1
|
Grabowski Ł, Choszcz M, Wiśniewska K, Gaffke L, Namiotko D, Podlacha M, Węgrzyn A, Węgrzyn G, Pierzynowska K. Induction of the mitochondrial pathway of apoptosis by enrofloxacin in the context of the safety issue of its use in poultry. Apoptosis 2024; 29:1260-1270. [PMID: 38281280 DOI: 10.1007/s10495-024-01937-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 01/30/2024]
Abstract
The overuse of antibiotics in both humans and livestock has led to the antibiotic resistance phenomenon which is now considered one of the biggest problems in the modern world. Some antibiotics used to control or prevent infections in livestock poultry were registered a long time ago, and as a result, data on the possible side effects of their use, both for birds and humans, are incomplete and should be updated. An example of such an antibiotic is enrofloxacin which has been widely used in poultry since 1989. Data in recent years have begun to indicate that this antibiotic induces the process of apoptosis in diverse types of eukaryotic cells. Unfortunately, such studies have never been conducted on chicken models even though it is in poultry that this antibiotic is most commonly used. Therefore, the purpose of this work was to investigate whether enrofloxacin induces apoptosis in chicken cells of the UMNSAH/DF-1 line and to study the molecular mechanism of its action. The results of these experiments indicated that enrofloxacin induces apoptosis in chicken cells but not in human HEK-293 and PC3 cells. This induction was accompanied by changes in the morphology and size of mitochondria, the process of apoptosome formation and activation of executive caspases, which clearly indicates the role of the mitochondrial pathway in the induction of apoptosis by enrofloxacin. This study is the first to show the toxicity of enrofloxacin against chicken cells and to demonstrate the exact mechanism of its action. The results presented in this work show the need to monitor the concentration of antibiotic residues in poultry foods as well as to study their impact on public health to guarantee consumer safety and prevent the phenomenon of antibiotic resistance in bacteria.
Collapse
Affiliation(s)
- Łukasz Grabowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, Warsaw, 02-106, Poland
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk, 80-308, Poland
| | - Marta Choszcz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk, 80-308, Poland
| | - Karolina Wiśniewska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk, 80-308, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk, 80-308, Poland
| | - Dominika Namiotko
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk, 80-308, Poland
| | - Magdalena Podlacha
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk, 80-308, Poland
| | - Alicja Węgrzyn
- Phage Therapy Center, University Center for Applied and Interdisciplinary Research, University of Gdansk, Kładki 24, Gdansk, 80-822, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk, 80-308, Poland
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk, 80-308, Poland.
| |
Collapse
|
2
|
Nègre-Salvayre A, Salvayre R. Reactive Carbonyl Species and Protein Lipoxidation in Atherogenesis. Antioxidants (Basel) 2024; 13:232. [PMID: 38397830 PMCID: PMC10886358 DOI: 10.3390/antiox13020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Atherosclerosis is a multifactorial disease of medium and large arteries, characterized by the presence of lipid-rich plaques lining the intima over time. It is the main cause of cardiovascular diseases and death worldwide. Redox imbalance and lipid peroxidation could play key roles in atherosclerosis by promoting a bundle of responses, including endothelial activation, inflammation, and foam cell formation. The oxidation of polyunsaturated fatty acids generates various lipid oxidation products such as reactive carbonyl species (RCS), including 4-hydroxy alkenals, malondialdehyde, and acrolein. RCS covalently bind to nucleophilic groups of nucleic acids, phospholipids, and proteins, modifying their structure and activity and leading to their progressive dysfunction. Protein lipoxidation is the non-enzymatic post-translational modification of proteins by RCS. Low-density lipoprotein (LDL) oxidation and apolipoprotein B (apoB) modification by RCS play a major role in foam cell formation. Moreover, oxidized LDLs are a source of RCS, which form adducts on a huge number of proteins, depending on oxidative stress intensity, the nature of targets, and the availability of detoxifying systems. Many systems are affected by lipoxidation, including extracellular matrix components, membranes, cytoplasmic and cytoskeletal proteins, transcription factors, and other components. The mechanisms involved in lipoxidation-induced vascular dysfunction are not fully elucidated. In this review, we focus on protein lipoxidation during atherogenesis.
Collapse
Affiliation(s)
- Anne Nègre-Salvayre
- Inserm Unité Mixte de Recherche (UMR), 1297 Toulouse, Centre Hospitalier Universitaire (CHU) Rangueil—BP 84225, 31432 Toulouse CEDEX 4, France;
- Faculty of Medicine, University of Toulouse, 31432 Toulouse, France
| | - Robert Salvayre
- Inserm Unité Mixte de Recherche (UMR), 1297 Toulouse, Centre Hospitalier Universitaire (CHU) Rangueil—BP 84225, 31432 Toulouse CEDEX 4, France;
- Faculty of Medicine, University of Toulouse, 31432 Toulouse, France
| |
Collapse
|
3
|
Elmetwalli A, Diab T, Albalawi AN, El-Naggar SA, El‑Far AH, Ghedan AR, Alamri ES, Salama AF. Diarylheptanoids/sorafenib as a potential anticancer combination against hepatocellular carcinoma: the p53/MMP9 axis of action. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2501-2517. [PMID: 37145126 PMCID: PMC10497687 DOI: 10.1007/s00210-023-02470-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/21/2023] [Indexed: 05/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is a serious and potentially fatal form of cancer associated with liver damage. New anticancer drugs are increasingly needed due to the increasing number of cancer cases every year. In this study, diarylheptanoids (DAH) from Alpinia officinarum were examined for their antitumor activity against DAB-induced HCC in mice, as well as their ability to reduce liver damage. Assays for cytotoxicity were conducted using MTT. The DAB-induced HCC Swiss albino male mice were given DAH and sorafenib (SOR) either as single treatments or in combination, and the effects on tumour development and progression were monitored. Malondialdehyde (MDA) and total superoxide dismutase (T-SOD) were evaluated along with biomarkers of liver enzymes (AST, ALT, and GGT). The apoptosis-related gene (CASP8), the apoptosis-related gene (p53), the anti-inflammatory genes (IL-6), the migration-related gene matrix metalloprotease-9 (MMP9), and the angiogenesis-related gene vascular endothelial growth factor (VEGF) were assessed using qRT-PCR in the hepatic tissue. As a final step, DAH and SOR were docked with CASP8 and MMP9 via molecular docking to propose potential mechanisms of action. Our results revealed that the combination of DAH and SOR has a potent inhibitory effect on the growth and viability of the HepG2 cell line. The outcomes demonstrated that DAH and SOR-treated HCC-bearing mice displayed a reduction in the tumour burden and liver damage as demonstrated by (1) parameters of repaired liver function; (2) low levels of hepatic MDA; (3) elevated levels of hepatic T-SOD; (4) p53, IL-6, CASP8, MMP9, and VEGF downregulation; and (5) enhanced hepatic structure. The best results were revealed in mice that were co-treated with DAH (given orally) and SOR (given intraperitoneally). The docking study also proposed that both DAH and SOR could inhibit CASP8 and MMP9's oncogenic activities and had a high affinity for these enzymes. In conclusion, according to study findings, DAH enhances SOR antiproliferative and cytotoxic effects and identifies their molecular targets. Furthermore, the results revealed that DAH was able to boost the anticancer effects of the drug SOR and reduce liver damage caused by HCC in mice. This suggests that DAH could be a potential therapeutic agent against liver cancer.
Collapse
Affiliation(s)
- Alaa Elmetwalli
- Department of Clinical Trial Research Unit and Drug Discovery, Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt
| | - Thoria Diab
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Aisha Nawaf Albalawi
- Department of Biology, University of Haql College, University of Tabuk, Tabuk, 71491 Saudi Arabia
| | | | - Ali H. El‑Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 Egypt
| | - Amira Radwan Ghedan
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Eman Saad Alamri
- Nutrition and Food Science Department, University of Tabuk, Tabuk, 71491 Saudi Arabia
| | - Afrah Fatthi Salama
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
4
|
Yang Z, DeLoid GM, Zarbl H, Baw J, Demokritou P. Micro- and nanoplastics (MNPs) and their potential toxicological outcomes: State of science, knowledge gaps and research needs. NANOIMPACT 2023; 32:100481. [PMID: 37717636 PMCID: PMC10841092 DOI: 10.1016/j.impact.2023.100481] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/11/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
Plastic waste has been produced at a rapidly growing rate over the past several decades. The environmental impacts of plastic waste on marine and terrestrial ecosystems have been recognized for years. Recently, researchers found that micro- and nanoplastics (MNPs), micron (100 nm - 5 mm) and nanometer (1 - 100 nm) scale particles and fibers produced by degradation and fragmentation of plastic waste in the environment, have become an important emerging environmental and food chain contaminant with uncertain consequences for human health. This review provides a comprehensive summary of recent findings from studies of potential toxicity and adverse health impacts of MNPs in terrestrial mammals, including studies in both in vitro cellular and in vivo mammalian models. Also reviewed here are recently released biomonitoring studies that have characterized the bioaccumulation, biodistribution, and excretion of MNPs in humans. The majority MNPs in the environment to which humans are most likely to be exposed, are of irregular shapes, varied sizes, and mixed compositions, and are defined as secondary MNPs. However, the MNPs used in most toxicity studies to date were commercially available primary MNPs of polystyrene (PS), polyethylene (PE), polyvinyl chloride (PVC), polyethylene terephthalate (PET), and other polymers. The emerging in vitro and in vivo evidence reviewed here suggests that MNP toxicity and bioactivity are largely determined by MNP particle physico-chemical characteristics, including size, shape, polymer type, and surface properties. For human exposure, MNPs have been identified in human blood, urine, feces, and placenta, which pose potential health risks. The evidence to date suggests that the mechanisms underlying MNP toxicity at the cellular level are primarily driven by oxidative stress. Nonetheless, large knowledge gaps in our understanding of MNP toxicity and the potential health impacts of MNP exposures still exist and much further study is needed to bridge those gaps. This includes human population exposure studies to determine the environmentally relevant MNP polymers and exposure concentrations and durations for toxicity studies, as well as toxicity studies employing environmentally relevant MNPs, with surface chemistries and other physico-chemical properties consistent with MNP particles in the environment. It is especially important to obtain comprehensive toxicological data for these MNPs to understand the range and extent of potential adverse impacts of microplastic pollutants on humans and other organisms.
