.
Collapse
Affiliation(s)
- Andrea Stoehr
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yanqin Yang
- DNA Sequencing and Genomics Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sajni Patel
- Proteomics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alicia M Evangelista
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Angel Aponte
- Proteomics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Guanghui Wang
- Proteomics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Poching Liu
- DNA Sequencing and Genomics Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer Boylston
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Philip H Kloner
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yongshun Lin
- iPS Cell Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marjan Gucek
- Proteomics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jun Zhu
- DNA Sequencing and Genomics Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth Murphy
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
14
|
Mechanisms and targets of the modulatory action of S-nitrosoglutathione (GSNO) on inflammatory cytokines expression. Arch Biochem Biophys 2014; 562:80-91. [PMID: 25135357 DOI: 10.1016/j.abb.2014.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 08/04/2014] [Accepted: 08/05/2014] [Indexed: 02/07/2023]
Abstract
A number of experimental studies has documented that S-nitrosoglutathione (GSNO), the main endogenous low-molecular-weight S-nitrosothiol, can exert modulatory effects on inflammatory processes, thus supporting its potential employment in medicine for the treatment of important disease conditions. At molecular level, GSNO effects have been shown to modulate the activity of a series of transcription factors (notably NF-κB, AP-1, CREB and others) as well as other components of signal transduction chains (e.g. IKK-β, caspase 1, calpain and others), resulting in the modulation of several cytokines and chemokines expression (TNFα, IL-1β, IFN-γ, IL-4, IL-8, RANTES, MCP-1 and others). Results reported to date are however not univocal, and a single main mechanism of action for the observed anti-inflammatory effects of GSNO has not been identified. Conflicting observations can be explained by differences among the various cell types studies as to the relative abundance of enzymes in charge of GSNO metabolism (GSNO reductase, γ-glutamyltransferase, protein disulfide isomerase and others), as well as by variables associated with the individual experimental models employed. Altogether, anti-inflammatory properties of GSNO seem however to prevail, and exploration of the therapeutic potential of GSNO and analogues appears therefore warranted.
Collapse
|
15
|
Sung MK, Bae YJ. Iron, Oxidative Stress, and Cancer. Cancer 2014. [DOI: 10.1016/b978-0-12-405205-5.00013-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
The mitochondrial disulfide relay system: roles in oxidative protein folding and beyond. Int J Cell Biol 2013; 2013:742923. [PMID: 24348563 PMCID: PMC3848088 DOI: 10.1155/2013/742923] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/01/2013] [Indexed: 12/31/2022] Open
Abstract
Disulfide bond formation drives protein import of most proteins of the mitochondrial intermembrane space (IMS). The main components of this disulfide relay machinery are the oxidoreductase Mia40 and the sulfhydryl oxidase Erv1/ALR. Their precise functions have been elucidated in molecular detail for the yeast and human enzymes in vitro and in intact cells. However, we still lack knowledge on how Mia40 and Erv1/ALR impact cellular and organism physiology and whether they have functions beyond their role in disulfide bond formation. Here we summarize the principles of oxidation-dependent protein import mediated by the mitochondrial disulfide relay. We proceed by discussing recently described functions of Mia40 in the hypoxia response and of ALR in influencing mitochondrial morphology and its importance for tissue development and embryogenesis. We also include a discussion of the still mysterious function of Erv1/ALR in liver regeneration.
Collapse
|
17
|
Inhibition of prolyl hydroxylase domain-containing protein on hypertension/renal injury induced by high salt diet and nitric oxide withdrawal. J Hypertens 2013; 31:2043-9. [DOI: 10.1097/hjh.0b013e32836356a0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Heath JL, Weiss JM, Lavau CP, Wechsler DS. Iron deprivation in cancer--potential therapeutic implications. Nutrients 2013; 5:2836-59. [PMID: 23887041 PMCID: PMC3775231 DOI: 10.3390/nu5082836] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/12/2013] [Accepted: 07/16/2013] [Indexed: 02/04/2023] Open
Abstract
Iron is essential for normal cellular function. It participates in a wide variety of cellular processes, including cellular respiration, DNA synthesis, and macromolecule biosynthesis. Iron is required for cell growth and proliferation, and changes in intracellular iron availability can have significant effects on cell cycle regulation, cellular metabolism, and cell division. Perhaps not surprisingly then, neoplastic cells have been found to have higher iron requirements than normal, non-malignant cells. Iron depletion through chelation has been explored as a possible therapeutic intervention in a variety of cancers. Here, we will review iron homeostasis in non-malignant and malignant cells, the widespread effects of iron depletion on the cell, the various iron chelators that have been explored in the treatment of cancer, and the tumor types that have been most commonly studied in the context of iron chelation.
Collapse
Affiliation(s)
- Jessica L. Heath
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA; E-Mails: (J.L.H.); (J.M.W.); (C.P.L.)
| | - Joshua M. Weiss
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA; E-Mails: (J.L.H.); (J.M.W.); (C.P.L.)
| | - Catherine P. Lavau
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA; E-Mails: (J.L.H.); (J.M.W.); (C.P.L.)
| | - Daniel S. Wechsler
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA; E-Mails: (J.L.H.); (J.M.W.); (C.P.L.)
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-919-684-3401; Fax: +1-919-681-7950
| |
Collapse
|
19
|
Deferoxamine blocks death induced by glutathione depletion in PC 12 cells. Neurotoxicology 2013; 37:221-30. [PMID: 23680049 DOI: 10.1016/j.neuro.2013.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 03/21/2013] [Accepted: 04/26/2013] [Indexed: 11/22/2022]
Abstract
The purpose of the present work was to investigate the mechanisms by which glutathione depletion induced by treatment with buthionine sulfoximine (BSO) led within 24-30 h to PC 12 cells apoptosis. Our results showed that treatment by relatively low concentrations (10-30 μM) of deferoxamine (DFx), a natural iron-specific chelator, almost completely shielded the cells from BSO-induced toxicity and that DFx still remained protective when added up to 9-12h after BSO treatment. On the other hand, phosphopeptides derived from milk casein and known to carry iron across cell membranes, markedly potentiated the toxic action of BSO when loaded with iron but were ineffective in sodium form. Kept for 24 h in serum-free medium, the cells underwent a decrease in glutathione content after BSO treatment, but remained viable. However, these BSO-pre-treated cells showed a rapid (90-120 min) decrease in cell viability when incubated with low doses of iron, whereas a great proportion of them remained viable in the presence of higher concentrations of copper and zinc. We also observed in PC 12 cells an early (4-8 h) and transient increase in the expression of ferritin subunits following BSO addition. Taken together these results suggest that BSO-induced glutathione depletion leads to an alteration of cellular iron homeostasis, which may contribute to its toxicity.
