1
|
El-Gamal R, Zalata A, Mazroa SA, Comhaire F, Gamal A, Shaker OG, Hazem NM. Evaluation of circANKLE2 & circL3MBTL4 -RNAs Expression in Fertile and Infertile Men. Biochem Genet 2024:10.1007/s10528-024-10963-7. [PMID: 39580773 DOI: 10.1007/s10528-024-10963-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/28/2024] [Indexed: 11/26/2024]
Abstract
There are many factors that affect male fertility such as chronic health problems, psychological factors, and illnesses. Male infertility can be caused abnormal sperm function, low sperm production or even blockages that prevent the delivery of sperm. The aim of the work is to determine the expression pattern of the circularANKLE2 and circularL3MBTL4 RNA in spermatozoa from fertile and infertile males, as well as the relationship between these circRNA transcripts and sperm quality. The study involved two groups: a control group comprising 40 healthy, fertile men and an experimental group of 90 infertile males. Semen samples were collected and processed for analysis using computer-assisted semen analysis. Following RNA extraction from sperm samples, reverse transcription and real-time PCR were performed to assess the levels of circular ANKLE2 and circular L3MBTL4 RNA. There was a significant up-regulation of circularANKLE2 RNA expression (p < 0.05), and a significant down-regulation of circularL3MBTL4 RNA expression (p < 0.05) in asthenozoospermia, astheno-teratozoospermia, and oligo-astheno-teratozoospermia groups, as well as, in immature spermatozoa separated from normozoospermic samples. Moreover, the altered expression of both circular L3MBTL4 and circular ANKLE2 RNA showed significant correlations with the associated sperm parameters. In conclusion, the expression of circular ANKLE2 RNA and circular L3MBTL4 RNA may play a significant role in male fertility and could serve as potential biomarkers of sperm quality, warranting further investigation for their application in infertility diagnostics.
Collapse
Affiliation(s)
- Randa El-Gamal
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
- Faculty of Medicine, Medical Experimental Research Center, Mansoura University, Mansoura, 35516, Egypt
- Department of Medical Biochemistry, Faculty of Medicine, Horus University, New Damietta, Egypt
- Department of Medical Biochemistry, Faculty of Medicine, New Mansoura University, Mansoura, Egypt
| | - Adel Zalata
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Delta University for Science and Technology, New Mansoura, Egypt
| | - Shireen A Mazroa
- Histology and Cell Biology Department, Mansoura University, Mansoura, 35516, Egypt
- Histology Department, Faculty of Medicine, Delta University for Science and Technology, New Mansoura, Egypt
| | - Frank Comhaire
- Emeritus Professor of Andrology, Ghent University Hospital, Ghent, Belgium
| | - Ahmed Gamal
- Andrology, Sexology and STIs, Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Olfat G Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Noha M Hazem
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
- Faculty of Medicine, Medical Experimental Research Center, Mansoura University, Mansoura, 35516, Egypt
- Pathological Sciences Department- MBBS Program, Fakeeh College for Medical Sciences, 21461, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Master-Key Regulators of Sex Determination in Fish and Other Vertebrates-A Review. Int J Mol Sci 2023; 24:ijms24032468. [PMID: 36768795 PMCID: PMC9917144 DOI: 10.3390/ijms24032468] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
In vertebrates, mainly single genes with an allele ratio of 1:1 trigger sex-determination (SD), leading to initial equal sex-ratios. Such genes are designated master-key regulators (MKRs) and are frequently associated with DNA structural variations, such as copy-number variation and null-alleles. Most MKR knowledge comes from fish, especially cichlids, which serve as a genetic model for SD. We list 14 MKRs, of which dmrt1 has been identified in taxonomically distant species such as birds and fish. The identification of MKRs with known involvement in SD, such as amh and fshr, indicates that a common network drives SD. We illustrate a network that affects estrogen/androgen equilibrium, suggesting that structural variation may exert over-expression of the gene and thus form an MKR. However, the reason why certain factors constitute MKRs, whereas others do not is unclear. The limited number of conserved MKRs suggests that their heterologous sequences could be used as targets in future searches for MKRs of additional species. Sex-specific mortality, sex reversal, the role of temperature in SD, and multigenic SD are examined, claiming that these phenomena are often consequences of artificial hybridization. We discuss the essentiality of taxonomic authentication of species to validate purebred origin before MKR searches.
