1
|
Zhang X, Joseph S, Wu D, Bowser JL, Vaziri C. The DNA Damage Response (DDR) landscape of endometrial cancer defines discrete disease subtypes and reveals therapeutic opportunities. NAR Cancer 2024; 6:zcae015. [PMID: 38596432 PMCID: PMC11000323 DOI: 10.1093/narcan/zcae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/12/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024] Open
Abstract
Genome maintenance is an enabling characteristic that allows neoplastic cells to tolerate the inherent stresses of tumorigenesis and evade therapy-induced genotoxicity. Neoplastic cells also deploy many mis-expressed germ cell proteins termed Cancer Testes Antigens (CTAs) to promote genome maintenance and survival. Here, we present the first comprehensive characterization of the DNA Damage Response (DDR) and CTA transcriptional landscapes of endometrial cancer in relation to conventional histological and molecular subtypes. We show endometrial serous carcinoma (ESC), an aggressive endometrial cancer subtype, is defined by gene expression signatures comprising members of the Replication Fork Protection Complex (RFPC) and Fanconi Anemia (FA) pathway and CTAs with mitotic functions. DDR and CTA-based profiling also defines a subset of highly aggressive endometrioid endometrial carcinomas (EEC) with poor clinical outcomes that share similar profiles to ESC yet have distinct characteristics based on conventional histological and genomic features. Using an unbiased CRISPR-based genetic screen and a candidate gene approach, we confirm that DDR and CTA genes that constitute the ESC and related EEC gene signatures are required for proliferation and therapy-resistance of cultured endometrial cancer cells. Our study validates the use of DDR and CTA-based tumor classifiers and reveals new vulnerabilities of aggressive endometrial cancer where none currently exist.
Collapse
Affiliation(s)
- Xingyuan Zhang
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC - 27599, USA
| | - Sayali Joseph
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC - 27599, USA
| | - Di Wu
- Department of Biostatistics, University of North Carolina at Chapel Hill, School of Dentistry, Chapel Hill, NC - 27599, USA
| | - Jessica L Bowser
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC - 27599, USA
- UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC - 27599, USA
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC - 27599, USA
- UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC - 27599, USA
| |
Collapse
|
2
|
Pussila M, Laiho A, Törönen P, Björkbacka P, Nykänen S, Pylvänäinen K, Holm L, Mecklin JP, Renkonen-Sinisalo L, Lehtonen T, Lepistö A, Linden J, Mäki-Nevala S, Peltomäki P, Nyström M. Mitotic abnormalities precede microsatellite instability in lynch syndrome-associated colorectal tumourigenesis. EBioMedicine 2024; 103:105111. [PMID: 38583260 PMCID: PMC11002576 DOI: 10.1016/j.ebiom.2024.105111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND Lynch syndrome (LS) is one of the most common hereditary cancer syndromes worldwide. Dominantly inherited mutation in one of four DNA mismatch repair genes combined with somatic events leads to mismatch repair deficiency and microsatellite instability (MSI) in tumours. Due to a high lifetime risk of cancer, regular surveillance plays a key role in cancer prevention; yet the observation of frequent interval cancers points to insufficient cancer prevention by colonoscopy-based methods alone. This study aimed to identify precancerous functional changes in colonic mucosa that could facilitate the monitoring and prevention of cancer development in LS. METHODS The study material comprised colon biopsy specimens (n = 71) collected during colonoscopy examinations from LS carriers (tumour-free, or diagnosed with adenoma, or diagnosed with carcinoma) and a control group, which included sporadic cases without LS or neoplasia. The majority (80%) of LS carriers had an inherited genetic MLH1 mutation. The remaining 20% included MSH2 mutation carriers (13%) and MSH6 mutation carriers (7%). The transcriptomes were first analysed with RNA-sequencing and followed up with Gorilla Ontology analysis and Reactome Knowledgebase and Ingenuity Pathway Analyses to detect functional changes that might be associated with the initiation of the neoplastic process in LS individuals. FINDINGS With pathway and gene ontology analyses combined with measurement of mitotic perimeters from colonic mucosa and tumours, we found an increased tendency to chromosomal instability (CIN), already present in macroscopically normal LS mucosa. Our results suggest that CIN is an earlier aberration than MSI and may be the initial cancer driving aberration, whereas MSI accelerates tumour formation. Furthermore, our results suggest that MLH1 deficiency plays a significant role in the development of CIN. INTERPRETATION The results validate our previous findings from mice and highlight early mitotic abnormalities as an important contributor and precancerous marker of colorectal tumourigenesis in LS. FUNDING This work was supported by grants from the Jane and Aatos Erkko Foundation, the Academy of Finland (330606 and 331284), Cancer Foundation Finland sr, and the Sigrid Jusélius Foundation. Open access is funded by Helsinki University Library.
Collapse
Affiliation(s)
- Marjaana Pussila
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| | - Aleksi Laiho
- Organismal and Evolutionary Biology Research Program, Faculty of Biosciences, and Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Petri Törönen
- Organismal and Evolutionary Biology Research Program, Faculty of Biosciences, and Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Pauliina Björkbacka
- Department of Veterinary Biosciences, and Finnish Centre for Laboratory Animal Pathology (FCLAP), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Sonja Nykänen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Kirsi Pylvänäinen
- Faculty of Sports and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Liisa Holm
- Organismal and Evolutionary Biology Research Program, Faculty of Biosciences, and Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Jukka-Pekka Mecklin
- Well Being Services County of Central Finland, Department of Science, Jyväskylä, Finland; Faculty of Sports and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Laura Renkonen-Sinisalo
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland; Applied Tumour Genomics, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Taru Lehtonen
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland
| | - Anna Lepistö
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland; Applied Tumour Genomics, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Jere Linden
- Department of Veterinary Biosciences, and Finnish Centre for Laboratory Animal Pathology (FCLAP), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Satu Mäki-Nevala
- Department of Medical and Clinical Genetics, University of Helsinki, Finland
| | - Päivi Peltomäki
- Department of Medical and Clinical Genetics, University of Helsinki, Finland; HUSLAB Laboratory of Genetics, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Minna Nyström
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Jovasevic V, Wood EM, Cicvaric A, Zhang H, Petrovic Z, Carboncino A, Parker KK, Bassett TE, Moltesen M, Yamawaki N, Login H, Kalucka J, Sananbenesi F, Zhang X, Fischer A, Radulovic J. Formation of memory assemblies through the DNA-sensing TLR9 pathway. Nature 2024; 628:145-153. [PMID: 38538785 PMCID: PMC10990941 DOI: 10.1038/s41586-024-07220-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/21/2024] [Indexed: 04/05/2024]
Abstract
As hippocampal neurons respond to diverse types of information1, a subset assembles into microcircuits representing a memory2. Those neurons typically undergo energy-intensive molecular adaptations, occasionally resulting in transient DNA damage3-5. Here we found discrete clusters of excitatory hippocampal CA1 neurons with persistent double-stranded DNA (dsDNA) breaks, nuclear envelope ruptures and perinuclear release of histone and dsDNA fragments hours after learning. Following these early events, some neurons acquired an inflammatory phenotype involving activation of TLR9 signalling and accumulation of centrosomal DNA damage repair complexes6. Neuron-specific knockdown of Tlr9 impaired memory while blunting contextual fear conditioning-induced changes of gene expression in specific clusters of excitatory CA1 neurons. Notably, TLR9 had an essential role in centrosome function, including DNA damage repair, ciliogenesis and build-up of perineuronal nets. We demonstrate a novel cascade of learning-induced molecular events in discrete neuronal clusters undergoing dsDNA damage and TLR9-mediated repair, resulting in their recruitment to memory circuits. With compromised TLR9 function, this fundamental memory mechanism becomes a gateway to genomic instability and cognitive impairments implicated in accelerated senescence, psychiatric disorders and neurodegenerative disorders. Maintaining the integrity of TLR9 inflammatory signalling thus emerges as a promising preventive strategy for neurocognitive deficits.
Collapse
Affiliation(s)
- Vladimir Jovasevic
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Elizabeth M Wood
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ana Cicvaric
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hui Zhang
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Zorica Petrovic
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anna Carboncino
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kendra K Parker
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Thomas E Bassett
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Maria Moltesen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- PROMEMO, Aarhus University, Aarhus, Denmark
- DANDRITE, Aarhus University, Aarhus, Denmark
| | - Naoki Yamawaki
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- PROMEMO, Aarhus University, Aarhus, Denmark
- DANDRITE, Aarhus University, Aarhus, Denmark
| | - Hande Login
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- PROMEMO, Aarhus University, Aarhus, Denmark
- DANDRITE, Aarhus University, Aarhus, Denmark
| | - Joanna Kalucka
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- PROMEMO, Aarhus University, Aarhus, Denmark
- DANDRITE, Aarhus University, Aarhus, Denmark
| | - Farahnaz Sananbenesi
- Department for Psychiatry and Psychotherapy, German Center for Neurodegenerative Diseases, University Medical Center, Göttingen, Germany
- Cluster of Excellence MBExC, University of Göttingen, Göttingen, Germany
| | - Xusheng Zhang
- Computational Genomics Core, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Andre Fischer
- Department for Psychiatry and Psychotherapy, German Center for Neurodegenerative Diseases, University Medical Center, Göttingen, Germany
- Cluster of Excellence MBExC, University of Göttingen, Göttingen, Germany
| | - Jelena Radulovic
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- PROMEMO, Aarhus University, Aarhus, Denmark.
- DANDRITE, Aarhus University, Aarhus, Denmark.
- Department of Psychiatry and Behavioral Sciences, Psychiatry Research Institute Montefiore Einstein (PRIME), Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
4
|
Zhang X, Joseph S, Wu D, Bowser JL, Vaziri C. The DNA Damage Response (DDR) landscape of endometrial cancer defines discrete disease subtypes and reveals therapeutic opportunities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567919. [PMID: 38045328 PMCID: PMC10690150 DOI: 10.1101/2023.11.20.567919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Genome maintenance is an enabling characteristic that allows neoplastic cells to tolerate the inherent stresses of tumorigenesis and evade therapy-induced genotoxicity. Neoplastic cells also deploy mis-expressed germ cell proteins termed Cancer Testes Antigens (CTAs) to promote genome maintenance and survival. Here, we present the first comprehensive characterization of the DNA Damage Response (DDR) and CTA transcriptional landscapes of endometrial cancer in relation to conventional histological and molecular subtypes. We show endometrial serous carcinoma (ESC), an aggressive endometrial cancer subtype, is defined by gene expression signatures comprising members of the Replication Fork Protection Complex (RFPC) and Fanconi Anemia (FA) pathway and CTAs with mitotic functions. DDR and CTA- based profiling also defines a subset of highly aggressive endometrioid endometrial carcinomas (EEC) with poor clinical outcomes that share similar profiles to ESC yet have distinct characteristics based on conventional histological and genomic features. Using an unbiased CRISPR-based genetic screen and a candidate gene approach, we confirm that DDR and CTA genes that constitute the ESC and related EEC gene signatures are required for proliferation and therapy-resistance of cultured endometrial cancer cells. Our study validates the use of DDR and CTA-based tumor classifiers and reveals new vulnerabilities of aggressive endometrial cancer where none currently exist.
