1
|
Yang W, Zhang J, Jiang Y, Liu C, Han Y, Liu Y, Wang X. Mechanism of Crassostrea gigas T-box Transcription Factor 2: Regulation by a Transcript Isoform of Microphthalmia-Associated Transcription Factor and Its Role in Cell Proliferation. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:56. [PMID: 39992464 DOI: 10.1007/s10126-025-10435-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/12/2025] [Indexed: 02/25/2025]
Abstract
T-box transcription factor 2 (TBX2) plays a critical role in various biological processes, including cell cycle regulation, malignant transformation, and regulating melanogenesis. In our previous study, we identified a Crassostrea gigas TBX2 (CgTBX2) and investigated its regulatory role in melanin production in oysters. Here, the mechanism of CgTBX2 in regulating cell proliferation was investigated. First, we found that CgTBX2 promoted the proliferation of mouse melanoma (B16F10) cells. CgMITF-X3, a 1347 bp transcript isoform of MITF from C. gigas, was then cloned and it was also found to promote cell proliferation. Co-transfection of CgTBX2 and CgMITF-X3 into B16F10 cells had a synergistic effect on cell proliferation, suggesting that CgMITF-X3 enhanced the function of CgTBX2 in promoting cell proliferation. CgMITF-X3 promoted the transcriptional activation of CgTBX2 by directly binding to the TCTCACGCGG sequence in the CgTBX2 promoter region. In addition, CgTBX2 and CgMITF-X3 proteins were co-located in the nucleus, indicating that these two proteins may perform a certain function collectively in the nucleus. Taken together, our findings revealed that CgTBX2 is directly activated by CgMITF-X3 at the transcriptional level, and both CgTBX2 and CgMITF-X3 facilitate cell proliferation.
Collapse
Affiliation(s)
- Wenhao Yang
- School of Fisheries, Ludong University, Yantai, 264025, People's Republic of China
| | - Jinhai Zhang
- School of Fisheries, Ludong University, Yantai, 264025, People's Republic of China
| | - Yvlu Jiang
- School of Fisheries, Ludong University, Yantai, 264025, People's Republic of China
| | - Chen Liu
- School of Fisheries, Ludong University, Yantai, 264025, People's Republic of China
| | - Yijing Han
- School of Fisheries, Ludong University, Yantai, 264025, People's Republic of China
| | - Yaqiong Liu
- School of Fisheries, Ludong University, Yantai, 264025, People's Republic of China.
| | - Xiaotong Wang
- School of Fisheries, Ludong University, Yantai, 264025, People's Republic of China.
| |
Collapse
|
2
|
Min Y, Yu H, Li Q. Transcriptional and post-translational regulation of MITF mediated by bHLH domain during the melanogenesis and melanocyte proliferation in Crassostrea gigas. Int J Biol Macromol 2024; 266:131138. [PMID: 38547943 DOI: 10.1016/j.ijbiomac.2024.131138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/07/2024] [Accepted: 03/23/2024] [Indexed: 04/06/2024]
Abstract
Melanocyte differentiation is orchestrated by the master regulator transcription factor MITF. However, its ability to discern distinct binding sites linked to effective gene regulation remains poorly understood. This study aims to assess how co-activator acetyltransferase interacts with MITF to modulate their related lysine action, thereby mediating downstream gene regulation, including DNA affinity, stability, transcriptional activity, particularly in the process of shell pigmentation. Here, we have demonstrated that the CgMITF protein can be acetylated, further enabling selective amplification of the melanocyte maturation program. Collaboration with transcriptional co-regulator p300 advances MITF dynamically interplay with downstream targeted gene promoters. We have established that MITF activation was partially dependent on the bHLH domain, which was well conserved across species. The bHLH domain contained conserved lysine residues, including K6 and K43, which interacted with the E-box motif of downstream targeted-genes. Mutations at K6 and K43 lead to a decrease in the binding affinity of the E-box motif. CgMITF protein bound to the E-box motif within the promoter regions of the tyrosinase-related genes, contributing to melanogenesis, and also interacted with the E-box motif within the TBX2 promoter regions, associated with melanocyte proliferation. We elucidated how the bHLH domain links the transcriptional regulation and acetylation modifications in the melanocyte development in C. gigas.
Collapse
Affiliation(s)
- Yue Min
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
3
|
Wang C, Han J, Liu M, Huang Y, Zhou T, Jiang N, Hui H, Xu K. RNA-sequencing of human aortic valves identifies that miR-629-3p and TAGLN miRNA-mRNA pair involving in calcified aortic valve disease. J Physiol Biochem 2022; 78:819-831. [PMID: 35776288 DOI: 10.1007/s13105-022-00905-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 06/11/2022] [Indexed: 12/20/2022]
Abstract
This study aimed to uncover the microRNA and messenger RNA (miRNA/mRNA) interactions in the pathophysiological process of calcified aortic valve disease (CAVD) of the human aortic valve. RNA sequencing of six selected samples (3 healthy control samples vs. 3 CAVD samples) was performed to obtain mRNA and miRNA sequences, and differential expression (DE) analysis of miRNA and mRNAs was performed. To build a CAVD-specific miRNA-mRNA interactome, the upregulated mRNAs and downregulated miRNAs were selected, followed by the establishment of inverse DE of mRNA-miRNA co-expression network based on Pearson's correlation coefficient using miRanda in the R language software. Subsequently, pathway enrichment analysis was performed to elucidate CAVD-related pathways that were likely mediated by miRNA regulatory mechanisms. In addition, miRNAs with an mRNA correlation greater than 0.9 in the co-expression network were selected for anti-calcification verification in a CAVD cellular model. We identified 216 mRNAs (99 downregulated and 117 upregulated) and 602 miRNAs (371 downregulated and 231 upregulated) that were differentially expressed between CAVD and healthy aortic valves. After applying Pearson's correlation toward miRNA-mRNA targets, a regulatory network of 67 miRNAs targeting 76 mRNAs was created. The subsequent pathway enrichment analysis of these targeted mRNAs elucidated that genes within the focal adhesion pathway are likely mediated by miRNA regulatory mechanisms. The selected hsa-miR-629-3p and TAGLN pair exhibited anti-calcification effects on osteogenic differentiation-induced human aortic valve interstitial cells (hVICs). On integrating the miRNA and mRNA sequencing data for healthy aortic valves and those with CAVD, the CAVD-associated miRNA-mRNA interactome and related pathways were elucidated. Additional cell function data demonstrated anti-calcification effects of the selected hsa-miR-629-3p targeting TAGLN, validating that it is a potential therapeutic target for inhibiting CAVD.
Collapse
Affiliation(s)
- Chunli Wang
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Juanjuan Han
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Ming Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuming Huang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tingwen Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Nan Jiang
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Haipeng Hui
- Department of Cardiology, the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China.
| | - Kang Xu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| |
Collapse
|
4
|
Huang L, Zhang X, Li F, Wang X. MicroRNA-143-3p/TBX3 Axis Represses Malignant Cell Behaviors in Bladder Cancer. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2880087. [PMID: 35126619 PMCID: PMC8813229 DOI: 10.1155/2022/2880087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To offer new insight for bladder cancer therapy through researching the microRNA-143-3p/TBX3 axis. METHODS Differentially expressed microRNAs in bladder cancer were provided by databases to find microRNA that may regulate TBX3. qRT-PCR was utilized to test levels of TBX3 mRNA and microRNA-143-3p. Their binding was verified with a dual-luciferase method. Malignant cell behaviors were examined by cell functional experiments. Levels of TBX3 protein and proteins pertinent to epithelial-mesenchymal transition (EMT) were tested by western blot. RESULTS TBX3 was highly expressed in bladder cancer cells. MicroRNA-143-3p presented the most conspicuously negative correlation with TBX3, and they had binding sites. Cell functional experiments proved that TBX3 facilitated bladder cancer cell functions and EMT. MicroRNA-143-3p was demonstrated to downregulate TBX3 expression. Rescue assay further illuminated that microRNA-143-3p repressed bladder cancer cell functions and EMT through downregulating TBX3 expression. CONCLUSION These data all indicated that TBX3 was modulated by microRNA-143-3p and acted as a cancer promoter gene in bladder cancer progression via affecting tumor proliferation, migration, invasion, and EMT. Therefore, a microRNA-143-3p/TBX3 network might be an underlying target for bladder cancer.
Collapse
Affiliation(s)
- Lifu Huang
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, China 318050
- Enze Hospital, Taizhou Enze Medical Center (Group), Taizhou, Zhejiang Province, China 318050
| | - Xianjun Zhang
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, China 318050
- Enze Hospital, Taizhou Enze Medical Center (Group), Taizhou, Zhejiang Province, China 318050
| | - Feiping Li
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, China 318050
- Enze Hospital, Taizhou Enze Medical Center (Group), Taizhou, Zhejiang Province, China 318050
| | - Xiaohong Wang
- Enze Hospital, Taizhou Enze Medical Center (Group), Taizhou, Zhejiang Province, China 318050
- Obstetrical Department, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, China 318050
| |
Collapse
|
5
|
Lu S, Louphrasitthiphol P, Goradia N, Lambert JP, Schmidt J, Chauhan J, Rughani MG, Larue L, Wilmanns M, Goding CR. TBX2 controls a proproliferative gene expression program in melanoma. Genes Dev 2021; 35:1657-1677. [PMID: 34819350 PMCID: PMC8653791 DOI: 10.1101/gad.348746.121] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/22/2021] [Indexed: 12/20/2022]
Abstract
Senescence shapes embryonic development, plays a key role in aging, and is a critical barrier to cancer initiation, yet how senescence is regulated remains incompletely understood. TBX2 is an antisenescence T-box family transcription repressor implicated in embryonic development and cancer. However, the repertoire of TBX2 target genes, its cooperating partners, and how TBX2 promotes proliferation and senescence bypass are poorly understood. Here, using melanoma as a model, we show that TBX2 lies downstream from PI3K signaling and that TBX2 binds and is required for expression of E2F1, a key antisenescence cell cycle regulator. Remarkably, TBX2 binding in vivo is associated with CACGTG E-boxes, present in genes down-regulated by TBX2 depletion, more frequently than the consensus T-element DNA binding motif that is restricted to Tbx2 repressed genes. TBX2 is revealed to interact with a wide range of transcription factors and cofactors, including key components of the BCOR/PRC1.1 complex that are recruited by TBX2 to the E2F1 locus. Our results provide key insights into how PI3K signaling modulates TBX2 function in cancer to drive proliferation.