Collapse
|
3
|
Omolaoye TS, Hachim MY, du Plessis SS. Using publicly available transcriptomic data to identify mechanistic and diagnostic biomarkers in azoospermia and overall male infertility. Sci Rep 2022; 12:2584. [PMID: 35173218 PMCID: PMC8850557 DOI: 10.1038/s41598-022-06476-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 01/28/2022] [Indexed: 12/23/2022] Open
Abstract
Azoospermia, which is the absence of spermatozoa in an ejaculate occurring due to defects in sperm production, or the obstruction of the reproductive tract, affects about 1% of all men and is prevalent in up to 10–15% of infertile males. Conventional semen analysis remains the gold standard for diagnosing and treating male infertility; however, advances in molecular biology and bioinformatics now highlight the insufficiency thereof. Hence, the need to widen the scope of investigating the aetiology of male infertility stands pertinent. The current study aimed to identify common differentially expressed genes (DEGs) that might serve as potential biomarkers for non-obstructive azoospermia (NOA) and overall male infertility. DEGs across different datasets of transcriptomic profiling of testis from human patients with different causes of infertility/ impaired spermatogenesis and/or azoospermia were explored using the gene expression omnibus (GEO) database. Following the search using the GEOquery, 30 datasets were available, with 5 meeting the inclusion criteria. The DEGs for datasets were identified using limma R packages through the GEO2R tool. The annotated genes of the probes in each dataset were intersected with DEGs from all other datasets. Enriched Ontology Clustering for the identified genes was performed using Metascape to explore the possible connection or interaction between the genes. Twenty-five DEGs were shared between most of the datasets, which might indicate their role in the pathogenesis of male infertility. Of the 25 DEGs, eight genes (THEG, SPATA20, ROPN1L, GSTF1, TSSK1B, CABS1, ADAD1, RIMBP3) are either involved in the overall spermatogenic processes or at specific phases of spermatogenesis. We hypothesize that alteration in the expression of these genes leads to impaired spermatogenesis and, ultimately, male infertility. Thus, these genes can be used as potential biomarkers for the early detection of NOA.
Collapse
Affiliation(s)
- Temidayo S Omolaoye
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Mahmood Yaseen Hachim
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE.
| | - Stefan S du Plessis
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE.,Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
4
|
BAF-L Modulates Histone-to-Protamine Transition during Spermiogenesis. Int J Mol Sci 2022; 23:ijms23041985. [PMID: 35216101 PMCID: PMC8877947 DOI: 10.3390/ijms23041985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 01/03/2023] Open
Abstract
Maturing male germ cells undergo a unique developmental process in spermiogenesis that replaces nucleosomal histones with protamines, the process of which is critical for testicular development and male fertility. The progress of this exchange is regulated by complex mechanisms that are not well understood. Now, with mouse genetic models, we show that barrier-to-autointegration factor-like protein (BAF-L) plays an important role in spermiogenesis and spermatozoal function. BAF-L is a male germ cell marker, whose expression is highly associated with the maturation of male germ cells. The genetic deletion of BAF-L in mice impairs the progress of spermiogenesis and thus male fertility. This effect on male fertility is a consequence of the disturbed homeostasis of histones and protamines in maturing male germ cells, in which the interactions between BAF-L and histones/protamines are implicated. Finally, we show that reduced testicular expression of BAF-L represents a risk factor of human male infertility.
Collapse
|
5
|
Curzon AY, Shirak A, Benet-Perlberg A, Naor A, Low-Tanne SI, Sharkawi H, Ron M, Seroussi E. Gene Variant of Barrier to Autointegration Factor 2 ( Banf2w) Is Concordant with Female Determination in Cichlids. Int J Mol Sci 2021; 22:7073. [PMID: 34209244 PMCID: PMC8268354 DOI: 10.3390/ijms22137073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 11/15/2022] Open
Abstract
Oreochromis fishes exhibit variability of sex-determination (SD) genes whose characterization contributes to understanding of the sex differentiation network, and to effective tilapia farming, which requires all-male culture. However, O. niloticus (On) amh is the only master-key regulator (MKR) of SD that has been mapped (XY/XX SD-system on LG23). In O. aureus (Oa), LG3 controls a WZ/ZZ SD-system that has recently been delimited to 9.2 Mbp, with an embedded interval rich with female-specific variation, harboring two paics genes and banf2. Developing genetic markers within this interval and using a hybrid Oa stock that demonstrates no recombination repression in LG3, we mapped the critical SD region to 235 Kbp on the orthologous On physical map (p < 1.5 × 10-26). DNA-seq assembly and peak-proportion analysis of variation based on Sanger chromatograms allowed the characterization of copy-number variation (CNV) of banf2. Oa males had three exons capable of encoding 90-amino-acid polypeptides, yet in Oa females, we found an extra copy with an 89-amino-acid polypeptide and three non-conservative amino acid substitutions, designated as banf2w. CNV analysis suggested the existence of two to five copies of banf2 in diploidic Cichlidae. Disrupting the Hardy-Weinberg equilibrium (p < 4.2 × 10-3), banf2w was concordant with female determination in Oa and in three cichlids with LG3 WZ/ZZ SD-systems (O. tanganicae, O. hornorum and Pelmatolapia mariae). Furthermore, exclusive RNA-seq expression in Oa females strengthened the candidacy of banf2w as the long-sought LG3 SD MKR. As banf genes mediate nuclear assembly, chromatin organization, gene expression and gonad development, banf2w may play a fundamental role inducing female nucleus formation that is essential for WZ/ZZ SD.
Collapse
Affiliation(s)
- Arie Yehuda Curzon
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 7528809, Israel; (A.Y.C.); (A.S.); (M.R.)
- Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Andrey Shirak
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 7528809, Israel; (A.Y.C.); (A.S.); (M.R.)
| | - Ayana Benet-Perlberg
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Alon Naor
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Shai Israel Low-Tanne
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Haled Sharkawi
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Micha Ron
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 7528809, Israel; (A.Y.C.); (A.S.); (M.R.)
| | - Eyal Seroussi
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 7528809, Israel; (A.Y.C.); (A.S.); (M.R.)
| |
Collapse
|
6
|
Niu CM, Xia MM, Zhong YN, Zheng Y. Mus musculus Barrier-To-Autointegration Factor 2 (Banf2) is Not Essential for Spermatogenesis or Fertility. Cytogenet Genome Res 2021; 161:167-177. [PMID: 33951625 DOI: 10.1159/000513850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 12/16/2020] [Indexed: 11/19/2022] Open
Abstract
The barrier-to-autointegration factor (BAF) is widely expressed in most human tissues and plays a critical role in chromatin organization, nuclear envelope assembly, gonadal development, and embryonic stem cell self-renewal. Complete loss of BAF has been shown to lead to embryonic lethality and gonadal defects. The BAF paralog, namely, barrier-to-autointegration factor 2 (BANF2), exhibits a testis-predominant expression pattern in both humans and mice. Unlike BAF, it may cause isolated male infertility. Therefore, we used the CRISPR/Cas9 system to generate Banf2-knockout mice to further study its function in spermatogenesis. Unexpectedly, knockout mice did not show any detectable abnormalities in histological structure of the testis, epididymis, ovary, and other tissues, and exhibited normal fertility, indicating that Banf2 is not essential for mouse spermatogenesis and fertility.
Collapse
Affiliation(s)
- Chang-Min Niu
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental and Translational Noncoding RNA Research, Yangzhou, China
| | - Meng-Meng Xia
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental and Translational Noncoding RNA Research, Yangzhou, China
| | - Ya-Nan Zhong
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental and Translational Noncoding RNA Research, Yangzhou, China
| | - Ying Zheng
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental and Translational Noncoding RNA Research, Yangzhou, China
| |
Collapse
|
7
|
Sears RM, Roux KJ. Diverse cellular functions of barrier-to-autointegration factor and its roles in disease. J Cell Sci 2020; 133:133/16/jcs246546. [PMID: 32817163 DOI: 10.1242/jcs.246546] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Barrier-to-autointegration factor (BAF; encoded by BANF1) is a small highly conserved, ubiquitous and self-associating protein that coordinates with numerous binding partners to accomplish several key cellular processes. By interacting with double-stranded DNA, histones and various other nuclear proteins, including those enriched at the nuclear envelope, BAF appears to be essential for replicating cells to protect the genome and enable cell division. Cellular processes, such as innate immunity, post-mitotic nuclear reformation, repair of interphase nuclear envelope rupture, genomic regulation, and the DNA damage and repair response have all been shown to depend on BAF. This Review focuses on the regulation of the numerous interactions of BAF, which underlie the mechanisms by which BAF accomplishes its essential cellular functions. We will also discuss how perturbation of BAF function may contribute to human disease.
Collapse
Affiliation(s)
- Rhiannon M Sears
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD 57104, USA.,Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Kyle J Roux
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD 57104, USA .,Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57069, USA
| |
Collapse
|
8
|
Pini T, Parks J, Russ J, Dzieciatkowska M, Hansen KC, Schoolcraft WB, Katz-Jaffe M. Obesity significantly alters the human sperm proteome, with potential implications for fertility. J Assist Reprod Genet 2020; 37:777-787. [PMID: 32026202 PMCID: PMC7183029 DOI: 10.1007/s10815-020-01707-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/30/2020] [Indexed: 11/25/2022] Open
Abstract
PURPOSE In men, obesity may lead to poor semen parameters and reduced fertility. However, the causative links between obesity and male infertility are not totally clear, particularly on a molecular level. As such, we investigated how obesity modifies the human sperm proteome, to elucidate any important implications for fertility. METHODS Sperm protein lysates from 5 men per treatment, classified as a healthy weight (body mass index (BMI) ≤ 25 kg/m2) or obese (BMI ≥ 30 kg/m2), were FASP digested, submitted to liquid chromatography tandem mass spectrometry, and compared by label-free quantification. Findings were confirmed for several proteins by qualitative immunofluorescence and a quantitative protein immunoassay. RESULTS A total of 2034 proteins were confidently identified, with 24 proteins being significantly (p < 0.05) less abundant (fold change < 0.05) in the spermatozoa of obese men and 3 being more abundant (fold change > 1.5) compared with healthy weight controls. Proteins with altered abundance were involved in a variety of biological processes, including oxidative stress (GSS, NDUFS2, JAGN1, USP14, ADH5), inflammation (SUGT1, LTA4H), translation (EIF3F, EIF4A2, CSNK1G1), DNA damage repair (UBEA4), and sperm function (NAPA, RNPEP, BANF2). CONCLUSION These results suggest that oxidative stress and inflammation are closely tied to reproductive dysfunction in obese men. These processes likely impact protein translation and folding during spermatogenesis, leading to poor sperm function and subfertility. The observation of these changes in obese men with no overt andrological diagnosis further suggests that traditional clinical semen assessments fail to detect important biochemical changes in spermatozoa which may compromise fertility.