Collapse
|
20
|
Dallatu MK, Nwokocha E, Agu N, Myung C, Newaz MA, Garcia G, Truong LD, Oyekan AO. The Role of Hypoxia-Inducible Factor/Prolyl Hydroxylation Pathway in Deoxycorticosterone Acetate/Salt Hypertension in the Rat. ACTA ACUST UNITED AC 2013; 3. [PMID: 26185735 DOI: 10.4172/2167-1095.1000184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
KKidney disease could result from hypertension and ischemia/hypoxia. Key mediators of cellular adaptation to hypoxia are oxygen-sensitive hypoxia inducible factor (HIF)s which are regulated by prolyl-4-hydroxylase domain (PHD)-containing dioxygenases. However, HIF activation can be protective as in ischemic death or promote renal fibrosis in chronic conditions. This study tested the hypothesis that increased HIF-1α consequent to reduced PHD expression contributes to the attendant hypertension and target organ damage in deoxycorticosterone acetate (DOCA)/salt hypertension and that PHD inhibition ameliorates this effect. In rats made hypertensive by DOCA/salt treatment (DOCA 50 mg/kg s/c; 1% NaCl orally), PHD inhibition with dimethyl oxallyl glycine (DMOG) markedly attenuated hypertension (P<0.05), proteinuria (P<0.05) and attendant tubular interstitial changes and glomerular damage (P<0.05). Accompanying these changes, DMOG blunted the increased expression of kidney injury molecule (KIM)-1 (P<0.05), a marker of tubular injury and reversed the decreased expression of nephrin (P<0.05), a marker of glomerular injury. DMOG also decreased collagen I staining (P<0.05), increased serum nitrite (P<0.05) and decreased serum 8-isopostane (P<0.05). However, the increased HIF-1α expression (P<0.01) and decreased PHD2 expression (P<0.05) in DOCA/salt hypertensive rats was not affected by DMOG. These data suggest that reduced PHD2 expression with consequent increase in HIF-1α expression probably results from hypoxia induced by DOCA/salt treatment with the continued hypoxia and reduced PHD2 expression evoking hypertensive renal injury and collagen deposition at later stages. Moreover, a PHD inhibitor exerted a protective effect in DOCA/salt hypertension by mechanisms involving increased nitric oxide production and reduced production of reactive oxygen species.
Collapse
Affiliation(s)
| | | | - Ngozi Agu
- Center for Cardiovascular Diseases, Texas Southern University, USA
| | - Choi Myung
- Center for Cardiovascular Diseases, Texas Southern University, USA
| | | | - Gabriela Garcia
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado, USA
| | - Luan D Truong
- Department of Pathology and Genomic Medicine, The Methodist Hospital, Houston, USA
| | - Adebayo O Oyekan
- Center for Cardiovascular Diseases, Texas Southern University, USA
| |
Collapse
|
21
|
Zhu Q, Liu M, Han WQ, Li PL, Wang Z, Li N. Overexpression of HIF prolyl-hydoxylase-2 transgene in the renal medulla induced a salt sensitive hypertension. J Cell Mol Med 2012; 16:2701-7. [PMID: 22686466 PMCID: PMC3461349 DOI: 10.1111/j.1582-4934.2012.01590.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 06/05/2012] [Indexed: 12/27/2022] Open
Abstract
Renal medullary hypoxia-inducible factor (HIF)-1α and its target genes, such as haem oxygenase and nitric oxide synthase, have been indicated to play an important role in the regulation of sodium excretion and blood pressure. HIF prolyl hydroxylase domain-containing proteins (PHDs) are major enzymes to promote the degradation of HIF-1α. We recently reported that high salt intake suppressed the renal medullary PHD2 expression and thereby activated HIF-1α-mediated gene regulation in the renal medulla in response to high salt. To further define the functional role of renal medullary PHD2 in the regulation of renal adaptation to high salt intake and the longer term control of blood pressure, we transfected PHD2 expression plasmids into the renal medulla in uninephrectomized rats and determined its effects on pressure natriuresis, sodium excretion after salt overloading and the long-term control of arterial pressure after high salt challenge. It was shown that overexpression of PHD2 transgene increased PHD2 levels and decreased HIF-1α levels in the renal medulla, which blunted pressure natriuresis, attenuated sodium excretion, promoted sodium retention and produced salt sensitive hypertension after high salt challenge compared with rats treated with control plasmids. There was no blood pressure change in PHD2-treated rats that were maintained in low salt diet. These results suggested that renal medullary PHD2 is an important regulator in renal adaptation to high salt intake and a deficiency in PHD2-mediated molecular adaptation in response to high salt intake in the renal medulla may represent a pathogenic mechanism producing salt sensitive hypertension.
Collapse
Affiliation(s)
- Qing Zhu
- Department of Pharmacology & Toxicology, Medical College of Virginia, Virginia Commonwealth UniversityRichmond, VA, USA
| | - Miao Liu
- Department of Pharmacology & Toxicology, Medical College of Virginia, Virginia Commonwealth UniversityRichmond, VA, USA
| | - Wei-Qing Han
- Department of Pharmacology & Toxicology, Medical College of Virginia, Virginia Commonwealth UniversityRichmond, VA, USA
| | - Pin-Lan Li
- Department of Pharmacology & Toxicology, Medical College of Virginia, Virginia Commonwealth UniversityRichmond, VA, USA
| | - Zhengchao Wang
- Department of Pharmacology & Toxicology, Medical College of Virginia, Virginia Commonwealth UniversityRichmond, VA, USA
| | - Ningjun Li
- Department of Pharmacology & Toxicology, Medical College of Virginia, Virginia Commonwealth UniversityRichmond, VA, USA
| |
Collapse
|
22
|
Vigani G. Does a similar metabolic reprogramming occur in fe-deficient plant cells and animal tumor cells? FRONTIERS IN PLANT SCIENCE 2012; 3:47. [PMID: 22645588 PMCID: PMC3355750 DOI: 10.3389/fpls.2012.00047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 02/27/2012] [Indexed: 05/20/2023]
Affiliation(s)
- Gianpiero Vigani
- Dipartimento di Produzione Vegetale, Università degli Studi di MilanoMilano, Italy
| |
Collapse
|
23
|
Zhu Q, Wang Z, Xia M, Li PL, Van Tassell BW, Abbate A, Dhaduk R, Li N. Silencing of hypoxia-inducible factor-1α gene attenuated angiotensin II-induced renal injury in Sprague-Dawley rats. Hypertension 2011; 58:657-64. [PMID: 21896938 DOI: 10.1161/hypertensionaha.111.177626] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although it has been shown that upregulation of hypoxia-inducible factor (HIF)-1α is protective in acute ischemic renal injury, long-term overactivation of HIF-1α is implicated to be injurious in chronic kidney diseases. Angiotensin II (Ang II) is a well-known pathogenic factor producing chronic renal injury and has also been shown to increase HIF-1α. However, the contribution of HIF-1α to Ang II-induced renal injury has not been evidenced. The present study tested the hypothesis that HIF-1α mediates Ang II-induced renal injury in Sprague-Dawley rats. Chronic renal injury was induced by Ang II infusion (200 ng/kg per minute) for 2 weeks in uninephrectomized rats. Transfection of vectors expressing HIF-1α small hairpin RNA into the kidneys knocked down HIF-1α gene expression by 70%, blocked Ang II-induced HIF-1α activation, and significantly attenuated Ang II-induced albuminuria, which was accompanied by inhibition of Ang II-induced vascular endothelial growth factor, a known glomerular permeability factor, in glomeruli. HIF-1α small hairpin RNA also significantly improved the glomerular morphological damage induced by Ang II. Furthermore, HIF-1α small hairpin RNA blocked Ang II-induced upregulation of collagen and α-smooth muscle actin in tubulointerstitial region. There was no difference in creatinine clearance and Ang II-induced increase in blood pressure. HIF-1α small hairpin RNA had no effect on Ang II-induced reduction in renal blood flow and hypoxia in the kidneys. These data suggested that overactivation of HIF-1α-mediated gene regulation in the kidney is a pathogenic pathway mediating Ang II-induced chronic renal injuries, and normalization of overactivated HIF-1α may be used as a treatment strategy for chronic kidney damages associated with excessive Ang II.