Collapse
Affiliation(s)
- Zhenning Yang
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Glen M DeLoid
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Helmut Zarbl
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
| | - Joshua Baw
- Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Philip Demokritou
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; School of Public Health, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
5
|
Aniogo EC, George BP, Abrahamse H. Photobiomodulation Improves Anti-Tumor Efficacy of Photodynamic Therapy against Resistant MCF-7 Cancer Cells. Biomedicines 2023; 11:1547. [PMID: 37371640 DOI: 10.3390/biomedicines11061547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Cancer resistance is a primary concern in cancer treatment, and developing an effective modality or strategy to improve therapeutic outcomes is imperative. Photodynamic therapy (PDT) is a treatment modality that targets the tumor with a photoactive molecule and light for the specific destruction of cancer cells. Photobiomodulation (PBM) is a light exposure of cells to energize their biomolecules to respond to therapy. In the present study, we used PBM to mediate and improve the anti-tumor efficacy of zinc phthalocyanine tetrasulfonic acid (ZnPcS4)-PDT on resistant MCF-7 breast cancer cells and explore molecular changes associated with cell death. Different laser irradiation models were used for PBM and PDT combination. The combined treatment demonstrated an additive effect on the viability and Annexin-V/PI-staining cell death assessed through MTT assay and mitochondrial release of cytochrome c. Rhodamine (Rh123) showed increased affinity to mitochondrial disruption of the strategic treatment with PBM and PDT. Results from the autophagy assay indicate an interplay between the mitochondrial and autophagic proteins. These findings were indicative that PBM might improve the anti-tumor of PDT by inducing autophagy in resistant MCF-7 breast cancer cells that evade apoptosis.
Collapse
Affiliation(s)
- Eric Chekwube Aniogo
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Blassan P George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| |
Collapse
|
6
|
Wallace HL, Wang L, Gardner CL, Corkum CP, Grant MD, Hirasawa K, Russell RS. Crosstalk Between Pyroptosis and Apoptosis in Hepatitis C Virus-induced Cell Death. Front Immunol 2022; 13:788138. [PMID: 35237259 PMCID: PMC8882739 DOI: 10.3389/fimmu.2022.788138] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/10/2022] [Indexed: 01/15/2023] Open
Abstract
Extensive inflammation in the liver is known to contribute to the pathogenesis of hepatitis C virus (HCV) infection. Apoptosis has, for a long time, been known to act as a mechanism of hepatocyte death, but our previous research also identified inflammasome-mediated pyroptosis in infected and uninfected bystander cells as an additional mechanism of HCV-induced cytopathicity. The purpose of this study was to investigate the mechanism of HCV-induced cell death and to determine the timing and relative contributions of apoptosis and pyroptosis during HCV infection. In a model employing a cell culture-adapted strain of JFH-1 HCV and Huh-7.5 hepatocyte-like cells, we found that pyroptosis occurred earlier than did apoptosis during infection. CRISPR knockout of NLRP3 resulted in decreased caspase-1 activation, but not complete elimination, indicating multiple sensors are likely involved in HCV-induced pyroptosis. Knockout of gasdermin-D resulted in increased activation of apoptosis-related caspase-3, suggesting potential crosstalk between the two cell death pathways. An unexpected decrease in activated caspase-1 levels was observed when caspase-3 was knocked out, implying that caspase-3 may have a role in the initiation of pyroptosis, at least in the context of HCV infection. Lower viral titres in culture fluids and increased ratios of intracellular to extracellular levels of infectious virus were observed in knockout versus wild-type Huh-7.5 cells, suggesting that HCV may induce programmed cell death in order to enhance virus release from infected cells. These results contribute to the understanding of HCV pathogenesis and add to the increasing volume of literature suggesting various programmed cell death pathways are not mutually exclusive.
Collapse
Affiliation(s)
- Hannah L. Wallace
- Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
| | - Lingyan Wang
- Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
| | - Cassandra L. Gardner
- Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
| | - Christopher P. Corkum
- Confocal Imaging/Flow Cytometry Unit, Medical Laboratories, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
| | - Michael D. Grant
- Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
| | - Kensuke Hirasawa
- Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
| | - Rodney S. Russell
- Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
- *Correspondence: Rodney S. Russell,
| |
Collapse
|
7
|
Response of MCF-7 Breast Cancer Cells Overexpressed with P-Glycoprotein to Apoptotic Induction after Photodynamic Therapy. Molecules 2021; 26:molecules26237412. [PMID: 34885994 PMCID: PMC8658844 DOI: 10.3390/molecules26237412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022] Open
Abstract
Multidrug resistance (MDR) has posed a significant threat to cancer treatment and has led to the emergence of a new therapeutic regime of photodynamic therapy (PDT) to curb the menace. The PDT modality employs a photosensitiser (PS), excited at a specific wavelength of light to kill cancer cells. In the present study, we used a zinc phthalocyanine tetrasulfonic acid PS to mediate the photodynamic killing of MCF-7 cells overexpressed with P-glycoprotein (P-gp) and investigate the response to cell death induction. After photodynamic treatment, MCF-7 cells undergo cell death, and indicators like Annexin V/PI staining, DNA fragmentation, and measurement of apoptotic protein expression were investigated. Results showed increased externalisation of phosphatidylserine protein, measured as a percentage in flow cytometry indicative of apoptotic induction. This expression was significant (p < 0.006) for the untreated control cells, and there was no detection of DNA fragments after a laser fluence of 20 J/cm2. In addition, a statistically significant difference (p < 0.05) was seen in caspase 8 activity and Bax protein expression. These findings were indicative of apoptotic induction and thus seem to represent the extrinsic apoptotic pathway. This study shows the role of PDT in the treatment of a resistant phenotype breast cancer.
Collapse
|
8
|
Khalfin B, Lichtenstein A, Albeck A, Nathan I. Targeting Necrosis: Elastase-like Protease Inhibitors Curtail Necrotic Cell Death Both In Vitro and in Three In Vivo Disease Models. J Med Chem 2021; 64:1510-1523. [PMID: 33522230 DOI: 10.1021/acs.jmedchem.0c01683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Necrosis is the main mode of cell death, which leads to multiple clinical conditions affecting hundreds of millions of people worldwide. Its molecular mechanisms are poorly understood, hampering therapeutics development. Here, we identify key proteolytic activities essential for necrosis using various biochemical approaches, enzymatic assays, medicinal chemistry, and siRNA library screening. These findings provide strategies to treat and prevent necrosis, including known medicines used for other indications, siRNAs, and establish a platform for the design of new inhibitory molecules. Indeed, inhibitors of these pathways demonstrated protective activity in vitro and in vivo in animal models of traumatic brain injury, acute myocardial infarction, and drug-induced liver toxicity. Consequently, this study may pave the way for the development of novel therapies for the treatment, inhibition, or prevention of a large number of hitherto untreatable diseases.
Collapse
Affiliation(s)
- Boris Khalfin
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Alexandra Lichtenstein
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Amnon Albeck
- The Julius Spokojny Bioorganic Chemistry Laboratory, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Ilana Nathan
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
- Soroka University Medical Center, Beer Sheva 8457108, Israel
| |
Collapse
|
9
|
Dąbrowski M, Lewandowski J, Szmigielski C, Siński M. Atrial fibrillation influences automatic oscillometric ankle-brachial index measurement. Arch Med Sci 2021; 17:621-627. [PMID: 34025831 PMCID: PMC8130470 DOI: 10.5114/aoms.2018.75891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/22/2018] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Repeated measurements of ankle-brachial index (ABI) using Doppler method were shown to be accurate during atrial fibrillation. Oscillometric devices are effective in ABI measurement, but their accuracy during atrial fibrillation is unknown. The purpose of the study was to investigate whether atrial fibrillation influences ABI obtained with the automatic oscillometric method. MATERIAL AND METHODS Ninety-nine patients with atrial fibrillation (mean age: 66.6 +(SD = 11) years, M/F - 63/36) who underwent electrical cardioversion were investigated (198 lower extremities). The ABI measurements using oscillometric and Doppler methods were performed on both lower extremities before and after procedure. RESULTS The ABI measured using the oscillometric method on both lower limbs did not change after cardioversion (1.21 (IQR: 1.13-1.27) vs. 1.22 (IQR: 1.14-1.26), p = 0.664, respectively). The ABI measured before and after cardioversion using Doppler and oscillometric methods showed a significant difference (1.14 (IQR: 1.07-1.22) vs. 1.21 (IQR: 1.13-1.27), p < 0.001 and 1.18 (IQR: 1.09-1.13) vs. 1.22 (IQR: 1.14-1.26), p < 0.001 respectively). Both methods showed a weak correlation before (r = 0.35, p < 0.001) and no correlation after cardioversion (r = 0.12, p = 0.07). The Bland-Altman plot showed poor agreement between measurements performed with the Doppler and oscillometric methods in sinus rhythm and during atrial fibrillation. CONCLUSIONS The automated oscillometric method of ABI measurements should not replace the reference Doppler method in patients with atrial fibrillation. More research related to the oscillometric measurements is needed in subjects with peripheral artery disease and atrial fibrillation.
