1
|
Araya-Sapag MJ, Lara-Barba E, García-Guerrero C, Herrera-Luna Y, Flores-Elías Y, Bustamante-Barrientos FA, Albornoz GG, Contreras-Fuentes C, Yantén-Fuentes L, Luque-Campos N, Vega-Letter AM, Toledo J, Luz-Crawford P. New mesenchymal stem/stromal cell-based strategies for osteoarthritis treatment: targeting macrophage-mediated inflammation to restore joint homeostasis. J Mol Med (Berl) 2025:10.1007/s00109-025-02547-8. [PMID: 40272537 DOI: 10.1007/s00109-025-02547-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025]
Abstract
Macrophages are pivotal in osteoarthritis (OA) pathogenesis, as their dysregulated polarization can contribute to chronic inflammatory processes. This review explores the molecular and metabolic mechanisms that influence macrophage polarization and identifies potential strategies for OA treatment. Currently, non-surgical treatments for OA focus only on symptom management, and their efficacy is limited; thus, mesenchymal stem/stromal cells (MSCs) have gained attention for their anti-inflammatory and immunomodulatory capabilities. Emerging evidence suggests that small extracellular vesicles (sEVs) derived from MSCs can modulate macrophage function, thus offering potential therapeutic benefits in OA. Additionally, the transfer of mitochondria from MSCs to macrophages has shown promise in enhancing mitochondrial functionality and steering macrophages toward an anti-inflammatory M2-like phenotype. While further research is needed to confirm these findings, MSC-based strategies, including the use of sEVs and mitochondrial transfer, hold great promise for the treatment of OA and other chronic inflammatory diseases.
Collapse
Affiliation(s)
- María Jesús Araya-Sapag
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Eliana Lara-Barba
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Cynthia García-Guerrero
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Yeimi Herrera-Luna
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Yesenia Flores-Elías
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Felipe A Bustamante-Barrientos
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Guillermo G Albornoz
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Consuelo Contreras-Fuentes
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Liliana Yantén-Fuentes
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Red de Equipamiento Científico Avanzado (REDECA), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Noymar Luque-Campos
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Ana María Vega-Letter
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Jorge Toledo
- Red de Equipamiento Científico Avanzado (REDECA), Facultad de Medicina, Universidad de Chile, Santiago, Chile.
- Centro de Investigación Clínica Avanzada (CICA), Hospital Clínico Universidad de Chile, Santiago, Chile.
| | - Patricia Luz-Crawford
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
| |
Collapse
|
2
|
Ma C, Yang Z, Wang J, She H, Tan L, Mo X, Li T, Liu L. Interleukin-1β-stimulated macrophage-derived exosomes improve myocardial injury in sepsis via regulation of mitochondrial homeostasis: experimental research. Int J Surg 2025; 111:283-301. [PMID: 38967516 PMCID: PMC11745623 DOI: 10.1097/js9.0000000000001915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/23/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND The purpose of this study was to investigate the effects of interleukin-1β (IL-1β) stimulation on the protection of macrophage-derived exosomes miR-146a (M-IL-exo-146a) on sepsis-induced myocardial injury (SMI) in vitro and in vivo . MATERIALS AND METHODS Macrophage-derived exosomes (M-exo) and IL-1β-stimulated macrophage exosomes (M-IL-exo) were isolated from macrophages of sepsis with or without IL-1β. The expressions of miR-146a in M-exo and M-IL-exo were detected by fluorescence quantitative PCR. Related molecular biology technologies were used to evaluate the role and mechanism of M-exo-146a and M-IL-exo-146a on SMI and the enhancing effect of IL-1β. RESULTS Compared with M-exo, the expression of miR-146a in M-IL-exo was significantly increased. M-IL-exo-146a significantly alleviated SMI by decreasing the level of serum myocardial enzymes, serum and myocardial oxidative stress and cytokines, and improved myocardial mitochondrial imbalance. The mechanism responsible for IL-1β enhancing the production of IL-M-exo miR-146a was via JNK-1/2 signal pathway. The mechanism responsible for M-exo-IL-miR-146a protecting SMI was related to miR-146a inhibiting inflammatory response and mitochondrial function via MAPK4/Drp-1 signal pathway. CONCLUSIONS This study provides a new strategy for the treatment of SMI by delivering M-IL-exo.
Collapse
Affiliation(s)
- Chunhua Ma
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Research Department of Army Medical Center, Army Medical University, Chongqing
| | - Zhaocong Yang
- Children’s Hospital of Nanjing Medical University, Nanjing
| | - Jing Wang
- School of Biology and Food Engineering, Institute of Pharmaceutical Pharmacology Research Center, Suzhou University, Suzhou, Anhui, People’s Republic of China
| | - Han She
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Research Department of Army Medical Center, Army Medical University, Chongqing
| | - Lei Tan
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Research Department of Army Medical Center, Army Medical University, Chongqing
| | - Xuming Mo
- School of Biology and Food Engineering, Institute of Pharmaceutical Pharmacology Research Center, Suzhou University, Suzhou, Anhui, People’s Republic of China
| | - Tao Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Research Department of Army Medical Center, Army Medical University, Chongqing
| | - Liangming Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Research Department of Army Medical Center, Army Medical University, Chongqing
| |
Collapse
|
3
|
Zhang WJ, Chen D. Mesenchymal stem cell transplantation plays a role in relieving cancer pain. Front Pharmacol 2024; 15:1483716. [PMID: 39679363 PMCID: PMC11637888 DOI: 10.3389/fphar.2024.1483716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
Tumors can invade, compress, and damage nerves, leading to persistent pain and seriously affecting the quality of life of patients. However, their treatment is challenging. Sensitization of peripheral receptors, abnormal activity of primary sensory neurons, activation of glial cells, enhanced inflammatory responses, and sensory information transmission contribute towards cancer pain. Therefore, considerable attention has been paid to exploring prospective methods to inhibit the occurrence of these factors and relieve cancer pain. Studies on different types of pains have revealed that the transplantation of functionally active cells into the host has the pharmacological effect of producing analgesia. Mesenchymal stem cells (MSCs) can act as small active pumps to reduce the expression of pain-related molecules and produce analgesic effects. Moreover, MSCs can establish complex communication networks with non-tumor and cancer cells in the microenvironment, interact with each other, and can be used as destinations for inflammation and tumor sites, affecting their potential for invasion and metastasis. This emphasizes the key role of MSCs in cancer and pain management. The pain relief mechanisms of MSCs include neuronutrition, neural protection, neural network reconstruction, immune regulation, and improvement of the inflammatory microenvironment around the nerve injury. All of these are beneficial for the recovery of injured or stimulated nerves and the reconstruction of neural function, and play a role in relieving pain. The pain treatment strategy of cell transplantation is to repair injured nerves and produce analgesic pharmacological properties that are different from those of painkillers and other physiotherapies. Although the therapeutic role of MSCs in cancer and pain is in its early stages, the therapeutic value of MSCs for cancer pain has great prospects. Therefore, in this study, we explored the possible mechanism between MSCs and cancer pain, the potential therapeutic role of therapeutic cells in cancer pain, and some problems and challenges.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Jiangxi Medical college, Nanchang, China
| | - Dingyi Chen
- Emergency department, The Second Affiliated Hospital, Nanchang University, Jiangxi Medical college, Nanchang, China
| |
Collapse
|
4
|
Saha P, Guru SA, Ge ZD, Simms L, Chen L, Bolli R, Kaushal S. Neonatal Cardiac Mesenchymal Stromal Cells Promote Recovery of Infarcted Myocardium through CD44 Mediated FoxP3 + T-Regulatory Cells after Vascular Infusion. Stem Cell Rev Rep 2024; 20:1843-1853. [PMID: 38941039 PMCID: PMC11444880 DOI: 10.1007/s12015-024-10750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Intravenous infusion has been used as the method of cell delivery in many preclinical studies as well as in some early clinical trials. Among its advantages are broad distribution, ability to handle a large-volume infusion, and ease of access. Progenitor cells used in cell-based therapy act through their secretomes, rather than their ability to differentiate into lineage-specific cell type. Since not all progenitor cells have similar secretome potency, the innate abilities of the secretome of cells used in clinical trials will obviously dictate their effectiveness. We previously found that cardiac neonatal mesenchymal stromal cells (nMSCs) are more effective in repairing the infarcted myocardium compared to adult mesenchymal stromal cells (aMSCs) due to their robust secretome (Sharma et al Circulation Research 120:816-834, 2017). In this study, we explored the efficacy of intravenous (IV) delivery of nMSCs for myocardial recovery. Six-week-old male Brown Norway rats underwent acute MI by ligation of the left anterior descending artery, followed by IV infusion of cell dose 5 × 106 nMSCs/rat body weight (kg) or saline on days 0 and 5. We found that cardiac parameters in the rodent ischemia model improved 1 month after nMSCs infusion, and the result is comparable with the intramyocardial injection of nMSCs. Tracking the infused cells in target organ revealed that their movement after IV delivery was mediated by the cell surface receptor CD44. Systemic injection of nMSCs stimulated immunomodulatory responses specifically by increasing FoxP3+ T-regulatory cell influenced anti-inflammatory macrophages (M2) in heart. These data demonstrate that nMSCs promote immunogenic tolerance via CD44-driven T-reg/M2 stimulation that helps nMSCs for longer viability in the injured myocardium for better functional recovery. Our data also demonstrate a rationale for a clinical trial of IV infusion of nMSCs to promote cardiac function improvement in the ischemic patients.