Collapse
Affiliation(s)
- Sizhu Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Pakavarin Louphrasitthiphol
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom.,Department of Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Nishit Goradia
- European Molecular Biology Laboratory, Hamburg Unit, 22607 Hamburg, Germany
| | - Jean-Philippe Lambert
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.,Department of Molecular Medicine and Cancer Research Centre, Université Laval, Québec City, Québec G1R 3S3, Canada; CHU de Québec Research Center, Centre Hospitalier de l'Université Laval, Québec City, Québec G1V 4G2, Canada
| | - Johannes Schmidt
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Jagat Chauhan
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Milap G Rughani
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Lionel Larue
- Institut Curie, PSL Research University, U1021, Institut National de la Santé et de la Recherche Médicale, Normal and Pathological Development of Melanocytes, 91405 Orsay Cedex, France.,Université Paris-Sud, Université Paris-Saclay, UMR 3347 Centre National de la Recherche Scientifique, 91405 Orsay Cedex, France.,Equipe Labellisée Ligue Contre le Cancer, 91405 Orsay Cedex, France
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Hamburg Unit, 22607 Hamburg, Germany.,University Hamburg Clinical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| |
Collapse
|
6
|
Inoue Y, Fukuda T, Nanno S, Awazu Y, Shimomura M, Matsubara H, Yamauchi M, Yasui T, Sumi T. T-box 2 expression is a useful indicator of the response to neoadjuvant chemotherapy for patients with locally advanced uterine cervical squamous cell carcinoma. Oncol Lett 2021; 22:755. [PMID: 34539859 PMCID: PMC8436333 DOI: 10.3892/ol.2021.13016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/06/2021] [Indexed: 11/21/2022] Open
Abstract
Platinum-based concurrent chemoradiotherapy is the standard treatment for patients with locally advanced uterine cervical squamous cell carcinoma. Reducing the tumor size by administering neoadjuvant chemotherapy (NAC) is beneficial for successful hysterectomy, resulting in a more favorable prognosis. Therefore, identifying biomarkers that predict the effectiveness of NAC in patients with cervical squamous cell carcinoma remains a priority. Cancer cells widely express T-box 2 (TBX2), which contributes to the resistance to DNA-damaging chemotherapeutic agents. The present study aimed to determine the association between TBX2 protein expression in tumor tissues and the efficacy of NAC in locally advanced uterine cervical squamous cell carcinoma using immunohistochemistry. Data from 46 patients with locally advanced uterine cervical squamous cell carcinoma were classified into two groups based on their effective or ineffective response to NAC treatment. In addition, the effect of small interfering RNA-mediated knockdown of TBX2 on the sensitivity of cervical cancer cells to cisplatin was investigated in vitro. The results revealed that there were no significant differences in patient clinicopathological features between the NAC effective and NAC ineffective groups. The overall survival of the NAC effective group was significantly improved compared with the NAC ineffective group (P=0.007). Tumors from the NAC effective group also had significantly downregulated TBX2 expression levels compared with those from the NAC ineffective group (P=0.0138). Of note, decreased TBX2 expression was indicated to be significantly associated with higher sensitivity to NAC (P=0.009). The low TBX2 expression group had a more favorable overall survival compared with the high TBX2 expression group (P=0.049). Furthermore, knockdown of TBX2 expression significantly increased cancer cell sensitivity to cisplatin in vitro. In conclusion, the results of the present study suggested that TBX2 expression may be a useful predictor of the response to NAC in patients with locally advanced uterine cervical squamous cell carcinoma.
Collapse
Affiliation(s)
- Yuta Inoue
- Department of Obstetrics and Gynecology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Takeshi Fukuda
- Department of Obstetrics and Gynecology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Shigenori Nanno
- Department of Obstetrics and Gynecology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Yuichiro Awazu
- Department of Obstetrics and Gynecology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Masahiro Shimomura
- Department of Obstetrics and Gynecology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Hiroaki Matsubara
- Department of Obstetrics and Gynecology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Makoto Yamauchi
- Department of Obstetrics and Gynecology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Tomoyo Yasui
- Department of Obstetrics and Gynecology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Toshiyuki Sumi
- Department of Obstetrics and Gynecology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| |
Collapse
|
7
|
Zhang H, Qi L, Du Y, Huang LF, Braun FK, Kogiso M, Zhao Y, Li C, Lindsay H, Zhao S, Injac SG, Baxter PA, Su JM, Stephan C, Keller C, Heck KA, Harmanci A, Harmanci AO, Yang J, Klisch TJ, Li XN, Patel AJ. Patient-Derived Orthotopic Xenograft (PDOX) Mouse Models of Primary and Recurrent Meningioma. Cancers (Basel) 2020; 12:cancers12061478. [PMID: 32517016 PMCID: PMC7352400 DOI: 10.3390/cancers12061478] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Meningiomas constitute one-third of all primary brain tumors. Although typically benign, about 20% of these tumors recur despite surgery and radiation, and may ultimately prove fatal. There are currently no effective chemotherapies for meningioma. We, therefore, set out to develop patient-derived orthotopic xenograft (PDOX) mouse models of human meningioma using tumor. METHOD Of nine patients, four had World Health Organization (WHO) grade I tumors, five had WHO grade II tumors, and in this second group two patients also had recurrent (WHO grade III) meningioma. We also classified the tumors according to our recently developed molecular classification system (Types A, B, and C, with C being the most aggressive). We transplanted all 11 surgical samples into the skull base of immunodeficient (SCID) mice. Only the primary and recurrent tumor cells from one patient-both molecular Type C, despite being WHO grades II and III, respectively-led to the formation of meningioma in the resulting mouse models. We characterized the xenografts by histopathology and RNA-seq and compared them with the original tumors. We performed an in vitro drug screen using 60 anti-cancer drugs followed by in vivo validation. RESULTS The PDOX models established from the primary and recurrent tumors from patient K29 (K29P-PDOX and K29R-PDOX, respectively) replicated the histopathology and key gene expression profiles of the original samples. Although these xenografts could not be subtransplanted, the cryopreserved primary tumor cells were able to reliably generate PDOX tumors. Drug screening in K29P and K29R tumor cell lines revealed eight compounds that were active on both tumors, including three histone deacetylase (HDAC) inhibitors. We tested the HDAC inhibitor Panobinostat in K29R-PDOX mice, and it significantly prolonged mouse survival (p < 0.05) by inducing histone H3 acetylation and apoptosis. CONCLUSION Meningiomas are not very amenable to PDOX modeling, for reasons that remain unclear. Yet at least some of the most malignant tumors can be modeled, and cryopreserved primary tumor cells can create large panels of tumors that can be used for preclinical drug testing.
Collapse
Affiliation(s)
- Huiyuan Zhang
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; (H.Z.); (L.Q.); (Y.D.); (F.K.B.); (M.K.); (H.L.); (S.Z.); (S.G.I.); (P.A.B.)
- Department of Pediatrics, Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX 77030, USA; (Y.Z.); (J.M.S.); (J.Y.)
| | - Lin Qi
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; (H.Z.); (L.Q.); (Y.D.); (F.K.B.); (M.K.); (H.L.); (S.Z.); (S.G.I.); (P.A.B.)
- Department of Pediatrics, Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX 77030, USA; (Y.Z.); (J.M.S.); (J.Y.)
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann and Robert H. Lurie Children’s Hospital of Chicago and Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yuchen Du
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; (H.Z.); (L.Q.); (Y.D.); (F.K.B.); (M.K.); (H.L.); (S.Z.); (S.G.I.); (P.A.B.)
- Department of Pediatrics, Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX 77030, USA; (Y.Z.); (J.M.S.); (J.Y.)
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann and Robert H. Lurie Children’s Hospital of Chicago and Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - L. Frank Huang
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Frank K. Braun
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; (H.Z.); (L.Q.); (Y.D.); (F.K.B.); (M.K.); (H.L.); (S.Z.); (S.G.I.); (P.A.B.)
- Department of Pediatrics, Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX 77030, USA; (Y.Z.); (J.M.S.); (J.Y.)
| | - Mari Kogiso
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; (H.Z.); (L.Q.); (Y.D.); (F.K.B.); (M.K.); (H.L.); (S.Z.); (S.G.I.); (P.A.B.)
- Department of Pediatrics, Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX 77030, USA; (Y.Z.); (J.M.S.); (J.Y.)
| | - Yanling Zhao
- Department of Pediatrics, Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX 77030, USA; (Y.Z.); (J.M.S.); (J.Y.)
| | - Can Li
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA; (C.L.); (C.S.)
| | - Holly Lindsay
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; (H.Z.); (L.Q.); (Y.D.); (F.K.B.); (M.K.); (H.L.); (S.Z.); (S.G.I.); (P.A.B.)
- Department of Pediatrics, Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX 77030, USA; (Y.Z.); (J.M.S.); (J.Y.)
| | - Sibo Zhao
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; (H.Z.); (L.Q.); (Y.D.); (F.K.B.); (M.K.); (H.L.); (S.Z.); (S.G.I.); (P.A.B.)