Collapse
Affiliation(s)
- Michał Dąbrowski
- Department of Internal Medicine, Hypertension and Vascular Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Jacek Lewandowski
- Department of Internal Medicine, Hypertension and Vascular Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Cezary Szmigielski
- Department of Internal Medicine, Hypertension and Vascular Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Siński
- Department of Internal Medicine, Hypertension and Vascular Diseases, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
10
|
Maximchik PV, Tamarov K, Sheval EV, Tolstik E, Kirchberger-Tolstik T, Yang Z, Sivakov V, Zhivotovsky B, Osminkina LA. Biodegradable Porous Silicon Nanocontainers as an Effective Drug Carrier for Regulation of the Tumor Cell Death Pathways. ACS Biomater Sci Eng 2019; 5:6063-6071. [DOI: 10.1021/acsbiomaterials.9b01292] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Polina V. Maximchik
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russian Federation
| | - Konstantin Tamarov
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russian Federation
| | - Eugene V. Sheval
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russian Federation
| | - Elen Tolstik
- Leibniz Institute of Photonic Technology, Albert Einstein Str. 9, 07745 Jena, Germany
- Leibniz Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Str. 11, 44139 Dortmund, Germany
| | - Tatiana Kirchberger-Tolstik
- Leibniz Institute of Photonic Technology, Albert Einstein Str. 9, 07745 Jena, Germany
- Jena University Hospital, Department of Internal Medicine IV, Gastroenterology, Hepatology, Infectious Disease, Am Klinikum, 1, 07747 Jena, Germany
| | - Zhang Yang
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russian Federation
- College of Science, Sichuan Agriculture University, Yaan, Sichuan 625014, People’s Republic of China
| | - Vladimir Sivakov
- Leibniz Institute of Photonic Technology, Albert Einstein Str. 9, 07745 Jena, Germany
| | - Boris Zhivotovsky
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russian Federation
- Institute of Environmental Medicine, Division of Toxicology, Karolinska Institutet, Box 210, Stockholm SE-171 77, Sweden
| | - Liubov A. Osminkina
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russian Federation
- Institute for Biological Instrumentation of Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russian Federation
| |
Collapse
|
11
|
A Cell's Fate: An Overview of the Molecular Biology and Genetics of Apoptosis. Int J Mol Sci 2019; 20:ijms20174133. [PMID: 31450613 PMCID: PMC6747454 DOI: 10.3390/ijms20174133] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 12/30/2022] Open
Abstract
Apoptosis is one of the main types of regulated cell death, a complex process that can be triggered by external or internal stimuli, which activate the extrinsic or the intrinsic pathway, respectively. Among various factors involved in apoptosis, several genes and their interactive networks are crucial regulators of the outcomes of each apoptotic phase. Furthermore, mitochondria are key players in determining the way by which cells will react to internal stress stimuli, thus being the main contributor of the intrinsic pathway, in addition to providing energy for the whole process. Other factors that have been reported as important players of this intricate molecular network are miRNAs, which regulate the genes involved in the apoptotic process. Imbalance in any of these mechanisms can lead to the development of several illnesses, hence, an overall understanding of these processes is essential for the comprehension of such situations. Although apoptosis has been widely studied, the current literature lacks an updated and more general overview on this subject. Therefore, here, we review and discuss the mechanisms of apoptosis, highlighting the roles of genes, miRNAs, and mitochondria involved in this type of cell death.
Collapse
|
12
|
Drogosz J, Janecka A. Helenalin - A Sesquiterpene Lactone with Multidirectional Activity. Curr Drug Targets 2019; 20:444-452. [DOI: 10.2174/1389450119666181012125230] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 01/12/2023]
Abstract
Sesquiterpene lactones, secondary metabolites of plants, present in a large number of species
mostly from the Asteracea family, are used in the traditional medicine of many countries for the
treatment of various pathological conditions. They exert a broad range of activities, including antiinflammatory,
anti-bacterial and anti-cancer properties. The best-known sesquiterpene lactones which
are already used as drugs or are used in clinical trials are artemisinin, thapsigargin and parthenolide.
Yet another sesquiterpene lactone, helenalin, an active component of Arnica montana, known for its
strong anti-inflammatory activity, has been used for centuries in folk medicine to treat minor injuries.
Unfortunately, helenalin’s ability to cause allergic reactions and its toxicity to healthy tissues prevented
so far the development of this sesquiterpene lactone as an anticancer or anti-inflammatory drug.
Recently, the new interest in the biological properties, as well as in the synthesis of helenalin analogs
has been observed. This review describes helenalin's major biological activities, molecular mechanisms
of action, its toxicity and potential for further research.
Collapse
Affiliation(s)
- Joanna Drogosz
- Department of Biomolecular Chemistry, Medical University of Lodz, Lodz, Poland
| | - Anna Janecka
- Department of Biomolecular Chemistry, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
13
|
Stolwijk JA, Wegener J. Impedance-Based Assays Along the Life Span of Adherent Mammalian Cells In Vitro: From Initial Adhesion to Cell Death. BIOANALYTICAL REVIEWS 2019. [DOI: 10.1007/11663_2019_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
14
|
Ibrahim A, Zahran AM, Aly SS, Refaat A, Hassan MH. CD56 and CD11b Positivity with Low Smac/DIABLO Expression as Predictors of Chemoresistance in Acute Myeloid Leukaemia: Flow Cytometric Analysis. Asian Pac J Cancer Prev 2018; 19:3187-3192. [PMID: 30486609 PMCID: PMC6318388 DOI: 10.31557/apjcp.2018.19.11.3187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 10/08/2018] [Indexed: 12/04/2022] Open
Abstract
Background: Resistance to chemotherapy is a major obstacle to curing acute myeloid leukaemia (AML), and several antigens are claimed to play primary roles in this resistance. Purpose: The aim of this study was to evaluate the roles of CD56, CD11b and Smac/DIABLO gene expression levels as prognostic markers of the clinical outcome, response to chemotherapy and survival of AML patients. Materials and Methods: A cross-sectional observational study was conducted on 60 naïve-AML patients who received induction therapy with mitoxantrone and cytarabine combined with a high dose of cytarabine. The CD56,CD11b and Smac/DIABLO expression levels were assessed using flow cytometry at diagnosis and were analysed for correlation with the possible associated risk factors, response to chemotherapy, and median duration of disease-free survival (DFS) and overall survival (OS). Results: The overall results revealed that AML patients who exhibited positive expression for CD56 and CD11b had short median durations of DFS and OS.(P = 0.019, 0.006, 0.029 and 0.024, respectively). Additionally, low Smac/DIABLO expression had a negative impact on treatment outcome in terms of CR rate (p=0.012) and reduced DFS (p=0.000) and OS(p=0.000) values. Conclusions: CD56 and CD11b positivity and low Smac/DIABLO expression are important predictive factors for the occurrence of chemoresistance, in addition to other risk factors, among AML patients.
Collapse
Affiliation(s)
- Abeer Ibrahim
- Department of Medical Oncology and Haematological Malignancies, South Egypt Cancer Institute, Assiut University, Egypt.
| | | | | | | | | |
Collapse
|
15
|
Beauséjour M, Boutin A, Vachon PH. Anoikis Regulation: Complexities, Distinctions, and Cell Differentiation. APOPTOSIS AND BEYOND 2018:145-182. [DOI: 10.1002/9781119432463.ch8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
16
|
Adefegha SA, Leal DBR, de Oliveira JS, Manzoni AG, Bremm JM. Modulation of reactive oxygen species production, apoptosis and cell cycle in pleural exudate cells of carrageenan-induced acute inflammation in rats by rutin. Food Funct 2018; 8:4459-4468. [PMID: 29090709 DOI: 10.1039/c7fo01008g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The present study seeks to investigate the effect of rutin, a flavonoid compound in rat models of acute inflammation induced by carrageenan (CAR). Twenty-four female Wistar rats weighing 222-247 g received saline or 2% λ-carrageenan in the pleural cavity and treatment with rutin (80 mg kg-1) or saline by oral gavage for 21 days prior to the intrapleural induction of CAR. After 4 h of induction, the rats were euthanized, the plasma was prepared from the blood for the analysis of haematological parameters and the pleural exudate was obtained for the analysis of the total cell count, cell viability, reactive oxygen species (ROS) production, apoptosis and cell cycle. The result revealed that rutin exhibited anti-inflammatory effects by modulating the ROS level, apoptosis and cell cycle. This study indicates that rutin may exert a protective effect against ROS-mediated oxidative damage associated with an anti-inflammatory activity in rat models of acute inflammation.
Collapse
Affiliation(s)
- Stephen Adeniyi Adefegha
- Functional Food and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, P.M.B. 704, Akure, Nigeria.
| | | | | | | | | |
Collapse
|
17
|
Nedopekina DA, Gubaidullin RR, Odinokov VN, Maximchik PV, Zhivotovsky B, Bel'skii YP, Khazanov VA, Manuylova AV, Gogvadze V, Spivak AY. Mitochondria-targeted betulinic and ursolic acid derivatives: synthesis and anticancer activity. MEDCHEMCOMM 2017; 8:1934-1945. [PMID: 30108714 PMCID: PMC6072465 DOI: 10.1039/c7md00248c] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/17/2017] [Indexed: 12/21/2022]
Abstract
A series of new betulinic and ursolic acid conjugates with a lipophilic triphenylphosphonium cation, meant to enhance the bioavailability and mitochondriotropic action of natural triterpenes, have been synthesized. The in vitro experiments on three human cancer cell lines (MCF-7, HCT-116 and TET21N) revealed that all the obtained triphenylphosphonium triterpene acid derivatives not only showed higher cytotoxicity as compared to betulinic acid but were also markedly superior in triggering mitochondria-dependent apoptosis, as assessed using a range of apoptosis markers such as cytochrome c release, stimulation of caspase-3 activity, and cleavage of poly(ADP-ribose) polymerase, which is one of the targets of caspase 3. The IC50 was much lower for all triphenylphosphonium derivatives when compared to betulinic acid. Out of the tested group of conjugates, the most potent toxicity was exhibited by the betulinic acid conjugate 9 (for 9, the IC50 values against MCF-7 and TET21N cells were 0.70 μM and 0.74 μM; for betulinic acid (BA), IC50 > 25 μM against MCF-7 cells).
Collapse
Affiliation(s)
- Darya A Nedopekina
- Institute of Petrochemistry and Catalysis , Russian Academy of Sciences , 141 prosp. Oktyabrya , Ufa 450075 , Russian Federation .
| | - Rinat R Gubaidullin
- Institute of Petrochemistry and Catalysis , Russian Academy of Sciences , 141 prosp. Oktyabrya , Ufa 450075 , Russian Federation .
| | - Victor N Odinokov
- Institute of Petrochemistry and Catalysis , Russian Academy of Sciences , 141 prosp. Oktyabrya , Ufa 450075 , Russian Federation .
| | - Polina V Maximchik
- Faculty of Fundamental Medicine , MV Lomonosov Moscow State University , 11999 Moscow , Russia .
| | - Boris Zhivotovsky
- Faculty of Fundamental Medicine , MV Lomonosov Moscow State University , 11999 Moscow , Russia .
- Division of Toxicology , Institute of Environmental Medicine , Karolinska Institutet , Box 210 , 17177 Stockholm , Sweden
| | - Yuriy P Bel'skii
- Innovative Pharmacology Research (IPHAR) , 79/4 Elizarova , Tomsk 634021 , Russian Federation
| | - Veniamin A Khazanov
- Innovative Pharmacology Research (IPHAR) , 79/4 Elizarova , Tomsk 634021 , Russian Federation
| | - Arina V Manuylova
- Innovative Pharmacology Research (IPHAR) , 79/4 Elizarova , Tomsk 634021 , Russian Federation
| | - Vladimir Gogvadze
- Faculty of Fundamental Medicine , MV Lomonosov Moscow State University , 11999 Moscow , Russia .