Collapse
Affiliation(s)
- Qing Zhu
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Cyr AR, Domann FE. The redox basis of epigenetic modifications: from mechanisms to functional consequences. Antioxid Redox Signal 2011; 15:551-89. [PMID: 20919933 PMCID: PMC3118659 DOI: 10.1089/ars.2010.3492] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epigenetic modifications represent mechanisms by which cells may effectively translate multiple signaling inputs into phenotypic outputs. Recent research is revealing that redox metabolism is an increasingly important determinant of epigenetic control that may have significant ramifications in both human health and disease. Numerous characterized epigenetic marks, including histone methylation, acetylation, and ADP-ribosylation, as well as DNA methylation, have direct linkages to central metabolism through critical redox intermediates such as NAD(+), S-adenosyl methionine, and 2-oxoglutarate. Fluctuations in these intermediates caused by both normal and pathologic stimuli may thus have direct effects on epigenetic signaling that lead to measurable changes in gene expression. In this comprehensive review, we present surveys of both metabolism-sensitive epigenetic enzymes and the metabolic processes that may play a role in their regulation. To close, we provide a series of clinically relevant illustrations of the communication between metabolism and epigenetics in the pathogenesis of cardiovascular disease, Alzheimer disease, cancer, and environmental toxicity. We anticipate that the regulatory mechanisms described herein will play an increasingly large role in our understanding of human health and disease as epigenetics research progresses.
Collapse
Affiliation(s)
- Anthony R Cyr
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242-1181, USA
| | | |
Collapse
|
25
|
Sha Y, Marshall HE. S-nitrosylation in the regulation of gene transcription. Biochim Biophys Acta Gen Subj 2011; 1820:701-11. [PMID: 21640163 DOI: 10.1016/j.bbagen.2011.05.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 05/14/2011] [Indexed: 12/30/2022]
Abstract
BACKGROUND Post-translational modification of proteins by S-nitrosylation serves as a major mode of signaling in mammalian cells and a growing body of evidence has shown that transcription factors and their activating pathways are primary targets. S-nitrosylation directly modifies a number of transcription factors, including NF-κB, HIF-1, and AP-1. In addition, S-nitrosylation can indirectly regulate gene transcription by modulating other cell signaling pathways, in particular JNK kinase and ras. SCOPE OF REVIEW The evolution of S-nitrosylation as a signaling mechanism in the regulation of gene transcription, physiological advantages of protein S-nitrosylation in the control of gene transcription, and discussion of the many transcriptional proteins modulated by S-nitrosylation is summarized. MAJOR CONCLUSIONS S-nitrosylation plays a crucial role in the control of mammalian gene transcription with numerous transcription factors regulated by this modification. Many of these proteins serve as immunomodulators, and inducible nitric oxide synthase (iNOS) is regarded as a principal mediatiator of NO-dependent S-nitrosylation. However, additional targets within the nucleus (e.g. histone deacetylases) and alternative mechanisms of S-nitrosylation (e.g. GAPDH-mediated trans-nitrosylation) are thought to play a role in NOS-dependent transcriptional regulation. GENERAL SIGNIFICANCE Derangement of SNO-regulated gene transcription is an important factor in a variety of pathological conditions including neoplasia and sepsis. A better understanding of protein S-nitrosylation as it relates to gene transcription and the physiological mechanisms behind this process is likely to lead to novel therapies for these disorders. This article is part of a Special Issue entitled Regulation of Cellular Processes by S-nitrosylation.
Collapse
Affiliation(s)
- Yonggang Sha
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | | |
Collapse
|
26
|
Olson N, van der Vliet A. Interactions between nitric oxide and hypoxia-inducible factor signaling pathways in inflammatory disease. Nitric Oxide 2011; 25:125-37. [PMID: 21199675 DOI: 10.1016/j.niox.2010.12.010] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 12/22/2010] [Accepted: 12/29/2010] [Indexed: 02/06/2023]
Abstract
Induction and activation of nitric oxide (NO) synthases (NOS) and excessive production of NO are common features of almost all diseases associated with infection and acute or chronic inflammation, although the contribution of NO to the pathophysiology of these diseases is highly multifactorial and often still a matter of controversy. Because of its direct impact on tissue oxygenation and cellular oxygen (O(2)) consumption and re-distribution, the ability of NO to regulate various aspects of hypoxia-induced signaling has received widespread attention. Conditions of tissue hypoxia and the activation of hypoxia-inducible factors (HIF) have been implicated in hypoxia or in cancer biology, but are also being increasingly recognized as important features of acute and chronic inflammation. Thus, the activation of HIF transcription factors has been increasingly implicated in inflammatory diseases, and recent studies have indicated its critical importance in regulating phagocyte function, inflammatory mediator production, and regulation of epithelial integrity and repair processes. Finally, HIF also appears to contribute to important features of tissue fibrosis and epithelial-to-mesenchymal transition, processes that are associated with tissue remodeling in various non-malignant chronic inflammatory disorders. In this review, we briefly summarize the current state of knowledge with respect to the general mechanisms involved in HIF regulation and the impact of NO on HIF activation. Secondly, we will summarize the major recent findings demonstrating a role for HIF signaling in infection, inflammation, and tissue repair and remodeling, and will address the involvement of NO. The growing interest in hypoxia-induced signaling and its relation with NO biology is expected to lead to further insights into the complex roles of NO in acute or chronic inflammatory diseases and may point to the importance of HIF signaling as key feature of NO-mediated events during these disorders.
Collapse
Affiliation(s)
- Nels Olson
- Department of Pathology, College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | | |
Collapse
|
27
|
Borenstein X, Fiszman GL, Blidner A, Vanzulli SI, Jasnis MA. Functional changes in murine mammary cancer cells elicited by CoCl2-induced hypoxia. Nitric Oxide 2010; 23:234-41. [DOI: 10.1016/j.niox.2010.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 06/24/2010] [Accepted: 07/09/2010] [Indexed: 12/18/2022]
|
28
|
Wang Z, Tang L, Zhu Q, Yi F, Zhang F, Li PL, Li N. Hypoxia-inducible factor-1α contributes to the profibrotic action of angiotensin II in renal medullary interstitial cells. Kidney Int 2010; 79:300-10. [PMID: 20881940 DOI: 10.1038/ki.2010.326] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To examine whether hypoxia-inducible factor (HIF)-1α mediates the profibrotic effects of angiotensin II, we treated cultured renal medullary interstitial cells with angiotensin II and found that it increased HIF-1α levels. This was accompanied by a significant upregulation of collagen I/III, the tissue inhibitor of metalloproteinase-1, elevation of the proliferation marker proliferating cell nuclear antigen, and a transdifferentiation marker vimentin. All these effects of angiotensin II were completely blocked by siRNA for HIF-1α but not HIF-2α. Overexpression of a prolyl-hydroxylase domain-containing protein 2 (PHD2) transgene, the predominant renal HIF prolyl-hydroxylase, attenuated the effects of angiotensin II and its gene silencing enhanced the effects of angiotensin II. Removal of hydrogen peroxide eliminated angiotensin II-induced profibrotic effects. A 2-week infusion of rats with angiotensin II increased the expression of HIF-1α and α-smooth muscle actin, another marker of transdifferentiation, in renal medullary interstitial cells in vivo. Thus, our study suggests that HIF-1α mediates angiotensin II-induced profibrotic effects through activation of cell transdifferentiation. We propose that redox regulation of prolyl-PHD2 plays a critical role in angiotensin II-induced activation of HIF-1α in renal cells.