- Department of Pediatrics, Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX 77030, USA; (Y.Z.); (J.M.S.); (J.Y.)
| | - Sarah G. Injac
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; (H.Z.); (L.Q.); (Y.D.); (F.K.B.); (M.K.); (H.L.); (S.Z.); (S.G.I.); (P.A.B.)
- Department of Pediatrics, Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX 77030, USA; (Y.Z.); (J.M.S.); (J.Y.)
| | - Patricia A. Baxter
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; (H.Z.); (L.Q.); (Y.D.); (F.K.B.); (M.K.); (H.L.); (S.Z.); (S.G.I.); (P.A.B.)
- Department of Pediatrics, Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX 77030, USA; (Y.Z.); (J.M.S.); (J.Y.)
| | - Jack M. Su
- Department of Pediatrics, Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX 77030, USA; (Y.Z.); (J.M.S.); (J.Y.)
| | - Clifford Stephan
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA; (C.L.); (C.S.)
| | - Charles Keller
- Children’s Cancer Therapy Development Institute, Beaverton, OR 97005, USA;
| | - Kent A. Heck
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Akdes Harmanci
- Center for Computational Systems Medicine, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Arif O. Harmanci
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Jianhua Yang
- Department of Pediatrics, Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX 77030, USA; (Y.Z.); (J.M.S.); (J.Y.)
| | - Tiemo J. Klisch
- Jan and Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA;
| | - Xiao-Nan Li
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; (H.Z.); (L.Q.); (Y.D.); (F.K.B.); (M.K.); (H.L.); (S.Z.); (S.G.I.); (P.A.B.)
- Department of Pediatrics, Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX 77030, USA; (Y.Z.); (J.M.S.); (J.Y.)
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann and Robert H. Lurie Children’s Hospital of Chicago and Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Correspondence: (X.-N.L.); (A.J.P.)
| | - Akash J. Patel
- Jan and Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA;
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: (X.-N.L.); (A.J.P.)
| |
Collapse
|
8
|
Timms JA, Relton CL, Sharp GC, Rankin J, Strathdee G, McKay JA. Exploring a potential mechanistic role of DNA methylation in the relationship between in utero and post-natal environmental exposures and risk of childhood acute lymphoblastic leukaemia. Int J Cancer 2019; 145:2933-2943. [PMID: 30740682 PMCID: PMC6790139 DOI: 10.1002/ijc.32203] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 01/09/2019] [Accepted: 01/23/2019] [Indexed: 12/11/2022]
Abstract
The aetiology of childhood acute lymphoblastic leukaemia (ALL) is unclear. Genetic abnormalities have been identified in a number of ALL cases, although these alone are not sufficient for leukaemic transformation. Various in utero and post-natal environmental exposures have been suggested to alter risk of childhood ALL. DNA methylation patterns can be influenced by environmental exposures, and are reported to be altered in ALL, suggesting a potential mediating mechanism between environment and ALL disease risk. To investigate this, we used a 'meet in the middle' approach, investigating the overlap between exposure-associated and disease-associated methylation change. Genome-wide DNA methylation changes in response to possible ALL-risk exposures (i.e. breast feeding, infection history, day care attendance, maternal smoking, alcohol, caffeine, folic acid, iron and radiation exposure) were investigated in a sub-population of the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort using an epigenome-wide association study (EWAS) approach (n = 861-927), and compared to a list of ALL disease-associated methylation changes compiled from published data. Hypergeometric probability tests suggested that the number of directionally concordant gene methylation changes observed in ALL disease and in response to the following exposures; maternal radiation exposure (p = 0.001), alcohol intake (p = 0.006); sugary caffeinated drink intake during pregnancy (p = 0.045); and infant day care attendance (p = 0.003), were not due to chance. Data presented suggests that DNA methylation may be one mediating mechanism in the multiple hit pathway needed for ALL disease manifestation.
Collapse
Affiliation(s)
- Jessica A Timms
- Institute of Health & Society, Newcastle University, Newcastle, United Kingdom
- Research Oncology, King's College London, Guy's Hospital, London
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Gemma C Sharp
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Judith Rankin
- Research Oncology, King's College London, Guy's Hospital, London
| | - Gordon Strathdee
- Northern Institute for Cancer Research, Newcastle University, United Kingdom
| | - Jill A McKay
- Institute of Health & Society, Newcastle University, Newcastle, United Kingdom
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
9
|
Zhou B, Ho SS, Greer SU, Spies N, Bell JM, Zhang X, Zhu X, Arthur JG, Byeon S, Pattni R, Saha I, Huang Y, Song G, Perrin D, Wong WH, Ji HP, Abyzov A, Urban AE. Haplotype-resolved and integrated genome analysis of the cancer cell line HepG2. Nucleic Acids Res 2019; 47:3846-3861. [PMID: 30864654 PMCID: PMC6486628 DOI: 10.1093/nar/gkz169] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/19/2019] [Accepted: 03/01/2019] [Indexed: 12/19/2022] Open
Abstract
HepG2 is one of the most widely used human cancer cell lines in biomedical research and one of the main cell lines of ENCODE. Although the functional genomic and epigenomic characteristics of HepG2 are extensively studied, its genome sequence has never been comprehensively analyzed and higher order genomic structural features are largely unknown. The high degree of aneuploidy in HepG2 renders traditional genome variant analysis methods challenging and partially ineffective. Correct and complete interpretation of the extensive functional genomics data from HepG2 requires an understanding of the cell line’s genome sequence and genome structure. Using a variety of sequencing and analysis methods, we identified a wide spectrum of genome characteristics in HepG2: copy numbers of chromosomal segments at high resolution, SNVs and Indels (corrected for aneuploidy), regions with loss of heterozygosity, phased haplotypes extending to entire chromosome arms, retrotransposon insertions and structural variants (SVs) including complex and somatic genomic rearrangements. A large number of SVs were phased, sequence assembled and experimentally validated. We re-analyzed published HepG2 datasets for allele-specific expression and DNA methylation and assembled an allele-specific CRISPR/Cas9 targeting map. We demonstrate how deeper insights into genomic regulatory complexity are gained by adopting a genome-integrated framework.
Collapse
Affiliation(s)
- Bo Zhou
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Steve S Ho
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stephanie U Greer
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Noah Spies
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Genome-scale Measurements Group, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - John M Bell
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA
| | - Xianglong Zhang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xiaowei Zhu
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph G Arthur
- Department of Statistics, Stanford University, Stanford, CA 94305, USA
| | - Seunggyu Byeon
- School of Computer Science and Engineering, College of Engineering, Pusan National University, Busan 46241, South Korea
| | - Reenal Pattni
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ishan Saha
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yiling Huang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Giltae Song
- School of Computer Science and Engineering, College of Engineering, Pusan National University, Busan 46241, South Korea
| | - Dimitri Perrin
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Wing H Wong
- Department of Statistics, Stanford University, Stanford, CA 94305, USA.,Department of Biomedical Data Science, Bio-X Program, Stanford University, Stanford, CA 94305, USA
| | - Hanlee P Ji
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.,Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA
| | - Alexej Abyzov
- Department of Health Sciences Research, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Alexander E Urban
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.,Tashia and John Morgridge Faculty Scholar, Stanford Child Health Research Institute, Stanford, CA 94305, USA
| |
Collapse
|
10
|
Aliwaini S, Lubbad AM, Shourfa A, Hamada HAA, Ayesh B, Abu Tayem HEM, Abu Mustafa A, Abu Rouk F, Redwan MM, Al-Najjar M. Overexpression of TBX3 transcription factor as a potential diagnostic marker for breast cancer. Mol Clin Oncol 2019; 10:105-112. [PMID: 30655984 DOI: 10.3892/mco.2018.1761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/26/2018] [Indexed: 11/06/2022] Open
Abstract
The T-box 3 (TBX3) transcription factor has been shown to serve multiple roles in normal development. Recent findings have revealed that TBX3 is overexpressed in different types of carcinomas, including breast, cervical, ovarian, melanoma, pancreatic, lung, liver, bladder, head and neck. Therefore, the present study investigated the significance of TBX3 as a diagnostic marker of breast cancer. To achieve this aim, breast cancer samples and their adjacent normal tissues were collected from 51 breast cancer patients from the European Gaza hospital during 2015-2016. Sections from each sample were immune-stained by anti-TBX3 and suitable secondary and tertiary antibodies. TBX3 levels were evaluated in cancerous and normal samples. Clinicopathological data for each patient were documented. The correlation between TBX3 levels and the clinicopathological parameters were statistically tested. The results revealed that TBX3 is significantly overexpressed in breast cancer tissues when compared with normal tissues. Furthermore, TBX3 was mainly a cytoplasmic protein in normal and breast cancer tissues. Notably, TBX3 levels exhibited a sensitivity of 78.4%, specificity of 79.6%, accuracy of 79% and area under the curve of 0.791 (0.700-0.882) at a cut-off value=9 as breast cancer marker. However, no significant associations were observed between TBX3 levels and other breast cancer markers including oestrogen receptor, progesterone receptor, human epidermal growth factor receptor 2, cancer antigen 15-3 and breast cancer stages. Altogether, these results suggested that TBX3 overexpression may be a potential biomarker for breast cancer.