- Division of Toxicology , Institute of Environmental Medicine , Karolinska Institutet , Box 210 , 17177 Stockholm , Sweden
| | - Anna Yu Spivak
- Institute of Petrochemistry and Catalysis , Russian Academy of Sciences , 141 prosp. Oktyabrya , Ufa 450075 , Russian Federation .
| |
Collapse
|
18
|
Vnukov VV, Gutsenko OI, Milutina NP, Kornienko IV, Ananyan AA, Danilenko AO, Panina SB, Plotnikov AA, Makarenko MS. Influence of SkQ1 on Expression of Nrf2 Gene, ARE-Controlled Genes of Antioxidant Enzymes and Their Activity in Rat Blood Leukocytes under Oxidative Stress. BIOCHEMISTRY (MOSCOW) 2016; 80:1598-605. [PMID: 26638685 DOI: 10.1134/s0006297915120081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The study demonstrated that oxidative stress induced by hyperoxia (0.5 MPa for 90 min) resulted in reduction of mRNA levels of transcription factor Nrf2 and Nrf2-induced genes encoding antioxidant enzymes (SOD1, CAT, GPx4) in peripheral blood leukocytes of rats. The changes in gene expression profiles under hyperoxia were accompanied by disbalance of activity of antioxidant enzymes in the leukocytes, namely activation of superoxide dismutase and inhibition of catalase, glutathione peroxidase, and glutathione-S-transferase. Pretreatment of rats with SkQ1 (50 nmol/kg for five days) significantly increased mRNA levels of transcription factor Nrf2 and Nrf2-induced genes encoding antioxidant enzymes SOD2 and GPx4 and normalized the transcriptional activity of the SOD1 and CAT genes in the leukocytes in hyperoxia-induced oxidative stress. At the same time, the activity of catalase and glutathione peroxidase was increased, and the activity of superoxide dismutase and glutathione-S-transferase returned to the control level. It is hypothesized that protective effect of SkQ1 in hyperoxia-induced oxidative stress can be realized via a direct antioxidant property and the stimulation of the Keap1/Nrf2 redox-sensitive signaling system.
Collapse
Affiliation(s)
- V V Vnukov
- Southern Federal University, Academy of Biology and Biotechnology, Department of Biochemistry and Microbiology, Rostov-on-Don, 344090, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Aras Y, Erguven M, Aktas E, Yazihan N, Bilir A. Antagonist activity of the antipsychotic drug lithium chloride and the antileukemic drug imatinib mesylate during glioblastoma treatment in vitro. Neurol Res 2016; 38:766-74. [PMID: 27367429 DOI: 10.1080/01616412.2016.1203096] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Glioblastoma (GBM), the most common primary tumour of the central nervous system, is characterised by a high malignancy and poor prognosis. The aims of this study were to investigate whether the combination of imatinib mesylate (IM) and lithium chloride (LiCl) exhibited a synergistic effect in treatment and to determine whether midkine (MK) affected the fate of this treatment in vitro. METHODS Monolayer and spheroid cultures of the T98G human GBM cell line were treated with an IM and LiCl combination for 72 h. The cell proliferation index, apoptotic index, cell cycle distribution, apoptotic and anti-apoptotic protein levels, and cAMP level as well as the cellular morphology and ultrastructure were evaluated. RESULTS All applications inhibited cell proliferation and induced apoptosis. The most substantial decreases in cell proliferation and the caspase-3, epidermal growth factor receptor (EGFR), platelet derived growth factor receptor-alpha (PDGFR-α), multidrug resistance protein-1 (MRP-1), aquaporin-4 (AQP-4) and cAMP levels were induced by the LiCl treatment, which exhibited more pronounced effects compared with the combination treatment. LiCl was less effective in decreasing the MK and B cell lymphoma-2 (Bcl-2) levels compared with the combination treatment. The most substantial decrease in the p170 levels was identified following the combination treatment, whereas IM induced the second greatest decrease. LiCl alone had no effect on the p170 levels. IM induced the most substantial decrease in the phospho-glycogen synthase kinase 3-beta (p-GSK-3β)/glycogen synthase kinase 3-beta (GSK-3β) ratio, and LiCl induced the second most substantial decrease. Both LiCl and the combination treatment induced G2 + M arrest, whereas IM induced G0 + G1 arrest after 72 h of exposure. An apoptotic appearance and autophagic vacuoles were commonly identified in the LiCl, combination and IM groups, respectively. CONCLUSIONS The combination of IM and LiCl exhibited an antagonist effect, and MK had a role at this antagonism.
Collapse
Affiliation(s)
- Yavuz Aras
- a İstanbul Faculty of Medicine, Departmentof Neurosurgery , İstanbul University , İstanbul , Turkey
| | - Mine Erguven
- b Faculty of Engineering and Vocational School of Health Sciences , İstanbul Aydın University , İstanbul , Turkey
| | - Esin Aktas
- c Department of Immunology , Prof. Dr. Aziz Sancar Institute of Experimental Medicine, İstanbul University , İstanbul , Turkey
| | - Nuray Yazihan
- d Faculty of Medicine, Department of Pathophysiology , Ankara University , Ankara , Turkey
| | - Ayhan Bilir
- e Emine-Bahaeddin Nakıboğlu Faculty of Medicine, Department of Histology and Embryology , Zirve University , Gaziantep , Turkey
| |
Collapse
|
20
|
Yaacoub K, Pedeux R, Tarte K, Guillaudeux T. Role of the tumor microenvironment in regulating apoptosis and cancer progression. Cancer Lett 2016; 378:150-9. [PMID: 27224890 DOI: 10.1016/j.canlet.2016.05.012] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/11/2016] [Accepted: 05/15/2016] [Indexed: 02/07/2023]
Abstract
Apoptosis is a gene-directed program that is engaged to efficiently eliminate dysfunctional cells. Evasion of apoptosis may be an important gate to tumor initiation and therapy resistance. Like any other developmental program, apoptosis can be disrupted by several genetic aberrations driving malignant cells into an uncontrolled progression and survival. For its sustained growth, cancer develops in a complex environment, which provides survival signals and rescues malignant cells from apoptosis. Recent studies have clearly shown a wide interaction between tumor cells and their microenvironment, confirming the influence of the surrounding cells on tumor expansion and invasion. These non-malignant cells not only intensify tumor cells growth but also upgrade the process of metastasis. The strong crosstalk between malignant cells and a reactive microenvironment is mediated by soluble chemokines and cytokines, which act on tumor cells through surface receptors. Disturbing the microenvironment signaling might be an encouraging approach for patient's treatment. Therefore, the ultimate knowledge of "tumor-microenvironment" interactions facilitates the identification of novel therapeutic procedures that mobilize cancer cells from their supportive cells. This review focuses on cancer progression mediated by the dysfunction of apoptosis and by the fundamental relationship between tumor and reactive cells. New insights and valuable targets for cancer prevention and therapy are also presented.
Collapse
Affiliation(s)
- Katherine Yaacoub
- Université Rennes 1, 2 Av. du Pr Léon Bernard, Rennes Cedex 35043, France; UMR INSERM, 917, 2 Av. du Pr Léon Bernard, Rennes Cedex 35043, France; INSERM ER440-OSS, CLCC Eugène Marquis, Rue Bataille Flandres Dunkerque, Rennes 35042, France
| | - Remy Pedeux
- Université Rennes 1, 2 Av. du Pr Léon Bernard, Rennes Cedex 35043, France; INSERM ER440-OSS, CLCC Eugène Marquis, Rue Bataille Flandres Dunkerque, Rennes 35042, France
| | - Karin Tarte
- Université Rennes 1, 2 Av. du Pr Léon Bernard, Rennes Cedex 35043, France; UMR INSERM, 917, 2 Av. du Pr Léon Bernard, Rennes Cedex 35043, France
| | - Thierry Guillaudeux
- Université Rennes 1, 2 Av. du Pr Léon Bernard, Rennes Cedex 35043, France; UMR INSERM, 917, 2 Av. du Pr Léon Bernard, Rennes Cedex 35043, France; INSERM ER440-OSS, CLCC Eugène Marquis, Rue Bataille Flandres Dunkerque, Rennes 35042, France; UMS CNRS3480/US 018 INSERM BIOSIT, 2 Av. du Pr Léon Bernard, Rennes Cedex 35043, France.
| |
Collapse
|
21
|
Cohen A, Lerner-Yardeni J, Meridor D, Kasher R, Nathan I, Parola AH. Humanin Derivatives Inhibit Necrotic Cell Death in Neurons. Mol Med 2015; 21:505-14. [PMID: 26062019 PMCID: PMC4607621 DOI: 10.2119/molmed.2015.00073] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/01/2015] [Indexed: 11/06/2022] Open
Abstract
Humanin and its derivatives are peptides known for their protective antiapoptotic effects against Alzheimer's disease. Herein, we identify a novel function of the humanin-derivative AGA(C8R)-HNG17 (namely, protection against cellular necrosis). Necrosis is one of the main modes of cell death, which was until recently considered an unmoderated process. However, recent findings suggest the opposite. We have found that AGA(C8R)-HNG17 confers protection against necrosis in the neuronal cell lines PC-12 and NSC-34, where necrosis is induced in a glucose-free medium by either chemohypoxia or by a shift from apoptosis to necrosis. Our studies in traumatic brain injury models in mice, where necrosis is the main mode of neuronal cell death, have shown that AGA(C8R)-HNG17 has a protective effect. This result is demonstrated by a decrease in a neuronal severity score and by a reduction in brain edema, as measured by magnetic resonance imaging (MRI). An insight into the peptide's antinecrotic mechanism was attained through measurements of cellular ATP levels in PC-12 cells under necrotic conditions, showing that the peptide mitigates a necrosis-associated decrease in ATP levels. Further, we demonstrate the peptide's direct enhancement of the activity of ATP synthase activity, isolated from rat-liver mitochondria, suggesting that AGA(C8R)-HNG17 targets the mitochondria and regulates cellular ATP levels. Thus, AGA(C8R)-HNG17 has potential use for the development of drug therapies for necrosis-related diseases, for example, traumatic brain injury, stroke, myocardial infarction, and other conditions for which no efficient drug-based treatment is currently available. Finally, this study provides new insight into the mechanisms underlying the antinecrotic mode of action of AGA(C8R)-HNG17.