Collapse
Affiliation(s)
- Zhengchao Wang
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Pourgholami MH, Cai ZY, Badar S, Wangoo K, Poruchynsky MS, Morris DL. Potent inhibition of tumoral hypoxia-inducible factor 1alpha by albendazole. BMC Cancer 2010; 10:143. [PMID: 20398289 PMCID: PMC2873385 DOI: 10.1186/1471-2407-10-143] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 04/15/2010] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Emerging reports suggest resistance, increased tumor invasiveness and metastasis arising from treatment with drugs targeting vascular endothelial growth factor (VEGF). It is believed that increased tumoral hypoxia plays a prominent role in the development of these phenomena. Inhibition of tumoral hypoxia inducible factor (HIF-1alpha) is thus becoming an increasingly attractive therapeutic target in the treatment of cancer. We hypothesized that the anti-VEGF effect of albendazole (ABZ) could be mediated through inhibition of tumoral HIF-1alpha. METHOD In vitro, the effects of ABZ on HIF-1alpha levels in human ovarian cancer cells (OVCAR-3) were investigated using hypoxic chamber or desferrioxamine (DFO) induced-hypoxia. In vivo, the effects of ABZ (150 mg/kg, i.p., single dose) on the tumor levels of HIF-1alpha and VEGF protein and mRNA were investigated by western blotting, RT-PCR and real time-PCR. RESULTS In vitro, ABZ inhibited cellular HIF-1alpha protein accumulation resulting from placement of cells under hypoxic chamber or exposure to DFO. In vivo, tumors excised from vehicle treated mice showed high levels of both HIF-1alpha and VEGF. Whereas, tumoral HIF-1alpha and VEGF protein levels were highly suppressed in ABZ treated mice. Tumoral VEGFmRNA (but not HIF-1alphamRNA) was also found to be highly suppressed by ABZ. CONCLUSION These results demonstrate for the first time the effects of an acute dose of ABZ in profoundly suppressing both HIF-1alpha and VEGF within the tumor. This dual inhibition may provide additional value in inhibiting angiogenesis and be at least partially effective in inhibiting tumoral HIF-1alpha surge, tumor invasiveness and metastasis.
Collapse
MESH Headings
- Albendazole/pharmacology
- Angiogenesis Inhibitors/pharmacology
- Animals
- Cell Hypoxia
- Cell Line, Tumor
- Deferoxamine/pharmacology
- Dose-Response Relationship, Drug
- Down-Regulation
- Female
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/prevention & control
- Ovarian Neoplasms/blood supply
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- RNA, Messenger/metabolism
- Time Factors
- Vascular Endothelial Growth Factor A/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Mohammad H Pourgholami
- Cancer Research laboratories, University of New South Wales Department of Surgery, St George Hospital, Sydney, NSW 2217, Australia
| | - Zhao Y Cai
- Cancer Research laboratories, University of New South Wales Department of Surgery, St George Hospital, Sydney, NSW 2217, Australia
| | - Samina Badar
- Cancer Research laboratories, University of New South Wales Department of Surgery, St George Hospital, Sydney, NSW 2217, Australia
| | - Kiran Wangoo
- Cancer Research laboratories, University of New South Wales Department of Surgery, St George Hospital, Sydney, NSW 2217, Australia
| | | | - David L Morris
- Cancer Research laboratories, University of New South Wales Department of Surgery, St George Hospital, Sydney, NSW 2217, Australia
| |
Collapse
|
30
|
HIF prolyl hydroxylase-3 mediates alpha-ketoglutarate-induced apoptosis and tumor suppression. J Mol Med (Berl) 2010; 88:839-49. [PMID: 20383689 DOI: 10.1007/s00109-010-0627-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 03/23/2010] [Accepted: 03/24/2010] [Indexed: 10/19/2022]
Abstract
Many solid tumors consist of large regions of poorly perfused cells, resulting in areas of low oxygen (hypoxia) throughout the cell mass. Cells subjected to hypoxia turn on a complex set of responses that alter their metabolism, rebalance their survival mechanisms, increase their invasive capacity, and stimulate angiogenesis. This allows them to at least temporarily escape the nutrient starvation and cell death resulting from this hostile environment. Accordingly, the hypoxic regions of tumors are often sources of the most aggressive and therapy-resistant cells, and therefore those cells that drive tumorigenesis. The hypoxia inducible factor (HIF) prolyl hydroxylases (PHDs) are enzymes that are functionally inactivated in hypoxia, as they use both oxygen and alpha-ketoglutarate as substrates to hydroxylate target prolyl residues. Although HIF1alpha, the most highly characterized PHD target, orchestrates many of the cellular responses to hypoxia observed in tumors, PHDs themselves have previously been shown to regulate some hypoxia responses, including apoptosis, in a HIF-independent mechanism. We have previously shown that PHDs can be reactivated under hypoxia and that this results in a metabolic defect, both in vitro and in vivo. This led us to investigate whether chronic reactivation of these enzymes may inhibit tumor progression. We show here that esterified alpha-ketoglutarate given daily will induce apoptosis and inhibit tumor growth, in vivo. The effects are independent of HIF1alpha but dependent on the presence of PHD3. These data suggest that PHD3 may be a valid target in vivo for anti-tumor therapy.
Collapse
|
31
|
Wang Z, Zhu Q, Xia M, Li PL, Hinton SJ, Li N. Hypoxia-inducible factor prolyl-hydroxylase 2 senses high-salt intake to increase hypoxia inducible factor 1alpha levels in the renal medulla. Hypertension 2010; 55:1129-36. [PMID: 20308610 DOI: 10.1161/hypertensionaha.109.145896] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
High salt induces the expression of transcription factor hypoxia-inducible factor (HIF) 1alpha and its target genes in the renal medulla, which is an important renal adaptive mechanism to high-salt intake. HIF prolyl-hydroxylase domain-containing proteins (PHDs) have been identified as major enzymes to promote the degradation of HIF-1alpha. PHD2 is the predominant isoform of PHDs in the kidney and is primarily expressed in the renal medulla. The present study tested the hypothesis that PHD2 responds to high salt and mediates high-salt-induced increase in HIF-1alpha levels in the renal medulla. In normotensive rats, high-salt intake (4% NaCl, 10 days) significantly inhibited PHD2 expressions and enzyme activities in the renal medulla. Renal medullary overexpression of the PHD2 transgene significantly decreased HIF-1alpha levels. PHD2 transgene also blocked high-salt-induced activation of HIF-1alpha target genes heme oxygenase 1 and NO synthase 2 in the renal medulla. In Dahl salt-sensitive hypertensive rats, however, high-salt intake did not inhibit the expression and activities of PHD2 in the renal medulla. Correspondingly, renal medullary HIF-1alpha levels were not upregulated by high-salt intake in these rats. After transfection of PHD2 small hairpin RNA, HIF-1alpha and its target genes were significantly upregulated by high-salt intake in Dahl salt-sensitive rats. Overexpression of PHD2 transgene in the renal medulla impaired renal sodium excretion after salt loading. These data suggest that high-salt intake inhibits PHD2 in the renal medulla, thereby upregulating the HIF-1alpha expression. The lack of PHD-mediated response to high salt may represent a pathogenic mechanism producing salt-sensitive hypertension.