Collapse
Affiliation(s)
- T Pini
- Colorado Center for Reproductive Medicine, Lone Tree, CO, 80124, USA.
| | - J Parks
- Colorado Center for Reproductive Medicine, Lone Tree, CO, 80124, USA
| | - J Russ
- Colorado Center for Reproductive Medicine, Lone Tree, CO, 80124, USA
| | - M Dzieciatkowska
- School of Medicine Biological Mass Spectrometry Facility, University of Colorado, Aurora, CO, 80045, USA
| | - K C Hansen
- School of Medicine Biological Mass Spectrometry Facility, University of Colorado, Aurora, CO, 80045, USA
| | - W B Schoolcraft
- Colorado Center for Reproductive Medicine, Lone Tree, CO, 80124, USA
| | - M Katz-Jaffe
- Colorado Center for Reproductive Medicine, Lone Tree, CO, 80124, USA
| |
Collapse
|
9
|
Paci M, Elkhatib R, Longepied G, Bourgeois P, Ray PF, Levy N, Mitchell MJ, Metzler-Guillemain C. The involvement of the nuclear lamina in human and rodent spermiogenesis: a systematic review. Basic Clin Androl 2018; 28:7. [PMID: 29946470 PMCID: PMC6008938 DOI: 10.1186/s12610-018-0072-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/19/2018] [Indexed: 12/11/2022] Open
Abstract
The nuclear lamina (NL) is a filamentous protein meshwork, composed essentially of lamins, situated between the inner nuclear membrane and the chromatin. The NL is a component of the nuclear envelope, interacts with a wide range of proteins and is required for normal nuclear structure and physiological development. During spermiogenesis the spermatid nucleus is elongated, and dramatically reduced in size with protamines replacing histones to produce a highly compacted chromatin. There is mounting evidence from studies in human and rodent, that the NL plays an important role in mammalian spermatid differentiation during spermiogenesis. In this review, we summarize and discuss the data available in the literature regarding the involvement of lamins and their direct or indirect partners in normal and abnormal human spermiogenesis.
Collapse
Affiliation(s)
- Marine Paci
- 1Aix Marseille Univ, Inserm, MMG, U1251, Marseille Medical Genetics, 13385 Marseille, France.,APHM Hôpital La Conception, Pôle femmes-Parents-enfants, Centre Clinico-Biologique d'Assistance Médicale à la Procréation-CECOS, 13385 Marseille Cedex 5, France
| | - Razan Elkhatib
- 1Aix Marseille Univ, Inserm, MMG, U1251, Marseille Medical Genetics, 13385 Marseille, France
| | - Guy Longepied
- 1Aix Marseille Univ, Inserm, MMG, U1251, Marseille Medical Genetics, 13385 Marseille, France
| | - Patrice Bourgeois
- 1Aix Marseille Univ, Inserm, MMG, U1251, Marseille Medical Genetics, 13385 Marseille, France
| | - Pierre F Ray
- 3Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, CHU Grenoble Alpes, F-38000 Grenoble, France
| | - Nicolas Levy
- 1Aix Marseille Univ, Inserm, MMG, U1251, Marseille Medical Genetics, 13385 Marseille, France
| | - Michael J Mitchell
- 1Aix Marseille Univ, Inserm, MMG, U1251, Marseille Medical Genetics, 13385 Marseille, France
| | - Catherine Metzler-Guillemain
- 1Aix Marseille Univ, Inserm, MMG, U1251, Marseille Medical Genetics, 13385 Marseille, France.,APHM Hôpital La Conception, Pôle femmes-Parents-enfants, Centre Clinico-Biologique d'Assistance Médicale à la Procréation-CECOS, 13385 Marseille Cedex 5, France
| |
Collapse
|
10
|
Elkhatib RA, Paci M, Boissier R, Longepied G, Auguste Y, Achard V, Bourgeois P, Levy N, Branger N, Mitchell MJ, Metzler-Guillemain C. LEM-domain proteins are lost during human spermiogenesis but BAF and BAF-L persist. Reproduction 2017; 154:387-401. [PMID: 28684548 DOI: 10.1530/rep-17-0358] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 06/10/2017] [Accepted: 07/06/2017] [Indexed: 12/22/2022]
Abstract
During spermiogenesis the spermatid nucleus is elongated, and dramatically reduced in size with protamines replacing histones to produce a highly compacted chromatin. After fertilisation, this process is reversed in the oocyte to form the male pronucleus. Emerging evidence, including the coordinated loss of the nuclear lamina (NL) and the histones, supports the involvement of the NL in spermatid nuclear remodelling, but how the NL links to the chromatin is not known. In somatic cells, interactions between the NL and the chromatin have been demonstrated: LEM-domain proteins and LBR interact with the NL and respectively, the chromatin proteins BAF and HP1. We therefore sought to characterise the lamina-chromatin interface during spermiogenesis, by investigating the localisation of six LEM-domain proteins, two BAF proteins and LBR, in human spermatids and spermatozoa. Using RT-PCR, IF and western blotting, we show that six of the proteins tested are present in spermatids: LEMD1, LEMD2 (a short isoform), ANKLE2, LAP2β, BAF and BAF-L, and three absent: Emerin, LBR and LEMD3. The full-length LEMD2 isoform, required for nuclear integrity in somatic cells, is absent. In spermatids, no protein localised to the nuclear periphery, but five were nucleoplasmic, receding towards the posterior nuclear pole as spermatids matured. Our study therefore establishes that the lamina-chromatin interface in human spermatids is radically distinct from that defined in somatic cells. In ejaculated spermatozoa, we detected only BAF and BAF-L, suggesting that they might contribute to the shaping of the spermatozoon nucleus and, after fertilisation, its transition to the male pronucleus.