Collapse
Affiliation(s)
- Progyaparamita Saha
- Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA.
| | - Sameer Ahmad Guru
- Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA
| | - Zhi-Dong Ge
- Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA
| | - Lydia Simms
- Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA
| | - Ling Chen
- Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA
| | - Roberto Bolli
- Division of Cardiovascular Medicine and Institute of Molecular Cardiology, University of Louisville, Louisville, USA
| | - Sunjay Kaushal
- Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA
| |
Collapse
|
5
|
Zhang L, Wang J, Liu X, Xiao X, Liu Y, Huang Q, Li J, Li G, Yang P. Regulation of SETD2 maintains immune regulatory function in macrophages to suppress airway allergy. Immunology 2024; 173:185-195. [PMID: 38859694 DOI: 10.1111/imm.13823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024] Open
Abstract
SET domain-containing 2 (SETD2) is a histone methyltransferase. It regulates the activity of H3K36me3 to enhance gene transcription. Macrophages (Mϕs) are one of the cell types involved in immune response. The purpose of this study is to clarify the role of SETD2 in regulating the immune property of Mϕ. The Mφs were isolated from the bronchoalveolar lavage fluid (BALF) and analysed through flow cytometry and RNA sequencing. A mouse strain carrying Mφs deficient in SETD2 was used. A mouse model of airway allergy was established with the ovalbumin/alum protocol. Less expression of SETD2 was observed in airway Mϕs in patients with allergic asthma. SETD2 of M2 cells was associated with the asthmatic clinical response. Sensitization reduced the expression of SETD2 in mouse respiratory tract M2 cells, which is associated with the allergic reaction. Depletion of SETD2 in Mφs resulted in Th2 pattern inflammation in the lungs. SETD2 maintained the immune regulatory ability in airway M2 cells. SETD2 plays an important role in the maintenance of immune regulatory property of airway Mφs.
Collapse
Affiliation(s)
- Lei Zhang
- Laboratory of Allergy and Precision Medicine, Department of Pulmonary and Critical Care Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Junyi Wang
- Laboratory of Allergy and Precision Medicine, Department of Pulmonary and Critical Care Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Xiaoyu Liu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China
- State Key Laboratory of Respiratory Disease Allergy Division at Shenzhen University, Institute of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Xiaojun Xiao
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China
- State Key Laboratory of Respiratory Disease Allergy Division at Shenzhen University, Institute of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Yu Liu
- Department of General Medicine Practice and Respirology, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Qinmiao Huang
- Department of General Medicine Practice and Respirology, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jing Li
- Department of Allergy, First Affiliated Hospital, Guangzhou Medial University, Guangzhou, China
| | - Guoping Li
- Laboratory of Allergy and Precision Medicine, Department of Pulmonary and Critical Care Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Pingchang Yang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China
- State Key Laboratory of Respiratory Disease Allergy Division at Shenzhen University, Institute of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| |
Collapse
|
6
|
Xie Q, Gu J. Therapeutic and Safety Promise of Mesenchymal Stem Cells for Liver Failure: From Preclinical Experiment to Clinical Application. Curr Stem Cell Res Ther 2024; 19:1351-1368. [PMID: 37807649 DOI: 10.2174/011574888x260690230921174343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 10/10/2023]
Abstract
Liver failure (LF) is serious liver damage caused by multiple factors, resulting in severe impairment or decompensation of liver synthesis, detoxification, metabolism, and biotransformation. The general prognosis of LF is poor with high mortality in non-transplant patients. The clinical treatments for LF are mainly internal medicine comprehensive care, artificial liver support system, and liver transplantation. However, none of the above treatment strategies can solve the problems of all liver failure patients and has its own limitations. Mesenchymal stem cells (MSCs) are a kind of stem cells with multidirectional differentiation potential and paracrine function, which play an important role in immune regulation and tissue regeneration. In recent years, MSCs have shown multiple advantages in the treatment of LF in pre-clinical experiments and clinical trials. In this work, we reviewed the biological characteristics of MSCs, the possible molecular mechanisms of MSCs in the treatment of liver failure, animal experiments, and clinical application, and also discussed the existing problems of MSCs in the treatment of liver failure.
Collapse
Affiliation(s)
- Qiong Xie
- National Engineering Research Center of Cell Products, AmCellGene Engineering Co., Ltd, Tianjin, 300457, China
| | - Jundong Gu
- National Engineering Research Center of Cell Products, AmCellGene Engineering Co., Ltd, Tianjin, 300457, China
| |
Collapse
|
7
|
Liang Z, Zhang G, Gan G, Liu X, Liu H, Nie D, Ma L. Mesenchymal Stromal Cells Regulate M1/M2 Macrophage Polarization in Mice with Immune Thrombocytopenia. Stem Cells Dev 2023; 32:703-714. [PMID: 37606909 DOI: 10.1089/scd.2023.0154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023] Open
Abstract
Mesenchymal stromal cells have shown promising effects in the treatment of immune thrombocytopenia. However, the underlying mechanisms are not fully understood. In this study, we investigated the therapeutic effects of human bone marrow mesenchymal stromal cells (hBMSCs) and analyzed their unique role in regulating the M1/M2 macrophage ratio. We established a passive immune thrombocytopenia (ITP) mouse model and showed that there was a significant M1/M2 imbalance in ITP model mice by assessing the M1/M2 ratios in the liver, spleen, and bone marrow; we observed excessive activation of M1 cells and decreased M2 cell numbers in vivo. We have shown that systemic infusion of hBMSCs effectively elevated platelet levels after disease onset. Further analysis revealed that hBMSCs treatment significantly suppressed the number of proinflammatory M1 macrophages and enhanced the number of anti-inflammatory M2 macrophages; in addition, the levels of proinflammatory factors, such as interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), were significantly decreased in vivo, while the levels of the anti-inflammatory factor interleukin-10 (IL-10) were increased. In conclusion, our data suggest that hBMSCs treatment can effectively increase platelet counts, and the mechanism is related to the induction of macrophage polarization toward the anti-inflammatory M2 phenotype and the decrease in proinflammatory cytokine production, which together ameliorate innate immune disorders.
Collapse
Affiliation(s)
- Ziyang Liang
- Department of Hematology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Guoyang Zhang
- Department of Hematology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - GuangTing Gan
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Xiaoyan Liu
- Department of Hematology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hongyun Liu
- Department of Hematology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Danian Nie
- Department of Hematology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Liping Ma
- Department of Hematology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
8
|
Jammes M, Contentin R, Audigié F, Cassé F, Galéra P. Effect of pro-inflammatory cytokine priming and storage temperature of the mesenchymal stromal cell (MSC) secretome on equine articular chondrocytes. Front Bioeng Biotechnol 2023; 11:1204737. [PMID: 37720315 PMCID: PMC10502223 DOI: 10.3389/fbioe.2023.1204737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Context: Osteoarthritis (OA) is an invalidating articular disease characterized by cartilage degradation and inflammatory events. In horses, OA is associated with up to 60% of lameness and leads to reduced animal welfare along with extensive economic losses; currently, there are no curative therapies to treat OA. The mesenchymal stromal cell (MSC) secretome exhibits anti-inflammatory properties, making it an attractive candidate for improving the management of OA. In this study, we determined the best storage conditions for conditioned media (CMs) and tested whether priming MSCs with cytokines can enhance the properties of the MSC secretome. Methods: First, properties of CMs collected from bone-marrow MSC cultures and stored at -80°C, -20°C, 4°C, 20°C or 37°C were assessed on 3D cultures of equine articular chondrocytes (eACs). Second, we primed MSCs with IL-1β, TNF-α or IFN-γ, and evaluated the MSC transcript levels of immunomodulatory effectors and growth factors. The primed CMs were also harvested for subsequent treatment of eACs, either cultured in monolayers or as 3D cell cultures. Finally, we evaluated the effect of CMs on the proliferation and the phenotype of eACs and the quality of the extracellular matrix of the neosynthesized cartilage. Results: CM storage at -80°C, -20°C, and 4°C improved collagen protein accumulation, cell proliferation and the downregulation of inflammation. The three cytokines chosen for the MSC priming influenced MSC immunomodulator gene expression, although each cytokine led to a different pattern of MSC immunomodulation. The cytokine-primed CM had no major effect on eAC proliferation, with IL-1β and TNF-α slightly increasing collagen (types IIB and I) accumulation in eAC 3D cultures (particularly with the CM derived from MSCs primed with IL-1β), and IFN-γ leading to a marked decrease. IL-1β-primed CMs resulted in increased eAC transcript levels of MMP1, MMP13 and HTRA1, whereas IFNγ-primed CMs decreased the levels of HTRA1 and MMP13. Conclusion: Although the three cytokines differentially affected the expression of immunomodulatory molecules, primed CMs induced a distinct effect on eACs according to the cytokine used for MSC priming. Different mechanisms seemed to be triggered by each priming cytokine, highlighting the need for further investigation. Nevertheless, this study demonstrates the potential of MSC-CMs for improving equine OA management.