Collapse
|
5
|
Chen Y, Li C, Wang N, Wu Z, Zhang J, Yan J, Wei Y, Peng Q, Qi J. Identification of LINC00654-NINL Regulatory Axis in Diffuse Large B-Cell Lymphoma In Silico Analysis. Front Oncol 2022; 12:883301. [PMID: 35719990 PMCID: PMC9204339 DOI: 10.3389/fonc.2022.883301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/22/2022] [Indexed: 12/13/2022] Open
Abstract
Background The long non-coding RNA (lncRNA)-mRNA regulation network plays an important role in the development of diffuse large B-cell lymphoma (DLBCL). This study uses bioinformatics to find an innovative regulation axis in DLBCL that will provide a positive reference for defining the mechanism of disease progression. Methods Batch Cox regression was used to screen prognosis-related lncRNAs, and a random forest model was used to identify hub lncRNA. The clinical value of the lncRNA was evaluated and Spearman correlation analysis was used to predict the candidate target genes. Gene Oncology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were used to define the biological function of the lncRNA. A batch Cox regression model, expression validation, and Spearman correlation analysis were used to select the best downstream target genes. The expression and prognostic value validation of this gene was conducted using public data. Gene Set Enrichment Analysis (GSEA) was performed to explore potential mechanisms for this gene in DLBCL. Results LINC00654 was identified as the hub lncRNA and 1443 mRNAs were selected as downstream target genes of the lncRNA. The target genes were enriched in the regulation of GTPase and Notch signaling pathways. After validation, the ninein-like (NINL) gene was selected as the potential target of LINC00654 and the LINC00654-NINL axis was constructed. Patients with better responses to therapy were shown to have high NINL gene expression (p-value = 0.036). NINL also had high expression in the DB cell line and low expression in the OCILY3 cell line. Survival analysis showed that high NINL expression was a risk factor for overall survival (OS) and disease-specific survival (DSS) within older patients and those with advanced-stage cancer. GSEA results showed that NINL may be involved in neutrophil-mediated immunity and NF-κB signaling. Conclusion This study identified a novel LncRNA00654-NINL regulatory axis in DLBCL, which could provide a favorable reference for exploring the possible mechanisms of disease progression.
Collapse
Affiliation(s)
- Yinchu Chen
- Department of Hematology, The First Affiliated Hospital of Wannan Medical College, WuHu, China
| | - Chen Li
- Department of Biology, Chemistry, Pharmacy, Free University of Berlin, Berlin, Germany
| | - Nana Wang
- Department of Hematology, The First Affiliated Hospital of Wannan Medical College, WuHu, China
| | - Zhenghao Wu
- Department of Clinical and Surgery, Moscow State First Medical University, Moscow, Russia
| | - Jin Zhang
- Department of Surgery, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Jiawei Yan
- Department of Hematology, The First Affiliated Hospital of Wannan Medical College, WuHu, China
| | - Yuanfeng Wei
- Department of Hematology, The First Affiliated Hospital of Wannan Medical College, WuHu, China
| | - Qunlong Peng
- College of Pharmacy, Xiangnan University, Chenzhou, China
| | - Jing Qi
- Department of Hematology, The First Affiliated Hospital of Wannan Medical College, WuHu, China
| |
Collapse
|
6
|
Li G, Wu X, Sun P, Zhang Z, Shao E, Mao J, Cao H, Huang H. Dithiolation indolizine exerts viability suppression effects on A549 cells via triggering intrinsic apoptotic pathways and inducing G2/M phase arrest. Biomed Pharmacother 2020; 133:110961. [PMID: 33190035 DOI: 10.1016/j.biopha.2020.110961] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 01/14/2023] Open
Abstract
Indolizine derivatives have been reported for the treatment of numerous diseases. However, few studies were carried out for non-small cell lung cancer (NSCLC). We synthesized series of indolizine compounds. The results of MTT assay showed compound 8 (C8) markedly inhibited the proliferation of A549 cells, however, C8 (15, 30 μg/mL) had little cytotoxicity in other cell lines (SH-SY5Y, HepG2, and BEAS-2B cells), Hoechst staining and JC-1 staining showed that C8 induced changes in the nucleus morphology, increased the loss in mitochondrial membrane potential in A549 cells. The results of flow cytometry manifested that cell cycle of the cells was arrested in the G2 / M phase by C8, ROS levels and the proportion of apoptosis of cells increased. We performed western blotting analysis to detect the expression levels of apoptosis and cycle-related proteins. These results validated that the apoptosis of cells was triggered by endoplasmic reticulum stress (ERS) and the PI3K/Akt-mediated mitochondrial pathway collaboratively. Besides, the utilization of PI3K/Akt inhibitors and p53 inhibitors further proves the above argument and C8-induced cycle arrest of A549 cells is majorly regulated by p53. C8 induced the accumulation of ROS contents involved in mitochondrial damage. The proliferation of A549 cells was inhibited after treatment with the compound, which induced apoptosis and cycle arrest of cells. It is suggested that C8(dithiolation indolizine) is a potential candidate compound against non-small cell lung cancer.
Collapse
Affiliation(s)
- Guanting Li
- School of Biosciences & Biopharmaceutics and Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xianwei Wu
- School of Biosciences & Biopharmaceutics and Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Peng Sun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, Guangdong Province, 510060, China
| | - Zhiyang Zhang
- School of Biosciences & Biopharmaceutics and Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Enxian Shao
- School of Biosciences & Biopharmaceutics and Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jianping Mao
- School of Biosciences & Biopharmaceutics and Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, China.
| | - Hongliang Huang
- School of Biosciences & Biopharmaceutics and Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of New Drug Discovery and Evaluation, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
7
|
Wezyk M, Szybinska A, Wojsiat J, Szczerba M, Day K, Ronnholm H, Kele M, Berdynski M, Peplonska B, Fichna JP, Ilkowski J, Styczynska M, Barczak A, Zboch M, Filipek-Gliszczynska A, Bojakowski K, Skrzypczak M, Ginalski K, Kabza M, Makalowska I, Barcikowska-Kotowicz M, Wojda U, Falk A, Zekanowski C. Overactive BRCA1 Affects Presenilin 1 in Induced Pluripotent Stem Cell-Derived Neurons in Alzheimer's Disease. J Alzheimers Dis 2019; 62:175-202. [PMID: 29439343 DOI: 10.3233/jad-170830] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The BRCA1 protein, one of the major players responsible for DNA damage response has recently been linked to Alzheimer's disease (AD). Using primary fibroblasts and neurons reprogrammed from induced pluripotent stem cells (iPSC) derived from familial AD (FAD) patients, we studied the role of the BRCA1 protein underlying molecular neurodegeneration. By whole-transcriptome approach, we have found wide range of disturbances in cell cycle and DNA damage response in FAD fibroblasts. This was manifested by significantly increased content of BRCA1 phosphorylated on Ser1524 and abnormal ubiquitination and subcellular distribution of presenilin 1 (PS1). Accordingly, the iPSC-derived FAD neurons showed increased content of BRCA1(Ser1524) colocalized with degraded PS1, accompanied by an enhanced immunostaining pattern of amyloid-β. Finally, overactivation of BRCA1 was followed by an increased content of Cdc25C phosphorylated on Ser216, likely triggering cell cycle re-entry in FAD neurons. This study suggests that overactivated BRCA1 could both influence PS1 turnover leading to amyloid-β pathology and promote cell cycle re-entry-driven cell death of postmitotic neurons in AD.
Collapse
Affiliation(s)
- Michalina Wezyk
- Department of Neurodegenerative Disorders, Laboratory of Neurogenetics, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Aleksandra Szybinska
- Department of Neurodegenerative Disorders, Laboratory of Neurogenetics, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Wojsiat
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Marcelina Szczerba
- Department of Neurodegenerative Disorders, Laboratory of Neurogenetics, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Kelly Day
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Harriet Ronnholm
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Malin Kele
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mariusz Berdynski
- Department of Neurodegenerative Disorders, Laboratory of Neurogenetics, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland.,Department of Pharmacology and Clinical Neuroscience, Umea Universitet, Umea, Sweden
| | - Beata Peplonska
- Department of Neurodegenerative Disorders, Laboratory of Neurogenetics, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Jakub Piotr Fichna
- Department of Neurodegenerative Disorders, Laboratory of Neurogenetics, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Jan Ilkowski
- Department of Emergency Medicine, Faculty of Health Sciences, Poznan University of Medical Sciences, Poznan, Poland
| | - Maria Styczynska
- Department of Neurodegenerative Disorders, Laboratory of Neurogenetics, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Anna Barczak
- Department of Neurodegenerative Disorders, Laboratory of Neurogenetics, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Marzena Zboch
- Center of Alzheimer's Disease of Wroclaw Medical University, Scinawa, Poland
| | - Anna Filipek-Gliszczynska
- Clinical Department of Neurology, Extrapyramidal Disorders and Alzheimer's Outpatient Clinic, Central Clinical Hospital of the Ministry of the Interior and Administration in Warsaw, Warsaw, Poland
| | - Krzysztof Bojakowski
- Clinical Department of General and Vascular Surgery, Central Clinical Hospital of the Ministry of the Interior and Administration in Warsaw, Warsaw, Poland
| | - Magdalena Skrzypczak
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Michal Kabza
- Department of Integrated Genomics, Institute of Anthropology, Adam Mickiewicz University, Poznan, Poland
| | - Izabela Makalowska
- Department of Integrated Genomics, Institute of Anthropology, Adam Mickiewicz University, Poznan, Poland
| | - Maria Barcikowska-Kotowicz
- Department of Neurodegenerative Disorders, Laboratory of Neurogenetics, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Urszula Wojda
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Anna Falk
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Cezary Zekanowski
- Department of Neurodegenerative Disorders, Laboratory of Neurogenetics, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
8
|
Gorgoulis VG, Pefani D, Pateras IS, Trougakos IP. Integrating the DNA damage and protein stress responses during cancer development and treatment. J Pathol 2018; 246:12-40. [PMID: 29756349 PMCID: PMC6120562 DOI: 10.1002/path.5097] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/16/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022]
Abstract
During evolution, cells have developed a wide spectrum of stress response modules to ensure homeostasis. The genome and proteome damage response pathways constitute the pillars of this interwoven 'defensive' network. Consequently, the deregulation of these pathways correlates with ageing and various pathophysiological states, including cancer. In the present review, we highlight: (1) the structure of the genome and proteome damage response pathways; (2) their functional crosstalk; and (3) the conditions under which they predispose to cancer. Within this context, we emphasize the role of oncogene-induced DNA damage as a driving force that shapes the cellular landscape for the emergence of the various hallmarks of cancer. We also discuss potential means to exploit key cancer-related alterations of the genome and proteome damage response pathways in order to develop novel efficient therapeutic modalities. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of MedicineNational and Kapodistrian University of AthensAthensGreece
- Biomedical Research Foundation of the Academy of AthensAthensGreece
- Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUK
| | - Dafni‐Eleftheria Pefani
- CRUK/MRC Institute for Radiation Oncology, Department of OncologyUniversity of OxfordOxfordUK
| | - Ioannis S Pateras
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of BiologyNational and Kapodistrian University of AthensAthensGreece
| |
Collapse
|
9
|
Zhang Q, Wang P, Hou H, Zhang H, Tan J, Huang Y, Li Y, Wu J, Qiu Z, Li L. Histone acetylation and reactive oxygen species are involved in the preprophase arrest induced by sodium butyrate in maize roots. PROTOPLASMA 2017; 254:167-179. [PMID: 26781092 DOI: 10.1007/s00709-015-0928-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 12/09/2015] [Indexed: 05/22/2023]
Abstract
Histone acetylation plays a critical role in controlling chromatin structure, and reactive oxygen species (ROS) are involved in cell cycle progression. To study the relationship between histone acetylation and cell cycle progression in plants, sodium butyrate (NaB), a histone deacetylase (HDAC) inhibitor that can cause a significant increase in histone acetylation in both mammal and plant genomes, was applied to treat maize seedlings. The results showed that NaB had significant inhibition effects on different root zones at the tissue level and caused cell cycle arrest at preprophase in the root meristem zones. This effect was accompanied by a dramatic increase in the total level of acetylated lysine 9 on histone H3 (H3K9ac) and acetylated lysine 5 on histone H4 (H4K5ac). The exposure of maize roots in NaB led to a continuous rise of intracellular ROS concentration, accompanied by a higher electrolyte leakage ratio and malondialdehyde (MDA) relative value. The NaB-treated group displayed negative results in both TdT-mediated dUTP nick end labelling (TUNEL) and γ-H2AX immunostaining assays. The expression of topoisomerase genes was reduced after treatment with NaB. These results suggested that NaB increased the levels of H3K9ac and H4K5ac and could cause preprophase arrest accompanied with ROS formation leading to the inhibition of DNA topoisomerase.