Collapse
Affiliation(s)
- Aviv Cohen
- Department of Chemistry, The Faculty of Natural Sciences, Ben-Gurion University of the Negev, Be’er-Sheva, Israel
| | - Jenny Lerner-Yardeni
- Department of Chemistry, The Faculty of Natural Sciences, Ben-Gurion University of the Negev, Be’er-Sheva, Israel
| | - David Meridor
- Department of Chemistry, The Faculty of Natural Sciences, Ben-Gurion University of the Negev, Be’er-Sheva, Israel
| | - Roni Kasher
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Sede Boqer, Israel
| | - Ilana Nathan
- Department of Clinical Biochemistry and Pharmacology, The Faculty of Health Sciences, Ben-Gurion University of the Negev, Be’er-Sheva, Israel
- Institute of Hematology, Soroka University Medical Center, Be’er-Sheva, Israel
| | - Abraham H Parola
- Department of Chemistry, The Faculty of Natural Sciences, Ben-Gurion University of the Negev, Be’er-Sheva, Israel
| |
Collapse
|
22
|
Martins N, Santos N, Sartim M, Cintra A, Sampaio S, Santos A. A tripeptide isolated from Bothrops atrox venom has neuroprotective and neurotrophic effects on a cellular model of Parkinson’s disease. Chem Biol Interact 2015; 235:10-6. [DOI: 10.1016/j.cbi.2015.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/18/2015] [Accepted: 04/04/2015] [Indexed: 10/23/2022]
|
23
|
Pluta A, Wierzbowska A, Cebula-Obrzut B, Pluta P, Stępka K, Szmigielska-Kapłon A, Grzybowska-Izydorczyk O, Czemerska M, Smolewski P, Wrzesien-Kus A, Robak T. Prognostic value of inhibitor of apoptosis protein family expression in patients with acute myeloid leukemia. Leuk Lymphoma 2015; 56:2529-35. [DOI: 10.3109/10428194.2014.1003052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Ovadje P, Ma D, Tremblay P, Roma A, Steckle M, Guerrero JA, Arnason JT, Pandey S. Evaluation of the efficacy & biochemical mechanism of cell death induction by Piper longum extract selectively in in-vitro and in-vivo models of human cancer cells. PLoS One 2014; 9:e113250. [PMID: 25401766 PMCID: PMC4234676 DOI: 10.1371/journal.pone.0113250] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 10/21/2014] [Indexed: 02/05/2023] Open
Abstract
Background Currently chemotherapy is limited mostly to genotoxic drugs that are associated with severe side effects due to non-selective targeting of normal tissue. Natural products play a significant role in the development of most chemotherapeutic agents, with 74.8% of all available chemotherapy being derived from natural products. Objective To scientifically assess and validate the anticancer potential of an ethanolic extract of the fruit of the Long pepper (PLX), a plant of the piperaceae family that has been used in traditional medicine, especially Ayurveda and investigate the anticancer mechanism of action of PLX against cancer cells. Materials & Methods Following treatment with ethanolic long pepper extract, cell viability was assessed using a water-soluble tetrazolium salt; apoptosis induction was observed following nuclear staining by Hoechst, binding of annexin V to the externalized phosphatidyl serine and phase contrast microscopy. Image-based cytometry was used to detect the effect of long pepper extract on the production of reactive oxygen species and the dissipation of the mitochondrial membrane potential following Tetramethylrhodamine or 5,5,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolylcarbocyanine chloride staining (JC-1). Assessment of PLX in-vivo was carried out using Balb/C mice (toxicity) and CD-1 nu/nu immunocompromised mice (efficacy). HPLC analysis enabled detection of some primary compounds present within our long pepper extract. Results Our results indicated that an ethanolic long pepper extract selectively induces caspase-independent apoptosis in cancer cells, without affecting non-cancerous cells, by targeting the mitochondria, leading to dissipation of the mitochondrial membrane potential and increase in ROS production. Release of the AIF and endonuclease G from isolated mitochondria confirms the mitochondria as a potential target of long pepper. The efficacy of PLX in in-vivo studies indicates that oral administration is able to halt the growth of colon cancer tumors in immunocompromised mice, with no associated toxicity. These results demonstrate the potentially safe and non-toxic alternative that is long pepper extract for cancer therapy.
Collapse
Affiliation(s)
- Pamela Ovadje
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Dennis Ma
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Phillip Tremblay
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Alessia Roma
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Matthew Steckle
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON, Canada
| | | | | | - Siyaram Pandey
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON, Canada
- * E-mail:
| |
Collapse
|
25
|
Sabancι PA, Ergüven M, Yazιhan N, Aktaş E, Aras Y, Civelek E, Aydoseli A, Imer M, Gürtekin M, Bilir A. Sorafenib and lithium chloride combination treatment shows promising synergistic effects in human glioblastoma multiforme cells in vitro but midkine is not implicated. Neurol Res 2014; 36:189-97. [PMID: 24512012 DOI: 10.1179/1743132813y.0000000283] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES The objectives of this study were to test the effects of the new combination treatment modality, sorafenib (SOR) and lithium chloride (LiCl) and to assess whether midkine (MK) protein has a role in any potential effects. METHODS Monolayer and spheroid cultures of T98G human glioblastoma multiforme (GBM) cells were treated with LiCl and SOR (inhibition concentration 50 value = 100 μM), or their combination, or were left untreated (control). Cell proliferation and apoptotic indices, the mechanism of action, and the levels of apoptotic and anti-apoptotic proteins were evaluated in monolayer cultures and ultrastructure was evaluated by transmission electron microscopy (TEM) in spheroid cultures after for 72 hours. RESULTS All drug applications decreased cell numbers and increased the apoptotic index. The combination shows a synergistic effect. In the combination group, the decrease in cell numbers and the increase in the apoptotic index were significantly greater than with the individual drugs (P < 0.01). The combination treatment led to the greatest decreases in MRP-1 and p170 levels; but the greatest decreases in p-STAT-3, p-ERK (P < 0.05), p-AKT, p-GSK-3-beta (P < 0.01), EGFR (P < 0.01), NF-kappa-β levels were with SOR alone, followed by the combination. The decreases in MK levels in the SOR and combination groups were similar (P = 0.06). Severe ultrastructural damage was more frequently observed in the combination group compared with the other groups. CONCLUSIONS These results suggest the possibility that the addition of LiCl to SOR could improve the prognosis in at least some patients who need both cancer and psychotherapy and indicate the need for further studies.
Collapse
|
26
|
Menadione induces the formation of reactive oxygen species and depletion of GSH-mediated apoptosis and inhibits the FAK-mediated cell invasion. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:799-809. [DOI: 10.1007/s00210-014-0997-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/22/2014] [Indexed: 12/27/2022]
|
27
|
Jung EB, Lee CS. Baicalein attenuates proteasome inhibition-induced apoptosis by suppressing the activation of the mitochondrial pathway and the caspase-8- and Bid-dependent pathways. Eur J Pharmacol 2014; 730:116-24. [DOI: 10.1016/j.ejphar.2014.02.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/23/2014] [Accepted: 02/12/2014] [Indexed: 10/25/2022]
|
28
|
Salminen A, Kauppinen A, Hiltunen M, Kaarniranta K. Epigenetic regulation of ASC/TMS1 expression: potential role in apoptosis and inflammasome function. Cell Mol Life Sci 2014; 71:1855-64. [PMID: 24287895 PMCID: PMC11113932 DOI: 10.1007/s00018-013-1524-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/25/2013] [Accepted: 11/14/2013] [Indexed: 12/11/2022]
Abstract
Cloning studies have revealed that the apoptosis-associated speck-like protein possessing a caspase-recruiting domain (ASC) and the target of methylation-induced silencing-1 (TMS) are identical proteins. ASC/TMS1 is a bipartite adaptor protein containing the N-terminal pyrin domain and the C-terminal caspase-recruitment domain. There is abundant literature on ASC/TMS1, mostly under the name TMS1, in the epigenetic regulation of apoptosis and carcinogenesis, whereas the abbreviation ASC has been adopted from studies on the assembly of inflammasomes and stimulation of inflammation. There is substantial literature emphasizing that there are common aspects in the regulation of apoptosis and inflammation, which may be related to the function of ASC/TMS1. The region of the transcription start site of ASC/TMS1 gene contains a 600-bp-long CpG island that is highly methylated and the transcription of ASC/TMS1 is repressed in several cancers. However, it is not known whether the ASC/TMS1-dependent epigenetic regulation controls the inflammasome functions and moreover whether this regulation has any role in the inflammation-mediated carcinogenesis or in the pathogenesis of age-related degenerative diseases. We will examine the mechanisms involved in the epigenetic regulation of ASC/TMS1 as well as their significance in the coordination of apoptosis and inflammasome functions. We will also review the role of aberrant methylation of ASC/TMS1 promoter in the function of inflammasomes, a major host defense system, in cellular housekeeping and carcinogenesis.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, PO Box 1627, 70211, Kuopio, Finland,
| | | | | | | |
Collapse
|
29
|
Jung EB, Kim YJ, Lee CS. Casein kinase 2 inhibition attenuates cholesterol oxidation product-induced apoptosis by suppressing the activation of the mitochondrial pathway and the caspase-8- and bid-dependent pathways. Neurochem Int 2014; 65:30-9. [PMID: 24398405 DOI: 10.1016/j.neuint.2013.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/21/2013] [Accepted: 12/29/2013] [Indexed: 11/25/2022]
Abstract
Protein casein kinase 2 is involved in signal transduction, cell growth and apoptosis. However, it is unclear whether the cholesterol oxidation product-induced cell death is regulated by casein kinase 2. Therefore, in the respect of the cell death process, we assessed the regulatory effect of the casein kinase 2 on the cholesterol oxidation product-induced apoptosis in neuronal cells using differentiated PC12 cells. Casein kinase 2 inhibitors (4,5,6,7-tetrabromobezotriazole (TBB) and apigenin) which do not have toxic effects, reduced the 7-ketocholesterol or 25-hydroxycholesterol-induced cell death and nuclear damage in PC12 cells. Treatment with TBB inhibited the 7-ketocholesterol-induced decrease in Bid, Bcl-2 and survivin protein levels, increase in Bax levels, loss of the mitochondrial transmembrane potential, cytochrome c release, activation of caspases (-8, -9 and -3), cleavage of PARP-1, and increase in the tumor suppressor p53 levels. The results showed that the casein kinase 2 inhibitor at the concentrations tested which does not induce toxic effects, may attenuate the cholesterol oxidation product-induced apoptosis in differentiated PC12 cells by suppressing the activation of the mitochondrial pathway and the caspase-8- and Bid-dependent pathways. The preventive effect appears to be ascribed to its inhibitory effect on the formation of reactive oxygen species and depletion of GSH.