Collapse
Affiliation(s)
- Manon Jammes
- Normandie University, UNICAEN, BIOTARGEN, Caen, France
| | | | - Fabrice Audigié
- Unit Under Contract 957 Equine Biomechanics and Locomotor Disorders (USC 957 BPLC), Center of Imaging and Research on Locomotor Affections on Equines (CIRALE), French National Research Institute for Agriculture Food and Environment (INRAE), École Nationale Vétérinaire d’Alfort, Maisons-Alfort, France
| | | | | |
Collapse
|
9
|
Wang H, Ye X, Spanos M, Wang H, Yang Z, Li G, Xiao J, Zhou L. Exosomal Non-Coding RNA Mediates Macrophage Polarization: Roles in Cardiovascular Diseases. BIOLOGY 2023; 12:745. [PMID: 37237557 PMCID: PMC10215119 DOI: 10.3390/biology12050745] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/26/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023]
Abstract
Extracellular vesicles (EVs) or exosomes are nanosized extracellular particles that contain proteins, DNA, non-coding RNA (ncRNA) and other molecules, which are widely present in biofluids throughout the body. As a key mediator of intercellular communication, EVs transfer their cargoes to target cells and activate signaling transduction. Increasing evidence shows that ncRNA is involved in a variety of pathological and physiological processes through various pathways, particularly the inflammatory response. Macrophage, one of the body's "gatekeepers", plays a crucial role in inflammatory reactions. Generally, macrophages can be classified as pro-inflammatory type (M1) or anti-inflammatory type (M2) upon their phenotypes, a phenomenon termed macrophage polarization. Increasing evidence indicates that the polarization of macrophages plays important roles in the progression of cardiovascular diseases (CVD). However, the role of exosomal ncRNA in regulating macrophage polarization and the role of polarized macrophages as an important source of EV in CVD remains to be elucidated. In this review, we summarize the role and molecular mechanisms of exosomal-ncRNA in regulating macrophage polarization during CVD development, focusing on their cellular origins, functional cargo, and their detailed effects on macrophage polarization. We also discuss the role of polarized macrophages and their derived EV in CVD as well as the therapeutic prospects of exosomal ncRNA in the treatment of CVD.
Collapse
Affiliation(s)
- Hongyun Wang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai 200444, China
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
| | - Xuan Ye
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai 200444, China
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Michail Spanos
- Division of Cardiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Huanxin Wang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai 200444, China
| | - Zijiang Yang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai 200444, China
| | - Guoping Li
- Division of Cardiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai 200444, China
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
| | - Lei Zhou
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210008, China
| |
Collapse
|
10
|
Scala P, Lovecchio J, Lamparelli EP, Vitolo R, Giudice V, Giordano E, Selleri C, Rehak L, Maffulli N, Della Porta G. Myogenic commitment of human stem cells by myoblasts Co-culture: a static vs. a dynamic approach. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2022; 50:49-58. [PMID: 35188030 DOI: 10.1080/21691401.2022.2039684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An in-vitro model of human bone marrow mesenchymal stem cells (hBM-MSCs) myogenic commitment by synergic effect of a differentiation media coupled with human primary skeletal myoblasts (hSkMs) co-culture was developed adopting both conventional static co-seeding and perfused culture systems. Static co-seeding provided a notable outcome in terms of gene expression with a significant increase of Desmin (141-fold) and Myosin heavy chain II (MYH2, 32-fold) at day 21, clearly detected also by semi-quantitative immunofluorescence. Under perfusion conditions, myogenic induction ability of hSkMs on hBM-MSCs was exerted by paracrine effect with an excellent gene overexpression and immunofluorescence detection of MYH2 protein; furthermore, due to the dynamic cell culture in separate wells, western blot data were acquired confirming a successful cell commitment at day 14. A significant increase of anti-inflammatory cytokine gene expression, including IL-10 and IL-4 (15-fold and 11-fold, respectively) at day 14, with respect to the pro-inflammatory cytokines IL-12A (7-fold at day 21) and IL-1β (1.4-fold at day 7) was also detected during dynamic culture, confirming the immunomodulatory activity of hBM-MSCs along with commitment events. The present study opens interesting perspectives on the use of dynamic culture based on perfusion as a versatile tool to study myogenic events and paracrine cross-talk compared to the simple co-seeding static culture.
Collapse
Affiliation(s)
- Pasqualina Scala
- Translational Medicine Laboratory, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Salerno (SA), Italy
| | - J Lovecchio
- Mol Cel Eng. Lab "S. Cavalcanti", Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi" (DEI), University of Bologna, Via dell'Universitá 50, 47522 Cesena, Forlí-Cesena (FC), Italy.,Health Sciences and Technologies - Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano dell'Emilia, Bologna (BO), Italy
| | - E P Lamparelli
- Translational Medicine Laboratory, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Salerno (SA), Italy
| | - R Vitolo
- Translational Medicine Laboratory, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Salerno (SA), Italy
| | - V Giudice
- Translational Medicine Laboratory, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Salerno (SA), Italy
| | - E Giordano
- Mol Cel Eng. Lab "S. Cavalcanti", Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi" (DEI), University of Bologna, Via dell'Universitá 50, 47522 Cesena, Forlí-Cesena (FC), Italy.,Health Sciences and Technologies - Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano dell'Emilia, Bologna (BO), Italy.,Advanced Research Center on Electronic Systems (ARCES), University of Bologna, Via Vincenzo Toffano 2/2, 40125 Bologna (BO), Italy
| | - C Selleri
- Translational Medicine Laboratory, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Salerno (SA), Italy
| | - L Rehak
- Athena Biomedical innovations, Viale Europa 139, Florence (FI), 50126, Italy
| | - N Maffulli
- Translational Medicine Laboratory, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Salerno (SA), Italy
| | - G Della Porta
- Translational Medicine Laboratory, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Salerno (SA), Italy.,Interdepartment Centre BIONAM, Università di Salerno, via Giovanni Paolo I, 84084 Fisciano, Salerno (SA), Italy
| |
Collapse
|
11
|
Huang EE, Zhang N, Ganio EA, Shen H, Li X, Ueno M, Utsunomiya T, Maruyama M, Gao Q, Su N, Yao Z, Yang F, Gaudillière B, Goodman SB. Differential dynamics of bone graft transplantation and mesenchymal stem cell therapy during bone defect healing in a murine critical size defect. J Orthop Translat 2022; 36:64-74. [PMID: 35979174 PMCID: PMC9357712 DOI: 10.1016/j.jot.2022.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/22/2022] [Accepted: 05/27/2022] [Indexed: 10/24/2022] Open
Abstract
Background A critical size bone defect is a clinical scenario in which bone is lost or excised due to trauma, infection, tumor, or other causes, and cannot completely heal spontaneously. The most common treatment for this condition is autologous bone grafting to the defect site. However, autologous bone graft is often insufficient in quantity or quality for transplantation to these large defects. Recently, tissue engineering methods using mesenchymal stem cells (MSCs) have been proposed as an alternative treatment. However, the underlying biological principles and optimal techniques for tissue regeneration of bone using stem cell therapy have not been completely elucidated. Methods In this study, we compare the early cellular dynamics of healing between bone graft transplantation and MSC therapy in a murine chronic femoral critical-size bone defect. We employ high-dimensional mass cytometry to provide a comprehensive view of the differences in cell composition, stem cell functionality, and immunomodulatory activity between these two treatment methods one week after transplantation. Results We reveal distinct cell compositions among tissues from bone defect sites compared with original bone graft, show active recruitment of MSCs to the bone defect sites, and demonstrate the phenotypic diversity of macrophages and T cells in each group that may affect the clinical outcome. Conclusion Our results provide critical data and future directions on the use of MSCs for treating critical size defects to regenerate bone.Translational Potential of this article: This study showed systematic comparisons of the cellular and immunomodulatory profiles among different interventions to improve the healing of the critical-size bone defect. The results provided potential strategies for designing robust therapeutic interventions for the unmet clinical need of treating critical-size bone defects.
Collapse
Affiliation(s)
- Elijah Ejun Huang
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Ning Zhang
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Edward A. Ganio
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Huaishuang Shen
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Xueping Li
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Masaya Ueno
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Takeshi Utsunomiya
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Masahiro Maruyama
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Ni Su
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Zhenyu Yao
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Fan Yang
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Brice Gaudillière
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
12
|
Mishra R, Saha P, Datla SR, Mellacheruvu P, Gunasekaran M, Guru SA, Fu X, Chen L, Bolli R, Sharma S, Kaushal S. Transplanted allogeneic cardiac progenitor cells secrete GDF-15 and stimulate an active immune remodeling process in the ischemic myocardium. J Transl Med 2022; 20:323. [PMID: 35864544 PMCID: PMC9306063 DOI: 10.1186/s12967-022-03534-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/13/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Despite promising results in clinical studies, the mechanism for the beneficial effects of allogenic cell-based therapies remains unclear. Macrophages are not only critical mediators of inflammation but also critical players in cardiac remodeling. We hypothesized that transplanted allogenic rat cardiac progenitor cells (rCPCs) augment T-regulatory cells which ultimately promote proliferation of M2 like macrophages by an as-yet undefined mechanism. METHODS AND RESULTS To test this hypothesis, we used crossover rat strains for exploring the mechanism of myocardial repair by allogenic CPCs. Human CPCs (hCPCs) were isolated from adult patients undergoing coronary artery bypass grafting, and rat CPCs (rCPCs) were isolated from male Wistar-Kyoto (WKY) rat hearts. Allogenic rCPCs suppressed the proliferation of T-cells observed in mixed lymphocyte reactions in vitro. Transplanted syngeneic or allogeneic rCPCs significantly increased cardiac function in a rat myocardial infarct (MI) model, whereas xenogeneic CPCs did not. Allogeneic rCPCs stimulated immunomodulatory responses by specifically increasing T-regulatory cells and M2 polarization, while maintaining their cardiac recovery potential and safety profile. Mechanistically, we confirmed the inactivation of NF-kB in Treg cells and increased M2 macrophages in the myocardium after MI by transplanted CPCs derived GDF15 and it's uptake by CD48 receptor on immune cells. CONCLUSION Collectively, these findings strongly support the active immunomodulatory properties and robust therapeutic potential of allogenic CPCs in post-MI cardiac dysfunction.