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Pu Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Haoli Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Hao Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Junjun Tan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Synergy Innovation Center of Biological Peptide Antidiabetics of Hubei Province, Engineering Technology Research Center of Biological Peptide Antidiabetics of Hubei Province, Department of Pharmaceutical Engineering, School of Life Science, Wuchang University of Technology, Wuhan, China
| | - Yan Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yingnan Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jinping Wu
- Industrial Crops Institute of Hubei Academy of Agricultural Sciences, No. 43, Nanhu Road, Hongshan District, Wuhan City, Hubei Province, China
| | - Zhengming Qiu
- Industrial Crops Institute of Hubei Academy of Agricultural Sciences, No. 43, Nanhu Road, Hongshan District, Wuhan City, Hubei Province, China
| | - Lijia Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
10
|
Jang Y, Yu N, Seo J, Kim S, Lee S. MONGKIE: an integrated tool for network analysis and visualization for multi-omics data. Biol Direct 2016; 11:10. [PMID: 26987515 PMCID: PMC4797132 DOI: 10.1186/s13062-016-0112-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/10/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Network-based integrative analysis is a powerful technique for extracting biological insights from multilayered omics data such as somatic mutations, copy number variations, and gene expression data. However, integrated analysis of multi-omics data is quite complicated and can hardly be done in an automated way. Thus, a powerful interactive visual mining tool supporting diverse analysis algorithms for identification of driver genes and regulatory modules is much needed. RESULTS Here, we present a software platform that integrates network visualization with omics data analysis tools seamlessly. The visualization unit supports various options for displaying multi-omics data as well as unique network models for describing sophisticated biological networks such as complex biomolecular reactions. In addition, we implemented diverse in-house algorithms for network analysis including network clustering and over-representation analysis. Novel functions include facile definition and optimized visualization of subgroups, comparison of a series of data sets in an identical network by data-to-visual mapping and subsequent overlaying function, and management of custom interaction networks. Utility of MONGKIE for network-based visual data mining of multi-omics data was demonstrated by analysis of the TCGA glioblastoma data. MONGKIE was developed in Java based on the NetBeans plugin architecture, thus being OS-independent with intrinsic support of module extension by third-party developers. CONCLUSION We believe that MONGKIE would be a valuable addition to network analysis software by supporting many unique features and visualization options, especially for analysing multi-omics data sets in cancer and other diseases. .
Collapse
Affiliation(s)
- Yeongjun Jang
- />Ewha Research Center for Systems Biology (ERCSB), Ewha Womans University, Seoul, Republic of Korea
- />Interdisciplinary Program in Bioinformatics, College of Natural Science, Seoul National University, Seoul, Republic of Korea
| | - Namhee Yu
- />Ewha Research Center for Systems Biology (ERCSB), Ewha Womans University, Seoul, Republic of Korea
| | - Jihae Seo
- />Ewha Research Center for Systems Biology (ERCSB), Ewha Womans University, Seoul, Republic of Korea
| | - Sun Kim
- />Interdisciplinary Program in Bioinformatics, College of Natural Science, Seoul National University, Seoul, Republic of Korea
| | - Sanghyuk Lee
- />Ewha Research Center for Systems Biology (ERCSB), Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Breslin L, Prosser SL, Cuffe S, Morrison CG. Ciliary abnormalities in senescent human fibroblasts impair proliferative capacity. Cell Cycle 2015; 13:2773-9. [PMID: 25486364 DOI: 10.4161/15384101.2015.945868] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Somatic cells senesce in culture after a finite number of divisions indefinitely arresting their proliferation. DNA damage and senescence increase the cellular number of centrosomes, the 2 microtubule organizing centers that ensure bipolar mitotic spindles. Centrosomes also provide the basal body from which primary cilia extend to sense and transduce various extracellular signals, notably Hedgehog. Primary cilium formation is facilitated by cellular quiescence a temporary cell cycle exit, but the impact of senescence on cilia is unknown. We found that senescent human fibroblasts have increased frequency and length of primary cilia. Levels of the negative ciliary regulator CP110 were reduced in senescent cells, as were levels of key elements of the Hedgehog pathway. Hedgehog inhibition reduced proliferation in young cells with increased cilium length accompanying cell cycle arrest suggesting a regulatory function for Hedgehog in primary ciliation. Depletion of CP110 in young cell populations increased ciliation frequencies and reduced cell proliferation. These data suggest that primary cilia are potentially novel determinants of the reduced cellular proliferation that initiates senescence.
Collapse
Key Words
- CP110
- CP110, centriolar coiled coil protein of 110kDa
- DABCO, 1,4-Diazabicyclo[2.2.2]octane
- DAPI, 4′,6-diamidino-2-phenylindole
- ECL, enhanced chemiluminescence
- FITC, Fluorescein isothiocyanate
- GAPDH, glyceraldehyde 3-phosphate dehydrogenase
- HMEC, human mammary epithelial cell
- Hedgehog
- Hh, Hedgehog
- NHDF, normal human dermal fibroblasts
- PLK4, Polo-like kinase 4
- SA-β-gal, senescence-associated β-galactosidase
- SAHF, senescence-associated heterochromatin foci
- Smo, smoothened
- centrosome
- primary cilium
- replicative senescence
Collapse
Affiliation(s)
- Loretta Breslin
- a Center for Chromosome Biology; School of Natural Sciences ; National University of Ireland Galway ; Galway , Ireland
| | | | | | | |
Collapse
|
12
|
Zhao B, Zhang WD, Duan YL, Lu YQ, Cun YX, Li CH, Guo K, Nie WH, Li L, Zhang R, Zheng P. Filia Is an ESC-Specific Regulator of DNA Damage Response and Safeguards Genomic Stability. Cell Stem Cell 2015; 16:684-98. [PMID: 25936915 DOI: 10.1016/j.stem.2015.03.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 02/16/2015] [Accepted: 03/22/2015] [Indexed: 12/20/2022]
Abstract
Pluripotent stem cells (PSCs) hold great promise in cell-based therapy, but the genomic instability seen in culture hampers their full application. A greater understanding of the factors that regulate genomic stability in PSCs could help address this issue. Here we describe the identification of Filia as a specific regulator of genomic stability in mouse embryonic stem cells (ESCs). Filia expression is induced by genotoxic stress. Filia promotes centrosome integrity and regulates the DNA damage response (DDR) through multiple pathways, including DDR signaling, cell-cycle checkpoints and damage repair, ESC differentiation, and apoptosis. Filia depletion causes ESC genomic instability, induces resistance to apoptosis, and promotes malignant transformation. As part of its role in DDR, Filia interacts with PARP1 and stimulates its enzymatic activity. Filia also constitutively resides on centrosomes and translocates to DNA damage sites and mitochondria, consistent with its multifaceted roles in regulating centrosome integrity, damage repair, and apoptosis.
Collapse
Affiliation(s)
- Bo Zhao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Wei-Dao Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Ying-Liang Duan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yong-Qing Lu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yi-Xian Cun
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Chao-Hui Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Kun Guo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Wen-Hui Nie
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Lei Li
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Rugang Zhang
- Gene Expression and Regulation Program, The Wistar Institute Cancer Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Ping Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| |
Collapse
|
13
|
Chuang TW, Lee KM, Tarn WY. Function and pathological implications of exon junction complex factor Y14. Biomolecules 2015; 5:343-55. [PMID: 25866920 PMCID: PMC4496676 DOI: 10.3390/biom5020343] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 01/01/2023] Open
Abstract
Eukaryotic mRNA biogenesis involves a series of interconnected steps, including nuclear pre-mRNA processing, mRNA export, and surveillance. The exon-junction complex (EJC) is deposited on newly spliced mRNAs and coordinates several downstream steps of mRNA biogenesis. The EJC core protein, Y14, functions with its partners in nonsense-mediated mRNA decay and translational enhancement. Y14 plays additional roles in mRNA metabolism, some of which are independent of the EJC, and it is also involved in other cellular processes. Genetic mutations or aberrant expression of Y14 results in physiological abnormality and may cause disease. Therefore, it is important to understand the various functions of Y14 and its physiological and pathological roles.
Collapse
Affiliation(s)
- Tzu-Wei Chuang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan.
| | - Kou-Ming Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan.
| | - Woan-Yuh Tarn
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan.
| |
Collapse
|
14
|
Jilani Y, Lu S, Lei H, Karnitz LM, Chadli A. UNC45A localizes to centrosomes and regulates cancer cell proliferation through ChK1 activation. Cancer Lett 2014; 357:114-120. [PMID: 25444911 DOI: 10.1016/j.canlet.2014.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/05/2014] [Accepted: 11/06/2014] [Indexed: 11/26/2022]
Abstract
The UCS family of proteins regulates cellular functions through their interactions with myosin. Here we show that one member of this family, UNC45A, is also a novel centrosomal protein. UNC45A is required for cellular proliferation of cancer cell in vitro and for tumor growth in vivo through its ability to bind and regulate ChK1 nuclear-cytoplasmic localization in an Hsp90-independent manner. Immunocytochemical and biochemical fractionation studies revealed that UNC45A and ChK1 co-localize to the centrosome. Inhibition of UNC45A expression reduced ChK1 activation and its tethering to the centrosome, events required for proper centrosome function. Lack of UNC45A caused the accumulation of multi-nucleated cells, consistent with a defect in Chk1 regulation of centrosomes. These findings identify a novel centrosomal function for UNC45A and its role in cell proliferation and tumorigenesis.