Collapse
Affiliation(s)
- Zhengchao Wang
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, PO Box 980613, Richmond, VA 23298, USA
| | | | | | | | | | | |
Collapse
|
32
|
Berchner-Pfannschmidt U, Tug S, Kirsch M, Fandrey J. Oxygen-sensing under the influence of nitric oxide. Cell Signal 2010; 22:349-56. [PMID: 19861159 DOI: 10.1016/j.cellsig.2009.10.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 10/18/2009] [Indexed: 11/27/2022]
Abstract
The transcription factor complex Hypoxia inducible factor 1 (HIF-1) controls the expression of most genes involved in adaptation to hypoxic conditions. Oxygen-dependency is maintained by prolyl- and asparagyl-4-hydroxylases (PHDs/FIH-1) belonging to the superfamily of iron(II) and 2-oxoglutarate dependent dioxygenases. Hydroxylation of the HIF-1alpha subunit by PHDs and FIH-1 leads to its degradation and inactivation. By hydroxylating HIF-1alpha in an oxygen-dependent manner PHDs and FIH-1 function as oxygen-sensing enzymes of HIF signalling. Besides molecular oxygen nitric oxide (NO), a mediator of the inflammatory response, can regulate HIF-1alpha accumulation, HIF-1 activity and HIF-1 dependent target gene expression. Recent studies addressing regulation of HIF-1 by NO revealed a complex and paradoxical picture. Acute exposure of cells to high doses of NO increased HIF-1alpha levels irrespective of the residing oxygen concentration whereas prolonged exposure to NO or low doses of this radical reduced HIF-1alpha accumulation even under hypoxic conditions. Several mechanisms were found to contribute to this paradoxical role of NO in regulating HIF-1. More recent studies support the view that NO regulates HIF-1 by modulating the activity of the oxygen-sensor enzymes PHDs and FIH-1. NO dependent HIF-1alpha accumulation under normoxia was due to direct inhibition of PHDs and FIH-1 most likely by competitive binding of NO to the ferrous iron in the catalytically active center of the enzymes. In contrast, reduced HIF-1alpha accumulation by NO under hypoxia was mainly due to enhanced HIF-1alpha degradation by induction of PHD activity. Three major mechanisms are discussed to be involved in enhancing the PHD activity despite the lack of oxygen: (1) NO mediated induction of a HIF-1 dependent feedback loop leading to newly expressed PHD2 and enhanced nuclear localization, (2) O2-redistribution towards PHDs after inhibition of mitochondrial respiration by NO, (3) reactivation of PHD activity by a NO mediated increase of iron and 2-oxoglutarate and/or involvement of reactive oxygen and/or nitrogen species.
Collapse
|
33
|
Igwe EI, Essler S, Al-Furoukh N, Dehne N, Brüne B. Hypoxic transcription gene profiles under the modulation of nitric oxide in nuclear run on-microarray and proteomics. BMC Genomics 2009; 10:408. [PMID: 19725949 PMCID: PMC2743718 DOI: 10.1186/1471-2164-10-408] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 09/02/2009] [Indexed: 11/10/2022] Open
Abstract
Background Microarray analysis still is a powerful tool to identify new components of the transcriptosome. It helps to increase the knowledge of targets triggered by stress conditions such as hypoxia and nitric oxide. However, analysis of transcriptional regulatory events remain elusive due to the contribution of altered mRNA stability to gene expression patterns as well as changes in the half-life of mRNAs, which influence mRNA expression levels and their turn over rates. To circumvent these problems, we have focused on the analysis of newly transcribed (nascent) mRNAs by nuclear run on (NRO), followed by microarray analysis. Results We identified 196 genes that were significantly regulated by hypoxia, 85 genes affected by nitric oxide and 292 genes induced by the cotreatment of macrophages with both NO and hypoxia. Fourteen genes (Bnip3, Ddit4, Vegfa, Trib3, Atf3, Cdkn1a, Scd1, D4Ertd765e, Sesn2, Son, Nnt, Lst1, Hps6 and Fxyd5) were common to all treatments but with different levels of expression in each group. We observed that 162 transcripts were regulated only when cells were co-treated with hypoxia and NO but not with either treatment alone, pointing to the importance of a crosstalk between hypoxia and NO. In addition, both array and proteomics data supported a consistent repression of hypoxia-regulated targets by NO. Conclusion By eliminating the interference of steady state mRNA in gene expression profiling, we obtained a smaller number of significantly regulated transcripts in our study compared to published microarray data and identified previously unknown hypoxia-induced targets. Gene analysis profiling corroborated the interplay between NO- and hypoxia-induced signaling.
Collapse
Affiliation(s)
- Emeka I Igwe
- Institute of Biochemistry I/ZAFES, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| | | | | | | | | |
Collapse
|
34
|
Lee DW, Rajagopalan S, Siddiq A, Gwiazda R, Yang L, Beal MF, Ratan RR, Andersen JK. Inhibition of prolyl hydroxylase protects against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity: model for the potential involvement of the hypoxia-inducible factor pathway in Parkinson disease. J Biol Chem 2009; 284:29065-76. [PMID: 19679656 DOI: 10.1074/jbc.m109.000638] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hypoxia-inducible factor (HIF) plays an important role in cell survival by regulating iron, antioxidant defense, and mitochondrial function. Pharmacological inhibitors of the iron-dependent enzyme class prolyl hydroxylases (PHD), which target alpha subunits of HIF proteins for degradation, have recently been demonstrated to alleviate neurodegeneration associated with stroke and hypoxic-ischemic injuries. Here we report that inhibition of PHD by 3,4-dihydroxybenzoate (DHB) protects against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigral dopaminergic cell loss and up-regulates HIF-1alpha within these neurons. Elevations in mRNA and protein levels of HIF-dependent genes heme oxygenase-1 (Ho-1) and manganese superoxide dismutase (Mnsod) following DHB pretreatment alone are also maintained in the presence of MPTP. MPTP-induced reductions in ferroportin and elevations in nigral and striatal iron levels were reverted to levels comparable with that of untreated controls with DHB pretreatment. Reductions in pyruvate dehydrogenase mRNA and activity resulting from MPTP were also found to be attenuated by DHB. In vitro, the HIF pathway was activated in N27 cells grown at 3% oxygen treated with either PHD inhibitors or an iron chelator. Concordant with our in vivo data, the MPP(+)-elicited increase in total iron as well as decreases in cell viability were attenuated in the presence of DHB. Taken together, these data suggest that protection against MPTP neurotoxicity may be mediated by alterations in iron homeostasis and defense against oxidative stress and mitochondrial dysfunction brought about by cellular HIF-1alpha induction. This study provides novel data extending the possible therapeutic utility of HIF induction to a Parkinson disease model of neurodegeneration, which may prove beneficial not only in this disorder itself but also in other diseases associated with metal-induced oxidative stress.
Collapse
Affiliation(s)
- Donna W Lee
- Buck Institute for Age Research, Novato, California 94945, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Tug S, Reyes BD, Fandrey J, Berchner-Pfannschmidt U. Non-hypoxic activation of the negative regulatory feedback loop of prolyl-hydroxylase oxygen sensors. Biochem Biophys Res Commun 2009; 384:519-23. [DOI: 10.1016/j.bbrc.2009.05.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 05/05/2009] [Indexed: 11/25/2022]
|
36
|
Balligand JL, Feron O, Dessy C. eNOS activation by physical forces: from short-term regulation of contraction to chronic remodeling of cardiovascular tissues. Physiol Rev 2009; 89:481-534. [PMID: 19342613 DOI: 10.1152/physrev.00042.2007] [Citation(s) in RCA: 324] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide production in response to flow-dependent shear forces applied on the surface of endothelial cells is a fundamental mechanism of regulation of vascular tone, peripheral resistance, and tissue perfusion. This implicates the concerted action of multiple upstream "mechanosensing" molecules reversibly assembled in signalosomes recruiting endothelial nitric oxide synthase (eNOS) in specific subcellular locales, e.g., plasmalemmal caveolae. Subsequent short- and long-term increases in activity and expression of eNOS translate this mechanical stimulus into enhanced NO production and bioactivity through a complex transcriptional and posttranslational regulation of the enzyme, including by shear-stress responsive transcription factors, oxidant stress-dependent regulation of transcript stability, eNOS regulatory phosphorylations, and protein-protein interactions. Notably, eNOS expressed in cardiac myocytes is amenable to a similar regulation in response to stretching of cardiac muscle cells and in part mediates the length-dependent increase in cardiac contraction force. In addition to short-term regulation of contractile tone, eNOS mediates key aspects of cardiac and vascular remodeling, e.g., by orchestrating the mobilization, recruitment, migration, and differentiation of cardiac and vascular progenitor cells, in part by regulating the stabilization and transcriptional activity of hypoxia inducible factor in normoxia and hypoxia. The continuum of the influence of eNOS in cardiovascular biology explains its growing implication in mechanosensitive aspects of integrated physiology, such as the control of blood pressure variability or the modulation of cardiac remodeling in situations of hemodynamic overload.