Collapse
Affiliation(s)
- Rachana Mishra
- grid.16753.360000 0001 2299 3507Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL USA ,grid.413808.60000 0004 0388 2248Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL USA
| | - Progyaparamita Saha
- grid.16753.360000 0001 2299 3507Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL USA ,grid.413808.60000 0004 0388 2248Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL USA
| | - Srinivasa Raju Datla
- grid.411024.20000 0001 2175 4264Department of Surgery, University of Maryland School of Medicine, Baltimore, MD USA
| | - Pranav Mellacheruvu
- grid.16753.360000 0001 2299 3507Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Muthukumar Gunasekaran
- grid.16753.360000 0001 2299 3507Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL USA ,grid.413808.60000 0004 0388 2248Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL USA
| | - Sameer Ahmad Guru
- grid.16753.360000 0001 2299 3507Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL USA ,grid.413808.60000 0004 0388 2248Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL USA
| | - Xubin Fu
- grid.16753.360000 0001 2299 3507Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL USA ,grid.413808.60000 0004 0388 2248Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL USA
| | - Ling Chen
- grid.16753.360000 0001 2299 3507Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL USA ,grid.413808.60000 0004 0388 2248Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL USA
| | - Roberto Bolli
- grid.266623.50000 0001 2113 1622Division of Cardiovascular Medicine and Institute of Molecular Cardiology, University of Louisville, Louisville, USA
| | - Sudhish Sharma
- Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA.
| | - Sunjay Kaushal
- Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA.
| |
Collapse
|
13
|
hLMSC Secretome Affects Macrophage Activity Differentially Depending on Lung-Mimetic Environments. Cells 2022; 11:cells11121866. [PMID: 35740995 PMCID: PMC9221297 DOI: 10.3390/cells11121866] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 02/08/2023] Open
Abstract
Mesenchymal stromal cell (MSC)-based therapies for inflammatory diseases rely mainly on the paracrine ability to modulate the activity of macrophages. Despite recent advances, there is scarce information regarding changes of the secretome content attributed to physiomimetic cultures and, especially, how secretome content influence on macrophage activity for therapy. hLMSCs from human donors were cultured on devices developed in house that enabled lung-mimetic strain. hLMSC secretome was analyzed for typical cytokines, chemokines and growth factors. RNA was analyzed for the gene expression of CTGF and CYR61. Human monocytes were differentiated to macrophages and assessed for their phagocytic capacity and for M1/M2 subtypes by the analysis of typical cell surface markers in the presence of hLMSC secretome. CTGF and CYR61 displayed a marked reduction when cultured in lung-derived hydrogels (L-Hydrogels). The secretome showed that lung-derived scaffolds had a distinct secretion while there was a large overlap between L-Hydrogel and the conventionally (2D) cultured samples. Additionally, secretome from L-Scaffold showed an HGF increase, while IL-6 and TNF-α decreased in lung-mimetic environments. Similarly, phagocytosis decreased in a lung-mimetic environment. L-Scaffold showed a decrease of M1 population while stretch upregulated M2b subpopulations. In summary, mechanical features of the lung ECM and stretch orchestrate anti-inflammatory and immunosuppressive outcomes of hLMSCs.
Collapse
|
14
|
Na YR, Jung D, Stakenborg M, Jang H, Gu GJ, Jeong MR, Suh SY, Kim HJ, Kwon YH, Sung TS, Ryoo SB, Park KJ, Im JP, Park JY, Lee YS, Han H, Park B, Lee S, Kim D, Lee HS, Cleynen I, Matteoli G, Seok SH. Prostaglandin E 2 receptor PTGER4-expressing macrophages promote intestinal epithelial barrier regeneration upon inflammation. Gut 2021; 70:2249-2260. [PMID: 33558271 DOI: 10.1136/gutjnl-2020-322146] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 12/16/2020] [Accepted: 12/20/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Dysfunctional resolution of intestinal inflammation and altered mucosal healing are essential features in the pathogenesis of inflammatory bowel disease (IBD). Intestinal macrophages are vital in the process of inflammation resolution, but the mechanisms underlying their mucosal healing capacity remain elusive. DESIGN We investigated the role of the prostaglandin E2 (PGE2) receptor PTGER4 on the differentiation of intestinal macrophages in patients with IBD and mouse models of intestinal inflammation. We studied mucosal healing and intestinal epithelial barrier regeneration in Csf1r-iCre Ptger4fl/fl mice during dextran sulfate sodium (DSS)-induced colitis. The effect of PTGER4+ macrophage secreted molecules was investigated on epithelial organoid differentiation. RESULTS Here, we describe a subset of PTGER4-expressing intestinal macrophages with mucosal healing properties both in humans and mice. Csf1r-iCre Ptger4fl/fl mice showed defective mucosal healing and epithelial barrier regeneration in a model of DSS colitis. Mechanistically, an increased mucosal level of PGE2 triggers chemokine (C-X-C motif) ligand 1 (CXCL1) secretion in monocyte-derived PTGER4+ macrophages via mitogen-activated protein kinases (MAPKs). CXCL1 drives epithelial cell differentiation and proliferation from regenerating crypts during colitis. Specific therapeutic targeting of macrophages with liposomes loaded with an MAPK agonist augmented the production of CXCL1 in vivo in conditional macrophage PTGER4-deficient mice, restoring their defective epithelial regeneration and favouring mucosal healing. CONCLUSION PTGER4+ intestinal macrophages are essential for supporting the intestinal stem cell niche and regeneration of the injured epithelium. Our results pave the way for the development of a new class of therapeutic targets to promote macrophage healing functions and favour remission in patients with IBD.
Collapse
Affiliation(s)
- Yi Rang Na
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, South Korea
| | - Daun Jung
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Michelle Stakenborg
- Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Hyeri Jang
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Gyo Jeong Gu
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Mi Reu Jeong
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soo Youn Suh
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Hak Jae Kim
- Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yoon Hey Kwon
- Department of Surgery, Emergency Medical Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Tae Sik Sung
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung Bum Ryoo
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyu Joo Park
- Department of Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jong Pil Im
- Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji Yong Park
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yun Sang Lee
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Heonjong Han
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.,Division of Tumor Immunology, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Boyoun Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Sungwook Lee
- Division of Tumor Immunology, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Daesik Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Ho Su Lee
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | - Gianluca Matteoli
- Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Seung Hyeok Seok
- Department of Microbiology and Immunology and Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
15
|
Lim SK, Khoo BY. An overview of mesenchymal stem cells and their potential therapeutic benefits in cancer therapy. Oncol Lett 2021; 22:785. [PMID: 34594426 PMCID: PMC8456491 DOI: 10.3892/ol.2021.13046] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
There has been increased interest in using stem cells for regenerative medicine and cancer therapy in the past decade. Mesenchymal stem cells (MSCs) are among the most studied stem cells due to their unique characteristics, such as self-renewal and developmental potency to differentiate into numerous cell types. MSC use has fewer ethical challenges compared with other types of stem cells. Although a number of studies have reported the beneficial effects of MSC-based therapies in treating various diseases, their contribution to cancer therapy remains controversial. The behaviour of MSCs is determined by the interaction between intrinsic transcriptional genes and extrinsic environmental factors. Numerous studies continue to emerge, as there is no denying the potential of MSCs to treat a wide variety of human afflictions. Therefore, the present review article provided an overview of MSCs and their differences compared with embryonic stem cells, and described the molecular mechanisms involved in maintaining their stemness. In addition, the article examined the therapeutic application of stem cells in the field of cancer. The present article also discussed the current divergent roles of MSCs in cancer therapy and the future potential in this field.
Collapse
Affiliation(s)
- Shern Kwok Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Boon Yin Khoo
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| |
Collapse
|
16
|
Attenuation of Knee Osteoarthritis Progression in Mice through Polarization of M2 Macrophages by Intra-Articular Transplantation of Non-Cultured Human Adipose-Derived Regenerative Cells. J Clin Med 2021; 10:jcm10194309. [PMID: 34640324 PMCID: PMC8509129 DOI: 10.3390/jcm10194309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
Adipose-derived regenerative cells (ADRCs) are non-cultured heterogeneous or mixed populations of cells obtained from adipose tissue by collagenase digestion. The injection of ADRCs have been tried clinically for the treatment of osteoarthritis (OA). The purpose of this study was to evaluate the effect of intra-articular transplantation of human ADRCs on OA progression in mice and the effect of ADRCs on macrophage polarization. In in vivo experiments, BALB/c-nu mice with knee OA received intra-articular transplantation of either phosphate buffered-saline or human ADRCs. OA progression was evaluated histologically and significantly attenuated in the ADRC group at both four and eight weeks postoperatively. The expression of OA-related proteins in the cartilage and macrophage-associated markers in the synovium were examined by immunohistochemistry. The numbers of MMP-13-, ADAMTS-5-, IL-1β-, IL-6- and iNOS-positive cells significantly decreased, and type II collagen- and CD206-positive cells were more frequently detected in the ADRC group compared with that in the control group. In vitro co-culture experiments showed that ADRCs induced macrophage polarization toward M2. The results of this study suggest that the intra-articular transplantation of human ADRCs could attenuate OA progression possibly by reducing catabolic factors in chondrocytes and modulating macrophage polarization.