Collapse
Affiliation(s)
- Yasmeen Jilani
- Molecular Oncology and Biomarkers Program, GRU Cancer Center, Georgia Regents University, 1410 Laney Walker Blvd, CN-3151, Augusta, GA 30912, USA
| | - Su Lu
- Molecular Oncology and Biomarkers Program, GRU Cancer Center, Georgia Regents University, 1410 Laney Walker Blvd, CN-3151, Augusta, GA 30912, USA
| | - Huang Lei
- Cancer Immunology, Inflammation, and Tolerance Program, Georgia Regents University Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | - Larry M Karnitz
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Ahmed Chadli
- Molecular Oncology and Biomarkers Program, GRU Cancer Center, Georgia Regents University, 1410 Laney Walker Blvd, CN-3151, Augusta, GA 30912, USA.
| |
Collapse
|
15
|
Stellas D, Souliotis VL, Bekyrou M, Smirlis D, Kirsch-Volders M, Degrassi F, Cundari E, Kyrtopoulos SA. Benzo[a]pyrene-induced cell cycle arrest in HepG2 cells is associated with delayed induction of mitotic instability. Mutat Res 2014; 769:59-68. [PMID: 25771725 DOI: 10.1016/j.mrfmmm.2014.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 06/19/2014] [Accepted: 07/11/2014] [Indexed: 06/04/2023]
Abstract
The environmental carcinogen benzo[a]pyrene (B[a]P) after being metabolised by cytochrome P450 enzymes forms DNA adducts. This abnormal situation induces changes in the cell cycle, DNA damage, chromosomal and mitotic aberrations, all of which may be related to carcinogenesis. In order to further investigate the mechanistic basis of these effects, HepG2 cells were treated with 3μM B[a]P for various time periods, followed by further incubation in the absence of B[a]P for up to 192h. B[a]P treatment led initially to S-phase arrest followed by recovery and subsequent induction of G2/M arrest, indicating activation of the corresponding DNA damage checkpoints. Immunofluorescence-based studies revealed accumulation of B[a]P-induced DNA adducts and chromosomal damage which persisted beyond mitosis and entry into a new cycle, thus giving rise to a new round of activation of the S-phase checkpoint. Prolonged further cultivation of the cells in the absence of B[a]P resulted in high frequencies of various abnormal mitotic events. Abrogation of the B[a]P-induced S-phase arrest by the Chk1 inhibitor UCN-01 triggered a strong apoptotic response but also dramatically decreased the frequency of mitotic abnormalities in the surviving cells, suggesting that events occurring during S-phase arrest contribute to the formation of delayed mitotic damage. Overall, our data demonstrate that, although S-phase arrest serves as a mechanism by which the cells reduce their load of genetic damage, its prolonged activation may also have a negative impact on the balance between cell death and heritable genetic damage.
Collapse
Affiliation(s)
- Dimitris Stellas
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece.
| | - Vassilis L Souliotis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Margarita Bekyrou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | | | | | | | - Enrico Cundari
- Laboratory for Cell Genetics,Vrije Universiteit Brussel, Brussels, Belgium; Institute of Molecular Biology and Pathology C.N.R., Rome, Italy
| | - Soterios A Kyrtopoulos
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| |
Collapse
|
16
|
Lindgren T, Stigbrand T, Råberg A, Riklund K, Johansson L, Eriksson D. Genome wide expression analysis of radiation-induced DNA damage responses in isogenic HCT116 p53+/+ and HCT116 p53−/− colorectal carcinoma cell lines. Int J Radiat Biol 2014; 91:99-111. [DOI: 10.3109/09553002.2015.959668] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
Abstract
This paper describes the inner workings of centrioles (a pair of small organelles adjacent to the nucleus) as they create cell electropolarity, engage in cell division (mitosis), but in going awry, also promote the development of cancers. The electropolarity arises from vibrations of microtubules composing the centrioles. Mitosis begins as each centrioles duplicates itself by growing a daughter centriole on its side. If during duplication more than one daughter is grown, cancer can occur and the cells divide uncontrollably. Cancer cells with supernumerary centrioles have high electropolarity which can serve as an attractor for charged therapeutic nanoparticles.
Collapse
Affiliation(s)
- Ronald L. Huston
- Life Fellow ASME Department of Mechanical and Materials Engineering, University of Cincinnati, P.O. Box 210072, Cincinnati, OH 45221-0072 e-mail:
| |
Collapse
|
18
|
Acentriolar mitosis activates a p53-dependent apoptosis pathway in the mouse embryo. Proc Natl Acad Sci U S A 2014; 111:E1491-500. [PMID: 24706806 DOI: 10.1073/pnas.1400568111] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Centrosomes are the microtubule-organizing centers of animal cells that organize interphase microtubules and mitotic spindles. Centrioles are the microtubule-based structures that organize centrosomes, and a defined set of proteins, including spindle assembly defective-4 (SAS4) (CPAP/CENPJ), is required for centriole biogenesis. The biological functions of centrioles and centrosomes vary among animals, and the functions of mammalian centrosomes have not been genetically defined. Here we use a null mutation in mouse Sas4 to define the cellular and developmental functions of mammalian centrioles in vivo. Sas4-null embryos lack centrosomes but survive until midgestation. As expected, Sas4(-/-) mutants lack primary cilia and therefore cannot respond to Hedgehog signals, but other developmental signaling pathways are normal in the mutants. Unlike mutants that lack cilia, Sas4(-/-) embryos show widespread apoptosis associated with global elevated expression of p53. Cell death is rescued in Sas4(-/-) p53(-/-) double-mutant embryos, demonstrating that mammalian centrioles prevent activation of a p53-dependent apoptotic pathway. Expression of p53 is not activated by abnormalities in bipolar spindle organization, chromosome segregation, cell-cycle profile, or DNA damage response, which are normal in Sas4(-/-) mutants. Instead, live imaging shows that the duration of prometaphase is prolonged in the mutants while two acentriolar spindle poles are assembled. Independent experiments show that prolonging spindle assembly is sufficient to trigger p53-dependent apoptosis. We conclude that a short delay in the prometaphase caused by the absence of centrioles activates a previously undescribed p53-dependent cell death pathway in the rapidly dividing cells of the mouse embryo.
Collapse
|
19
|
Zou J, Zhang D, Qin G, Chen X, Wang H, Zhang D. BRCA1 and FancJ cooperatively promote interstrand crosslinker induced centrosome amplification through the activation of polo-like kinase 1. Cell Cycle 2014; 13:3685-97. [PMID: 25483079 PMCID: PMC4612125 DOI: 10.4161/15384101.2014.964973] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 09/08/2014] [Accepted: 09/09/2014] [Indexed: 12/15/2022] Open
Abstract
DNA damage response (DDR) and the centrosome cycle are 2 of the most critical cellular processes affecting the genome stability in animal cells. Yet the cross-talks between DDR and the centrosome are poorly understood. Here we showed that deficiency of the breast cancer 1, early onset gene (BRCA1) induces centrosome amplification in non-stressed cells as previously reported while attenuating DNA damage-induced centrosome amplification (DDICA) in cells experiencing prolonged genotoxic stress. Mechanistically, the function of BRCA1 in promoting DDICA is through binding and recruiting polo-like kinase 1 (PLK1) to the centrosome. In a recent study, we showed that FancJ also suppresses centrosome amplification in non-stressed cells while promoting DDICA in both hydroxyurea and mitomycin C treated cells. FancJ is a key component of the BRCA1 B-complex. Here, we further demonstrated that, in coordination with BRCA1, FancJ promotes DDICA by recruiting both BRCA1 and PLK1 to the centrosome in the DNA damaged cells. Thus, we have uncovered a novel role of BRCA1 and FancJ in the regulation of DDICA. Dysregulation of DDR or centrosome cycle leads to aneuploidy, which is frequently seen in both solid and hematological cancers. BRCA1 and FancJ are known tumor suppressors and have well-recognized functions in DNA damage checkpoint and DNA repair. Together with our recent findings, we demonstrated here that BRCA1 and FancJ also play an important role in centrosome cycle especially in DDICA. DDICA is thought to be an alternative fail-safe mechanism to prevent cells experiencing severe DNA damage from becoming carcinogenic. Therefore, BRCA1 and FancJ are potential liaisons linking early DDR with the DDICA. We propose that together with their functions in DDR, the role of BRCA1 and FancJ in the activation of DDICA is also crucial for their tumor suppression functions in vivo.
Collapse
Key Words
- ATM, ataxia telangiectasia mutated
- ATR, ataxia telangiectasia Rad3-related
- BRCA1
- BRCA1, breast cancer gene 1
- CIN, chromosome instability
- DDICA, DNA damage induced centrosome amplification
- DDR, DNA damage response
- DNA damage response
- FancJ
- GFP, green fluorescent protein
- HR, homologous recombination
- HU, hydroxyurea
- ICL, interstrand cross-linkers
- MIN, microsatellite instability
- MMC, mitomycin C
- MT, microtubule
- PCM, pericentriolar materials
- PLK1
- PLK1, Polo-like kinase 1
- UTR, untranslated region
- WCL, whole-cell lysate
- centrosome amplification
- interstrand cross-link
Collapse
Affiliation(s)
- Jianqiu Zou
- Basic Biomedical Science Division; Sanford School of Medicine; University of South Dakota; Vermillion, SD USA
| | - Deli Zhang
- WeiFang Medical University; WeiFang, Shandong, China
| | - Guang Qin
- Department of Oncology; Central Hospital of TaiAn; TaiAn, Shandong, China
| | - Xiangming Chen
- Department of Oncology; Central Hospital of TaiAn; TaiAn, Shandong, China
| | - Hongmin Wang
- Basic Biomedical Science Division; Sanford School of Medicine; University of South Dakota; Vermillion, SD USA
| | - Dong Zhang
- Basic Biomedical Science Division; Sanford School of Medicine; University of South Dakota; Vermillion, SD USA
- Department of Biomedical Sciences; College of Osteopathic Medicine; New York Institute of Technology; Old Westbury, NY USA
| |
Collapse
|
20
|
Interplay between the cell cycle and double-strand break response in mammalian cells. Methods Mol Biol 2014; 1170:41-59. [PMID: 24906308 DOI: 10.1007/978-1-4939-0888-2_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The cell cycle is intimately associated with the ability of cells to sense and respond to and repair DNA damage. Understanding how cell cycle progression, particularly DNA replication and cell division, are regulated and how DNA damage can affect these processes has been the subject of intense research. Recent evidence suggests that the repair of DNA damage is regulated by the cell cycle, and that cell cycle factors are closely associated with repair factors and participate in cellular decisions regarding how to respond to and repair damage. Precise regulation of cell cycle progression in the presence of DNA damage is essential to maintain genomic stability and avoid the accumulation of chromosomal aberrations that can promote tumor formation. In this review, we discuss the current understanding of how mammalian cells induce cell cycle checkpoints in response to DNA double-strand breaks. In addition, we discuss how cell cycle factors modulate DNA repair pathways to facilitate proper repair of DNA lesions.
Collapse
|
21
|
Sir JH, Pütz M, Daly O, Morrison CG, Dunning M, Kilmartin JV, Gergely F. Loss of centrioles causes chromosomal instability in vertebrate somatic cells. J Cell Biol 2013; 203:747-56. [PMID: 24297747 PMCID: PMC3857480 DOI: 10.1083/jcb.201309038] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 10/31/2013] [Indexed: 11/30/2022] Open
Abstract
Most animal cells contain a centrosome, which comprises a pair of centrioles surrounded by an ordered pericentriolar matrix (PCM). Although the role of this organelle in organizing the mitotic spindle poles is well established, its precise contribution to cell division and cell survival remains a subject of debate. By genetically ablating key components of centriole biogenesis in chicken DT40 B cells, we generated multiple cell lines that lack centrioles. PCM components accumulated in acentriolar microtubule (MT)-organizing centers but failed to adopt a higher-order structure, as shown by three-dimensional structured illumination microscopy. Cells without centrioles exhibited both a delay in bipolar spindle assembly and a high rate of chromosomal instability. Collectively, our results expose a vital role for centrosomes in establishing a mitotic spindle geometry that facilitates correct kinetochore-MT attachments. We propose that centrosomes are essential in organisms in which rapid segregation of a large number of chromosomes needs to be attained with fidelity.