Collapse
Affiliation(s)
- Saeb Aliwaini
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Islamic University of Gaza, 108 Gaza, Palestine
| | - Abdel Monem Lubbad
- Department of Pathology, Faculty of Medicine, Islamic University of Gaza, 108 Gaza, Palestine
| | - Ahmed Shourfa
- Department of Oncology, European Gaza Hospital, 7049 Gaza, Palestine
| | | | - Basim Ayesh
- Department of Laboratory Medical Sciences, Alaqsa University, 4051 Gaza, Palestine
| | - Husam Eddeen M Abu Tayem
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Islamic University of Gaza, 108 Gaza, Palestine
| | - Ayman Abu Mustafa
- Nursing Department, Palestine College of Nursing, 7049 Gaza, Palestine
| | - Fayek Abu Rouk
- Department of Oncology, European Gaza Hospital, 7049 Gaza, Palestine
| | - Moen M Redwan
- Department of Pathology, Alshefa Hospital, 1016 Gaza, Palestine
| | - Mohamed Al-Najjar
- Department of Oncology, European Gaza Hospital, 7049 Gaza, Palestine
| |
Collapse
|
11
|
Liu X, Miao Z, Wang Z, Zhao T, Xu Y, Song Y, Huang J, Zhang J, Xu H, Wu J, Xu H. TBX2 overexpression promotes proliferation and invasion through epithelial-mesenchymal transition and ERK signaling pathway. Exp Ther Med 2018; 17:723-729. [PMID: 30651856 PMCID: PMC6307397 DOI: 10.3892/etm.2018.7028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/13/2018] [Indexed: 12/16/2022] Open
Abstract
The present study aimed to clarify the clinical significance and biological effects of T-box (TBX)2 and its potential mechanism in gastric cancer (GC). TBX2 protein expression levels in human GC tissues were investigated using immunohistochemistry, and it was demonstrated that TBX2 was overexpressed in 55.9% (90/161) GC samples. TBX2 overexpression correlated with tumor invasion, advanced tumor node metastasis stage and presence of lymph node metastasis. In addition, TBX2 correlated with poor patient survival. To investigate the effect of TBX2 on biological behaviors, TBX2 plasmid transfection was performed in SGC-7901 cells and TBX2 small interfering RNA knockdown was carried out in BGC-823 cells. MTT and matrigel invasion assays demonstrated that TBX2 overexpression promoted proliferation and invasion, whereas TBX2 depletion inhibited proliferation and invasion. TBX2 overexpression also promoted epithelial-mesenchymal transition by downregulating E-cadherin and upregulating N-cadherin. TBX2 overexpression also upregulated matrix metalloproteinase (MMP)2, MMP9, cyclin E and phosphorylated-extracellular signal regulated kinase levels, however downregulated p21. In conclusion, TBX2 may serve as an effective predictor and therapeutic target in human GC.
Collapse
Affiliation(s)
- Xingyu Liu
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhifeng Miao
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhenning Wang
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Tingting Zhao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yingying Xu
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yongxi Song
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jinyu Huang
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Junyan Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Hao Xu
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jianhua Wu
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Huimian Xu
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
12
|
Wang J, Liu Y, Su Z, Pan L, Lu F, Qu J, Hou L. The T-Box Transcription Factor TBX2 Regulates Cell Proliferation in the Retinal Pigment Epithelium. Curr Eye Res 2017; 42:1537-1544. [PMID: 28910203 DOI: 10.1080/02713683.2017.1338351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE Vertebrate eye development and function critically depend on the regulation of proliferation of retinal pigment epithelium (RPE) cells. Hence, a thorough analysis of the molecular parameters controlling RPE cell proliferation is crucial for our understanding of the physiology of this cell type both in health and in disease. The T-box transcription factor TBX2 is an important cell cycle regulator in development and oncogenesis, but its specific role in RPE cell proliferation is far from clear. The purpose of the present study is to investigate whether TBX2 plays any role in regulating RPE cell proliferation. MATERIALS AND METHODS The expression of TBX2 in RPE cells was analyzed in wildtype mice and ARPE-19 cells by co-staining for RPE-specific markers and cell proliferation. In vitro, the role of TBX2 was studied by manipulating its levels using RNAi and analyzing the effects on DNA synthesis and cell growth and on gene expression at the RNA and protein levels. RESULTS Here, we find that TBX2 is expressed in RPE cells both in vivo and in vitro. Specific knockdown of TBX2 in the human RPE cell line ARPE-19 leads to an accumulation of cells at G1. This cell cycle arrest is accompanied by changes in the levels of known cell cycle regulators and, in particular, by an increase in the levels of the tumor-suppressor gene CCAAT/enhancer-binding protein delta (CEBPD). In fact, simultaneous knockdown of both TBX2 and CEBPD interferes with the reduction in cell proliferation brought about by TBX2 reduction alone. CONCLUSIONS Our results provide novel insights into the regulatory mechanisms of cell proliferation in the RPE and may contribute to our understanding of normal RPE maintenance and its pathology in degenerative and proliferative disorders of the eye.
Collapse
Affiliation(s)
- Jing Wang
- a Laboratory of Developmental Cell Biology and Disease , School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University , Wenzhou , Zhejiang , China.,b State Key Laboratory and Key Laboratory of Vision Science of Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology , Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Yin Liu
- a Laboratory of Developmental Cell Biology and Disease , School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Zhongyuan Su
- a Laboratory of Developmental Cell Biology and Disease , School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Li Pan
- a Laboratory of Developmental Cell Biology and Disease , School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Fan Lu
- b State Key Laboratory and Key Laboratory of Vision Science of Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology , Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Jia Qu
- b State Key Laboratory and Key Laboratory of Vision Science of Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology , Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Ling Hou
- a Laboratory of Developmental Cell Biology and Disease , School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University , Wenzhou , Zhejiang , China.,b State Key Laboratory and Key Laboratory of Vision Science of Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology , Wenzhou Medical University , Wenzhou , Zhejiang , China
| |
Collapse
|
13
|
Lv Y, Si M, Chen N, Li Y, Ma X, Yang H, Zhang L, Zhu H, Xu GY, Wu GP, Cao C. TBX2 over-expression promotes nasopharyngeal cancer cell proliferation and invasion. Oncotarget 2017; 8:52699-52707. [PMID: 28881763 PMCID: PMC5581062 DOI: 10.18632/oncotarget.17084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/12/2017] [Indexed: 12/31/2022] Open
Abstract
TBX2 is a member of the T box transcription factor family. Its expression and potential biological functions in nasopharyngeal cancer (NPC) cells are studied here. We showed that TBX2 mRNA and protein expression was significantly elevated in multiple human NPC tissues, as compared with that in adjacent normal tissues. Knockdown of TBX2 by targeted-siRNA significantly inhibited proliferation and invasion of NPC cells (CNE-1 and HONE-1 lines). Meanwhile, TBX2 knockdown also induced G1-phase cell cycle arrest. At the molecular level, we discovered that expressions of several tumor suppressor genes, including p21, p27, phosphatase with tensin homology (PTEN) and E-Cadherin, were increased dramatically after TBX2 knockdown in above NPC cells. Collectively, our results imply that TBX2 over-expression promotes NPC cell proliferation and invasion, possibly via silencing several key tumor suppressor genes.
Collapse
Affiliation(s)
- Yan Lv
- Center of Translational Medicine, The First People Hospital of Zhangjiagang City, Soochow University, Suzhou, China
| | - Meng Si
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Nannan Chen
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Ya Li
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xingkai Ma
- Department of Otolaryngology, The First People Hospital of Zhangjiagang City, Soochow University, Suzhou, China
| | - Huijun Yang
- Department of Otolaryngology, The First People Hospital of Zhangjiagang City, Soochow University, Suzhou, China
| | - Ling Zhang
- Center of Translational Medicine, The First People Hospital of Zhangjiagang City, Soochow University, Suzhou, China
| | - Hongyan Zhu
- Center of Translational Medicine, The First People Hospital of Zhangjiagang City, Soochow University, Suzhou, China
| | - Guang-Yin Xu
- Center of Translational Medicine, The First People Hospital of Zhangjiagang City, Soochow University, Suzhou, China.,Institute of Neuroscience, Soochow University, Suzhou, China
| | - Ge-Ping Wu
- Center of Translational Medicine, The First People Hospital of Zhangjiagang City, Soochow University, Suzhou, China.,Department of Otolaryngology, The First People Hospital of Zhangjiagang City, Soochow University, Suzhou, China
| | - C Cao
- Institute of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|
14
|
Willmer T, Peres J, Mowla S, Abrahams A, Prince S. The T-Box factor TBX3 is important in S-phase and is regulated by c-Myc and cyclin A-CDK2. Cell Cycle 2016; 14:3173-83. [PMID: 26266831 DOI: 10.1080/15384101.2015.1080398] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The transcription factor, TBX3, is critical for the formation of, among other structures, the heart, limbs and mammary glands and haploinsufficiency of the human TBX3 gene result in ulnar-mammary syndrome which is characterized by hypoplasia of these structures. On the other hand, the overexpression of TBX3 is a feature of a wide range of cancers and it has been implicated in several aspects of the oncogenic process. This includes its ability to function as an immortalizing gene and to promote proliferation through actively repressing negative cell cycle regulators. Together this suggests that TBX3 levels may need to be tightly regulated during the cell cycle. Here we demonstrate that this is indeed the case and that TBX3 mRNA and protein levels peak at S-phase and that the TBX3 protein is predominantly localized to the nucleus of S-phase cells. The increased levels of TBX3 in S-phase are shown to occur transcriptionally through activation by c-Myc at E-box motifs located at -1210 and -701 bps and post-translationally by cyclin A-CDK2 phosphorylation. Importantly, when TBX3 is depleted by shRNA the cells accumulate in S-phase. These results suggest that TBX3 is required for cells to transit through S-phase and that this function may be linked to its role as a pro-proliferative factor.