Collapse
|
17
|
Kishore A, Petrek M. Roles of Macrophage Polarization and Macrophage-Derived miRNAs in Pulmonary Fibrosis. Front Immunol 2021; 12:678457. [PMID: 34489932 PMCID: PMC8417529 DOI: 10.3389/fimmu.2021.678457] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/29/2021] [Indexed: 12/24/2022] Open
Abstract
This mini-review summarizes the current evidence for the role of macrophage activation and polarization in inflammation and immune response pertinent to interstitial lung disease, specifically pulmonary fibrosis. In the fibrosing lung, the production and function of inflammatory and fibrogenic mediators involved in the disease development have been reported to be regulated by the effects of polarized M1/M2 macrophage populations. The M1 and M2 macrophage phenotypes were suggested to correspond with the pro-inflammatory and pro-fibrogenic signatures, respectively. These responses towards tissue injury followed by the development and progression of lung fibrosis are further regulated by macrophage-derived microRNAs (miRNAs). Besides cellular miRNAs, extracellular exosomal-miRNAs derived from M2 macrophages have also been proposed to promote the progression of pulmonary fibrosis. In a future perspective, harnessing the noncoding miRNAs with a key role in the macrophage polarization is, therefore, suggested as a promising therapeutic strategy for this debilitating disease.
Collapse
Affiliation(s)
- Amit Kishore
- Department of Pathological Physiology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia.,Accuscript Consultancy, Ludhiana, India
| | - Martin Petrek
- Department of Pathological Physiology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia.,Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia.,Departments of Experimental Medicine, and Immunology, University Hospital Olomouc, Olomouc, Czechia
| |
Collapse
|
18
|
Zhu Y, Ge J, Huang C, Liu H, Jiang H. Application of mesenchymal stem cell therapy for aging frailty: from mechanisms to therapeutics. Theranostics 2021; 11:5675-5685. [PMID: 33897874 PMCID: PMC8058725 DOI: 10.7150/thno.46436] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 03/15/2021] [Indexed: 12/20/2022] Open
Abstract
Aging frailty is a complex geriatric syndrome that becomes more prevalent with advancing age. It constitutes a major health problem due to frequent adverse outcomes. Frailty is characterized by disruption of physiological homeostasis and progressive decline of health status. Multiple factors contribute to development of frailty with advancing age, including genome instability, DNA damage, epigenetic alternations, stem cell exhaustion, among others. These interrelated factors comprehensively result in loss of tissue homeostasis and diminished reserve capacity in frailty. Therefore, the aged organism gradually represents symptoms of frailty with decline in physiological functions of organs. Notably, the brain, cardiovascular system, skeletal muscle, and endocrine system are intrinsically interrelated to frailty. The patients with frailty may display the diminished reserves capacity of organ systems. Due to the complex pathophysiology, no specific treatments have been approved for prevention of this syndrome. At such, effective strategies for intervening in pathogenic process to improve health status of frail patients are highly needed. Recent progress in cell-based therapy has greatly contributed to the amelioration of degenerative diseases related to age. Mesenchymal stem cells (MSCs) can exert regenerative effects and possess anti-inflammatory properties. Transplantation of MSCs represents as a promising therapeutic strategy to address the pathophysiologic problems of frail syndrome. Currently, MSC therapy have undergone the phase I and II trials in human subjects that have endorsed the safety and efficacy of MSCs for aging frailty. However, despite these positive results, caution is still needed with regard to potential to form tumors, and further large-scale studies are warranted to confirm the therapeutic efficacy of MSC therapy.
Collapse
|
19
|
Therapeutic Effects of Human Mesenchymal Stem Cells in a Mouse Model of Cerebellar Ataxia with Neuroinflammation. J Clin Med 2020; 9:jcm9113654. [PMID: 33202913 PMCID: PMC7698164 DOI: 10.3390/jcm9113654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
Cerebellar ataxias (CAs) are neurological diseases characterized by loss of muscle coordination that is a result of damage and inflammation to the cerebellum. Despite considerable efforts in basic and clinical research, most CAs are currently incurable. In this study, we evaluated the therapeutic potential of human mesenchymal stem cells (hMSCs) against CAs associated with neuroinflammation. We observed that hMSC treatment significantly inhibited the symptoms of ataxia in lipopolysaccharide (LPS)-induced inflammatory CA (ICA) mice, which were recently reported as a potential animal model of ICA, through the anti-inflammatory effect of hMSC-derived TNFα-stimulated gene-6 (TSG-6), the protection of Purkinje cells by inhibition of apoptosis, and the modulatory effect for microglial M2 polarization. Thus, our results suggest that hMSC treatment may be an effective therapeutic approach for preventing or improving ataxia symptoms.
Collapse
|
20
|
Song Y, Zhang TJ, Li Y, Gao Y. Mesenchymal Stem Cells Decrease M1/M2 Ratio and Alleviate Inflammation to Improve Limb Ischemia in Mice. Med Sci Monit 2020; 26:e923287. [PMID: 32860388 PMCID: PMC7477932 DOI: 10.12659/msm.923287] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Limb ischemia (LI) is the underlying pathology of peripheral artery disease (PAD). Macrophages play a critical role in inflammation and can contribute to the exacerbation or reduction of inflammation. Transplantation of mesenchymal stem cells (MSCs) is an emerging therapeutic strategy for PAD. However, the mechanism by which human placenta-derived mesenchymal stem cells (PMSCs) regulate macrophage differentiation in ischemic tissue remains unclear. MATERIAL AND METHODS Placentas were obtained from healthy donors with normal 38- to 40-week gestation, and PMSCs were isolated from the placentas and cultured. A mouse model of hind-limb ischemia was established. Ischemic limbs were injected intramuscularly with about 5×10⁶ PMSCs in the PMSCs group or a placebo solution (phosphate-buffered saline) in the control group at 4 different sites 1 day after the procedure. The blood perfusion of hind-limbs and the histological morphology were observed at day 1, 7, and 14 after the surgical procedure. Macrophages were detected by flow cytometry. The expression of serum tumor necrosis factor-alpha (TNF-alpha), interleukin (IL)-6, and IL-10 were detected by enzyme-linked immunosorbent assay (ELISA). The expression of CD31 and smooth muscle alpha-actin (alpha-SMA) in frozen muscle samples were detected by immunofluorescence staining. RESULTS In the PMSCs group, blood perfusion was gradually recovered and ischemic injury was markedly alleviated. The percentage of M2-like macrophages was increased dramatically, while the M1/M2 macrophage ratio was reduced. The expression of TNF-alpha and IL-6 was reduced, while the IL-10 level was elevated. The expression and density of CD31- and alpha-SMA-positive vessels were both significantly increased. CONCLUSIONS Transplanted PMSCs alleviated inflammation, promoted neovascularization, and improved hind limb ischemia through regulating macrophage differentiation toward the M2 phenotype and cytokine secretion. Cytokine manipulation of macrophage phenotypes may have potential therapeutic benefits in injured ischemic limbs.
Collapse
Affiliation(s)
- Ye Song
- Department of Ultrasound Medicine, The Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China (mainland)
| | - Tian-Jie Zhang
- Shanghai Leren Dongsheng Clinic, Shanghai, China (mainland)
| | - Yuan Li
- Department of Ultrasound Medicine, Tongji Hospital, Tongji University, School of Medicine, Shanghai, China (mainland)
| | - Yuan Gao
- Department of General Surgery, Tongji Hospital, Tongji University, School of Medicine, Shanghai, China (mainland)
| |
Collapse
|
21
|
Zhao J, Li X, Hu J, Chen F, Qiao S, Sun X, Gao L, Xie J, Xu B. Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization. Cardiovasc Res 2020; 115:1205-1216. [PMID: 30753344 PMCID: PMC6529919 DOI: 10.1093/cvr/cvz040] [Citation(s) in RCA: 533] [Impact Index Per Article: 106.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 01/13/2019] [Accepted: 02/07/2019] [Indexed: 12/12/2022] Open
Abstract
AIMS Mesenchymal stromal cells (MSCs) gradually become attractive candidates for cardiac inflammation modulation, yet understanding of the mechanism remains elusive. Strikingly, recent studies indicated that exosomes secreted by MSCs might be a novel mechanism for the beneficial effect of MSCs transplantation after myocardial infarction. We therefore explored the role of MSC-derived exosomes (MSC-Exo) in the immunomodulation of macrophages after myocardial ischaemia/reperfusion (I/R) and its implications in cardiac injury repair. METHODS AND RESULTS Exosomes were isolated from the supernatant of MSCs using gradient centrifugation method. Administration of MSC-Exo to mice through intramyocardial injection after myocardial I/R reduced infarct size and alleviated inflammation level in heart and serum. Systemic depletion of macrophages with clodronate liposomes abolished the curative effects of MSC-Exo. MSC-Exo modified the polarization of M1 macrophages to M2 macrophages both in vivo and in vitro. miRNA sequencing of MSC-Exo and bioinformatics analysis implicated miR-182 as a potent candidate mediator of macrophage polarization and toll-like receptor 4 (TLR4) as a downstream target. Diminishing miR-182 in MSC-Exo partially attenuated its modulation of macrophage polarization. Likewise, knock down of TLR4 also conferred cardioprotective efficacy and reduced inflammation level in a mouse model of myocardial I/R. CONCLUSION Our data indicate that MSC-Exo attenuates myocardial I/R injury in mice via shuttling miR-182 that modifies the polarization status of macrophages. This study sheds new light on the application of MSC-Exo as a potential therapeutic tool for myocardial I/R injury.