Collapse
Affiliation(s)
- Joo-Hee Sir
- Cancer Research UK Cambridge Institute, Cambridge CB2 0RE, England, UK
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, England, UK
| | - Monika Pütz
- Cancer Research UK Cambridge Institute, Cambridge CB2 0RE, England, UK
| | - Owen Daly
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, Galway, Ireland
| | - Ciaran G. Morrison
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, Galway, Ireland
| | - Mark Dunning
- Cancer Research UK Cambridge Institute, Cambridge CB2 0RE, England, UK
| | - John V. Kilmartin
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, England, UK
| | - Fanni Gergely
- Cancer Research UK Cambridge Institute, Cambridge CB2 0RE, England, UK
| |
Collapse
|
22
|
Nabilsi NH, Ryder DJ, Peraza-Penton AC, Poudyal R, Loose DS, Kladde MP. Local depletion of DNA methylation identifies a repressive p53 regulatory region in the NEK2 promoter. J Biol Chem 2013; 288:35940-51. [PMID: 24163369 DOI: 10.1074/jbc.m113.523837] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genome-scale mapping suggests that the function of DNA methylation varies with genomic context beyond transcriptional repression. However, the use of DNA-demethylating agents (e.g. 5-aza-2'-deoxycytidine (5aza-dC)) to study epigenetic regulation often focuses on gene activation and ignores repression elicited by 5aza-dC. Here, we show that repression of NEK2, which encodes the never in mitosis A (NIMA)-related kinase, by 5aza-dC is context-specific as NEK2 transcript levels were reduced in HCT116 colon cancer cells but not in isogenic p53(-/-) cells. Bisulfite sequencing showed that DNA methylation was restricted to the distal region of the NEK2 promoter. Demethylation by 5aza-dC was associated with increased accessibility to micrococcal nuclease, i.e. nucleosome depletion. Conversely, methyltransferase accessibility protocol for individual templates (MAPit) methylation footprinting showed that nucleosome occupancy and DNA methylation at the distal promoter were significantly increased in p53(-/-) cells, suggesting dynamic regulation of chromatin structure at this region by p53 in HCT116 cells. Stabilization of endogenous p53 by doxorubicin or ectopic expression of p53, but not a p53 DNA-binding mutant, decreased NEK2 expression. Chromatin immunoprecipitation demonstrated direct and specific association of p53 with the distal NEK2 promoter, which was enhanced by doxorubicin. Luciferase reporters confirmed that this region is required for p53-mediated repression of NEK2 promoter activity. Lastly, modulation of p53 abundance altered nucleosome occupancy and DNA methylation at its binding region. These results identify NEK2 as a novel p53-repressed gene, illustrate that its repression by 5aza-dC is specific and associated with nucleosome reorganization, and provide evidence that identification of partially methylated regions can reveal novel p53 target genes.
Collapse
Affiliation(s)
- Nancy H Nabilsi
- From the Department of Biochemistry and Molecular Biology, University of Florida Health Cancer Center, University of Florida College of Medicine, Gainesville, Florida 32610
| | | | | | | | | | | |
Collapse
|
23
|
Zou J, Tian F, Li J, Pickner W, Long M, Rezvani K, Wang H, Zhang D. FancJ regulates interstrand crosslinker induced centrosome amplification through the activation of polo-like kinase 1. Biol Open 2013; 2:1022-31. [PMID: 24167712 PMCID: PMC3798185 DOI: 10.1242/bio.20135801] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 07/03/2013] [Indexed: 01/05/2023] Open
Abstract
DNA damage response (DDR) and the centrosome cycle are two of the most critical processes for maintaining a stable genome in animals. Sporadic evidence suggests a connection between these two processes. Here, we report our findings that six Fanconi Anemia (FA) proteins, including FancI and FancJ, localize to the centrosome. Intriguingly, we found that the localization of FancJ to the mother centrosome is stimulated by a DNA interstrand crosslinker, Mitomycin C (MMC). We further show that, in addition to its role in interstrand crosslinking (ICL) repair, FancJ also regulates the normal centrosome cycle as well as ICL induced centrosome amplification by activating the polo-like kinase 1 (PLK1). We have uncovered a novel function of FancJ in centrosome biogenesis and established centrosome amplification as an integral part of the ICL response.
Collapse
Affiliation(s)
- Jianqiu Zou
- Basic Biomedical Science Division, Sanford School of Medicine, University of South Dakota , Vermillion, South Dakota, 57069 , USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Chouinard G, Clément I, Lafontaine J, Rodier F, Schmitt E. Cell cycle-dependent localization of CHK2 at centrosomes during mitosis. Cell Div 2013; 8:7. [PMID: 23680298 PMCID: PMC3668180 DOI: 10.1186/1747-1028-8-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 05/09/2013] [Indexed: 01/26/2023] Open
Abstract
Background Centrosomes function primarily as microtubule-organizing centres and play a crucial role during mitosis by organizing the bipolar spindle. In addition to this function, centrosomes act as reaction centers where numerous key regulators meet to control cell cycle progression. One of these factors involved in genome stability, the checkpoint kinase CHK2, was shown to localize at centrosomes throughout the cell cycle. Results Here, we show that CHK2 only localizes to centrosomes during mitosis. Using wild-type and CHK2−/− HCT116 human colon cancer cells and human osteosarcoma U2OS cells depleted for CHK2 with small hairpin RNAs we show that several CHK2 antibodies are non-specific and cross-react with an unknown centrosomal protein(s) by immunofluorescence. To characterize the localization of CHK2, we generated cells expressing inducible GFP-CHK2 and Flag-CHK2 fusion proteins. We show that CHK2 localizes to the nucleus in interphase cells but that a fraction of CHK2 associates with the centrosomes in a Polo-like kinase 1-dependent manner during mitosis, from early mitotic stages until cytokinesis. Conclusion Our findings demonstrate that a subpopulation of CHK2 localizes at the centrosomes in mitotic cells but not in interphase. These results are consistent with previous reports supporting a role for CHK2 in the bipolar spindle formation and the timely progression of mitosis.
Collapse
Affiliation(s)
- Guillaume Chouinard
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), Hôpital Notre-Dame et Institut du cancer de Montréal, Montréal, Québec, Canada.
| | | | | | | | | |
Collapse
|
25
|
Centrosome aberrations associated with cellular senescence and p53 localization at supernumerary centrosomes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:217594. [PMID: 23091651 PMCID: PMC3471474 DOI: 10.1155/2012/217594] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 08/27/2012] [Accepted: 09/11/2012] [Indexed: 12/12/2022]
Abstract
Centrosome overduplication or amplification has been observed in many human cancers and in premalignant tissue, but the mechanisms leading to such centrosome aberrations are not fully understood. We previously showed that abnormal mitotic cells with supernumerary centrosomes increase with replicative senescence in human fibroblasts, especially in a polyploid subpopulation. This study examines localization of p53 protein at centrosomes in mitotic cells, which is often observed in association with DNA damage response, to investigate a possible association between p53 localization and numerical centrosome aberrations induced by cellular senescence. Cultures at later passages or the 4th day after exposure to H(2)O(2) showed increased frequencies of mitotic cells with supernumerary centrosomes, especially in a polyploid subpopulation. Immunohistochemical analysis frequently showed p53-positive foci in mitotic cells, and some were localized at centrosomes. The number of p53-positive foci in mitotic cells and its localization to centrosomes increased with replicative and premature senescence. Supernumerary centrosomes showed higher frequencies of p53 localization compared to normally duplicated centrosomes. Centrosome-associated p53 protein was phosphorylated at Ser15. These data suggest a possible association between localization of p53 protein and numerical centrosome aberrations in replicatively or prematurely senescent cells.
Collapse
|
26
|
Dantas TJ, Daly OM, Morrison CG. Such small hands: the roles of centrins/caltractins in the centriole and in genome maintenance. Cell Mol Life Sci 2012; 69:2979-97. [PMID: 22460578 PMCID: PMC11114748 DOI: 10.1007/s00018-012-0961-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 02/20/2012] [Accepted: 03/12/2012] [Indexed: 01/11/2023]
Abstract
Centrins are small, highly conserved members of the EF-hand superfamily of calcium-binding proteins that are found throughout eukaryotes. They play a major role in ensuring the duplication and appropriate functioning of the ciliary basal bodies in ciliated cells. They have also been localised to the centrosome, which is the major microtubule organising centre in animal somatic cells. We describe the identification, cloning and characterisation of centrins in multiple eukaryotic species. Although centrins have been implicated in centriole biogenesis, recent results have indicated that centrosome duplication can, in fact, occur in the absence of centrins. We discuss these data and the non-centrosomal functions that are emerging for the centrins. In particular, we discuss the involvement of centrins in nucleotide excision repair, a process that repairs the DNA lesions that are induced primarily by ultraviolet irradiation. We discuss how centrin may be involved in these diverse processes and contribute to nuclear and cytoplasmic events.
Collapse
Affiliation(s)
- Tiago J. Dantas
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, University Road, Galway, Ireland
| | - Owen M. Daly
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, University Road, Galway, Ireland
| | - Ciaran G. Morrison
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, University Road, Galway, Ireland
| |
Collapse
|
27
|
Löffler H, Fechter A, Liu FY, Poppelreuther S, Krämer A. DNA damage-induced centrosome amplification occurs via excessive formation of centriolar satellites. Oncogene 2012; 32:2963-72. [PMID: 22824794 DOI: 10.1038/onc.2012.310] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Centrosome amplification is a frequent phenomenon in malignancies and may facilitate tumorigenesis by promoting chromosomal instability. On the other hand, a centrosome inactivation checkpoint comprising centrosome amplification leading to elimination of cells by mitotic catastrophe has been described in response to DNA damage by ionizing radiation or cytostatic drugs. So far, the exact nature of DNA damage-induced centrosome amplification, which might be overduplication or fragmentation of existing centrosomes, has been controversial. To solve this controversy, we have established a method to distinguish between these two possibilities using A549 cells expressing photoconvertible CETN2-Dendra2. In response to various DNA-damaging treatments, centrosome amplification but not fragmentation was observed. Moreover, centrosome amplification was preceded by excessive formation of centrin-containing centriolar satellites, which were identified as de novo-generated atypical centrin dots staining positive for centriolar satellite markers but negative or only weakly positive for other established centrosomal markers, and which could be verified as centriolar satellites using immunogold electron microscopy. In line with this notion, disruption of dynein-mediated recruitment of centrosomal proteins via centriolar satellites suppressed centrosome amplification after DNA damage, and excessive formation of centriolar satellites could be inhibited by interference with Chk1, a known mediator of centrosome amplification in response to DNA damage. In conclusion, we provide a model in which a Chk1-mediated DNA damage checkpoint induces excessive formation of centriolar satellites constituting assembly platforms for centrosomal proteins, which subsequently leads to centrosome amplification.
Collapse
Affiliation(s)
- H Löffler
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
28
|
Induction of robust de novo centrosome amplification, high-grade spindle multipolarity and metaphase catastrophe: a novel chemotherapeutic approach. Cell Death Dis 2012; 3:e346. [PMID: 22785532 PMCID: PMC3406581 DOI: 10.1038/cddis.2012.82] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Centrosome amplification (CA) and resultant chromosomal instability have long been associated with tumorigenesis. However, exacerbation of CA and relentless centrosome declustering engender robust spindle multipolarity (SM) during mitosis and may induce cell death. Recently, we demonstrated that a noscapinoid member, reduced bromonoscapine, (S)-3-(R)-9-bromo-5-(4,5-dimethoxy-1,3-dihydroisobenzofuran-1-yl)-4-methoxy-6-methyl-5,6,7,8-tetrahydro-[1,3]dioxolo-[4,5-g]isoquinoline (Red-Br-nos), induces reactive oxygen species (ROS)-mediated autophagy and caspase-independent death in prostate cancer PC-3 cells. Herein, we show that Red-Br-nos induces ROS-dependent DNA damage that resulted in high-grade CA and SM in PC-3 cells. Unlike doxorubicin, which causes double-stranded DNA breaks and chronic G2 arrest accompanied by ‘templated' CA, Red-Br-nos-mediated DNA damage elicits de novo CA during a transient S/G2 stall, followed by checkpoint abrogation and mitotic entry to form aberrant mitotic figures with supernumerary spindle poles. Attenuation of multipolar phenotype in the presence of tiron, a ROS inhibitor, indicated that ROS-mediated DNA damage was partly responsible for driving CA and SM. Although a few cells (∼5%) yielded to aberrant cytokinesis following an ‘anaphase catastrophe', most mitotically arrested cells (∼70%) succumbed to ‘metaphase catastrophe,' which was caspase-independent. This report is the first documentation of rapid de novo centrosome formation in the presence of parent centrosome by a noscapinoid family member, which triggers death-inducing SM via a unique mechanism that distinguishes it from other ROS-inducers, conventional DNA-damaging agents, as well as other microtubule-binding drugs.