Collapse
Affiliation(s)
- Tarryn Willmer
- a Department of Human Biology ; Faculty of Health Sciences; University of Cape Town ; Cape Town , South Africa
| | - Jade Peres
- a Department of Human Biology ; Faculty of Health Sciences; University of Cape Town ; Cape Town , South Africa
| | - Shaheen Mowla
- a Department of Human Biology ; Faculty of Health Sciences; University of Cape Town ; Cape Town , South Africa
| | - Amaal Abrahams
- a Department of Human Biology ; Faculty of Health Sciences; University of Cape Town ; Cape Town , South Africa
| | - Sharon Prince
- a Department of Human Biology ; Faculty of Health Sciences; University of Cape Town ; Cape Town , South Africa
| |
Collapse
|
15
|
Pan L, Ma X, Wen B, Su Z, Zheng X, Liu Y, Li H, Chen Y, Wang J, Lu F, Qu J, Hou L. Microphthalmia-associated transcription factor/T-box factor-2 axis acts through Cyclin D1 to regulate melanocyte proliferation. Cell Prolif 2015; 48:631-42. [PMID: 26486273 DOI: 10.1111/cpr.12227] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 08/07/2015] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES Control of cell proliferation is critical for accurate cell differentiation and tissue formation, during development and regeneration. Here, we have analysed the role of microphthalmia-associated transcription factor MITF and its direct target, T-box factor TBX2, in regulating proliferation of mammalian neural crest-derived melanocytes. MATERIALS AND METHODS Immunohistochemistry was used to examine spatial and temporal expression of TBX2 in melanocytes in vivo. RNAi and cell proliferation analysis were used to investigate functional roles of TBX2. Furthermore, quantitative RT-PCR, western blot analysis and flow cytometry were used to further scrutinize molecular mechanisms underlying TBX2-dependent cell proliferation. RESULTS TBX2 was found to be co-expressed with MITF in melanocytes of mouse hair follicles. Specific Tbx2 knockdown in primary neural crest cells led to inhibition MITF-positive melanoblast proliferation. Tbx2 knockdown in melan-a cells led to reduction in Cyclin D1 expression and G1-phase cell cycle arrest. TBX2 directly activated Ccnd1 transcription by binding to a specific sequence in the Ccnd1 promoter, and the defect in cell proliferation could be rescued partially by overexpression of Cyclin D1 in Tbx2 knockdown melanocytes. CONCLUSIONS Results suggest that the Mitf-Tbx2-Cyclin D1 pathway played an important role in regulation of melanocyte proliferation, and provided novel insights into the complex physiology of melanocytes.
Collapse
Affiliation(s)
- L Pan
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325003, China.,State Key Laboratory Cultivation Base and Key Laboratory of Vision Science of Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology, Wenzhou Medical University, Wenzhou, 325003, China
| | - X Ma
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325003, China.,State Key Laboratory Cultivation Base and Key Laboratory of Vision Science of Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology, Wenzhou Medical University, Wenzhou, 325003, China
| | - B Wen
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325003, China
| | - Z Su
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325003, China
| | - X Zheng
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325003, China
| | - Y Liu
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325003, China
| | - H Li
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325003, China
| | - Y Chen
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325003, China
| | - J Wang
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325003, China
| | - F Lu
- State Key Laboratory Cultivation Base and Key Laboratory of Vision Science of Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology, Wenzhou Medical University, Wenzhou, 325003, China
| | - J Qu
- State Key Laboratory Cultivation Base and Key Laboratory of Vision Science of Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology, Wenzhou Medical University, Wenzhou, 325003, China
| | - L Hou
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325003, China.,State Key Laboratory Cultivation Base and Key Laboratory of Vision Science of Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology, Wenzhou Medical University, Wenzhou, 325003, China
| |
Collapse
|
16
|
Wansleben S, Peres J, Hare S, Goding CR, Prince S. T-box transcription factors in cancer biology. Biochim Biophys Acta Rev Cancer 2014; 1846:380-91. [PMID: 25149433 DOI: 10.1016/j.bbcan.2014.08.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/12/2014] [Accepted: 08/14/2014] [Indexed: 01/07/2023]
Abstract
The evolutionarily conserved T-box family of transcription factors have critical and well-established roles in embryonic development. More recently, T-box factors have also gained increasing prominence in the field of cancer biology where a wide range of cancers exhibit deregulated expression of T-box factors that possess tumour suppressor and/or tumour promoter functions. Of these the best characterised is TBX2, whose expression is upregulated in cancers including breast, pancreatic, ovarian, liver, endometrial adenocarcinoma, glioblastomas, gastric, uterine cervical and melanoma. Understanding the role and regulation of TBX2, as well as other T-box factors, in contributing directly to tumour progression, and especially in suppression of senescence and control of invasiveness suggests that targeting TBX2 expression or function alone or in combination with currently available chemotherapeutic agents may represent a therapeutic strategy for cancer.
Collapse
Affiliation(s)
- Sabina Wansleben
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925 Cape Town, South Africa
| | - Jade Peres
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925 Cape Town, South Africa
| | - Shannagh Hare
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925 Cape Town, South Africa
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Oxford University, Old Road Campus, Headington, Oxford OX3 7DQ, UK
| | - Sharon Prince
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925 Cape Town, South Africa.
| |
Collapse
|
17
|
Tai PWL, Zaidi SK, Wu H, Grandy RA, Montecino MM, van Wijnen AJ, Lian JB, Stein GS, Stein JL. The dynamic architectural and epigenetic nuclear landscape: developing the genomic almanac of biology and disease. J Cell Physiol 2014; 229:711-27. [PMID: 24242872 PMCID: PMC3996806 DOI: 10.1002/jcp.24508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 11/11/2013] [Indexed: 12/31/2022]
Abstract
Compaction of the eukaryotic genome into the confined space of the cell nucleus must occur faithfully throughout each cell cycle to retain gene expression fidelity. For decades, experimental limitations to study the structural organization of the interphase nucleus restricted our understanding of its contributions towards gene regulation and disease. However, within the past few years, our capability to visualize chromosomes in vivo with sophisticated fluorescence microscopy, and to characterize chromosomal regulatory environments via massively parallel sequencing methodologies have drastically changed how we currently understand epigenetic gene control within the context of three-dimensional nuclear structure. The rapid rate at which information on nuclear structure is unfolding brings challenges to compare and contrast recent observations with historic findings. In this review, we discuss experimental breakthroughs that have influenced how we understand and explore the dynamic structure and function of the nucleus, and how we can incorporate historical perspectives with insights acquired from the ever-evolving advances in molecular biology and pathology.
Collapse
Affiliation(s)
- Phillip W. L. Tai
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| | - Sayyed K. Zaidi
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| | - Hai Wu
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| | - Rodrigo A. Grandy
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| | - Martin M. Montecino
- Center for Biomedical Research and FONDAP Center for Genome Regulation, Universidad Andres Bello, Santiago, Chile
| | - André J. van Wijnen
- Departments of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN
| | - Jane B. Lian
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| | - Gary S. Stein
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| | - Janet L. Stein
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| |
Collapse
|
18
|
gdf6a is required for cone photoreceptor subtype differentiation and for the actions of tbx2b in determining rod versus cone photoreceptor fate. PLoS One 2014; 9:e92991. [PMID: 24681822 PMCID: PMC3969374 DOI: 10.1371/journal.pone.0092991] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/27/2014] [Indexed: 12/17/2022] Open
Abstract
Functional vision restoration is within reach via stem cell therapy, but one of the largest obstacles is the derivation of colour-sensitive cone photoreceptors that are required for high-acuity daytime vision. To enhance progress made using nocturnal murine models, we instead utilize cone-rich zebrafish and herein investigate relationships between gdf6a and tbx2b in cone photoreceptor development. Growth/differentiation factor 6a (gdf6a), a bone morphogenetic protein family ligand, is an emerging factor in photoreceptor degenerative diseases. The T-box transcription factor tbx2b is required to specify UV cone photoreceptor fate instead of rod photoreceptor fate. Interactions between these factors in cone development would be unanticipated, considering the discrete phenotypes in their respective mutants. However, gdf6a positively modulates the abundance of tbx2b transcript during early eye morphogenesis, and we extended this conclusion to later stages of retinal development comprising the times when photoreceptors differentiate. Despite this, gdf6a-/- larvae possess a normal relative number of UV cones and instead present with a low abundance of blue cone photoreceptors, approximately half that of siblings (p<0.001), supporting a differential role for gdf6a amongst the spectral subtypes of cone photoreceptors. Further, gdf6a-/- larvae from breeding of compound heterozygous gdf6a+/-;tbx2b+/- mutants exhibit the recessive lots-of-rods phenotype (which also shows a paucity of UV cones) at significantly elevated rates (44% or 48% for each of two tbx2b alleles, χ2 p≤0.007 for each compared to expected Mendelian 25%). Thus the gdf6a-/- background sensitizes fish such that the recessive lots-of-rods phenotype can appear in heterozygous tbx2b+/- fish. Overall, this work establishes a novel link between tbx2b and gdf6a in determining photoreceptor fates, defining the nexus of an intricate pathway influencing the abundance of cone spectral subtypes and specifying rod vs. cone photoreceptors. Understanding this interaction is a necessary step in the refinement of stem cell-based restoration of daytime vision in humans.
Collapse
|
19
|
Thi Thu HN, Haw Tien SF, Loh SL, Bok Yan JS, Korzh V. Tbx2a is required for specification of endodermal pouches during development of the pharyngeal arches. PLoS One 2013; 8:e77171. [PMID: 24130849 PMCID: PMC3795029 DOI: 10.1371/journal.pone.0077171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 09/01/2013] [Indexed: 11/21/2022] Open
Abstract
Tbx2 is a member of the T-box family of transcription factors essential for embryo- and organogenesis. A deficiency in the zebrafish paralogue tbx2a causes abnormalities of the pharyngeal arches in a p53-independent manner. The pharyngeal arches are formed by derivatives of all three embryonic germ layers: endodermal pouches, mesenchymal condensations and neural crest cells. While tbx2a expression is restricted to the endodermal pouches, its function is required for the normal morphogenesis of the entire pharyngeal arches. Given the similar function of Tbx1 in craniofacial development, we explored the possibility of an interaction between Tbx1 and Tbx2a. The use of bimolecular fluorescence complementation revealed the interaction between Tbx2a and Tbx1, thus providing support for the idea that functional interaction between different, co-expressed Tbx proteins could be a common theme across developmental processes in cell lineages and tissues. Together, this work provides mechanistic insight into the role of TBX2 in human disorders affecting the face and neck.