Collapse
Affiliation(s)
- Jinxuan Zhao
- Department of Cardiology, Drum Tower Hospital, Medical School of Nanjing University, No. 321 Zhongshan Road, Nanjing, China
| | - Xueling Li
- Department of Cardiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, China
| | - Jiaxin Hu
- Department of Cardiology, Drum Tower Hospital, Medical School of Nanjing University, No. 321 Zhongshan Road, Nanjing, China
| | - Fu Chen
- Department of Cardiology, Drum Tower Hospital, Medical School of Nanjing University, No. 321 Zhongshan Road, Nanjing, China
| | - Shuaihua Qiao
- Department of Cardiology, Drum Tower Hospital, Medical School of Nanjing University, No. 321 Zhongshan Road, Nanjing, China
| | - Xuan Sun
- Department of Cardiology, Drum Tower Hospital, Medical School of Nanjing University, No. 321 Zhongshan Road, Nanjing, China
| | - Ling Gao
- Department of Cardiology, Drum Tower Hospital, Medical School of Nanjing University, No. 321 Zhongshan Road, Nanjing, China
| | - Jun Xie
- Department of Cardiology, Drum Tower Hospital, Medical School of Nanjing University, No. 321 Zhongshan Road, Nanjing, China
| | - Biao Xu
- Department of Cardiology, Drum Tower Hospital, Medical School of Nanjing University, No. 321 Zhongshan Road, Nanjing, China
| |
Collapse
|
22
|
Mijiritsky E, Gardin C, Ferroni L, Lacza Z, Zavan B. Albumin-impregnated bone granules modulate the interactions between mesenchymal stem cells and monocytes under in vitro inflammatory conditions. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110678. [PMID: 32204105 DOI: 10.1016/j.msec.2020.110678] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/22/2019] [Accepted: 01/18/2020] [Indexed: 12/17/2022]
Abstract
Bone regeneration around newly implanted biomaterials is a complex process, which in its early phases involves the interactions between Mesenchymal Stem Cells (MSCs) and immune cells. The response of these cells to the biomaterial depends both on the local microenvironment and on the characteristics of the inserted bone substitute. In this work, bone allografts impregnated with albumin are loaded with a co-culture of human MSCs and monocytes; bone granules without albumin are used for comparison. Co-cultures are contextually treated with pro-inflammatory cytokines to simulate the inflammatory milieu naturally present during the bone regeneration process. As revealed by microscopic images, albumin-impregnated bone granules promote adhesion and interactions between cells populations. Compared to control granules, albumin coating diminishes reactive species production by cells. This reduced oxidative stress may be attributable to antioxidant properties of albumin, and it is also reflected in the mitigated gene expression of mitochondrial electron transport chain complexes, where most intracellular reactive molecules are generated. MSCs-monocytes co-cultured onto albumin-impregnated bone granules additionally release higher amounts of immunomodulatory cytokines and growth factors. In summary, this work demonstrates that impregnation of bone granules with albumin positively modulates the interactions between MSCs and immune cells, consequently influencing their mutual activities and immunomodulatory functions.
Collapse
Affiliation(s)
- Eitan Mijiritsky
- Department of Otolaryngology, Head and Neck and Maxillofacial Surgery, Sackler Faculty of Medicine, Tel-Aviv Sourasky Medical Center, 64239 Tel Aviv, Israel
| | - Chiara Gardin
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Italy.
| | - Letizia Ferroni
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Italy
| | - Zsombor Lacza
- Institute of Clinical Experimental Research, Semmelweis University, 1094 Budapest, Hungary
| | - Barbara Zavan
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Italy.
| |
Collapse
|
23
|
Feng Y, Wang AT, Jia HH, Zhao M, Yu H. A Brief Analysis of Mesenchymal Stem Cells as Biological Drugs for the Treatment of Acute-on-Chronic Liver Failure (ACLF): Safety and Potency. Curr Stem Cell Res Ther 2020; 15:202-210. [PMID: 31893994 DOI: 10.2174/1574888x15666200101124317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 12/25/2022]
Abstract
Acute-on-Chronic Liver Failure (ACLF) is characterized by acute exacerbation of chronic hepatitis, organ failure, high mortality, and poor prognosis. At present, the clinical methods of treatment include comprehensive treatment with medicines, artificial liver system, and Orthotopic Liver Transplantation (OLT), and of these, OLT is considered the most effective treatment for ACLF. However, it is difficult for ACLF patients to benefit from OLT due to the shortage of liver donors, high cost, unpredictable postoperative complications, and long-term use of immunosuppressive drugs; therefore, it is important to explore a new treatment option. With the development of stem cell transplantation technology in recent years, several studies have shown that treatment of ACLF with Mesenchymal Stem Cells (MSCs) leads to higher survival rates, and has good tolerance and safety rates, thereby improving the liver function and quality of life of patients; it has also become one of the popular research topics in clinical trials. This paper summarizes the current clinical interventions and treatments of ACLF, including the clinical trials, therapeutic mechanisms, and research progress on MSC application in the treatment of ACLF. The problems and challenges of the development of MSC-based therapy in the future are also discussed.
Collapse
Affiliation(s)
- Ying Feng
- Cell Products of National Engineering Research Center, Tianjin 300457, China.,National Stem Cell Engineering Research Center, Tianjin 300457, China
| | - Ai-Tong Wang
- Cell Products of National Engineering Research Center, Tianjin 300457, China.,National Stem Cell Engineering Research Center, Tianjin 300457, China
| | - Hong-Hong Jia
- Cell Products of National Engineering Research Center, Tianjin 300457, China.,National Stem Cell Engineering Research Center, Tianjin 300457, China
| | - Meng Zhao
- Cell Products of National Engineering Research Center, Tianjin 300457, China.,National Stem Cell Engineering Research Center, Tianjin 300457, China
| | - Hao Yu
- Cell Products of National Engineering Research Center, Tianjin 300457, China.,National Stem Cell Engineering Research Center, Tianjin 300457, China
| |
Collapse
|
24
|
Lu X, Li N, Zhao L, Guo D, Yi H, Yang L, Liu X, Sun D, Nian H, Wei R. Human umbilical cord mesenchymal stem cells alleviate ongoing autoimmune dacryoadenitis in rabbits via polarizing macrophages into an anti-inflammatory phenotype. Exp Eye Res 2019; 191:107905. [PMID: 31891674 DOI: 10.1016/j.exer.2019.107905] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/08/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) exhibit beneficial effects on autoimmune dacryoadenitis. However, the underlying mechanisms are not fully understood. In this study, we investigated the therapeutic effect of human umbilical cord mesenchymal stem cells (hUC-MSCs) on rabbit autoimmune dacryoadenitis, an animal model of Sjögren's syndrome (SS) dry eye, and explored whether the effects of MSCs were related to their modulation on macrophage polarization. We have showed that systemic infusion of hUC-MSCs after disease onset efficiently diminished the chronic inflammation in diseased LGs and improved the clinical symptoms. Further analysis revealed that hUC-MSC treatment significantly inhibited the expression of pro-inflammatory M1 macrophage markers iNOS, TNF-α and IL-6, and promoted the expression of anti-inflammatory M2 macrophage markers Arg1, CD206, IL-10, IL-4 and TGF-β in LGs. Mechanistically, hUC-MSCs activated AKT pathway in macrophages, resulting in upregulation of M2-associated molecule Arg1, which was partly abolished by PI3K inhibitor, LY294002. Together, our data indicated that hUC-MSCs can skew macrophages into an M2 phenotype via affecting AKT pathway. These data may provide a new insight into the mechanisms of hUC-MSCs in the therapy of SS dry eye.