Collapse
|
29
|
Computational investigation of pathogenic nsSNPs in CEP63 protein. Gene 2012; 503:75-82. [DOI: 10.1016/j.gene.2012.04.032] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 04/01/2012] [Accepted: 04/11/2012] [Indexed: 12/11/2022]
|
30
|
Basbous J, Knani D, Bonneaud N, Giorgi D, Brondello JM, Rouquier S. Induction of ASAP (MAP9) contributes to p53 stabilization in response to DNA damage. Cell Cycle 2012; 11:2380-90. [PMID: 22672907 DOI: 10.4161/cc.20858] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
p53 is a key tumor suppressor that controls DNA damage response and genomic integrity. In response to genotoxic stress, p53 is stabilized and activated, resulting in controlled activation of genes involved in cell cycle arrest, DNA repair and/or apoptosis. ASAP is a centrosome- and spindle-associated protein, the deregulation of which induces severe mitotic defects. We show here that following double-strand break DNA formation, ASAP directly interacts with and stabilizes p53 by enhancing its p300-mediated acetylation and blocking its MDM2-mediated ubiquitination and degradation, leading to an increase of p53 transcriptional activity. Upon DNA damage, ASAP is transiently accumulated before being degraded upon persistent damage. This work links the p53 response with the cytoskeleton and confirms that the DNA-damaging signaling pathway is coordinated by centrosomal proteins. We reveal the existence of a new pathway through which ASAP signals the DNA damage response by regulating the p300-MDM2-p53 loop. These results point out ASAP as a possible target for the design of drugs to sensitize radio-resistant tumors.
Collapse
Affiliation(s)
- Jihane Basbous
- Groupe Microtubules et Cycle Cellulaire, Institut de Génétique Humaine, CNRS UPR 1142, Montpellier, France
| | | | | | | | | | | |
Collapse
|
31
|
Marzano V, Santini S, Rossi C, Zucchelli M, D'Alessandro A, Marchetti C, Mingardi M, Stagni V, Barilà D, Urbani A. Proteomic profiling of ATM kinase proficient and deficient cell lines upon blockage of proteasome activity. J Proteomics 2012; 75:4632-46. [PMID: 22641158 PMCID: PMC3426930 DOI: 10.1016/j.jprot.2012.05.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 04/27/2012] [Accepted: 05/16/2012] [Indexed: 11/24/2022]
Abstract
Ataxia Telangiectasia Mutated (ATM) protein kinase is a key effector in the modulation of the functionality of some important stress responses, including DNA damage and oxidative stress response, and its deficiency is the hallmark of Ataxia Telangiectasia (A-T), a rare genetic disorder. ATM modulates the activity of hundreds of target proteins, essential for the correct balance between proliferation and cell death. The aim of this study is to evaluate the phenotypic adaptation at the protein level both in basal condition and in presence of proteasome blockage in order to identify the molecules whose level and stability are modulated through ATM expression. We pursued a comparative analysis of ATM deficient and proficient lymphoblastoid cells by label-free shotgun proteomic experiments comparing the panel of proteins differentially expressed. Through a non-supervised comparative bioinformatic analysis these data provided an insight on the functional role of ATM deficiency in cellular carbohydrate metabolism's regulation. This hypothesis has been demonstrated by targeted metabolic fingerprint analysis SRM (Selected Reaction Monitoring) on specific thermodynamic checkpoints of glycolysis. This article is part of a Special Issue entitled: Translational Proteomics.
Collapse
Affiliation(s)
- Valeria Marzano
- Proteomic and Metabonomic Laboratory, Fondazione Santa Lucia, 00143 Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Shih HJ, Chu KL, Wu MH, Wu PH, Chang WW, Chu JS, Wang LHC, Takeuchi H, Ouchi T, Hsu HL. The involvement of MCT-1 oncoprotein in inducing mitotic catastrophe and nuclear abnormalities. Cell Cycle 2012; 11:934-52. [PMID: 22336915 DOI: 10.4161/cc.11.5.19452] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Centrosome amplification and chromosome abnormality are frequently identified in neoplasia and tumorigenesis. However, the mechanisms underlying these defects remain unclear. We here identify that MCT-1 is a centrosomal oncoprotein involved in mitosis. Knockdown of MCT-1 protein results in intercellular bridging, chromosome mis-congregation, cytokinesis delay, and mitotic death. Introduction of MCT-1 oncogene into the p53 deficient cells (MCT-1-p53), the mitotic checkpoint kinases and proteins are deregulated synergistically. These biochemical alterations are accompanied with increased frequencies of cytokinesis failure, multi-nucleation, and centrosome amplification in subsequent cell cycle. As a result, the incidences of polyploidy and aneuploidy are progressively induced by prolonged cell cultivation or further promoted by sustained spindle damage on MCT-1-p53 background. These data show that the oncoprotein perturbs centrosome structure and mitotic progression, which provide the molecular aspect of chromsomal abnormality in vitro and the information for understanding the stepwise progression of tumors under oncogenic stress.
Collapse
Affiliation(s)
- Hung-Ju Shih
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Imreh G, Norberg HV, Imreh S, Zhivotovsky B. Chromosomal breaks during mitotic catastrophe trigger γH2AX-ATM-p53-mediated apoptosis. J Cell Sci 2012; 124:2951-63. [PMID: 21878502 DOI: 10.1242/jcs.081612] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Although the cause and outcome of mitotic catastrophe (MC) has been thoroughly investigated, precisely how the ensuing lethality is regulated during or following this process and what signals are involved remain unknown. Moreover, the mechanism of the decision of cell death modalities following MC is still not well characterised. We demonstrate here a crucial role of the γH2AX-ATM-p53 pathway in the regulation of the apoptotic outcome of MC resulting from cells entering mitosis with damaged DNA. In addition to p53 deficiency, the depletion of ATM (ataxia telangiectasia mutated), but not ATR (ataxia telangiectasia and Rad3-related protein), protected against apoptosis and shifted cell death towards necrosis. Activation of this pathway is triggered by the augmented chromosomal damage acquired during anaphase in doxorubicin-treated cells lacking 14-3-3σ (also known as epithelial cell marker protein-1 or stratifin). Moreover, cells that enter mitosis with damaged DNA encounter segregation problems because of their abnormal chromosomes, leading to defects in mitotic exit, and they therefore accumulate in G1 phase. These multi- or micronucleated cells are prevented from cycling again in a p53- and p21-dependent manner, and subsequently die. Because increased chromosomal damage resulting in extensive H2AX phosphorylation appears to be a direct cause of catastrophic mitosis, our results describe a mechanism that involves generation of additional DNA damage during MC to eliminate chromosomally unstable cells.
Collapse
Affiliation(s)
- Gabriela Imreh
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | | | | | | |
Collapse
|
34
|
van Abel D, Abdul-Hamid O, van Dijk M, Oudejans CBM. Transcription factor STOX1A promotes mitotic entry by binding to the CCNB1 promotor. PLoS One 2012; 7:e29769. [PMID: 22253775 PMCID: PMC3258242 DOI: 10.1371/journal.pone.0029769] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 12/05/2011] [Indexed: 11/19/2022] Open
Abstract
Background In this study we investigated the involvement of the transcription factor STOX1A in the regulation of the cell cycle. Methodology/Principal Findings We found that several major cell cycle regulatory genes were differentially expressed upon STOX1A stimulation and knockdown in the neuroblastoma cell line SH-SY5Y. This includes STOX1A dependent differential regulation of cyclin B1 expression, a cyclin which is known to regulate mitotic entry during the cell cycle. The differential regulation of cyclin B1 expression by STOX1A is direct as shown with chromatin immunoprecipitation. Results furthermore suggest that mitotic entry is enhanced through the direct upregulation of cyclin B1 expression effectuated by STOX1A. Conclusions In conclusion we hereby show that STOX1A is directly involved in the regulation of the cell cycle.
Collapse
Affiliation(s)
- Daan van Abel
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | - Omar Abdul-Hamid
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | - Marie van Dijk
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | - Cees B. M. Oudejans
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
35
|
Wang J, Beauchemin M, Bertrand R. Bcl-xL phosphorylation at Ser49 by polo kinase 3 during cell cycle progression and checkpoints. Cell Signal 2011; 23:2030-8. [PMID: 21840391 PMCID: PMC3708862 DOI: 10.1016/j.cellsig.2011.07.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 07/14/2011] [Accepted: 07/27/2011] [Indexed: 11/20/2022]
Abstract
Functional analysis of a Bcl-xL phosphorylation mutant series has revealed that cells expressing Bcl-xL(Ser49Ala) mutant are less stable at G2 checkpoint after DNA damage and enter cytokinesis more slowly after microtubule poisoning, than cells expressing wild-type Bcl-xL. These effects of Bcl-xL(Ser49Ala) mutant seem to be separable from Bcl-xL function in apoptosis. Bcl-xL(Ser49) phosphorylation is cell cycle-dependent. In synchronized cells, phospho-Bcl-xL(Ser49) appears during the S phase and G2, whereas it disappears rapidly in early mitosis during prometaphase, metaphase and early anaphase, and re-appears during telophase and cytokinesis. During DNA damage-induced G2 arrest, an important pool of phospho-Bcl-xL(Ser49) accumulates in centrosomes which act as essential decision centers for progression from G2 to mitosis. During telophase/cytokinesis, phospho-Bcl-xL(Ser49) is found with dynein motor protein. In a series of in vitro kinase assays, specific small interfering RNA and pharmacological inhibition experiments, polo kinase 3 (PLK3) was implicated in Bcl-xL(Ser49) phosphorylation. These data indicate that, during G2 checkpoint, phospho-Bcl-xL(Ser49) is another downstream target of PLK3, acting to stabilize G2 arrest. Bcl-xL phosphorylation at Ser49 also correlates with essential PLK3 activity and function, enabling cytokinesis and mitotic exit.