Collapse
Affiliation(s)
- Eun Byul Jung
- Department of Pharmacology, College of Medicine, and the BK21(plus) Skin Barrier Network Human Resources Development Team, Chung-Ang University, Seoul 156-756, South Korea
| | - Yun Jeong Kim
- Department of Pharmacology, College of Medicine, and the BK21(plus) Skin Barrier Network Human Resources Development Team, Chung-Ang University, Seoul 156-756, South Korea
| | - Chung Soo Lee
- Department of Pharmacology, College of Medicine, and the BK21(plus) Skin Barrier Network Human Resources Development Team, Chung-Ang University, Seoul 156-756, South Korea.
| |
Collapse
|
30
|
Nowak JS, Mehn D, Nativo P, García CP, Gioria S, Ojea-Jiménez I, Gilliland D, Rossi F. Silica nanoparticle uptake induces survival mechanism in A549 cells by the activation of autophagy but not apoptosis. Toxicol Lett 2013; 224:84-92. [PMID: 24140553 DOI: 10.1016/j.toxlet.2013.10.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/03/2013] [Accepted: 10/07/2013] [Indexed: 11/18/2022]
Abstract
We report here an in vitro evaluation of silica nanoparticle uptake by lung epithelial cells (A549), the cytotoxic effect of the particles and we propose autophagy as possible survival strategy. The effect of surface charge, serum proteins and the influence of inhibitors on the uptake of 20 nm monodispersed nanoparticles with various functional groups are discussed. Uptake rate of the particles with various functional groups is demonstrated to be similar in the presence of serum proteins, while the uptake rate ranking is COOH>NH2>OH under serum free conditions. Our results suggest an actin-dependent, macropinocytotic uptake process that was also confirmed by scanning and transmission electron microscopy. In spite of the intensive active uptake, significant cytotoxic effect is detected only at relatively high concentrations (above 250 μg/mL). Blebbing of the cell surface is observed already at 5h of exposure and is shown to be related to autophagy rather than apoptotic cell death. The A549 cells display elevated levels of autophagosomes, however they do not express typical apoptosis markers such as increased amount of active caspase-3 and release of mitochondrial cytochrome C. Based on these results, we propose here an autophagic activity and cross-talk between autophagic and apoptotic pathways as a mechanism allowing the survival of A549 cells under exposure to silica nanoparticles.
Collapse
Affiliation(s)
- Jakub Stanislaw Nowak
- Nanobiosciences Unit, Institute of Health and Consumer Protection, Joint Research Centre, Via Fermi 2749, 21027 Ispra, Italy
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Morrison BL, Mullendore ME, Stockwin LH, Borgel S, Hollingshead MG, Newton DL. Oxyphenisatin acetate (NSC 59687) triggers a cell starvation response leading to autophagy, mitochondrial dysfunction, and autocrine TNFα-mediated apoptosis. Cancer Med 2013; 2:687-700. [PMID: 24403234 PMCID: PMC3892800 DOI: 10.1002/cam4.107] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/11/2013] [Accepted: 06/12/2013] [Indexed: 12/17/2022] Open
Abstract
Oxyphenisatin (3,3-bis(4-hydroxyphenyl)-1H-indol-2-one) and several structurally related molecules have been shown to have in vitro and in vivo antiproliferative activity. This study aims to confirm and extend mechanistic studies by focusing on oxyphenisatin acetate (OXY, NSC 59687), the pro-drug of oxyphenisatin. Results confirm that OXY inhibits the growth of the breast cancer cell lines MCF7, T47D, HS578T, and MDA-MB-468. This effect is associated with selective inhibition of translation accompanied by rapid phosphorylation of the nutrient sensing eukaryotic translation initiation factor 2α (eIF2α) kinases, GCN2 and PERK. This effect was paralleled by activation of AMP-activated protein kinase (AMPK) combined with reduced phosphorylation of the mammalian target of rapamycin (mTOR) substrates p70S6K and 4E-BP1. Microarray analysis highlighted activation of pathways involved in apoptosis induction, autophagy, RNA/protein metabolism, starvation responses, and solute transport. Pathway inhibitor combination studies suggested a role for AMPK/mTOR signaling, de novo transcription and translation, reactive oxygen species (ROS)/glutathione metabolism, calcium homeostasis and plasma membrane Na(+) /K(+) /Ca(2+) transport in activity. Further examination confirmed that OXY treatment was associated with autophagy, mitochondrial dysfunction, and ROS generation. Additionally, treatment was associated with activation of both intrinsic and extrinsic apoptotic pathways. In the estrogen receptor (ER) positive MCF7 and T47D cells, OXY induced TNFα expression and TNFR1 degradation, indicating autocrine receptor-mediated apoptosis in these lines. Lastly, in an MCF7 xenograft model, OXY delivered intraperitoneally inhibited tumor growth, accompanied by phosphorylation of eIF2α and degradation of TNFR1. These data suggest that OXY induces a multifaceted cell starvation response, which ultimately induces programmed cell death.
Collapse
Affiliation(s)
- Bethanie L Morrison
- Drug Mechanism Group, Biological Testing Branch, Developmental Therapeutics Program, SAIC-Frederick Inc., Frederick National Laboratory for Cancer ResearchFrederick, Maryland, 21702
| | - Michael E Mullendore
- Drug Mechanism Group, Biological Testing Branch, Developmental Therapeutics Program, SAIC-Frederick Inc., Frederick National Laboratory for Cancer ResearchFrederick, Maryland, 21702
| | - Luke H Stockwin
- Drug Mechanism Group, Biological Testing Branch, Developmental Therapeutics Program, SAIC-Frederick Inc., Frederick National Laboratory for Cancer ResearchFrederick, Maryland, 21702
| | - Suzanne Borgel
- In Vivo Preclinical Support Group, Biological Testing Branch, Developmental Therapeutics Program, SAIC-Frederick Inc., Frederick National Laboratory for Cancer ResearchFrederick, Maryland, 21702
| | - Melinda G Hollingshead
- Biological Testing Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer ResearchFrederick, Maryland, 21702
| | - Dianne L Newton
- Drug Mechanism Group, Biological Testing Branch, Developmental Therapeutics Program, SAIC-Frederick Inc., Frederick National Laboratory for Cancer ResearchFrederick, Maryland, 21702
| |
Collapse
|
32
|
Lee SA, Kim YJ, Lee CS. Brefeldin a induces apoptosis by activating the mitochondrial and death receptor pathways and inhibits focal adhesion kinase-mediated cell invasion. Basic Clin Pharmacol Toxicol 2013; 113:329-38. [PMID: 23826964 DOI: 10.1111/bcpt.12107] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 06/27/2013] [Indexed: 01/10/2023]
Abstract
Brefeldin A induces apoptosis in various cancer cells; however, the apoptotic process in cancer cells exposed to brefeldin A remains unclear. In addition, it is unclear whether brefeldin A-induced apoptosis is mediated by the formation of reactive oxygen species. Furthermore, the effect of brefeldin A on the invasion and migration of human epithelial ovarian cancer cells has not been studied. Therefore, we investigated the effect of brefeldin A on apoptosis, cell adhesion and migration using the human epithelial ovarian carcinoma cell lines OVCAR-3 and SK-OV-3. The results suggest that brefeldin A may induce apoptotic cell death in ovarian carcinoma cell lines by activating the mitochondrial pathway and the caspase-8- and Bid-dependent pathways. The apoptotic effect of brefeldin A seems to be mediated by formation of reactive oxygen species and depletion of GSH, which results in the activation of apoptotic caspases. Brefeldin A inhibited foetal bovine serum-induced adhesion and migration of OVCAR-3 cells. Brefeldin A may prevent the foetal bovine serum-induced cell adhesion and migration by limiting the focal adhesion kinase-dependent activation of cytoskeletal-associated components.
Collapse
Affiliation(s)
- Seon A Lee
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, South Korea
| | | | | |
Collapse
|
33
|
Taylor-Brown E, Hurd H. The first suicides: a legacy inherited by parasitic protozoans from prokaryote ancestors. Parasit Vectors 2013; 6:108. [PMID: 23597031 PMCID: PMC3640913 DOI: 10.1186/1756-3305-6-108] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/05/2013] [Indexed: 12/23/2022] Open
Abstract
It is more than 25 years since the first report that a protozoan parasite could die by a process resulting in a morphological phenotype akin to apoptosis. Since then these phenotypes have been observed in many unicellular parasites, including trypanosomatids and apicomplexans, and experimental evidence concerning the molecular pathways that are involved is growing. These observations support the view that this form of programmed cell death is an ancient one that predates the evolution of multicellularity. Here we review various hypotheses that attempt to explain the origin of apoptosis, and look for support for these hypotheses amongst the parasitic protists as, with the exception of yeast, most of the work on death mechanisms in unicellular organisms has focussed on them. We examine the role that addiction modules may have played in the original eukaryote cell and the part played by mitochondria in the execution of present day cells, looking for examples from Leishmania spp. Trypanosoma spp. and Plasmodium spp. In addition, the expanding knowledge of proteases, nucleases and other molecules acting in protist execution pathways has enabled comparisons to be made with extant Archaea and bacteria and with biochemical pathways that evolved in metazoans. These comparisons lend support to the original sin hypothesis but also suggest that present-day death pathways may have had multifaceted beginnings.
Collapse
|
34
|
Zhu Y, Eaton JW, Li C. Titanium dioxide (TiO2) nanoparticles preferentially induce cell death in transformed cells in a Bak/Bax-independent fashion. PLoS One 2012. [PMID: 23185639 PMCID: PMC3503962 DOI: 10.1371/journal.pone.0050607] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
While the cytotoxic effects of titanium dioxide (TiO2) nanoparticles have been under intense investigation, the molecular mechanisms of this cytotoxicity remain unknown. Here we investigated the influence of oncogenic transformation and a major apoptotic signaling pathway on cellular responses to TiO2 nanoparticles. Isogenic wild-type (WT) and apoptosis-resistant (Bak−/−Bax−/−) cell lines with and without tumorigenic transformation were examined. TiO2 nanoparticles preferentially reduced viability of tumorigenic cells in a dose-dependent fashion compared with their untransformed counterparts. Importantly, the elevated cytotoxicity of TiO2 nanoparticles was independent of a major Bak/Bax-dependent apoptosis pathway. Because transformation does not affect cellular fluid-phase endocytosis or nanoparticle uptake, it is likely that the increased cytotoxicity in tumor cells is due to the interaction between TiO2 nanoparticles and the lysosomal compartment. Overall, our data indicate that TiO2 nanoparticles induce cytotoxicity preferentially in transformed cells independent of a major apoptotic signaling pathway.