Collapse
Affiliation(s)
- Xiaoxiao Lu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Na Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Lu Zhao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Di Guo
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Huanfa Yi
- Central Laboratory of the Eastern Division, The First Hospital, Jilin University, Changchun, China
| | - Liyuan Yang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xun Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Deming Sun
- Doheny Eye Institute, And Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, USA
| | - Hong Nian
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.
| | - Ruihua Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.
| |
Collapse
|
25
|
Cho Y, Mitchell R, Paudel S, Feltham T, Schon L, Zhang Z. Compromised Antibacterial Function of Multipotent Stromal Cells in Diabetes. Stem Cells Dev 2019; 28:268-277. [DOI: 10.1089/scd.2018.0219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Young Cho
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland
| | - Reed Mitchell
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland
| | - Sharada Paudel
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland
| | - Tyler Feltham
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland
| | - Lew Schon
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland
| | - Zijun Zhang
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland
| |
Collapse
|
26
|
Immunomodulatory effect of mesenchymal stem cells: Cell origin and cell quality variations. Mol Biol Rep 2019; 46:1157-1165. [PMID: 30628022 DOI: 10.1007/s11033-018-04582-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 12/18/2018] [Indexed: 12/11/2022]
Abstract
The immunomodulatory property of mesenchymal stem cells (MSCs) has been previously reported. Still it is unclear if this property can be affected by the cell origin and cell quality. Using primary MSCs expanded from bone marrow (BM-MSCs) and adipose tissue (AD-MSCs) of mice, we investigated whether the immunomodulatory property of MSCs varied with cell origin and cell quality (early- vs. late-passaged BM-MSCs). BM-MSCs (p1) and AD-MSCs (p1) had a typical spindle shape, but morphological changes were observed in late-passaged BM-MSCs (p6). A pathway-focused array showed that the expression of chemokine/cytokine genes varied with different cell origins and qualities. By co-culturing with spleen mononuclear cells (MNC) for 3 days, the expression of CD4 was suppressed by all types of MSCs. By contrast, the expression of CD8 was suppressed by BM-MSCs and increased by AD-MSCs. The expression ratio of CD206 to CD86 was at a comparable level after co-culture with AD-MSCs and BM-MSCs, but was lower with late-passaged BM-MSCs. AD-MSCs highly induced the release of IL6, IL-10 and TGF-β in culture medium. Compared with early-passaged BM-MSCs (p1), late-passaged BM-MSCs (p6) released less TGF-β. Our data suggests that the immunomodulatory properties of MSCs vary with cell origin and cell quality and that BM-MSCs of good quality are likely the optimal source of immunomodulation.
Collapse
|
27
|
Robb KP, Fitzgerald JC, Barry F, Viswanathan S. Mesenchymal stromal cell therapy: progress in manufacturing and assessments of potency. Cytotherapy 2018; 21:289-306. [PMID: 30528726 DOI: 10.1016/j.jcyt.2018.10.014] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 02/06/2023]
Abstract
Mesenchymal stromal cell (MSC) therapies have been pursued for a broad spectrum of indications but mixed reports on clinical efficacy have given rise to some degree of skepticism regarding the effectiveness of this approach. However, recent reports of successful clinical outcomes and regulatory approvals for graft-versus-host disease, Crohn's disease and critical limb ischemia have prompted a shift in this perspective. With hundreds of clinical trials involving MSCs currently underway and an increasing demand for large-scale manufacturing protocols, there is a critical need to develop standards that can be applied to processing methods and to establish consensus assays for both MSC processing control and MSC product release. Reference materials and validated, uniformly applied tests for quality control of MSC products are needed. Here, we review recent developments in MSC manufacturing technologies, release testing and potency assays. We conclude that, although MSCs hold considerable promise clinically, economies of scale have yet to be achieved although numerous bioreactor technologies for scalable production of MSCs exist. Additionally, rigorous disease-specific product testing and comprehensive understanding of mechanisms of action, which are linked to relevant process and product release potency assays, will be required to ensure that these therapies continue to be successful.
Collapse
Affiliation(s)
- Kevin P Robb
- The Arthritis Program, University Health Network, Toronto, Canada;; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Joan C Fitzgerald
- Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Ireland
| | - Frank Barry
- The Arthritis Program, University Health Network, Toronto, Canada;; Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Ireland
| | - Sowmya Viswanathan
- The Arthritis Program, University Health Network, Toronto, Canada;; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada; Cell Therapy Program, University Health Network, Toronto, Canada; Division of Hematology, Department of Medicine, University of Toronto, Toronto, Canada.
| |
Collapse
|
28
|
Shojaei S, Hashemi SM, Ghanbarian H, Salehi M, Mohammadi-Yeganeh S. Effect of mesenchymal stem cells-derived exosomes on tumor microenvironment: Tumor progression versus tumor suppression. J Cell Physiol 2018; 234:3394-3409. [PMID: 30362503 DOI: 10.1002/jcp.27326] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/08/2018] [Indexed: 12/19/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells with the potential to differentiate into different cell types. Owing to their immunosuppressive and anti-inflammatory properties, they are widely used in regenerative medicine, but they have a dual effect on cancer progression and exert both growth-stimulatory or -inhibitory effects on different cancer types. It has been proposed that these controversial effects of MSC in tumor microenvironment (TME) are mediated by their polarization to proinflammatory or anti-inflammatory phenotype. In addition, they can polarize the immune system cells that in turn influence tumor progression. One of the mechanisms involved in the TME communications is extracellular vesicles (EVs). MSCs, as one of cell populations in TME, produce a large amount of EVs that can influence tumor development. Similar to MSC, MSC-EVs can exert both anti- or protumorigenic effects. In the current study, we will investigate the current knowledge related to MSC role in cancer progression with a focus on the MSC-EV content in limiting tumor growth, angiogenesis, and metastasis. We suppose MSC-EVs can be used as safe vehicles for delivering antitumor agents to TME.
Collapse
Affiliation(s)
- Samaneh Shojaei
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Ghanbarian
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Salehi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Philipp D, Suhr L, Wahlers T, Choi YH, Paunel-Görgülü A. Preconditioning of bone marrow-derived mesenchymal stem cells highly strengthens their potential to promote IL-6-dependent M2b polarization. Stem Cell Res Ther 2018; 9:286. [PMID: 30359316 PMCID: PMC6202843 DOI: 10.1186/s13287-018-1039-2] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/16/2018] [Accepted: 10/07/2018] [Indexed: 12/16/2022] Open
Abstract
Background During the last decade, mesenchymal stem cells (MSCs) have gained much attention in the field of regenerative medicine due to their capacity to differentiate into different cell types and to promote immunosuppressive effects. However, the underlying mechanism of MSC-mediated immunoregulation is not fully understood so far. Macrophages are distinguished in classical activated, pro-inflammatory M1 and alternatively activated M2 cells, which possess different functions and transcriptional profiles with respect to inflammatory responses. As polarization is not fixed, macrophage functional plasticity might be modulated by the microenvironment allowing them to rapidly react to danger signals and maintaining tissue homeostasis. Methods Murine MSCs were preconditioned with IL-1ß and IFN-ɣ to enhance their immunosuppressive capacity regarding macrophage polarization under M1- and M2a-polarizing conditions. Macrophage polarization was analyzed by real-time PCR, flow cytometry, and cytokine detection in culture supernatants. The role of MSC-derived nitric oxide (NO), prostaglandin E2 (PGE2), and IL-6 in this process has been evaluated using siRNA transfection and IL-6 receptor-deficient macrophages, respectively. Results Preconditioned, but not unprimed, MSCs secreted high levels of NO, IL-6, and PGE2. Co-culture with macrophages (M0) in the presence of M1 inducers (LPS + IFN-ɣ) led to significant reduction of CD86 and iNOS protein in macrophages and diminished TNF-α secretion. Additionally, CD86 and iNOS protein expression as well as NO and IL-10 secretion were markedly increased under M2a-polarizing culture conditions (IL-4). MSC-dependent macrophage polarization did not depend on direct cell-cell contact. Co-culturing in the presence of LPS and IFN-ɣ resulted in the upregulation of M2a, M2b, and M2c marker genes, whereas in the presence of IL-4 only M2b markers were significantly increased. In turn, IL-10-producing regulatory M2b cells significantly inhibited IFN-ɣ expression in CD4+ T lymphocytes. Finally, we show that MSC-mediated macrophage polarization strongly depends on IL-6, whereas a minor role for NO and PGE2 was found. Conclusions Preconditioning of MSCs highly strengthens their capacity to regulate macrophage features and to promote immunosuppression. Repression of M1 polarization during inflammation and M2b polarization under anti-inflammatory conditions strongly depend on functional IL-6 signaling in macrophages. The potential benefit of preconditioned MSCs and IL-6 should be considered for future clinical treatment. Electronic supplementary material The online version of this article (10.1186/s13287-018-1039-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Denise Philipp
- Department of Cardiothoracic Surgery, Heart Center of the University of Cologne, Cologne, Germany
| | - Laura Suhr
- Department of Cardiothoracic Surgery, Heart Center of the University of Cologne, Cologne, Germany
| | - Thorsten Wahlers
- Department of Cardiothoracic Surgery, Heart Center of the University of Cologne, Cologne, Germany
| | - Yeong-Hoon Choi
- Department of Cardiothoracic Surgery, Heart Center of the University of Cologne, Cologne, Germany
| | - Adnana Paunel-Görgülü
- Department of Cardiothoracic Surgery, Heart Center of the University of Cologne, Cologne, Germany.
| |
Collapse
|
30
|
Hidalgo-Garcia L, Galvez J, Rodriguez-Cabezas ME, Anderson PO. Can a Conversation Between Mesenchymal Stromal Cells and Macrophages Solve the Crisis in the Inflamed Intestine? Front Pharmacol 2018; 9:179. [PMID: 29559912 PMCID: PMC5845680 DOI: 10.3389/fphar.2018.00179] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/16/2018] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a group of chronic inflammatory conditions of the gastrointestinal tract characterized by an exacerbated mucosal immune response. Macrophages play pivotal roles in the maintenance of gut homeostasis but they are also implicated in the pathogenesis of IBD. They are highly plastic cells and their activation state depends on the local environment. In the healthy intestine, resident macrophages display an M2 phenotype characterized by inflammatory energy, while inflammatory M1 macrophages dominate in the inflamed intestinal mucosa. In this regard, modifying the balance of macrophage populations into an M2 phenotype has emerged as a new therapeutic approach in IBD. Multipotent mesenchymal stromal cells (MSCs) have been proposed as a promising cell-therapy for the treatment of IBD, considering their immunomodulatory and tissue regenerative potential. Numerous preclinical studies have shown that MSCs can induce immunomodulatory macrophages and have demonstrated that their therapeutic efficacy in experimental colitis is mediated by macrophages with an M2-like phenotype. However, some issues have not been clarified yet, including the importance of MSC homing to the inflamed colon and/or lymphoid organs, their optimal route of administration or whether they are effective as living or dead cells. In contrast, the mechanisms behind the effect of MSCs in human IBD are not known and more data are needed regarding the effect of MSCs on macrophage polarization that would support the observation reported in the experimental models. Nevertheless, MSCs have emerged as a novel method to treat IBD that has already been proven safe and with clinical benefits that could be administered in combination with the currently used pharmacological treatments.