Collapse
Affiliation(s)
- Jianfang Wang
- Centre de recherche, Centre hospitalier de l’Université de Montréal (CRCHUM), Hôpital Notre-Dame and Institut du cancer de Montréal, Montréal, Québec, Canada
| | - Myriam Beauchemin
- Centre de recherche, Centre hospitalier de l’Université de Montréal (CRCHUM), Hôpital Notre-Dame and Institut du cancer de Montréal, Montréal, Québec, Canada
| | - Richard Bertrand
- Centre de recherche, Centre hospitalier de l’Université de Montréal (CRCHUM), Hôpital Notre-Dame and Institut du cancer de Montréal, Montréal, Québec, Canada
- Département de médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
36
|
Heselich A, Frohns F, Frohns A, Naumann SC, Layer PG. Near-infrared exposure changes cellular responses to ionizing radiation. Photochem Photobiol 2011; 88:135-46. [PMID: 22053955 DOI: 10.1111/j.1751-1097.2011.01031.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Near infrared (NIR) and X-rays are radiations from different sides of the wavelength spectrum but both are used during medical treatments, as they have severe impacts on cellular processes, including metabolism, gene expression, proliferation and survival. However, both radiations differ strictly in their consequences for exposed patients: NIR effects are generally supposed to be positive, mostly ascribed to a stimulation of metabolism, whereas X-ray leads to genetic instability, an increase of reactive oxygen species (ROS) and DNA damages and finally to cellular death by apoptosis in tumor cells. Since genomic stability after X-irradiation depends on the mitochondrial metabolism, which is well known to be regulated by NIR, we analyzed the impact of NIR on cellular responses of fibroblasts, retinal progenitor cells and keratinocytes to X-radiation. Our data show that previous exposure to naturally occurring doses of nonthermal NIR combined with clinically relevant X-ray doses leads to (1) increased genomic instability, indicated by elevated ratios of mitotic catastrophes, (2) increased ROS, (3) higher amounts of X-irradiated cells entering S-phase and (4) impaired DNA double-strand break repair. Taken together, our data show tremendous effects of NIR on cellular responses to X-rays, probably affecting the results of radiotherapy after NIR exposure during cancer treatment.
Collapse
Affiliation(s)
- Anja Heselich
- Developmental Biology and Neurogenetics, TU Darmstadt, Darmstadt, Germany.
| | | | | | | | | |
Collapse
|
37
|
Ji Y, Pos Z, Rao M, Klebanoff CA, Yu Z, Sukumar M, Reger RN, Palmer DC, Borman ZA, Muranski P, Wang E, Schrump DS, Marincola FM, Restifo NP, Gattinoni L. Repression of the DNA-binding inhibitor Id3 by Blimp-1 limits the formation of memory CD8+ T cells. Nat Immunol 2011; 12:1230-7. [PMID: 22057288 PMCID: PMC3226770 DOI: 10.1038/ni.2153] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 09/29/2011] [Indexed: 12/13/2022]
Abstract
Blimp-1 is a transcriptional repressor that promotes the differentiation of CD8+ T cells into short-lived KLRG-1+ effector cells (SLEC), but how it operates remains poorly defined. Here we show that Blimp-1 binds and represses the Id3 promoter in SLEC. Repression of Id3 by Blimp-1 was dispensable for SLEC development but limited their capacity to persist as memory cells. Enforced expression of Id3 was sufficient to rescue SLEC survival and enhanced recall responses. Id3 function was mediated in part through inhibition of E2a transcriptional activity and induction of genes regulating genome stability. These findings identify a Blimp-1-Id3-E2a axis as a key molecular switch that determines whether effector CD8+ T cells are programmed to die or enter the memory pool.
Collapse
Affiliation(s)
- Yun Ji
- Center for Cancer Research, National Cancer Institute, US National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Golan A, Pick E, Tsvetkov L, Nadler Y, Kluger H, Stern DF. Centrosomal Chk2 in DNA damage responses and cell cycle progression. Cell Cycle 2011; 9:2647-56. [PMID: 20581449 DOI: 10.4161/cc.9.13.12121] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Two major control systems regulate early stages of mitosis: activation of Cdk1 and anaphase control through assembly and disassembly of the mitotic spindle. In parallel to cell cycle progression, centrosomal duplication is regulated through proteins including Nek2. Recent studies suggest that centrosome-localized Chk1 forestalls premature activation of centrosomal Cdc25b and Cdk1 for mitotic entry, whereas Chk2 binds centrosomes and arrests mitosis only after activation by ATM and ATR in response to DNA damage. Here, we show that Chk2 centrosomal binding does not require DNA damage, but varies according to cell cycle progression. These and other data suggest a model in which binding of Chk2 to the centrosome at multiple cell cycle junctures controls co-localization of Chk2 with other cell cycle and centrosomal regulators.
Collapse
Affiliation(s)
- Amnon Golan
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | | | | | | | | | | |
Collapse
|
39
|
Megraw TL, Sharkey JT, Nowakowski RS. Cdk5rap2 exposes the centrosomal root of microcephaly syndromes. Trends Cell Biol 2011; 21:470-80. [PMID: 21632253 DOI: 10.1016/j.tcb.2011.04.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 04/26/2011] [Accepted: 04/27/2011] [Indexed: 01/27/2023]
Abstract
Autosomal recessive primary microcephaly (MCPH) is characterized by small brain size as a result of deficient neuron production in the developing cerebral cortex. Although MCPH is a rare disease, the questions surrounding its etiology strike at the core of stem cell biology. The seven genes implicated in MCPH all encode centrosomal proteins and disruption of the MCPH gene Cdk5rap2 in mice revealed its role in neural progenitor proliferation and in maintaining normal centriole replication control. We discuss here the impact that centrosome regulation has upon neural progenitors in the developing brain. We integrate the impact of centriole replication defects with the functions of Cdk5rap2 and other MCPH proteins, propose mechanisms for progenitor loss in MCPH, and discuss links to two other microcephaly syndromes.
Collapse
Affiliation(s)
- Timothy L Megraw
- Department of Biomedical Sciences, Florida State University, College of Medicine, Tallahassee, USA.
| | | | | |
Collapse
|
40
|
Deckbar D, Jeggo PA, Löbrich M. Understanding the limitations of radiation-induced cell cycle checkpoints. Crit Rev Biochem Mol Biol 2011; 46:271-83. [PMID: 21524151 PMCID: PMC3171706 DOI: 10.3109/10409238.2011.575764] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The DNA damage response pathways involve processes of double-strand break (DSB) repair and cell cycle checkpoint control to prevent or limit entry into S phase or mitosis in the presence of unrepaired damage. Checkpoints can function to permanently remove damaged cells from the actively proliferating population but can also halt the cell cycle temporarily to provide time for the repair of DSBs. Although efficient in their ability to limit genomic instability, checkpoints are not foolproof but carry inherent limitations. Recent work has demonstrated that the G1/S checkpoint is slowly activated and allows cells to enter S phase in the presence of unrepaired DSBs for about 4–6 h post irradiation. During this time, only a slowing but not abolition of S-phase entry is observed. The G2/M checkpoint, in contrast, is quickly activated but only responds to a level of 10–20 DSBs such that cells with a low number of DSBs do not initiate the checkpoint or terminate arrest before repair is complete. Here, we discuss the limitations of these checkpoints in the context of the current knowledge of the factors involved. We suggest that the time needed to fully activate G1/S arrest reflects the existence of a restriction point in G1-phase progression. This point has previously been defined as the point when mitogen starvation fails to prevent cells from entering S phase. However, cells that passed the restriction point can respond to DSBs, albeit with reduced efficiency.
Collapse
Affiliation(s)
- Dorothee Deckbar
- Darmstadt University of Technology, Radiation Biology and DNA Repair, Darmstadt, Germany
| | | | | |
Collapse
|
41
|
Dantas TJ, Wang Y, Lalor P, Dockery P, Morrison CG. Defective nucleotide excision repair with normal centrosome structures and functions in the absence of all vertebrate centrins. ACTA ACUST UNITED AC 2011; 193:307-18. [PMID: 21482720 PMCID: PMC3080269 DOI: 10.1083/jcb.201012093] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Centrin-null cells undergo normal division but are highly sensitive to UV irradiation as a result of impaired DNA repair. The principal microtubule-organizing center in animal cells, the centrosome, contains centrin, a small, conserved calcium-binding protein unique to eukaryotes. Several centrin isoforms exist and have been implicated in various cellular processes including nuclear export and deoxyribonucleic acid (DNA) repair. Although centrins are required for centriole/basal body duplication in lower eukaryotes, centrin functions in vertebrate centrosome duplication are less clear. To define these roles, we used gene targeting in the hyperrecombinogenic chicken DT40 cell line to delete all three centrin genes in individual clones. Unexpectedly, centrin-deficient cells underwent normal cellular division with no detectable cell cycle defects. Light and electron microscopy analyses revealed no significant difference in centrosome composition or ultrastructure. However, centrin deficiency made DT40 cells highly sensitive to ultraviolet (UV) irradiation, with Cetn3 deficiency exacerbating the sensitivity of Cetn4/Cetn2 double mutants. DNA damage checkpoints were intact, but repair of UV-induced DNA damage was delayed in centrin nulls. These data demonstrate a role for vertebrate centrin in nucleotide excision repair.
Collapse
Affiliation(s)
- Tiago J Dantas
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway 091 524 411, Ireland
| | | | | | | | | |
Collapse
|
42
|
Löffler H, Fechter A, Matuszewska M, Saffrich R, Mistrik M, Marhold J, Hornung C, Westermann F, Bartek J, Krämer A. Cep63 Recruits Cdk1 to the Centrosome: Implications for Regulation of Mitotic Entry, Centrosome Amplification, and Genome Maintenance. Cancer Res 2011; 71:2129-39. [DOI: 10.1158/0008-5472.can-10-2684] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Momčilović O, Navara C, Schatten G. Cell cycle adaptations and maintenance of genomic integrity in embryonic stem cells and induced pluripotent stem cells. Results Probl Cell Differ 2011; 53:415-458. [PMID: 21630155 DOI: 10.1007/978-3-642-19065-0_18] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Pluripotent stem cells have the capability to undergo unlimited self-renewal and differentiation into all somatic cell types. They have acquired specific adjustments in the cell cycle structure that allow them to rapidly proliferate, including cell cycle independent expression of cell cycle regulators and lax G(1) to S phase transition. However, due to the developmental role of embryonic stem cells (ES) it is essential to maintain genomic integrity and prevent acquisition of mutations that would be transmitted to multiple cell lineages. Several modifications in DNA damage response of ES cells accommodate dynamic cycling and preservation of genetic information. The absence of a G(1)/S cell cycle arrest promotes apoptotic response of damaged cells before DNA changes can be fixed in the form of mutation during the S phase, while G(2)/M cell cycle arrest allows repair of damaged DNA following replication. Furthermore, ES cells express higher level of DNA repair proteins, and exhibit enhanced repair of multiple types of DNA damage. Similarly to ES cells, induced pluripotent stem (iPS) cells are poised to proliferate and exhibit lack of G(1)/S cell cycle arrest, extreme sensitivity to DNA damage, and high level of expression of DNA repair genes. The fundamental mechanisms by which the cell cycle regulates genomic integrity in ES cells and iPS cells are similar, though not identical.
Collapse
Affiliation(s)
- Olga Momčilović
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | | |
Collapse
|
44
|
Mir SE, De Witt Hamer PC, Krawczyk PM, Balaj L, Claes A, Niers JM, Van Tilborg AA, Zwinderman AH, Geerts D, Kaspers GJ, Vandertop WP, Cloos J, Tannous BA, Wesseling P, Aten JA, Noske DP, Van Noorden CJ, Würdinger T. In silico analysis of kinase expression identifies WEE1 as a gatekeeper against mitotic catastrophe in glioblastoma. Cancer Cell 2010; 18:244-57. [PMID: 20832752 PMCID: PMC3115571 DOI: 10.1016/j.ccr.2010.08.011] [Citation(s) in RCA: 243] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2009] [Revised: 03/29/2010] [Accepted: 08/03/2010] [Indexed: 12/12/2022]
Abstract
Kinases execute pivotal cellular functions and are therefore widely investigated as potential targets in anticancer treatment. Here we analyze the kinase gene expression profiles of various tumor types and reveal the wee1 kinase to be overexpressed in glioblastomas. We demonstrate that WEE1 is a major regulator of the G(2) checkpoint in glioblastoma cells. Inhibition of WEE1 by siRNA or small molecular compound in cells exposed to DNA damaging agents results in abrogation of the G(2) arrest, premature termination of DNA repair, and cell death. Importantly, we show that the small-molecule inhibitor of WEE1 sensitizes glioblastoma to ionizing radiation in vivo. Our results suggest that inhibition of WEE1 kinase holds potential as a therapeutic approach in treatment of glioblastoma.