Collapse
Affiliation(s)
- J-L Balligand
- Unit of Pharmacology and Therapeutics, Université catholique de Louvain, Brussels, Belgium.
| | | | | |
Collapse
|
37
|
Yasuda H. Solid tumor physiology and hypoxia-induced chemo/radio-resistance: novel strategy for cancer therapy: nitric oxide donor as a therapeutic enhancer. Nitric Oxide 2008; 19:205-16. [PMID: 18503779 DOI: 10.1016/j.niox.2008.04.026] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Revised: 04/27/2008] [Accepted: 04/28/2008] [Indexed: 11/30/2022]
Abstract
Hypoxia exists in solid tumor tissues due to abnormal vasculature, vascular insufficiency, treatment or malignancy related anemia, and low intratumor blood flow. Hypoxic status in solid tumor promotes accumulation of hypoxia-inducible factor-1 alpha which is promptly degraded by proteasomal ubiquitination under normoxic conditions. However, under hypoxic conditions, the ubiquitination system for HIF-1 alpha is inhibited by inactivation of prolyl hydroxylase which is responsible for hydroxylation of proline in the oxygen-dependent degradation domain of HIF-1 alpha. HIF-1 alpha is an important transcriptional factor that codes for hundreds of genes involved in erythropoiesis, angiogenesis, induction of glycolytic enzymes in tumor tissues, modulation of cancer cell cycle, cancer proliferation, and cancer metastasis. Hypoxia and accumulation of HIF-1 alpha in solid tumor tissues have been reported to associate with resistance to chemotherapy, radiotherapy, and immunotherapy and poor prognosis. Production of vascular endothelial growth factor (VEGF) in cancer cells is regulated by the activated HIF-1 mediated system. An increase in VEGF levels subsequently induces HIF-1 alpha accumulation and promotes tumor metastasis by angiogenesis. Recently, angiogenesis targeting therapy using humanized VEGF antibody and VEGF receptor tyrosine kinase inhibitors have been used in solid cancer therapy. Nitric oxide (NO) is a unique chemical gaseous molecule that plays a role as a chemical messenger involved in vasodilator, neurotransmitter, and anti-platelet aggregation. In vivo, NO is produced and released from three different isoforms of NO synthase (NOS) and from exogenously administered NO donors. In cancer science, NO has been mainly discussed as an oncogenic molecule over the past decades. However, NO has recently been noted in cancer biology associated with cancer cell apoptosis, cancer cell cycle, cancer progression and metastasis, cancer angiogenesis, cancer chemoprevention, and modulator for chemo/radio/immuno-therapy. The presence and activities of all the three isoforms of NOS and were detected in cancer tissue components such as cancer cells, tumor-associated macrophages, and vascular endothelium. Overexpression of iNOS in cancer tissues has been reported to associate with poor prognosis in patients with cancers. On the other hand, NO donors such as nitroglycerin have been demonstrated to improve the effects of cancer therapy in solid cancers. Nitroglycerin has been used safely for a long time as a potent vasodilator for the treatment of ischemic heart diseases or heart failure. Therefore, we think highly of clinical use of nitroglycerin as a novel cancer therapy in combination with anticancer drugs for improvement of cancer therapeutic levels. In this review article, we demonstrate the unique physiological characteristics of malignant solid tumors, several factors in solid tumors resulting in resistance for cancer therapies, and the effects of NO from NOS or exogenous NO-donating drugs on malignant cells. Furthermore, we refer to promising therapeutic roles of NO and NO-donating drugs for novel treatments in solid tumors.
Collapse
Affiliation(s)
- Hiroyasu Yasuda
- Department of Translational Clinical Oncology, Kyoto University Graduate School of Medicine, Kyoto University Hospital, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
38
|
Martínez-Romero R, Martínez-Lara E, Aguilar-Quesada R, Peralta A, Oliver FJ, Siles E. PARP-1 modulates deferoxamine-induced HIF-1α accumulation through the regulation of nitric oxide and oxidative stress. J Cell Biochem 2008; 104:2248-60. [DOI: 10.1002/jcb.21781] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
39
|
Richardson DR, Kalinowski DS, Lau S, Jansson PJ, Lovejoy DB. Cancer cell iron metabolism and the development of potent iron chelators as anti-tumour agents. Biochim Biophys Acta Gen Subj 2008; 1790:702-17. [PMID: 18485918 DOI: 10.1016/j.bbagen.2008.04.003] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 04/21/2008] [Indexed: 02/08/2023]
Abstract
Cancer contributes to 50% of deaths worldwide and new anti-tumour therapeutics with novel mechanisms of actions are essential to develop. Metabolic inhibitors represent an important class of anti-tumour agents and for many years, agents targeting the nutrient folate were developed for the treatment of cancer. This is because of the critical need of this factor for DNA synthesis. Similarly to folate, Fe is an essential cellular nutrient that is critical for DNA synthesis. However, in contrast to folate, there has been limited effort applied to specifically design and develop Fe chelators for the treatment of cancer. Recently, investigations have led to the generation of novel di-2-pyridylketone thiosemicarbazone (DpT) and 2-benzoylpyridine thiosemicarbazone (BpT) group of ligands that demonstrate marked and selective anti-tumour activity in vitro and also in vivo against a wide spectrum of tumours. Indeed, administration of these compounds to mice did not induce whole body Fe-depletion or disturbances in haematological or biochemical indices due to the very low doses required. The mechanism of action of these ligands includes alterations in expression of molecules involved in cell cycle control and metastasis suppression, as well as the generation of redox-active Fe complexes. This review examines the alterations in Fe metabolism in tumour cells and the systematic development of novel aroylhydrazone and thiosemicarbazone Fe chelators for cancer treatment.
Collapse
Affiliation(s)
- D R Richardson
- Department of Pathology and Bosch Institute, Iron Metabolism and Chelation Program, Blackburn Building, University of Sydney, Sydney, New South Wales, 2006, Australia.
| | | | | | | | | |
Collapse
|
40
|
Groenman FA, Rutter M, Wang J, Caniggia I, Tibboel D, Post M. Effect of chemical stabilizers of hypoxia-inducible factors on early lung development. Am J Physiol Lung Cell Mol Physiol 2007; 293:L557-67. [PMID: 17545484 DOI: 10.1152/ajplung.00486.2006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Low oxygen stimulates pulmonary vascular development and airway branching and involves hypoxia-inducible factor (HIF). HIF is stable and initiates expression of angiogenic factors under hypoxia, whereas normoxia triggers hydroxylation of the HIF-1α subunit by prolyl hydroxylases (PHDs) and subsequent degradation. Herein, we investigated whether chemical stabilization of HIF-1α under normoxic (20% O2) conditions would stimulate vascular growth and branching morphogenesis in early lung explants. Tie2-LacZ (endothelial LacZ marker) mice were used for visualization of the vasculature. Embryonic day 11.5 (E11.5) lung buds were dissected and cultured in 20% O2 in the absence or presence of cobalt chloride (CoCl2, a hypoxia mimetic), dimethyloxalylglycine (DMOG; a nonspecific inhibitor of PHDs), or desferrioxamine (DFO; an iron chelator). Vascularization was assessed by X-gal staining, and terminal buds were counted. The fine vascular network surrounding the developing lung buds seen in control explants disappeared in CoCl2- and DFO-treated explants. Also, epithelial branching was reduced in the explants treated with CoCl2 and DFO. In contrast, DMOG inhibited branching but stimulated vascularization. Both DFO and DMOG increased nuclear HIF-1α protein levels, whereas CoCl2 had no effect. Since HIF-1α induces VEGF expression, the effect of SU-5416, a potent VEGF receptor (VEGFR) blocker, on early lung development was also investigated. Inhibition of VEGFR2 signaling in explants maintained under hypoxic (2% O2) conditions completely abolished vascularization and slightly decreased epithelial branching. Taken together, the data suggest that DMOG stabilization of HIF-1α during early development leads to a hypervascular lung and that airway branching proceeds without the vasculature, albeit at a slower rate.