Collapse
Affiliation(s)
| | - Marine Paci
- Aix Marseille UnivINSERM, GMGF, UMR_S 910, Marseille, France
- APHM Hôpital La ConceptionGynépôle, Laboratoire de Biologie de la Reproduction-CECOS, Marseille Cedex 5, France
| | - Romain Boissier
- APHM Hôpital La ConceptionService d'Urologie, Marseille Cedex 5, France
| | - Guy Longepied
- Aix Marseille UnivINSERM, GMGF, UMR_S 910, Marseille, France
| | - Yasmina Auguste
- Aix Marseille UnivINSERM, GMGF, UMR_S 910, Marseille, France
| | - Vincent Achard
- APHM Hôpital La ConceptionGynépôle, Laboratoire de Biologie de la Reproduction-CECOS, Marseille Cedex 5, France
- Aix-Marseille UnivUniv Avignon, CNRS, IRD, IMBE, UMR7263, Marseille France
| | | | - Nicolas Levy
- Aix Marseille UnivINSERM, GMGF, UMR_S 910, Marseille, France
| | - Nicolas Branger
- APHM Hôpital La ConceptionService d'Urologie, Marseille Cedex 5, France
| | | | - Catherine Metzler-Guillemain
- Aix Marseille UnivINSERM, GMGF, UMR_S 910, Marseille, France
- APHM Hôpital La ConceptionGynépôle, Laboratoire de Biologie de la Reproduction-CECOS, Marseille Cedex 5, France
| |
Collapse
|
11
|
Paci M, Elkhatib R, Longepied G, Hennebicq S, Bessonat J, Courbière B, Bourgeois P, Levy N, Mitchell MJ, Metzler-Guillemain C. Abnormal retention of nuclear lamina and disorganization of chromatin-related proteins in spermatozoa from DPY19L2-deleted globozoospermic patients. Reprod Biomed Online 2017; 35:562-570. [PMID: 28882431 DOI: 10.1016/j.rbmo.2017.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/21/2017] [Accepted: 07/25/2017] [Indexed: 11/26/2022]
Abstract
The aim of this study was to characterize the nuclear lamina (NL) and lamin chromatin-partners in spermatozoa from four DPY19L2-deleted globozoospermic patients. We tested for spermatid transcripts encoding lamins and their chromatin-partners emerin, LAP2α, BAF and BAF-L, by reverse transcriptase-PCR using spermatozoa RNA. We also determined the localization of lamin B1, BAF and BAF-L by immunofluorescent analysis of spermatozoa from all patients. In RNA from globozoospermic and control spermatozoa we detected transcripts encoding lamin B1, lamin B3, emerin, LAP2α and BAF-L, but not A-type lamins. In contrast, BAF transcripts were detected in globozoospermic but not control spermatozoa. The NL was immature in human globozoospermic spermatozoa: lamin B1 signal was detected in the nuclei of globozoospermic spermatozoa in significantly higher proportions than the control (P < 0.05; 56-91% versus 40%) and was predominantly observed at the whole nuclear periphery, not polarized as in control spermatozoa. Conversely, BAF and BAF-L were detected in control, but not globozoospermic spermatozoa. Our results strongly emphasize the importance of the NL and associated proteins during human spermiogenesis. In globozoospermia, the lack of maturation of the NL, and the modifications in expression and location of chromatin-partners, could explain the chromatin defects observed in this rare phenotype.
Collapse
Affiliation(s)
- Marine Paci
- Aix Marseille University, Inserm, GMGF, 13385 Marseille, Cedex 5, France; APHM Hôpital La Conception, Pôle Femmes-Parents-Enfants, Centre Clinico-Biologique d'Assistance Médicale à la Procréation-CECOS, 13385 Marseille, Cedex 5, France
| | - Razan Elkhatib
- Aix Marseille University, Inserm, GMGF, 13385 Marseille, Cedex 5, France
| | - Guy Longepied
- Aix Marseille University, Inserm, GMGF, 13385 Marseille, Cedex 5, France
| | - Sylviane Hennebicq
- CHU de Grenoble, Centre d'Assistance Médicale à la Procréation-CECOS, BP217, Grenoble Cedex 9, France
| | - Julien Bessonat
- CHU de Grenoble, Centre d'Assistance Médicale à la Procréation-CECOS, BP217, Grenoble Cedex 9, France
| | - Blandine Courbière
- APHM Hôpital La Conception, Pôle Femmes-Parents-Enfants, Centre Clinico-Biologique d'Assistance Médicale à la Procréation-CECOS, 13385 Marseille, Cedex 5, France
| | - Patrice Bourgeois
- Aix Marseille University, Inserm, GMGF, 13385 Marseille, Cedex 5, France
| | - Nicolas Levy
- Aix Marseille University, Inserm, GMGF, 13385 Marseille, Cedex 5, France
| | - Michael J Mitchell
- Aix Marseille University, Inserm, GMGF, 13385 Marseille, Cedex 5, France
| | - Catherine Metzler-Guillemain
- Aix Marseille University, Inserm, GMGF, 13385 Marseille, Cedex 5, France; APHM Hôpital La Conception, Pôle Femmes-Parents-Enfants, Centre Clinico-Biologique d'Assistance Médicale à la Procréation-CECOS, 13385 Marseille, Cedex 5, France.