Collapse
Affiliation(s)
- Shahryar E. Mir
- Neuro-oncology Research Group, Departments of Neurosurgery and Pediatric Oncology/Hematology, VU University Medical Center, 1081 HV, Amsterdam, the Netherlands
| | - Philip C. De Witt Hamer
- Neuro-oncology Research Group, Departments of Neurosurgery and Pediatric Oncology/Hematology, VU University Medical Center, 1081 HV, Amsterdam, the Netherlands
| | | | - Leonora Balaj
- Neuro-oncology Research Group, Departments of Neurosurgery and Pediatric Oncology/Hematology, VU University Medical Center, 1081 HV, Amsterdam, the Netherlands
| | - An Claes
- Department of Pathology, Radboud University Nijmegen Medical Centre, 6525 GA, Nijmegen, the Netherlands
| | - Johanna M. Niers
- Neuro-oncology Research Group, Departments of Neurosurgery and Pediatric Oncology/Hematology, VU University Medical Center, 1081 HV, Amsterdam, the Netherlands
- Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02113, USA
| | | | - Aeilko H. Zwinderman
- Department of Clinical Epidemiology and Biostatistics, Academic Medical Center, University of Amsterdam, 1100 DD, Amsterdam, the Netherlands
| | | | - Gertjan J.L. Kaspers
- Neuro-oncology Research Group, Departments of Neurosurgery and Pediatric Oncology/Hematology, VU University Medical Center, 1081 HV, Amsterdam, the Netherlands
| | - W. Peter Vandertop
- Neuro-oncology Research Group, Departments of Neurosurgery and Pediatric Oncology/Hematology, VU University Medical Center, 1081 HV, Amsterdam, the Netherlands
| | - Jacqueline Cloos
- Neuro-oncology Research Group, Departments of Neurosurgery and Pediatric Oncology/Hematology, VU University Medical Center, 1081 HV, Amsterdam, the Netherlands
| | - Bakhos A. Tannous
- Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02113, USA
| | - Pieter Wesseling
- Department of Pathology, Radboud University Nijmegen Medical Centre, 6525 GA, Nijmegen, the Netherlands
| | | | - David P. Noske
- Neuro-oncology Research Group, Departments of Neurosurgery and Pediatric Oncology/Hematology, VU University Medical Center, 1081 HV, Amsterdam, the Netherlands
| | | | - Thomas Würdinger
- Neuro-oncology Research Group, Departments of Neurosurgery and Pediatric Oncology/Hematology, VU University Medical Center, 1081 HV, Amsterdam, the Netherlands
- Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02113, USA
- Correspondence:
| |
Collapse
|
45
|
Holstege H, van Beers E, Velds A, Liu X, Joosse SA, Klarenbeek S, Schut E, Kerkhoven R, Klijn CN, Wessels LFA, Nederlof PM, Jonkers J. Cross-species comparison of aCGH data from mouse and human BRCA1- and BRCA2-mutated breast cancers. BMC Cancer 2010; 10:455. [PMID: 20735817 PMCID: PMC2940799 DOI: 10.1186/1471-2407-10-455] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 08/24/2010] [Indexed: 12/17/2022] Open
Abstract
Background Genomic gains and losses are a result of genomic instability in many types of cancers. BRCA1- and BRCA2-mutated breast cancers are associated with increased amounts of chromosomal aberrations, presumably due their functions in genome repair. Some of these genomic aberrations may harbor genes whose absence or overexpression may give rise to cellular growth advantage. So far, it has not been easy to identify the driver genes underlying gains and losses. A powerful approach to identify these driver genes could be a cross-species comparison of array comparative genomic hybridization (aCGH) data from cognate mouse and human tumors. Orthologous regions of mouse and human tumors that are commonly gained or lost might represent essential genomic regions selected for gain or loss during tumor development. Methods To identify genomic regions that are associated with BRCA1- and BRCA2-mutated breast cancers we compared aCGH data from 130 mouse Brca1Δ/Δ;p53Δ/Δ, Brca2Δ/Δ;p53Δ/Δ and p53Δ/Δ mammary tumor groups with 103 human BRCA1-mutated, BRCA2-mutated and non-hereditary breast cancers. Results Our genome-wide cross-species analysis yielded a complete collection of loci and genes that are commonly gained or lost in mouse and human breast cancer. Principal common CNAs were the well known MYC-associated gain and RB1/INTS6-associated loss that occurred in all mouse and human tumor groups, and the AURKA-associated gain occurred in BRCA2-related tumors from both species. However, there were also important differences between tumor profiles of both species, such as the prominent gain on chromosome 10 in mouse Brca2Δ/Δ;p53Δ/Δ tumors and the PIK3CA associated 3q gain in human BRCA1-mutated tumors, which occurred in tumors from one species but not in tumors from the other species. This disparity in recurrent aberrations in mouse and human tumors might be due to differences in tumor cell type or genomic organization between both species. Conclusions The selection of the oncogenome during mouse and human breast tumor development is markedly different, apart from the MYC gain and RB1-associated loss. These differences should be kept in mind when using mouse models for preclinical studies.
Collapse
Affiliation(s)
- Henne Holstege
- Division of Molecular Biology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Cunha-Ferreira I, Bento I, Bettencourt-Dias M. From zero to many: control of centriole number in development and disease. Traffic 2010; 10:482-98. [PMID: 19416494 DOI: 10.1111/j.1600-0854.2009.00905.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Centrioles are essential for the formation of microtubule-derived structures, including cilia, flagella and centrosomes. These structures are involved in a variety of functions, from cell motility to division. In most dividing animal cells, centriole formation is coupled to the chromosome cycle. However, this is not the case in certain specialized divisions, such as meiosis, and in some differentiating cells. For example, oocytes loose their centrioles upon differentiation, whereas multiciliated epithelial cells make several of those structures after they exit the cell cycle. Aberrations of centriole number are seen in many cancer cells. Recent studies began to shed light on the molecular control of centriole number, its variations in development, and how centriole number changes in human disease. Here we review the recent developments in this field.
Collapse
Affiliation(s)
- Inês Cunha-Ferreira
- Cell Cycle Regulation Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6P-2780-156 Oeiras, Portugal
| | | | | |
Collapse
|
48
|
Radiation-induced cell death mechanisms. Tumour Biol 2010; 31:363-72. [PMID: 20490962 DOI: 10.1007/s13277-010-0042-8] [Citation(s) in RCA: 466] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 04/18/2010] [Indexed: 12/31/2022] Open
Abstract
The main goal when treating malignancies with radiation therapy is to deprive tumor cells of their reproductive potential. One approach to achieve this is by inducing tumor cell apoptosis. Accumulating evidences suggest that induction of apoptosis alone is insufficient to account for the therapeutic effect of radiotherapy. It has become obvious in the last few years that inhibition of the proliferative capacity of malignant cells following irradiation, especially with solid tumors, can occur via alternative cell death modalities or permanent cell cycle arrests, i.e., senescence. In this review, apoptosis and mitotic catastrophe, the two major cell deaths induced by radiation, are described and dissected in terms of activating mechanisms. Furthermore, treatment-induced senescence and its relevance for the outcome of radiotherapy of cancer will be discussed. The importance of p53 for the induction and execution of these different types of cell deaths is highlighted. The efficiency of radiotherapy and radioimmunotherapy has much to gain by understanding the cell death mechanisms that are induced in tumor cells following irradiation. Strategies to use specific inhibitors that will manipulate key molecules in these pathways in combination with radiation might potentiate therapy and enhance tumor cell kill.
Collapse
|
49
|
Cerami E, Demir E, Schultz N, Taylor BS, Sander C. Automated network analysis identifies core pathways in glioblastoma. PLoS One 2010; 5:e8918. [PMID: 20169195 PMCID: PMC2820542 DOI: 10.1371/journal.pone.0008918] [Citation(s) in RCA: 261] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 01/07/2010] [Indexed: 02/05/2023] Open
Abstract
Background Glioblastoma multiforme (GBM) is the most common and aggressive type of brain tumor in humans and the first cancer with comprehensive genomic profiles mapped by The Cancer Genome Atlas (TCGA) project. A central challenge in large-scale genome projects, such as the TCGA GBM project, is the ability to distinguish cancer-causing “driver” mutations from passively selected “passenger” mutations. Principal Findings In contrast to a purely frequency based approach to identifying driver mutations in cancer, we propose an automated network-based approach for identifying candidate oncogenic processes and driver genes. The approach is based on the hypothesis that cellular networks contain functional modules, and that tumors target specific modules critical to their growth. Key elements in the approach include combined analysis of sequence mutations and DNA copy number alterations; use of a unified molecular interaction network consisting of both protein-protein interactions and signaling pathways; and identification and statistical assessment of network modules, i.e. cohesive groups of genes of interest with a higher density of interactions within groups than between groups. Conclusions We confirm and extend the observation that GBM alterations tend to occur within specific functional modules, in spite of considerable patient-to-patient variation, and that two of the largest modules involve signaling via p53, Rb, PI3K and receptor protein kinases. We also identify new candidate drivers in GBM, including AGAP2/CENTG1, a putative oncogene and an activator of the PI3K pathway; and, three additional significantly altered modules, including one involved in microtubule organization. To facilitate the application of our network-based approach to additional cancer types, we make the method freely available as part of a software tool called NetBox.
Collapse
Affiliation(s)
- Ethan Cerami
- Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America.
| | | | | | | | | |
Collapse
|
50
|
Momcilović O, Choi S, Varum S, Bakkenist C, Schatten G, Navara C. Ionizing radiation induces ataxia telangiectasia mutated-dependent checkpoint signaling and G(2) but not G(1) cell cycle arrest in pluripotent human embryonic stem cells. Stem Cells 2010; 27:1822-35. [PMID: 19544417 DOI: 10.1002/stem.123] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Human embryonic stem (ES) cells are highly sensitive to environmental insults including DNA damaging agents, responding with high levels of apoptosis. To understand the response of human ES cells to DNA damage, we investigated the function of the ataxia telangiectasia mutated (ATM) DNA damage signaling pathway in response to gamma-irradiation. Here, we demonstrate for the first time in human ES cells that ATM kinase is phosphorylated and properly localized to the sites of DNA double-strand breaks within 15 minutes of irradiation. Activation of ATM kinase resulted in phosphorylation of its downstream targets: Chk2, p53, and Nbs1. In contrast to murine ES cells, Chk2 and p53 were localized to the nucleus of irradiated human ES cells. We further show that irradiation resulted in a temporary arrest of the cell cycle at the G(2), but not G(1), phase. Human ES cells resumed cycling approximately 16 hours after irradiation, but had a fourfold higher incidence of aberrant mitotic figures compared to nonirradiated cells. Finally, we demonstrate an essential role of ATM in establishing G(2) arrest since inhibition with the ATM-specific inhibitor KU55933 resulted in abolishment of G(2) arrest, evidenced by an increase in the number of cycling cells 2 hours after irradiation. In summary, these results indicate that human ES cells activate the DNA damage checkpoint, resulting in an ATM-dependent G(2) arrest. However, these cells re-enter the cell cycle with prominent mitotic spindle defects.
Collapse
Affiliation(s)
- Olga Momcilović
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|