Collapse
Affiliation(s)
- Freek A Groenman
- CIHR Group in Lung Development, Hospital for Sick Children Research Institute, Department of Pediatrics and Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
41
|
Sumbayev VV, Yasinska IM. Mechanisms of hypoxic signal transduction regulated by reactive nitrogen species. Scand J Immunol 2007; 65:399-406. [PMID: 17444949 DOI: 10.1111/j.1365-3083.2007.01919.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Recent reports devoted to the field of oxygen sensing outline that signalling molecules such as nitric oxide/nitric oxide derived species as well as cytokines and other inflammatory mediators participate in hypoxic signal transduction. In the present review, we summarize the current knowledge about the role of nitric oxide and reactive nitrogen species (RNS) derived from it in hypoxic signal transduction and particularly in accumulation/de-accumulation of hypoxia inducible factor 1 alpha (HIF-1alpha) protein, which is critical not only for cellular adaptation to low oxygen availability but also for generation of inflammatory and innate immune responses. After brief description of nitric oxide and other RNS as multifunctional messengers we analyse and discuss the RNS-dependent accumulation of HIF-1alpha protein under normoxia followed by discussion of the mechanisms of nitric oxide (NO)-dependent enzyme-regulated degradation of HIF-1alpha protein under low oxygen availability.
Collapse
Affiliation(s)
- V V Sumbayev
- Medway School of Pharmacy, University of Kent and Greenwich, Kent, UK.
| | | |
Collapse
|
42
|
Kim BM, Choi JY, Kim YJ, Woo HD, Chung HW. Desferrioxamine (DFX) has genotoxic effects on cultured human lymphocytes and induces the p53-mediated damage response. Toxicology 2007; 229:226-35. [PMID: 17147976 DOI: 10.1016/j.tox.2006.10.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 10/18/2006] [Accepted: 10/25/2006] [Indexed: 11/20/2022]
Abstract
Desferrioxamine (DFX), which is an iron chelator, mimics hypoxia by enhancing HIF1-alpha accumulation and upregulating inflammatory mediators. DFX is usually beneficial, with preventive effects related primarily to its ability to scavenge reactive oxygen species. However, toxic effects on skeletal and ocular organs have been reported. The cytokinesis block micronucleus test and alkaline single-cell gel (Comet) assay were used to evaluate the genotoxic effects of DFX on human blood lymphocytes. Cultured human lymphocytes treated with 130microM DFX for various periods of time showed significant differences in the incidence of micronucleated binucleate cells, as well as in the length and moment of the comet tail. Western blot analysis using antibodies to proteins involved in the p53-mediated response to DNA damage revealed that p53 was accumulated and DNA damage checkpoint kinases were activated in lymphocytes treated with DFX. On the other hand, the p53 downstream target proteins p21 and bax were not affected, which indicates that DFX does not promote the transactivational activity of p53. Apoptosis assays demonstrated DFX-induced apoptosis of lymphocytes via the caspase cascade. The observed increase in the sub-G1 fraction and enhanced caspase-3 activity indicate that DFX can promote apoptosis in human lymphocytes, and these results were confirmed by protein immunoblot analysis. As apoptotic cell death is preceded by the collapse of the mitochondrial membrane potential, we also measured the mitochondrial membrane potential (Deltapsi(m)) using DiOC6, which is a fluorescent membrane potential probe. The fluorescence intensity of DiOC6 in lymphocytes was significantly reduced in a time-dependent manner after DFX treatment. Taken together, these results indicate that DFX activates p53-mediated checkpoint signals and induces apoptosis via mitochondrial damage in human peripheral blood lymphocytes.
Collapse
Affiliation(s)
- Byeong Mo Kim
- School of Public Health and Institute of Health and Environment, Seoul National University, Seoul 110-460, South Korea
| | | | | | | | | |
Collapse
|
43
|
Abstract
Reactive oxygen species (ROS) have long been considered only as cyto- and genotoxic. However, there is now compelling evidence that ROS also act as second messengers in response to various stimuli, such as growth factors, hormones and cytokines. The hypoxia-inducible transcription factor (HIF) is a master regulator of oxygen-sensitive gene expression. More recently, HIF has also been shown to respond to non-hypoxic stimuli. Interestingly, recent reports indicate that ROS regulate HIF stability and transcriptional activity in well-oxygenated cells, as well as under hypoxic conditions. Consequently, ROS appear to be key players in regulating HIF-dependent pathways under both normal and pathological circumstances. This review summarizes the current understanding of the role of ROS in the regulation of the mammalian HIF system.
Collapse
Affiliation(s)
- Jacques Pouysségur
- Institute of Signaling, Developmental Biology and Cancer Research, CNRS UMR 6543, Centre A. Lacassagne, 33 Avenue Valombrose, F-06189 Nice, France
| | | |
Collapse
|
44
|
Abstract
Adaptation to low oxygen tension (hypoxia) in cells and tissues leads to the transcriptional induction of a series of genes that participate in angiogenesis, iron metabolism, glucose metabolism, and cell proliferation/survival. The primary factor mediating this response is the hypoxia-inducible factor-1 (HIF-1), an oxygen-sensitive transcriptional activator. HIF-1 consists of a constitutively expressed subunit HIF-1beta and an oxygen-regulated subunit HIF-1alpha (or its paralogs HIF-2alpha and HIF-3alpha). The stability and activity of the alpha subunit of HIF are regulated by its post-translational modifications such as hydroxylation, ubiquitination, acetylation, and phosphorylation. In normoxia, hydroxylation of two proline residues and acetylation of a lysine residue at the oxygen-dependent degradation domain (ODDD) of HIF-1alpha trigger its association with pVHL E3 ligase complex, leading to HIF-1alpha degradation via ubiquitin-proteasome pathway. In hypoxia, the HIF-1alpha subunit becomes stable and interacts with coactivators such as cAMP response element-binding protein binding protein/p300 and regulates the expression of target genes. Overexpression of HIF-1 has been found in various cancers, and targeting HIF-1 could represent a novel approach to cancer therapy.
Collapse
Affiliation(s)
- Qingdong Ke
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | | |
Collapse
|
45
|
Berchner-Pfannschmidt U, Yamac H, Trinidad B, Fandrey J. Nitric oxide modulates oxygen sensing by hypoxia-inducible factor 1-dependent induction of prolyl hydroxylase 2. J Biol Chem 2006; 282:1788-96. [PMID: 17060326 DOI: 10.1074/jbc.m607065200] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The transcription factor complex hypoxia-inducible factor 1 (HIF-1) plays a crucial role in cellular adaptation to low oxygen availability. O(2)-dependent HIF prolyl hydroxylases (PHDs) modify HIF-1alpha, which is sent to proteasomal degradation under normoxia. Reduced activity of PHDs under hypoxia allows stabilization of HIF-1alpha and induction of HIF-1 target gene expression. Like hypoxia, nitric oxide (NO) was found to inhibit normoxic PHD activity leading to HIF-1alpha accumulation. In contrast under hypoxia, NO reduced HIF-1alpha levels due to enhanced PHD activity. Herein, we studied the role of NO in regulating PHD expression and the consequences thereof for HIF-1alpha degradation. We report a biphasic response of HIF-1alpha and PHDs to NO treatment both under normoxia and hypoxia. In the early phase, NO inhibits PHD activity that leads to HIF-1alpha accumulation, whereas in the late phase, increased PHD levels reduce HIF-1alpha. NO induces expression of PHD2 and -3 mRNA and protein under normoxia and hypoxia in a strictly HIF-1-dependent manner. NO-treated cells with elevated PHD levels displayed delayed HIF-1alpha accumulation and accelerated degradation of HIF-1alpha upon reoxygenation. Subsequent suppression of PHD2 and -3 expression using small interfering RNA revealed that PHD2 was exclusively responsible for regulating HIF-1alpha degradation under NO treatment. In conclusion, we identified the induction of PHD2 as an underlying mechanism of NO-induced degradation of HIF-1alpha.