Collapse
Affiliation(s)
- Hang Nguyen Thi Thu
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Siau Lin Loh
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Jimmy So Bok Yan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Vladimir Korzh
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
20
|
Ivanschitz L, De Thé H, Le Bras M. PML, SUMOylation, and Senescence. Front Oncol 2013; 3:171. [PMID: 23847762 PMCID: PMC3701148 DOI: 10.3389/fonc.2013.00171] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 06/14/2013] [Indexed: 11/15/2022] Open
Abstract
Since its discovery, 25 years ago, promyelocytic leukemia (PML) has been an enigma. Implicated in the oncogenic PML/RARA fusion, forming elusive intranuclear domains, triggering cell death or senescence, controlled by and perhaps controlling SUMOylation… there are multiple PML-related issues. Here we review the reciprocal interactions between PML, senescence, and SUMOylation, notably in the context of cellular transformation.
Collapse
Affiliation(s)
- Lisa Ivanschitz
- University Paris Diderot, Sorbonne Paris Cité, Hôpital St. Louis , Paris , France ; INSERM UMR 944, Equipe labellisée par la Ligue Nationale contre le Cancer, Institut Universitaire d'Hématologie, Hôpital St. Louis , Paris , France ; CNRS UMR 7212, Hôpital St. Louis , Paris , France
| | | | | |
Collapse
|
21
|
Bedolla DE, Kenig S, Mitri E, Ferraris P, Marcello A, Grenci G, Vaccari L. Determination of cell cycle phases in live B16 melanoma cells using IRMS. Analyst 2013; 138:4015-21. [PMID: 23662303 DOI: 10.1039/c3an00318c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The knowledge of cell cycle phase distribution is of paramount importance for understanding cellular behaviour under normal and stressed growth conditions. This task is usually assessed using Flow Cytometry (FC) or immunohistochemistry. Here we report on the use of FTIR microspectroscopy in Microfluidic Devices (MD-IRMS) as an alternative technique for studying cell cycle distribution in live cells. Asynchronous, S- and G0-synchronized B16 mouse melanoma cells were studied by running parallel experiments based on MD-IRMS and FC using Propidium Iodide (PI) staining. MD-IRMS experiments have been done using silicon-modified BaF2 devices, where the thin silicon layer prevents BaF2 dissolution without affecting the transparency of the material and therefore enabling a better assessment of the Phosphate I (PhI) and II (PhII) bands. Hierarchical Cluster Analysis (HCA) of cellular microspectra in the 1300-1000 cm(-1) region pointed out a distribution of cells among clusters, which is in good agreement with FC results among G0/G1, S and G2/M phases. The differentiation is mostly driven by the intensity of PhI and PhII bands. In particular, PhI almost doubles from the G0/G1 to G2/M phase, in agreement with the trend followed by nucleic acids during cellular progression. MD-IRMS is then proposed as a powerful method for the in situ determination of the cell cycle stage of an individual cell, without any labelling or staining, which gives the advantage of possibly monitoring specific cellular responses to several types of stimuli by clearly separating the spectral signatures related to the cellular response from those of cells that are normally progressing.
Collapse
Affiliation(s)
- Diana E Bedolla
- Elettra Sincrotrone Trieste, SISSI beamline, S.S. 14 Km 163.5, 34149 Basovizza, Trieste, Italy
| | | | | | | | | | | | | |
Collapse
|
22
|
Kadauke S, Blobel GA. Mitotic bookmarking by transcription factors. Epigenetics Chromatin 2013; 6:6. [PMID: 23547918 PMCID: PMC3621617 DOI: 10.1186/1756-8935-6-6] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 03/11/2013] [Indexed: 11/30/2022] Open
Abstract
Mitosis is accompanied by dramatic changes in chromatin organization and nuclear architecture. Transcription halts globally and most sequence-specific transcription factors and co-factors are ejected from mitotic chromatin. How then does the cell maintain its transcriptional identity throughout the cell division cycle? It has become clear that not all traces of active transcription and gene repression are erased within mitotic chromatin. Many histone modifications are stable or only partially diminished throughout mitosis. In addition, some sequence-specific DNA binding factors have emerged that remain bound to select sites within mitotic chromatin, raising the possibility that they function to transmit regulatory information through the transcriptionally silent mitotic phase, a concept that has been termed “mitotic bookmarking.” Here we review recent approaches to studying potential bookmarking factors with regards to their mitotic partitioning, and summarize emerging ideas concerning the in vivo functions of mitotically bound nuclear factors.
Collapse
Affiliation(s)
- Stephan Kadauke
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| | | |
Collapse
|
23
|
The transcription factors TBX2 and TBX3 interact with human papillomavirus 16 (HPV16) L2 and repress the long control region of HPVs. J Virol 2013; 87:4461-74. [PMID: 23388722 DOI: 10.1128/jvi.01803-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The minor capsid protein L2 of human papillomaviruses (HPVs) has multiple functions during the viral life cycle. Although L2 is required for effective invasion and morphogenesis, only a few cellular interaction partners are known so far. Using yeast two-hybrid screening, we identified the transcription factor TBX2 as a novel interaction partner of HPV type 16 (HPV16) L2. Coimmunoprecipitations and immunofluorescence analyses confirmed the L2-TBX2 interaction and revealed that L2 also interacts with TBX3, another member of the T-box family. Transcription of the early genes during HPV infection is under the control of an upstream enhancer and early promoter region, the long control region (LCR). In promoter-reporter gene assays, we observed that TBX2 and TBX3 repress transcription from the LCR and that this effect is enhanced by L2. Repression of the HPV LCR by TBX2/3 seems to be a conserved mechanism, as it was also observed with the LCRs of different HPV types. Finally, interaction of TBX2 with the LCR was detected by chromatin immunoprecipitation, and we found a strong colocalization of L2 and TBX2 in HPV16-positive cervical intraepithelial neoplasia (CIN) I-II tissue sections. These results suggest that TBX2/3 might play a role in the regulation of HPV gene expression during the viral life cycle.
Collapse
|
24
|
Cell cycle gene networks are associated with melanoma prognosis. PLoS One 2012; 7:e34247. [PMID: 22536322 PMCID: PMC3335030 DOI: 10.1371/journal.pone.0034247] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 02/24/2012] [Indexed: 11/19/2022] Open
Abstract
Background Our understanding of the molecular pathways that underlie melanoma remains incomplete. Although several published microarray studies of clinical melanomas have provided valuable information, we found only limited concordance between these studies. Therefore, we took an in vitro functional genomics approach to understand melanoma molecular pathways. Methodology/Principal Findings Affymetrix microarray data were generated from A375 melanoma cells treated in vitro with siRNAs against 45 transcription factors and signaling molecules. Analysis of this data using unsupervised hierarchical clustering and Bayesian gene networks identified proliferation-association RNA clusters, which were co-ordinately expressed across the A375 cells and also across melanomas from patients. The abundance in metastatic melanomas of these cellular proliferation clusters and their putative upstream regulators was significantly associated with patient prognosis. An 8-gene classifier derived from gene network hub genes correctly classified the prognosis of 23/26 metastatic melanoma patients in a cross-validation study. Unlike the RNA clusters associated with cellular proliferation described above, co-ordinately expressed RNA clusters associated with immune response were clearly identified across melanoma tumours from patients but not across the siRNA-treated A375 cells, in which immune responses are not active. Three uncharacterised genes, which the gene networks predicted to be upstream of apoptosis- or cellular proliferation-associated RNAs, were found to significantly alter apoptosis and cell number when over-expressed in vitro. Conclusions/Significance This analysis identified co-expression of RNAs that encode functionally-related proteins, in particular, proliferation-associated RNA clusters that are linked to melanoma patient prognosis. Our analysis suggests that A375 cells in vitro may be valid models in which to study the gene expression modules that underlie some melanoma biological processes (e.g., proliferation) but not others (e.g., immune response). The gene expression modules identified here, and the RNAs predicted by Bayesian network inference to be upstream of these modules, are potential prognostic biomarkers and drug targets.
Collapse
|
25
|
Smith J, Mowla S, Prince S. Basal transcription of the human TBX3 gene, a key developmental regulator which is overexpressed in several cancers, requires functional NF-Y and Sp1 sites. Gene 2011; 486:41-6. [PMID: 21784138 DOI: 10.1016/j.gene.2011.07.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 07/06/2011] [Accepted: 07/09/2011] [Indexed: 02/05/2023]
Abstract
TBX3 is a member of the T-box family of genes that encode developmentally important transcription factors. Mutations resulting in decreased levels of functional TBX3 lead to Ulnar-Mammary Syndrome and increased levels of TBX3 have been linked to several cancers. To understand the mechanisms regulating TBX3 expression we have previously cloned the 5'-flanking region of the human TBX3 gene and here we describe cis-elements required for its basal transcription. Using site-directed mutagenesis, luciferase reporter assays and in vitro and in vivo DNA binding experiments we identify a Sp1 element and two CCAAT boxes to be essential for basal TBX3 promoter activity. Our results are consistent with reports that these sites are necessary for efficient basal transcription in genes which lack TATA boxes or an Initiator which we show to be the case for TBX3.