| |
Collapse
|
12
|
Jamin A, Wiebe MS. Barrier to Autointegration Factor (BANF1): interwoven roles in nuclear structure, genome integrity, innate immunity, stress responses and progeria. Curr Opin Cell Biol 2015; 34:61-8. [PMID: 26072104 DOI: 10.1016/j.ceb.2015.05.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 05/20/2015] [Accepted: 05/27/2015] [Indexed: 11/24/2022]
Abstract
The Barrier to Autointegration Factor (BAF or BANF1) is an abundant, highly conserved DNA binding protein. BAF is involved in multiple pathways including mitosis, nuclear assembly, viral infection, chromatin and gene regulation and the DNA damage response. BAF is also essential for early development in metazoans and relevant to human physiology; BANF1 mutations cause a progeroid syndrome, placing BAF within the laminopathy disease spectrum. This review summarizes previous knowledge about BAF in the context of recent discoveries about its protein partners, posttranslational regulation, dynamic subcellular localizations and roles in disease, innate immunity, transposable elements and genome integrity.
Collapse
Affiliation(s)
- Augusta Jamin
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583-0900, USA; Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0900, USA
| | - Matthew S Wiebe
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583-0900, USA; Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0900, USA.
| |
Collapse
|
13
|
Groh KJ, Nesatyy VJ, Segner H, Eggen RIL, Suter MJF. Global proteomics analysis of testis and ovary in adult zebrafish (Danio rerio). FISH PHYSIOLOGY AND BIOCHEMISTRY 2011; 37:619-647. [PMID: 21229308 PMCID: PMC3146978 DOI: 10.1007/s10695-010-9464-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 12/17/2010] [Indexed: 05/27/2023]
Abstract
The molecular mechanisms controlling sex determination and differentiation in zebrafish (Danio rerio) are largely unknown. A genome-wide analysis may provide comprehensive insights into the processes involved. The mRNA expression in zebrafish gonads has been fairly well studied, but much less data on the corresponding protein expression are available, although the proteins are considered to be more relevant markers of gene function. Because mRNA and protein abundances rarely correlate well, mRNA profiles need to be complemented with the information on protein expression. The work presented here analyzed the proteomes of adult zebrafish gonads by a multidimensional protein identification technology, generating the to-date most populated lists of proteins expressed in mature zebrafish gonads. The acquired proteomics data partially confirmed existing transcriptomics information for several genes, including several novel transcripts. However, disagreements between mRNA and protein abundances were often observed, further stressing the necessity to assess the expression on different levels before drawing conclusions on a certain gene's expression and function. Several gene groups expressed in a sexually dimorphic way in zebrafish gonads were identified. Their potential importance for gonad development and function is discussed. The data gained in the current study provide a basis for further work on elucidating processes occurring during zebrafish development with use of high-throughput proteomics.
Collapse
Affiliation(s)
- Ksenia J. Groh
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Environmental Toxicology, Überlandstrasse 133, Postbox 611, 8600 Dübendorf, Switzerland
| | - Victor J. Nesatyy
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Environmental Toxicology, Überlandstrasse 133, Postbox 611, 8600 Dübendorf, Switzerland
- Present Address: EPFL, Station 15, 1015 Lausanne, Switzerland
| | - Helmut Segner
- Centre for Fish and Wildlife Health, University of Bern, Länggassstrasse 122, Postbox 8466, 3001 Bern, Switzerland
| | - Rik I. L. Eggen
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Environmental Toxicology, Überlandstrasse 133, Postbox 611, 8600 Dübendorf, Switzerland
| | - Marc J.-F. Suter
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Environmental Toxicology, Überlandstrasse 133, Postbox 611, 8600 Dübendorf, Switzerland
| |
Collapse
|
14
|
Gao M, Skolnick J. A threading-based method for the prediction of DNA-binding proteins with application to the human genome. PLoS Comput Biol 2009; 5:e1000567. [PMID: 19911048 PMCID: PMC2770119 DOI: 10.1371/journal.pcbi.1000567] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 10/16/2009] [Indexed: 11/18/2022] Open
Abstract
Diverse mechanisms for DNA-protein recognition have been elucidated in numerous atomic complex structures from various protein families. These structural data provide an invaluable knowledge base not only for understanding DNA-protein interactions, but also for developing specialized methods that predict the DNA-binding function from protein structure. While such methods are useful, a major limitation is that they require an experimental structure of the target as input. To overcome this obstacle, we develop a threading-based method, DNA-Binding-Domain-Threader (DBD-Threader), for the prediction of DNA-binding domains and associated DNA-binding protein residues. Our method, which uses a template library composed of DNA-protein complex structures, requires only the target protein's sequence. In our approach, fold similarity and DNA-binding propensity are employed as two functional discriminating properties. In benchmark tests on 179 DNA-binding and 3,797 non-DNA-binding proteins, using templates whose sequence identity is less than 30% to the target, DBD-Threader achieves a sensitivity/precision of 56%/86%. This performance is considerably better than the standard sequence comparison method PSI-BLAST and is comparable to DBD-Hunter, which requires an experimental structure as input. Moreover, for over 70% of predicted DNA-binding domains, the backbone Root Mean Square Deviations (RMSDs) of the top-ranked structural models are within 6.5 A of their experimental structures, with their associated DNA-binding sites identified at satisfactory accuracy. Additionally, DBD-Threader correctly assigned the SCOP superfamily for most predicted domains. To demonstrate that DBD-Threader is useful for automatic function annotation on a large-scale, DBD-Threader was applied to 18,631 protein sequences from the human genome; 1,654 proteins are predicted to have DNA-binding function. Comparison with existing Gene Ontology (GO) annotations suggests that approximately 30% of our predictions are new. Finally, we present some interesting predictions in detail. In particular, it is estimated that approximately 20% of classic zinc finger domains play a functional role not related to direct DNA-binding.