Collapse
|
46
|
Abstract
AbstractSufficient oxygen supply is crucial for the development and physiology of mammalian cells and tissues. When simple diffusion of oxygen becomes inadequate to provide the necessary flow of substrate, evolution has provided cells with tools to detect and respond to hypoxia by upregulating the expression of specific genes, which allows an adaptation to hypoxia-induced stress conditions. The modulation of cell signaling by hypoxia is an emerging area of research that provides insight into the orchestration of cell adaptation to a changing environment. Cell signaling and adaptation processes are often accompanied by rapid and/or chronic remodeling of membrane lipids by activated lipases. This review highlights the bi-directional relation between hypoxia and lipid signaling mechanisms.
Collapse
Affiliation(s)
- Andrea Huwiler
- Pharmazentrum Frankfurt, Klinikum der Johann-Wolfgang-Goethe-Universität, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | | |
Collapse
|
47
|
Semenza GL. Development of novel therapeutic strategies that target HIF-1. Expert Opin Ther Targets 2006; 10:267-80. [PMID: 16548775 DOI: 10.1517/14728222.10.2.267] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Activity of hypoxia-inducible factor 1 (HIF-1) is increased in human cancers as a result of the physiological induction of HIF-1alpha in response to intratumoural hypoxia and as a result of genetic alterations that activate oncogenes and inactivate tumour suppressor genes. In many cancer types, increased HIF-1alpha expression is associated with increased risk of patient mortality. HIF-1 plays important roles in every major aspect of cancer biology through the transcriptional regulation of hundreds of genes. The efficacy of many novel anticancer agents that target signal transduction pathways may be due in part to their indirect inhibition of HIF-1. Several novel compounds with anticancer activity have been shown to inhibit HIF-1 and may be useful as components of individualised multidrug therapeutic regimens chosen based on molecular analyses of tumour biopsies.
Collapse
Affiliation(s)
- Gregg L Semenza
- Vascular Biology Program of the Johns Hopkins Institute for Cell Engineering, Broadway Research Building, Suite 671, 733 North Broadway, Baltimore, MD 21205, USA.
| |
Collapse
|
48
|
Sumbayev VV, Yasinska IM. Peroxynitrite as an alternative donor of oxygen in HIF-1alpha proline hydroxylation under low oxygen availability. Free Radic Res 2006; 40:631-5. [PMID: 16753841 DOI: 10.1080/10715760600649648] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In the last years, nitric oxide (NO) mediated signaling became an integral component in understanding physiological and pathophysiological processes of cell proliferation, death or cellular adaptation. Among other activities, NO affects multiple targets that allow regulation of gene expression. Recently, NO was found to attenuate accumulation of hypoxia inducible factor-1alpha (HIF-1alpha) under hypoxic conditions because of several mechanisms: redistribution of oxygen toward non-respiratory oxygen-dependent targets (like HIF-1alpha proline hydroxylases--PHDs, which perform hydroxylation of Pro402/564 of HIF-1alpha leading to its proteasomal degradation); in addition, peroxynitrite formed during interactions between NO and mitochondria derived superoxide leads to an increase in cytosolic iron/2-oxoglutarate (2-OG), which required for PHD activation. Here, we propose a hypothesis that peroxynitrite, formed in the cells upon exposure to NO under low oxygen availability, serves as an alternative donor of oxygen for activated PHDs so they can perform HIF-1alpha proline hydroxylation to de-accumulate the protein.
Collapse
Affiliation(s)
- Vadim V Sumbayev
- Department of Biochemistry, Mechnikov Odessa National University, Odessa, Ukraine.
| | | |
Collapse
|
49
|
Li N, Yi F, Sundy CM, Chen L, Hilliker ML, Donley DK, Muldoon DB, Li PL. Expression and actions of HIF prolyl-4-hydroxylase in the rat kidneys. Am J Physiol Renal Physiol 2006; 292:F207-16. [PMID: 16885149 DOI: 10.1152/ajprenal.00457.2005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypoxia inducible factor (HIF) prolyl-4-hydroxylase domain-containing proteins (PHDs) promote the degradation of HIF-1alpha. Because HIF-1alpha is highly expressed in the renal medulla and HIF-1alpha-targeted genes such as nitric oxide synthase, cyclooxygenase, and heme oxygenase are important in the regulation of renal medullary function, we hypothesized that PHD regulates HIF-1alpha levels in the renal medulla and, thereby, participates in the control of renal Na(+) excretion. Using real-time RT-PCR, Western blot, and immunohistochemical analyses, we have demonstrated that all three isoforms of PHD, PHD1, PHD2, and PHD3, are expressed in the kidneys and that PHD2 is the most abundant isoform. Regionally, all PHDs exhibited much higher levels in renal medulla than cortex. A furosemide-induced increase in renal medullary tissue Po(2) significantly decreased PHD levels in renal medulla, whereas hypoxia significantly increased mRNA levels of PHDs in cultured renal medullary interstitial cells, indicating that O(2) regulates PHDs. Functionally, the PHD inhibitor l-mimosine (l-Mim, 50 mg x kg(-1) x day(-1) i.p. for 2 wk) substantially upregulated HIF-1alpha expression in the kidneys, especially in the renal medulla, and remarkably enhanced (by >80%) the natriuretic response to renal perfusion pressure in Sprague-Dawley rats. Inhibition of HIF transcriptional activity by renal medullary transfection of HIF-1alpha decoy oligodeoxynucleotides attenuated l-Mim-induced enhancement of pressure natriuresis, which confirmed that HIF-1alpha mediated the effect of l-Mim. These results indicate that highly expressed PHDs in the renal medulla make an important contribution to the control of renal Na(+) excretion through regulation of HIF-1alpha and its targeted genes.
Collapse
Affiliation(s)
- Ningjun Li
- Dept. of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth Univ., PO Box 980613, Richmond, VA 23298, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Hirota K, Semenza GL. Regulation of angiogenesis by hypoxia-inducible factor 1. Crit Rev Oncol Hematol 2006; 59:15-26. [PMID: 16716598 DOI: 10.1016/j.critrevonc.2005.12.003] [Citation(s) in RCA: 343] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 12/24/2005] [Accepted: 12/24/2005] [Indexed: 12/22/2022] Open
Abstract
Hypoxia is an imbalance between oxygen supply and demand that occurs in cancer and in ischemic cardiovascular disease. Hypoxia-inducible factor 1 (HIF-1) was originally identified as the transcription factor that mediates hypoxia-induced erythropoietin expression. More recently, the delineation of molecular mechanisms of angiogenesis has revealed a critical role for HIF-1 in the regulation of angiogenic growth factors. In this review, we discuss the role of HIF-1 in developmental, adaptive and pathological angiogenesis. In addition, potential therapeutic interventions involving modulation of HIF-1 activity in ischemic cardiovascular disease and cancer will be discussed.
Collapse
Affiliation(s)
- Kiichi Hirota
- Department of Anesthesia, Kyoto University Hospital, Kyoto 606-8507, Japan
| | | |
Collapse
|