Collapse
Affiliation(s)
- James Smith
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| | | | | |
Collapse
|
26
|
Vance KW, Shaw HM, Rodriguez M, Ott S, Goding CR. The retinoblastoma protein modulates Tbx2 functional specificity. Mol Biol Cell 2010; 21:2770-9. [PMID: 20534814 PMCID: PMC2912361 DOI: 10.1091/mbc.e09-12-1029] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study demonstrates that Tbx2 binds Rb1. The interaction with Rb1 increases Tbx2 DNA-binding activity and enhances the ability of Tbx2 to repress transcription. The results show that Tbx2 regulates the expression of genes involved in cell division and DNA replication and that Rb1 modulates Tbx2 target gene recognition and specificity. Tbx2 is a member of a large family of transcription factors defined by homology to the T-box DNA-binding domain. Tbx2 plays a key role in embryonic development, and in cancer through its capacity to suppress senescence and promote invasiveness. Despite its importance, little is known of how Tbx2 is regulated or how it achieves target gene specificity. Here we show that Tbx2 specifically associates with active hypophosphorylated retinoblastoma protein (Rb1), a known regulator of many transcription factors involved in cell cycle progression and cellular differentiation, but not with the Rb1-related proteins p107 or p130. The interaction with Rb1 maps to a domain immediately carboxy-terminal to the T-box and enhances Tbx2 DNA binding and transcriptional repression. Microarray analysis of melanoma cells expressing inducible dominant-negative Tbx2, comprising the T-box and either an intact or mutated Rb1 interaction domain, shows that Tbx2 regulates the expression of many genes involved in cell cycle control and that a mutation which disrupts the Rb1-Tbx2 interaction also affects Tbx2 target gene selectivity. Taken together, the data show that Rb1 is an important determinant of Tbx2 functional specificity.
Collapse
Affiliation(s)
- Keith W Vance
- Department of Systems Biology, Biomedical Research Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom.
| | | | | | | | | |
Collapse
|
27
|
Abrahams A, Parker MI, Prince S. The T-box transcription factor Tbx2: its role in development and possible implication in cancer. IUBMB Life 2010; 62:92-102. [PMID: 19960541 DOI: 10.1002/iub.275] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tbx2 is a member of the T-box family of transcription factors that are crucial in embryonic development. Recent studies suggest that T-box factors may also play a role in controlling cell cycle progression and in the genesis of cancer. Tbx2 has been implicated in several developmental processes such as coordinating cell fate, patterning and morphogenesis of a wide range of tissues and organs including limbs, kidneys, lungs, mammary glands, heart, and craniofacial structures. Importantly, Tbx2 is overexpressed in several cancers including melanoma, small cell lung carcinoma, breast, pancreatic, liver, and bladder cancers and can suppress senescence, a cellular process, which serves as a barrier to cancer development. This review presents a state of the art overview of the role and regulation of Tbx2 in early embryonic development and in cancer.
Collapse
Affiliation(s)
- Amaal Abrahams
- Faculty of Health Sciences, Department of Human Biology, University of Cape Town, Observatory, Cape Town, South Africa
| | | | | |
Collapse
|
28
|
Sen A, Gadomski C, Balles J, Abassi Y, Dorner C, Pflugfelder GO. Null mutations in Drosophila Optomotor-blind affect T-domain residues conserved in all Tbx proteins. Mol Genet Genomics 2009; 283:147-56. [PMID: 20033428 DOI: 10.1007/s00438-009-0505-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Accepted: 12/05/2009] [Indexed: 12/11/2022]
Abstract
The T-box transcription factors TBX2 and TBX3 are overexpressed in many human cancers raising the need for a thorough understanding of the cellular function of these proteins. In Drosophila, there is one corresponding ortholog, Optomotor-blind (Omb). Currently, only two missense mutations are known for the two human proteins. Making use of the developmental defects caused by inactivation of omb, we have isolated and molecularly characterized four new omb mutations, three of them are missense mutations of amino acids fully conserved in all Tbx proteins. We interpret the functional defects in the framework of the known structure of the human TBX3 protein and provide evidence for loss of Omb DNA-binding activity in all three newly identified missense mutations.
Collapse
Affiliation(s)
- Aditya Sen
- Institute of Genetics, Johannes Gutenberg-Universität, Becherweg 32, 55128, Mainz, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Zirzow S, Lüdtke THW, Brons JF, Petry M, Christoffels VM, Kispert A. Expression and requirement of T-box transcription factors Tbx2 and Tbx3 during secondary palate development in the mouse. Dev Biol 2009; 336:145-55. [PMID: 19769959 DOI: 10.1016/j.ydbio.2009.09.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 08/27/2009] [Accepted: 09/15/2009] [Indexed: 01/21/2023]
Abstract
Formation of the mammalian secondary palate is a highly regulated and complex process. Impairment of the underlying cellular and molecular programs often results in cleft palate, a common birth defect in mammals. Here we report that Tbx2 and Tbx3, two closely related genes encoding T-box transcription factors, are expressed in the mesenchyme of the mouse palatal structures during development. Mice homozygous mutant for Tbx2 and mice double heterozygous for Tbx2 and Tbx3 exhibit a cleft palate phenotype arguing for an important contribution of Tbx2 and Tbx3 to palatogenesis. In Tbx2-deficient embryos, the bilateral primordial palatal shelves form but are smaller and retarded in the outgrowth process. They do not make contact but retain the potential to fuse. Development of other craniofacial structures appears normal, suggesting that impaired palate formation in Tbx2-mutant mice is caused by a primary defect in the palatal shelf mesenchyme. This is further supported by increased cell proliferation and apoptosis accompanied by increased expression of Bmp4 and CyclinD1 in Tbx2-deficient palatal shelves. Hence, Tbx2 and Tbx3 function overlappingly to control growth of the palatal shelf mesenchyme.
Collapse
Affiliation(s)
- Susann Zirzow
- Institut für Molekularbiologie, OE5250, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Behesti H, Papaioannou VE, Sowden JC. Loss of Tbx2 delays optic vesicle invagination leading to small optic cups. Dev Biol 2009; 333:360-72. [PMID: 19576202 PMCID: PMC2735611 DOI: 10.1016/j.ydbio.2009.06.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 06/19/2009] [Accepted: 06/22/2009] [Indexed: 01/05/2023]
Abstract
Tbx2 is a T-box transcription factor gene that is dynamically expressed in the presumptive retina during optic vesicle invagination. Several findings implicate Tbx2 in cell cycle regulation, including its overexpression in tumours and regulation of proliferation during heart development. We investigated the role of Tbx2 in optic cup formation by analysing mice with a targeted homozygous mutation in Tbx2. Loss of Tbx2 caused a reduced presumptive retinal volume due to increased apoptosis, and a delay in ventral optic vesicle invagination leading to the formation of small and abnormally shaped optic cups. Tbx2 is essential for maintenance, but not induction of expression of the dorsal retinal determinant, Tbx5, and acts downstream of Bmp4, a dorsally expressed gene implicated in human microphthalmia. The small retina showed a hypocellular ventral region, loss of Fgf15, normally expressed in proliferating central retinal cells, and increased numbers of mitotic cells in the dorsal region, indicating that Tbx2 is required for normal growth and development across the D-V axis. Dorsal expression of potential regulators of retinal growth, Cyp1b1 and Cx43, and the topographic guidance molecule ephrinB2, was increased, and intraretinal axons were disorganised resulting in a failure of optic nerve formation. Our data provide evidence that Tbx2 is required for proper optic cup formation and plays a critical early role in regulating regional retinal growth and the acquisition of shape during optic vesicle invagination.
Collapse
Affiliation(s)
- Hourinaz Behesti
- Developmental Biology Unit, UCL Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH
- Department of Genetics and Development, College of Physicians and Surgeons of Columbia University, 701 West 168th Street, New York, NY 10032
| | - Virginia E. Papaioannou
- Department of Genetics and Development, College of Physicians and Surgeons of Columbia University, 701 West 168th Street, New York, NY 10032
| | - Jane C. Sowden
- Developmental Biology Unit, UCL Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH
| |
Collapse
|
31
|
Rodriguez M, Aladowicz E, Lanfrancone L, Goding CR. Tbx3 represses E-cadherin expression and enhances melanoma invasiveness. Cancer Res 2008; 68:7872-81. [PMID: 18829543 DOI: 10.1158/0008-5472.can-08-0301] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The T-box transcription factors Tbx2 and Tbx3 are overexpressed in many cancers and in melanoma promote proliferation by actively suppressing senescence. Whether they also contribute to tumor progression via other mechanisms is not known. Here, we identify a novel role for these factors, providing evidence that Tbx3, and potentially Tbx2, directly repress the expression of E-cadherin, a keratinocyte-melanoma adhesion molecule whose loss is required for the acquisition of an invasive phenotype. Overexpression of Tbx2 and Tbx3 in melanoma cells down-regulates endogenous E-cadherin expression, whereas depletion of Tbx3, but not Tbx2, increases E-cadherin mRNA and protein levels and decreases melanoma invasiveness in vitro. Consistent with these observations, in melanoma tissue, Tbx3 and E-cadherin expression are inversely correlated. Depletion of Tbx3 also leads to substantial up-regulation of Tbx2. The results suggest that Tbx2 and Tbx3 may play a dual role during the radial to vertical growth phase transition by both inhibiting senescence via repression of p21(CIP1) expression, and enhancing melanoma invasiveness by decreasing E-cadherin levels.
Collapse
Affiliation(s)
- Mercedes Rodriguez
- Signalling and Development Laboratory, Marie Curie Research Institute, The Chart, Oxted, Surrey, United Kingdom
| | | | | | | |
Collapse
|
32
|
Chen P, Tian D, Liu M. The role of Tbx2 in pancreatic cancers and its regulation by Wnt/β-catenin signaling. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/s10330-008-0054-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Pontecorvi M, Goding CR, Richardson WD, Kessaris N. Expression of Tbx2 and Tbx3 in the developing hypothalamic-pituitary axis. Gene Expr Patterns 2008; 8:411-417. [PMID: 18534921 DOI: 10.1016/j.gep.2008.04.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 04/20/2008] [Accepted: 04/21/2008] [Indexed: 12/12/2022]
Abstract
TBX2 and TBX3 are transcription factors that belong to the T-box family, members of which play important roles during mammalian embryogenesis. Mutations in T-box genes have been linked to several human genetic disorders and increasing evidence suggests that Tbx2 and Tbx3 may play a key role in cancer. The primary functions of Tbx2 and Tbx3 remain poorly defined, mainly because of their widespread expression in several tissues and their multiple potential roles in morphogenesis, organogenesis and cell-fate commitment. Here, we describe in detail the expression of Tbx2 and Tbx3 in the developing hypothalamic-pituitary axis. Localized transcripts can be detected during the early stages of pituitary commitment. Expression of Tbx2 is restricted to the infundibular region of the ventral diencephalon (VD) at all ages examined, whereas Tbx3 can be detected in both the VD and Rathke's pouch, the precursor of the anterior pituitary. Outside the developing hypophyseal organ novel sites of Tbx3 and Tbx2 expression include migrating branchiomotor (BM) and visceromotor (VM) neurons in the hindbrain, neuroepithelial cells of the developing tongue (Tbx3) as well as the developing blood vessel network (Tbx2).