Collapse
Affiliation(s)
- Mu Gao
- Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Jeffrey Skolnick
- Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
15
|
Shaklai S, Somech R, Gal-Yam EN, Deshet-Unger N, Moshitch-Moshkovitz S, Hirschberg K, Amariglio N, Simon AJ, Rechavi G. LAP2zeta binds BAF and suppresses LAP2beta-mediated transcriptional repression. Eur J Cell Biol 2008; 87:267-78. [PMID: 18403046 DOI: 10.1016/j.ejcb.2008.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 01/20/2008] [Accepted: 01/31/2008] [Indexed: 11/15/2022] Open
Abstract
Proteins of the nuclear envelope have been implicated as participating in gene silencing. BAF, a DNA- and LEM domain-binding protein, has been suggested to link chromatin to the nuclear envelope. We have previously shown that LAP2beta, a LEM-domain inner nuclear membrane protein, represses transcription through binding to HDAC3 and induction of histone H4 deacetylation. We now show that LAP2zeta, the smallest LAP2 family member, is also involved in regulation of transcription. We show that similar to other LEM-domain proteins LAP2zeta interacts with BAF. LAP2zeta-YFP and BAF co-localize in the cytoplasm, and overexpression of LAP2zeta leads to reduction of nucleoplasmic BAF. Mutations in the LAP2zeta-YFP LEM domain decrease its interaction with BAF retaining the nucleo-cytoplasmic distribution of BAF. Co-expression of LAP2beta and LAP2zeta results in inhibition of LAP2beta-induced gene silencing while overexpression of LAP2zeta alone leads to a small increase in transcriptional activity of various transcription factors. Our results suggest that LAP2zeta is a transcriptional regulator acting predominantly to inhibit LAP2beta-mediated repression. LAP2zeta may function by decreasing availability of BAF. These findings could have implications in the study of nuclear lamina-associated diseases and BAF-dependent retroviral integration.
Collapse
Affiliation(s)
- Sigal Shaklai
- Sheba Cancer Research Center and the Institute of Hematology, Chaim Sheba Medical Center, Tel-Hashomer, 52621, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wiebe MS, Traktman P. Poxviral B1 kinase overcomes barrier to autointegration factor, a host defense against virus replication. Cell Host Microbe 2007; 1:187-97. [PMID: 18005698 DOI: 10.1016/j.chom.2007.03.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 02/12/2007] [Accepted: 03/25/2007] [Indexed: 11/19/2022]
Abstract
Barrier to autointegration factor (BAF) is a DNA-binding protein found in the nucleus and cytoplasm of eukaryotic cells that functions to establish nuclear architecture during mitosis. Herein, we demonstrate a cytoplasmic role for BAF in host defense during poxviral infections. Vaccinia is the prototypic poxvirus, a family of DNA viruses that replicate exclusively in the cytoplasm of infected cells. Mutations in the vaccinia B1 kinase (B1) compromise viral DNA replication, but the mechanism by which B1 achieves this has remained elusive. We now show that BAF acts as a potent inhibitor of poxvirus replication unless its DNA-binding activity is blocked by B1-mediated phosphorylation. These data position BAF as the effector of an innate immune response that prevents replication of exogenous viral DNA in the cytoplasm. To enable the virus to evade this defense, the poxviral B1 has evolved to usurp a signaling pathway employed by the host cell.
Collapse
Affiliation(s)
- Matthew S Wiebe
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | |
Collapse
|
17
|
Holaska JM, Wilson KL. An emerin "proteome": purification of distinct emerin-containing complexes from HeLa cells suggests molecular basis for diverse roles including gene regulation, mRNA splicing, signaling, mechanosensing, and nuclear architecture. Biochemistry 2007; 46:8897-908. [PMID: 17620012 PMCID: PMC2635128 DOI: 10.1021/bi602636m] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Using recombinant bead-conjugated emerin, we affinity-purified seven proteins from HeLa cell nuclear lysates that bind emerin either directly or indirectly. These proteins were identified by mass spectrometry as nuclear alphaII-spectrin, nonmuscle myosin heavy chain alpha, Lmo7 (a predicted transcription regulator; reported separately), nuclear myosin I, beta-actin (reported separately), calponin 3, and SIKE. We now report that emerin binds nuclear myosin I (NMI, a molecular motor) directly in vitro. Furthermore, bead-conjugated emerin bound nuclear alphaII-spectrin and NMI equally well with or without ATP (which stimulates motor activity), whereas ATP decreased actin binding by 65%. Thus alphaII-spectrin and NMI interact stably with emerin. To investigate the physiological relevance of these interactions, we used antibodies against emerin to affinity-purify emerin-associated protein complexes from HeLa cells and then further purified by ion-exchange chromatography to resolve by net charge and by size exclusion chromatography yielding six distinct emerin-containing fractions (0.5-1.6 MDa). Western blotting suggested that each complex had distinct components involved in nuclear architecture (e.g., NMI, alphaII-spectrin, lamins) or gene or chromatin regulation (BAF, transcription regulators, HDACs). Additional constituents were identified by mass spectrometry. One putative gene-regulatory complex (complex 32) included core components of the nuclear corepressor (NCoR) complex, which mediates gene regulation by thyroid hormone and other nuclear receptors. When expressed in HeLa cells, FLAG-tagged NCoR subunits Gps2, HDAC3, TBLR1, and NCoR each co-immunoprecipitated emerin, validating one putative complex. These findings support the hypothesis that emerin scaffolds a variety of functionally distinct multiprotein complexes at the nuclear envelope in vivo. Notably included are nuclear myosin I-containing complexes that might sense and regulate mechanical tension at the nuclear envelope.