Collapse
Affiliation(s)
- Yanglong Zhu
- Molecular Targets Program, James Graham Brown Cancer Center, Department of Medicine, Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, United States of America
| | - John W. Eaton
- Molecular Targets Program, James Graham Brown Cancer Center, Department of Medicine, Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, United States of America
| | - Chi Li
- Molecular Targets Program, James Graham Brown Cancer Center, Department of Medicine, Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
35
|
Amaral C, Borges M, Melo S, da Silva ET, Correia-da-Silva G, Teixeira N. Apoptosis and autophagy in breast cancer cells following exemestane treatment. PLoS One 2012; 7:e42398. [PMID: 22912703 PMCID: PMC3418278 DOI: 10.1371/journal.pone.0042398] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 07/05/2012] [Indexed: 01/11/2023] Open
Abstract
Aromatase inhibitors (AIs), which block the conversion of androgens to estrogens, are used for hormone-dependent breast cancer treatment. Exemestane, a steroidal that belongs to the third-generation of AIs, is a mechanism-based inhibitor that binds covalently and irreversibly, inactivating and destabilizing aromatase. Since the biological effects of exemestane in breast cancer cells are not totally understood, its effects on cell viability, cell proliferation and mechanisms of cell death were studied in an ER-positive aromatase-overexpressing breast cancer cell line (MCF-7aro). The effects of 3-methyladenine (3-MA), an inhibitor of autophagy and of ZVAD-FMK, an apoptotic inhibitor, in exemestane treated cells were also investigated. Our results indicate that exemestane induces a strong inhibition in MCF-7aro cell proliferation in a dose- and time-dependent manner, promoting a significant cell cycle arrest in G(0)/G1 or in G(2)/M phases after 3 and 6 days of treatment, respectively. This was accompanied by a decrease in cell viability due to activation of cell death by apoptosis, via mitochondrial pathway and the occurrence of autophagy. Inhibition of autophagy by the autophagic inhibitor, 3-MA, resulted in a reduction of cell viability and activation of caspases. All together the results obtained suggest that exemestane induced mitochondrial-mediated apoptosis and autophagy, which act as a pro-survival process regulating breast cancer cell apoptosis.
Collapse
Affiliation(s)
- Cristina Amaral
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
| | - Margarida Borges
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
| | - Soraia Melo
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Department of Zoology, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Elisiário Tavares da Silva
- Center of Pharmaceutical Studies, Pharmaceutical Chemistry Laboratory, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Georgina Correia-da-Silva
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
| | - Natércia Teixeira
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
36
|
Llovera L, Mansilla S, Portugal J. Apoptotic-like death occurs through a caspase-independent route in colon carcinoma cells undergoing mitotic catastrophe. Cancer Lett 2012; 326:114-21. [PMID: 22885806 DOI: 10.1016/j.canlet.2012.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 06/29/2012] [Accepted: 08/01/2012] [Indexed: 01/11/2023]
Abstract
We have examined the relationship between chemotherapy-induced mitotic catastrophe and cell death by apoptosis in both wild-type and p53(-/-) HCT116 human colon carcinoma cells treated with nanomolar concentrations of paclitaxel (PTX), a drug that acts on tubulin altering the normal development of mitosis. After treatment, HCT116 cells entered mitosis regardless of the presence of functional p53, which resulted in changes in the distribution of cells in the different phases of the cell cycle, and in cell death. In the presence of PTX, the percentage of polyploid cells observed was higher in p53-deficient cells, indicating that mitotic slippage was favored compared to wild-type cells, with the presence of large multinucleate cells. PTX caused mitotic catastrophe and about 50-60% cells that were entering an aberrant mitosis died through an apoptotic-like pathway characterized by the presence of phosphatidylserine in the outer cell membrane, which occurred in the absence of significant activation of caspases. Lack of p53 facilitated endoreduplication and polyploidy in PTX-treated cells, but cells were still killed with similar efficacy through the same apoptotic-like mechanism in the absence of caspase activity.
Collapse
Affiliation(s)
- Laia Llovera
- Instituto de Biologia Molecular de Barcelona, CSIC, Parc Cientific de Barcelona, Barcelona, Spain
| | | | | |
Collapse
|
37
|
Yessotoxin as a tool to study induction of multiple cell death pathways. Toxins (Basel) 2012; 4:568-79. [PMID: 22852069 PMCID: PMC3407893 DOI: 10.3390/toxins4070568] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 07/14/2012] [Accepted: 07/21/2012] [Indexed: 12/11/2022] Open
Abstract
This work proposes to use the marine algal toxin yessotoxin (YTX) to establish reference model experiments to explore medically valuable effects from induction of multiple cell death pathways. YTX is one of few toxins reported to make such induction. It is a small molecule compound which at low concentrations can induce apoptosis in primary cultures, many types of cells and cell lines. It can also induce a non-apoptotic form of programmed cell death in BC3H1 myoblast cell lines. The present contribution reviews arguments that this type of induction may have principal interest outside this particular example. One principal effect of medical interest may be that cancer cells will not so easily adapt to the synergistic effects from induction of more than one death pathway as compared to induction of only apoptosis.
Collapse
|
38
|
Sassi N, Biasutto L, Mattarei A, Carraro M, Giorgio V, Citta A, Bernardi P, Garbisa S, Szabò I, Paradisi C, Zoratti M. Cytotoxicity of a mitochondriotropic quercetin derivative: Mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1095-106. [DOI: 10.1016/j.bbabio.2012.03.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 02/15/2012] [Accepted: 03/05/2012] [Indexed: 10/28/2022]
|
39
|
Clapp C, Portt L, Khoury C, Sheibani S, Eid R, Greenwood M, Vali H, Mandato CA, Greenwood MT. Untangling the Roles of Anti-Apoptosis in Regulating Programmed Cell Death using Humanized Yeast Cells. Front Oncol 2012; 2:59. [PMID: 22708116 PMCID: PMC3374133 DOI: 10.3389/fonc.2012.00059] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 05/24/2012] [Indexed: 11/13/2022] Open
Abstract
Genetically programmed cell death (PCD) mechanisms, including apoptosis, are important for the survival of metazoans since it allows, among things, the removal of damaged cells that interfere with normal function. Cell death due to PCD is observed in normal processes such as aging and in a number of pathophysiologies including hypoxia (common causes of heart attacks and strokes) and subsequent tissue reperfusion. Conversely, the loss of normal apoptotic responses is associated with the development of tumors. So far, limited success in preventing unwanted PCD has been reported with current therapeutic approaches despite the fact that inhibitors of key apoptotic inducers such as caspases have been developed. Alternative approaches have focused on mimicking anti-apoptotic processes observed in cells displaying increased resistance to apoptotic stimuli. Hormesis and pre-conditioning are commonly observed cellular strategies where sub-lethal levels of pro-apoptotic stimuli lead to increased resistance to higher or lethal levels of stress. Increased expression of anti-apoptotic sequences is a common mechanism mediating these protective effects. The relevance of the latter observation is exemplified by the observation that transgenic mice overexpressing anti-apoptotic genes show significant reductions in tissue damage following ischemia. Thus strategies aimed at increasing the levels of anti-apoptotic proteins, using gene therapy or cell penetrating recombinant proteins are being evaluated as novel therapeutics to decrease cell death following acute periods of cell death inducing stress. In spite of its functional and therapeutic importance, more is known regarding the processes involved in apoptosis than anti-apoptosis. The genetically tractable yeast Saccharomyces cerevisiae has emerged as an exceptional model to study multiple aspects of PCD including the mitochondrial mediated apoptosis observed in metazoans. To increase our knowledge of the process of anti-apoptosis, we screened a human heart cDNA expression library in yeast cells undergoing PCD due to the conditional expression of a mammalian pro-apoptotic Bax cDNA. Analysis of the multiple Bax suppressors identified revealed several previously known as well as a large number of clones representing potential novel anti-apoptotic sequences. The focus of this review is to report on recent achievements in the use of humanized yeast in genetic screens to identify novel stress-induced PCD suppressors, supporting the use of yeast as a unicellular model organism to elucidate anti-apoptotic and cell survival mechanisms.
Collapse
Affiliation(s)
- Caitlin Clapp
- Department of Chemistry and Chemical Engineering, Royal Military College Kingston, ON, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ou H, Simon JA, Rubel EW, Raible DW. Screening for chemicals that affect hair cell death and survival in the zebrafish lateral line. Hear Res 2012; 288:58-66. [PMID: 22310494 PMCID: PMC3371178 DOI: 10.1016/j.heares.2012.01.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 01/05/2012] [Accepted: 01/23/2012] [Indexed: 02/09/2023]
Abstract
The zebrafish lateral line is an efficient model system for the evaluation of chemicals that protect and damage hair cells. Located on the surface of the body, lateral line hair cells are accessible for manipulation and visualization. The zebrafish lateral line system allows rapid screens of large chemical libraries, as well as subsequent thorough evaluation of interesting compounds. In this review, we focus on the results of our previous screens and the evolving methodology of our screens for chemicals that protect hair cells, and chemicals that damage hair cells using the zebrafish lateral line.
Collapse
Affiliation(s)
- Henry Ou
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Box 357923, Seattle, WA 98195-7923, USA.
| | | | | | | |
Collapse
|
41
|
Lee CS, Kim YJ, Lee SA, Myung SC, Kim W. Combined effect of Hsp90 inhibitor geldanamycin and parthenolide via reactive oxygen species-mediated apoptotic process on epithelial ovarian cancer cells. Basic Clin Pharmacol Toxicol 2012; 111:173-81. [PMID: 22433057 DOI: 10.1111/j.1742-7843.2012.00883.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 03/14/2012] [Indexed: 01/05/2023]
Abstract
Hsp90 inhibitor geldanamycin and parthenolide have been shown to induce apoptosis in cancer cells. However, the combined effect of geldanamycin and parthenolide on epithelial ovarian cancer cells has not been studied. In respect of cell death process, we investigated the promoting effect of parthenolide on geldanamycin-induced apoptosis in the human epithelial ovarian carcinoma cell lines OVCAR-3 and SK-OV-3. Geldanamycin induced a decrease in Bid, Bcl-2, Bcl-xL and survivin protein levels; an increase in Bax and tumour suppressor p53 levels; loss of the mitochondrial transmembrane potential; cytochrome c release; activation of caspases (-8, -9 and -3); cleavage of PARP-1; and increase in the reactive oxygen species formation. Parthenolide enhanced geldanamycin-induced changes in the apoptosis-related protein levels, reactive oxygen species formation, nuclear damage and cell death. The combined effect was inhibited by the addition of oxidant scavengers. The results suggest that parthenolide may potentiate the apoptotic effect of geldanamycin on ovarian carcinoma cell lines by the activation of the caspase-8- and Bid-dependent pathway and the mitochondria-mediated apoptotic pathway. The apoptosis-promoting effect seems to be mediated by the stimulatory effect on the formation of reactive oxygen species.