Collapse
Affiliation(s)
- Marco Pontecorvi
- Wolfson Institute for Biomedical Research and Department of Biology, University College London, Gower Street, London WC1E 6BT, UK; Signalling and Development Laboratory, Marie Curie Research Institute, The Chart, Oxted, Surrey RH8 0TL, UK
| | - Colin R Goding
- Signalling and Development Laboratory, Marie Curie Research Institute, The Chart, Oxted, Surrey RH8 0TL, UK
| | - William D Richardson
- Wolfson Institute for Biomedical Research and Department of Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Nicoletta Kessaris
- Wolfson Institute for Biomedical Research and Department of Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
34
|
Abrahams A, Mowla S, Parker MI, Goding CR, Prince S. UV-mediated regulation of the anti-senescence factor Tbx2. J Biol Chem 2007; 283:2223-30. [PMID: 18025091 DOI: 10.1074/jbc.m705651200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Several lines of evidence have implicated members of the developmentally important T-box gene family in cell cycle regulation and in cancer. Importantly, the highly related T-box factors Tbx2 and Tbx3 can suppress senescence through repressing the cyclin-dependent kinase inhibitors p19(ARF) and p21(WAF1/CIP1/SDII). Furthermore, Tbx2 is up-regulated in several cancers, including melanomas where it was shown to function as an anti-senescence factor, suggesting that this may be one of the mechanisms by which T-box proteins contribute to the oncogenic process. However, very little is known about whether Tbx2 is regulated by p21-mediated stress-induced senescence signaling pathways. In this study, using the MCF-7 breast cancer cell line known to overexpress Tbx2, we show that in response to stress induced by ultraviolet irradiation the Tbx2 protein is specifically phosphorylated by the p38 mitogen-activated protein kinase. Using site-directed mutagenesis and in vitro kinase assays, we have identified serine residues 336, 623, and 675 in the Tbx2 protein as the p38 target sites and show that these sites are phosphorylated in vivo. Importantly, we show by Western blotting, immunofluorescence, and reporter assays that this phosphorylation leads to increased Tbx2 protein levels, predominant nuclear localization of the protein, and an increase in the ability of Tbx2 to repress the p21(WAF1/CIP1/SDII) promoter. These results show for the first time that the ability of Tbx2 to repress the p21 gene is enhanced in response to a stress-induced senescence pathway, which leads to a better understanding of the regulation of the anti-senescence function of Tbx2.
Collapse
Affiliation(s)
- Amaal Abrahams
- Divisions of Medical Biochemistry and Cell Biology, Faculty of Health Sciences, University of Cape Town, Observatory 7925, Cape Town, South Africa
| | | | | | | | | |
Collapse
|
35
|
Abstract
The heart of higher vertebrates is a structurally complicated multi-chambered pump that contracts synchronously. For its proper function a number of distinct integrated components have to be generated, including force-generating compartments, unidirectional valves, septa and a system in charge of the initiation and coordinated propagation of the depolarizing impulse over the heart. Not surprisingly, a large number of regulating factors are involved in these processes that act in complex and intertwined pathways to regulate the activity of target genes responsible for morphogenesis and function. The finding that mutations in T-box transcription factor-encoding genes in humans lead to congenital heart defects has focused attention on the importance of this family of regulators in heart development. Functional and genetic analyses in a variety of divergent species has demonstrated the critical roles of multiple T-box factor gene family members, including Tbx11, −2, −3, −5, −18 and −20, in the patterning, recruitment, specification, differentiation and growth processes underlying formation and integration of the heart components. Insight into the roles of T-box factors in these processes will enhance our understanding of heart formation and the underlying molecular regulatory pathways.
Collapse
Affiliation(s)
- W. M. H. Hoogaars
- Heart Failure Research Center, Department of Anatomy and Embryology, Academic Medical Center, Amsterdam, The Netherlands
| | - P. Barnett
- Heart Failure Research Center, Department of Anatomy and Embryology, Academic Medical Center, Amsterdam, The Netherlands
| | - A. F. M. Moorman
- Heart Failure Research Center, Department of Anatomy and Embryology, Academic Medical Center, Amsterdam, The Netherlands
| | - V. M. Christoffels
- Heart Failure Research Center, Department of Anatomy and Embryology, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
36
|
Davis E, Teng H, Bilican B, Parker MI, Liu B, Carriera S, Goding CR, Prince S. Ectopic Tbx2 expression results in polyploidy and cisplatin resistance. Oncogene 2007; 27:976-84. [PMID: 17700536 DOI: 10.1038/sj.onc.1210701] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
T-box factors play critical roles in embryonic development and have been implicated in cell cycle regulation and cancer. For example, Tbx2 can suppress senescence through a mechanism involving the repression of the cyclin-dependent kinase inhibitors, p19(ARF) and p21(WAF1/CIP1/SDII), and the Tbx2 gene is deregulated in melanoma, breast and pancreatic cancers. In this study, several transformed human lung fibroblast cell lines were shown to downregulate Tbx2. To further investigate the role of Tbx2 in oncogenesis we therefore stably reexpressed Tbx2 in one such cell line. Compared to their parental cells, the resulting Tbx2-expressing cells are larger, with binucleate and lobular nuclei containing double the number of chromosomes. Moreover, these cells had an increase in frequency of several features of genomic instability such as chromosome missegregation, chromosomal rearrangements and polyploidy. While grossly abnormal, these cells still divide and give rise to cells that are resistant to the chemotherapeutic drug cisplatin. Furthermore, this is shown to be neither species nor cell type dependent, as ectopically expressing Tbx2 in a murine melanoma cell line also induce mitotic defects and polyploidy. These results have important implications for our understanding of the role of Tbx2 in tumorigenesis because polyploidy frequently precedes aneuploidy, which is associated with high malignancy and poor prognosis.
Collapse
Affiliation(s)
- E Davis
- Division of Cell Biology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, Western Province, South Africa
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Demay F, Bilican B, Rodriguez M, Carreira S, Pontecorvi M, Ling Y, Goding CR. T-box factors: targeting to chromatin and interaction with the histone H3 N-terminal tail. ACTA ACUST UNITED AC 2007; 20:279-87. [PMID: 17630961 DOI: 10.1111/j.1600-0749.2007.00389.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
T-box transcription factors play a crucial role in development where they are implicated in patterning and cell fate decisions. Tbx2 and Tbx3 have also been implicated in several cancers including melanoma, and can act as antisenescence factors through their ability to repress p19(ARF) and p21(CIP1) expression. Although several target genes for T-box factors have been identified, it is unknown whether this family of proteins can bind chromatin, a property that would facilitate the epigenetic reprogramming that occurs in both development and cancer progression. Here, we show that Tbx2 has the potential to recognize mitotic chromatin in a DNA-dependent fashion, can interact specifically with the histone H3 N-terminal tail, a property shared with Tbx4, Tbx5 and Tbx6, and can also recognize nucleosomal DNA, with binding to nucleosomes being antagonized by the presence of the histone tails. Strikingly, in vivo Tbx2 co-localization with pericentric heterochromatin appears to be regulated and ectopic expression of Tbx2 leads to severe mitotic defects. Taken together our results suggest that Tbx2, and most likely other members of the T-box family, are able to target chromatin and may indicate a role for the T-box factors in epigenetic reprogramming events.
Collapse
Affiliation(s)
- Florence Demay
- Signalling and Development Laboratory, Marie Curie Research Institute, The Chart, Oxted, Surrey, UK
| | | | | | | | | | | | | |
Collapse
|
38
|
Malfitano AM, Toruner GA, Gazzerro P, Laezza C, Husain S, Eletto D, Orlando P, De Petrocellis L, Terskiy A, Schwalb M, Vitale E, Bifulco M. Arvanil and anandamide up-regulate CD36 expression in human peripheral blood mononuclear cells. Immunol Lett 2007; 109:145-54. [PMID: 17360047 DOI: 10.1016/j.imlet.2007.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2006] [Revised: 02/05/2007] [Accepted: 02/05/2007] [Indexed: 11/26/2022]
Abstract
In this study we analysed the regulation of gene expression by arvanil and anandamide in human peripheral blood mononuclear cells (PBMCs) to clarify their immunosuppressive properties. PBMCs were activated, leading to CD36 down regulation, that was normalized by arvanil and anandamide. We used microarray technology to identify a regulatory pattern associated with cell proliferation in the presence of both substances. CD3-CD28 stimulated PBMCs showed a pattern of up-regulated and down-regulated genes after treatment with these substances. We selected and analysed several genes chosen by their function in the regulation of cell proliferation. We showed a transcriptional control of the CD36 gene by arvanil and anandamide associated with an increased protein expression, thus suggesting a possible role of CD36 in anandamide and arvanil anti-inflammatory pattern.
Collapse
Affiliation(s)
- Anna Maria Malfitano
- Dipartimento di Scienze Farmaceutiche, Università di Salerno, Fisciano (SA), Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
|