Collapse
Affiliation(s)
| | - Katherine L. Wilson
- Address correspondence to Katherine L. Wilson, Department of Cell Biology, The Johns Hopkins School of Medicine, 725 N. Wolfe St, Baltimore, MD 21205. Phone: 410-955-1801. Fax: 410-955-4129.
| |
Collapse
|
18
|
Haraguchi T, Koujin T, Osakada H, Kojidani T, Mori C, Masuda H, Hiraoka Y. Nuclear localization of barrier-to-autointegration factor is correlated with progression of S phase in human cells. J Cell Sci 2007; 120:1967-77. [PMID: 17519288 DOI: 10.1242/jcs.03461] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Barrier-to-autointegration factor (BAF) is a conserved metazoan protein that plays a critical role in retrovirus infection. To elucidate its role in uninfected cells, we first examined the localization of BAF in both mortal and immortal or cancerous human cell lines. In mortal cell lines (e.g. TIG-1, WI-38 and IMR-90 cells) BAF localization depended on the age of the cell, localizing primarily in the nucleus of >90% of young proliferating cells but only 20-25% of aged senescent cells. In immortal cell lines (e.g. HeLa, SiHa and HT1080 cells) BAF showed heterogeneous localization between the nucleus and cytoplasm. This heterogeneity was lost when the cells were synchronized in S phase. In S-phase-synchronized populations, the percentage of cells with predominantly nuclear BAF increased from 30% (asynchronous controls) to ∼80%. In HeLa cells, RNAi-induced downregulation of BAF significantly increased the proportion of early S-phase cells that retained high levels of cyclin D3 and cyclin E expression and slowed progression through early S phase. BAF downregulation also caused lamin A to mislocalize away from the nuclear envelope. These results indicate that BAF is required for the integrity of the nuclear lamina and normal progression of S phase in human cells.
Collapse
Affiliation(s)
- Tokuko Haraguchi
- CREST Research Project, Kansai Advanced Research Center, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan.
| | | | | | | | | | | | | |
Collapse
|
19
|
Vlcek S, Foisner R. A-type lamin networks in light of laminopathic diseases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:661-74. [PMID: 16934891 DOI: 10.1016/j.bbamcr.2006.07.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 07/10/2006] [Accepted: 07/12/2006] [Indexed: 11/22/2022]
Abstract
Lamins are major structural components of the lamina providing mechanical support for the nuclear envelope in vertebrates. A subgroup of lamins, the A-type lamins, are only expressed in differentiated cells and serve important functions both at the nuclear envelope and in the nucleoplasm in higher order chromatin organization and gene regulation. Mutations in A-type lamins cause a variety of diseases from muscular dystrophy and lipodystrophy to systemic diseases such as premature ageing syndromes. The molecular basis of these diseases is still unknown. Here we summarize known interactions of A-type lamins with components of the nuclear envelope and the nucleoplasm and discuss their potential involvement in the etiology and molecular mechanisms of the diseases. Lamin binding partners involve chromatin proteins potentially involved in higher order chromatin organization, transcriptional regulators controlling gene expression during cell cycle progression, differentiation and senescence, and several enzymes involved in a multitude of functions.
Collapse
Affiliation(s)
- Sylvia Vlcek
- Max. F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | | |
Collapse
|
20
|
Margalit A, Brachner A, Gotzmann J, Foisner R, Gruenbaum Y. Barrier-to-autointegration factor – a BAFfling little protein. Trends Cell Biol 2007; 17:202-8. [PMID: 17320395 DOI: 10.1016/j.tcb.2007.02.004] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 01/22/2007] [Accepted: 02/09/2007] [Indexed: 11/16/2022]
Abstract
Barrier-to-autointegration factor (BAF) is an abundant, highly conserved, small and essential protein that binds to dsDNA, chromatin, nuclear lamina proteins, histones and various transcription factors. It was discovered as a cellular component of retrovirus pre-integration complex that inhibits their autointegration in vitro. BAF is also required for many cellular functions, including the higher-order organization of chromatin and the transcription of specific genes. Recent findings suggest further roles for BAF, including nuclear envelope assembly, regulating specific developmental processes and regulating retrovirus infectivity. At least some of these roles are controlled by phosphorylation of the BAF N-terminus by the vaccinia-related kinase. Here, we give an overview of recent advances in the field of BAF with special emphasis on evolution, interacting partners and functions.
Collapse
Affiliation(s)
- Ayelet Margalit
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | |
Collapse
|