Collapse
Affiliation(s)
- Chung S Lee
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, South Korea.
| | | | | | | | | |
Collapse
|
42
|
Guanylate cyclase activator YC-1 potentiates apoptotic effect of licochalcone A on human epithelial ovarian carcinoma cells via activation of death receptor and mitochondrial pathways. Eur J Pharmacol 2012; 683:54-62. [PMID: 22465181 DOI: 10.1016/j.ejphar.2012.03.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 02/08/2012] [Accepted: 03/09/2012] [Indexed: 01/14/2023]
Abstract
Natural phenol licorice compounds have been shown to induce apoptosis in cancer cells. 3-(5'-Hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1) may enhance the sensitivity of cancer cells to anticancer drugs. However, the combined effect of licochalcone A and YC-1 on cell death in ovarian cancer cells has not been studied. We assessed the combined effect of licochalcone A and YC-1 on apoptosis in human epithelial ovarian carcinoma cell lines in relation to the cell death process. In the OVCAR-3 and SK-OV-3 cell lines, licochalocone A induced a decrease in Bid, Bcl-2, Bcl-xL and survivin protein levels; an increase in Bax levels; loss of the mitochondrial transmembrane potential; cytochrome c release; activation of caspases (-8, -9 and -3); cleavage of PARP-1; and an increase in the tumor suppressor p53 levels. YC-1 enhanced licochalcone A-induced apoptosis-related protein activation, nuclear damage and cell death. These results suggest that YC-1 may potentiate the apoptotic effect of licochalcone A on ovarian carcinoma cell lines by increasing the activation of the caspase-8- and Bid-dependent pathway and the mitochondria-mediated apoptotic pathway, leading to caspase activation. The combination of licochalcone A and YC-1 may confer a benefit in the treatment of human epithelial ovarian adenocarcinoma.
Collapse
|
43
|
Armagan G, Turunc E, Kanit L, Yalcin A. Neuroprotection by mefenamic acid against D-serine: involvement of oxidative stress, inflammation and apoptosis. Free Radic Res 2012; 46:726-39. [PMID: 22369458 DOI: 10.3109/10715762.2012.669836] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mefenamic acid, a non-steroidal antiinflammatory drug (NSAID), directly and dose-dependently exhibits neuroprotective activity. In our study, we investigated the effects of mefenamic acid against d-serine on oxidative stress in the hippocampus, cortex and cerebellum of rats. Furthermore, the potential inflammatory and apoptotic effects of d-serine and potential protective effect of mefenamic acid were determined at mRNA and protein levels of TNF-α, IL-1β, Bcl-2 and Bax. We found that d-serine significantly increased oxidative stress, levels of inflammation- and apoptosis-related molecules in a region specific manner. Mefenamic acid treatment provided significant protection against the elevation of lipid peroxidation, protein oxidation, levels of TNF-α, IL-1β and Bax. As a conclusion, we suggest that d-serine, as a potential neurodegenerative agent, may have a pivotal role in the regulation of oxidative stress, inflammation and apoptosis; and NSAIDs, such as mefenamic acid, may assist other therapeutics in treating disorders where d-serine-induced neurotoxic mechanisms are involved in.
Collapse
Affiliation(s)
- Guliz Armagan
- Department of Biochemistry, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey
| | | | | | | |
Collapse
|
44
|
Munoz AJ, Wanichthanarak K, Meza E, Petranovic D. Systems biology of yeast cell death. FEMS Yeast Res 2012; 12:249-65. [PMID: 22188402 DOI: 10.1111/j.1567-1364.2011.00781.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 12/08/2011] [Accepted: 12/09/2011] [Indexed: 11/29/2022] Open
Abstract
Programmed cell death (PCD) (including apoptosis) is an essential process, and many human diseases of high prevalence such as neurodegenerative diseases and cancer are associated with deregulations in the cell death pathways. Yeast Saccharomyces cerevisiae, a unicellular eukaryotic organism, shares with multicellular organisms (including humans) key components and regulators of the PCD machinery. In this article, we review the current state of knowledge about cell death networks, including the modeling approaches and experimental strategies commonly used to study yeast cell death. We argue that the systems biology approach will bring valuable contributions to our understanding of regulations and mechanisms of the complex cell death pathways.
Collapse
Affiliation(s)
- Ana Joyce Munoz
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| | | | | | | |
Collapse
|
45
|
Efficient induction of extrinsic cell death by dandelion root extract in human chronic myelomonocytic leukemia (CMML) cells. PLoS One 2012; 7:e30604. [PMID: 22363452 PMCID: PMC3281857 DOI: 10.1371/journal.pone.0030604] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 12/25/2011] [Indexed: 11/21/2022] Open
Abstract
Background Chronic Myelomonocytic Leukemia (CMML) is a heterogeneous disease that is not only hard to diagnose and classify, but is also highly resistant to treatment. Available forms of therapy for this disease have not shown significant effects and patients rapidly develop resistance early on in therapy. These factors lead to the very poor prognosis observed with CMML patients, with median survival duration between 12 and 24 months after diagnosis. This study is therefore centered around evaluating the selective efficacy of a natural extract from dandelion roots, in inducing programmed cell death in aggressive and resistant CMML cell lines. Methodology/Principal Findings To confirm the induction of programmed cell death in three human CMML cell lines, nuclear condensation and externalization of the phosphatidylserine, two main characteristics of apoptosis, were detected using Hoechst staining and annexin-V binding assay. The induction of another mode of cell death, autophagy, was determined using a monodansylcadaverine (MDC) stain, to detect the formation of autophagy vacuoles. The results from this study indicate that Dandelion Root Extract (DRE) is able to efficiently and selectively induce apoptosis and autophagy in these cell lines in a dose and time dependent manner, with no significant toxicity on non-cancerous peripheral blood mononuclear cells. More importantly, we observed early activation of initiator caspase-8, which led to mitochondrial destabilization and the induction of autophagy, suggesting that DRE acts through the extrinsic pathway of apoptosis. The inability of DRE to induce apoptosis in dominant-negative FADD cells, confirms the mechanism of action of DRE in in vitro models of CMML. Conclusion The results from this study indicate that natural products, in particular Dandelion Root Extract, have great potential, as non-toxic and effective alternatives to conventional modes of chemotherapy available today.
Collapse
|
46
|
Kádár Z, Molnár J, Schneider G, Zupkó I, Frank É. A facile 'click' approach to novel 15β-triazolyl-5α-androstane derivatives, and an evaluation of their antiproliferative activities in vitro. Bioorg Med Chem 2012; 20:1396-402. [PMID: 22277592 DOI: 10.1016/j.bmc.2012.01.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 01/03/2012] [Accepted: 01/04/2012] [Indexed: 10/14/2022]
Abstract
Intermolecular Cu(I)-catalyzed azide-alkyne cycloadditions of 15β-azido-17β-hydroxy-5α-androstan-3β-yl acetate with different terminal alkynes under optimized reaction conditions were carried out to furnish 15β-triazolyl derivatives in good yields. Subsequent oxidation of the 'click' products with the Jones reagent afforded the corresponding 17-ketones. All the synthetized compounds were tested on three malignant human cell lines (HeLa, MCF7 and A431) in order to investigate their antiproliferative activities in vitro. Evidence of cell cycle blockade and apoptosis induction was obtained for the most effective five selected compounds by means of flow cytometry and microscopic techniques. The 15β-triazolyl-5α-androstane framework may be considered an appropriate base for the design of steroidal antiproliferative agents.
Collapse
Affiliation(s)
- Zalán Kádár
- Department of Organic Chemistry, University of Szeged, Dóm tér 8., Szeged H-6720, Hungary
| | | | | | | | | |
Collapse
|
47
|
Abstract
The airway epithelium functions as a barrier and front line of host defense in the lung. Apoptosis or programmed cell death can be elicited in the epithelium as a response to viral infection, exposure to allergen or to environmental toxins, or to drugs. While apoptosis can be induced via activation of death receptors on the cell surface or by disruption of mitochondrial polarity, epithelial cells compared to inflammatory cells are more resistant to apoptotic stimuli. This paper focuses on the response of airway epithelium to apoptosis in the normal state, apoptosis as a potential regulator of the number and types of epithelial cells in the airway, and the contribution of epithelial cell apoptosis in important airways diseases.
Collapse
|
48
|
Uchiumi F, Miyazaki S, Tanuma SI. [Biological functions of the duplicated GGAA-motifs in various human promoter regions]. YAKUGAKU ZASSHI 2011; 131:1787-800. [PMID: 22129877 DOI: 10.1248/yakushi.131.1787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transcription is one of the most fundamental cellular functions and is an enzyme-complex mediated reaction that converts DNA sequences into mRNA. TATA-box is known to be an important motif for transcription. However, there are majority of promoters that have no TATA-box. They are called as TATA-less promoters and possess other elements that determine the transcription start site (TSS) of the genes. Multiple protein factors including ETS family proteins are known to recognize and bind to the GGAA containing sequences. In addition, it has been reported that the ETS binding motifs play important roles in regulation of various promoters. Here, we propose that the duplication and multiplication of the GGAA motifs are responsible for the initiation of transcription from TATA-less promoters.
Collapse
Affiliation(s)
- Fumiaki Uchiumi
- Department of Gene Regulation, Tokyo University of Science, Noda, Chiba, Japan.
| | | | | |
Collapse
|
49
|
Paraptosis-like cell death induced by yessotoxin. Toxicol In Vitro 2011; 25:1764-70. [DOI: 10.1016/j.tiv.2011.09.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 08/31/2011] [Accepted: 09/06/2011] [Indexed: 01/07/2023]
|
50
|
|