Collapse
Affiliation(s)
- Laura Hidalgo-Garcia
- Center for Biomedical Research (CIBM), CIBER-EHD, ibs.Granada, Department of Pharmacology, University of Granada, Granada, Spain
| | - Julio Galvez
- Center for Biomedical Research (CIBM), CIBER-EHD, ibs.Granada, Department of Pharmacology, University of Granada, Granada, Spain
| | - M Elena Rodriguez-Cabezas
- Center for Biomedical Research (CIBM), CIBER-EHD, ibs.Granada, Department of Pharmacology, University of Granada, Granada, Spain
| | - Per O Anderson
- Stromal Cells and Immunology Group, Pfizer, University of Granada, Andalusian Regional Government Centre of Genomics and Oncological Research (GENYO), Granada, Spain
| |
Collapse
|
31
|
Bardi GT, Smith MA, Hood JL. Melanoma exosomes promote mixed M1 and M2 macrophage polarization. Cytokine 2018; 105:63-72. [PMID: 29459345 DOI: 10.1016/j.cyto.2018.02.002] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 12/18/2022]
Abstract
Macrophages are key participants in melanoma growth and survival. In general, macrophages can be classified as M1 or M2 activation phenotypes. Increasing evidence demonstrates that melanoma exosomes also facilitate tumor survival and metastasis. However, the role of melanoma exosomes in directly influencing macrophage function is poorly understood. Herein, we investigated the hypothesis that natural melanoma exosomes might directly influence macrophage polarization. To explore this hypothesis, ELISA, RT-qPCR, and macrophage functional studies were performed in vitro using an established source of melanoma exosomes (B16-F10). ELISA results for melanoma exosome induction of common M1 and M2 cytokines in RAW 264.7 macrophages, revealed that melanoma exosomes do not polarize macrophages exclusively in the M1 or M2 direction. Melanoma exosomes induced the M1 and M2 representative cytokines TNF-α and IL-10 respectively. Further assessment, using an RT-qPCR array with RAW 264.7 and primary macrophages, confirmed and extended the ELISA findings. Upregulation of markers common to both M1 and M2 polarization phenotypes included CCL22, IL-12B, IL-1β, IL-6, i-NOS, and TNF-α. The M2 cytokine TGF-β was upregulated in primary but not RAW 264.7 macrophages. Pro-tumor functions have been attributed to each of these markers. Macrophage functional assays demonstrated a trend toward increased i-NOS (M1) to arginase (M2) activity. Collectively, the results provide the first evidence that melanoma exosomes can induce a mixed M1 and M2 pro-tumor macrophage activation phenotype.
Collapse
Affiliation(s)
- Gina T Bardi
- University of Louisville, Department of Pharmacology and Toxicology, & James Graham Brown Cancer Center, Clinical and Translational Research Building, 505 South Hancock Street, Louisville, KY 40202, United States.
| | - Mary Ann Smith
- University of Louisville, Department of Pharmacology and Toxicology, & James Graham Brown Cancer Center, Clinical and Translational Research Building, 505 South Hancock Street, Louisville, KY 40202, United States.
| | - Joshua L Hood
- University of Louisville, Department of Pharmacology and Toxicology, & James Graham Brown Cancer Center, Clinical and Translational Research Building, 505 South Hancock Street, Louisville, KY 40202, United States.
| |
Collapse
|
32
|
ADAR1 prevents small intestinal injury from inflammation in a murine model of sepsis. Cytokine 2018; 104:30-37. [PMID: 29414324 DOI: 10.1016/j.cyto.2018.01.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/09/2018] [Accepted: 01/23/2018] [Indexed: 12/13/2022]
Abstract
Adenosine deaminase acting on RNA 1 (ADAR1), a double-stranded RNA-editing enzyme that converts adenosine (A) to inosine (I), has been identified as a modulator of immune responses. However, the role of ADAR1 in small intestinal homeostasis during sepsis remains unclear. In this study, we examined the role of ADAR1 on intestinal inflammation in a murine model of sepsis. We found that ADAR1 was highly expressed in "septic" macrophages and small intestinal tissue of septic mice. Deletion of ADAR1 in "septic" macrophages led to rapid apoptosis. In addition, suppression of ADAR1 in "septic" macrophages significantly enhanced inflammation, while over-expression of ADAR1 significantly suppressed the level of inflammatory cytokines. Furthermore, suppression of ADAR1 in septic mice significantly enhanced inflammation and intestinal damage, while enhanced ADAR1 expression resulted in reduced damage and inflammation. Finally, over-expression of ADAR1 improved survival of septic mice. In conclusion, we have identified a novel ADAR1 protective effect for maintaining intestinal homeostasis. Our findings may provide a new targeted therapy for sepsis treatment.
Collapse
|
33
|
The Immunomodulatory Effects of Mesenchymal Stem Cell Polarization within the Tumor Microenvironment Niche. Stem Cells Int 2017; 2017:4015039. [PMID: 29181035 PMCID: PMC5664329 DOI: 10.1155/2017/4015039] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/11/2017] [Accepted: 07/16/2017] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) represent a promising tool for cell therapy, particularly for their antitumor effects. This cell population can be isolated from multiple tissue sources and also display an innate ability to home to areas of inflammation, such as tumors. Upon entry into the tumor microenvironment niche, MSCs promote or inhibit tumor progression by various mechanisms, largely through the release of soluble factors. These factors can be immunomodulatory by activating or inhibiting both the adaptive and innate immune responses. The mechanisms by which MSCs modulate the immune response are not well understood. Because of this, the relationship between MSCs and immune cells within the tumor microenvironment niche continues to be an active area of research in order to help explain the apparent contradictory findings currently available in the literature. The ongoing research aims to enhance the potential of MSCs in future therapeutic applications.
Collapse
|
34
|
Khosrowpour Z, Hashemi SM, Mohammadi-Yeganeh S, Soudi S. Pretreatment of Mesenchymal Stem Cells With Leishmania majorSoluble Antigens Induce Anti-Inflammatory Properties in Mouse Peritoneal Macrophages. J Cell Biochem 2017; 118:2764-2779. [DOI: 10.1002/jcb.25926] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/06/2017] [Indexed: 01/20/2023]
Affiliation(s)
- Zahra Khosrowpour
- Department of Immunology; School of Medicine; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology; School of Medicine; Shahid Beheshti University of Medical Sciences; Tehran Iran
- Department of Applied Cell Sciences; School of Advanced Technologies in Medicine; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Samira Mohammadi-Yeganeh
- Cellular and Molecular Biology Research Center; Shahid Beheshti University of Medical Sciences; Tehran Iran
- Department of Biotechnology; School of Advanced Technologies in Medicine; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Sara Soudi
- Department of Immunology; Faculty of Medical Sciences; Tarbiat Modares University; Tehran Iran
| |
Collapse
|
35
|
Xu C, Fu F, Li X, Zhang S. Mesenchymal stem cells maintain the microenvironment of central nervous system by regulating the polarization of macrophages/microglia after traumatic brain injury. Int J Neurosci 2017; 127:1124-1135. [PMID: 28464695 DOI: 10.1080/00207454.2017.1325884] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs), which are regarded as promising candidates for cell replacement therapies, are able to regulate immune responses after traumatic brain injury (TBI). Secondary immune response following the mechanical injury is the essential factor leading to the necrosis and apoptosis of neural cells during and after the cerebral edema has subsided and there is lack of efficient agent that can mitigate such neuroinflammation in the clinical application. By means of three molecular pathways (prostaglandin E2 (PGE2), tumor-necrosis-factor-inducible gene 6 protein (TSG-6), and progesterone receptor (PR) and glucocorticoid receptors (GR)), MSCs induce the activation of macrophages/microglia and drive them polarize into the M2 phenotypes, which inhibits the release of pro-inflammatory cytokines and promotes tissue repair and nerve regeneration. The regulation of MSCs and the polarization of macrophages/microglia are dynamically changing based on the inflammatory environment. Under the stimulation of platelet lysate (PL), MSCs also promote the release of pro-inflammatory cytokines. Meanwhile, the statue of macrophages/microglia exerts significant effects on the survival, proliferation, differentiation and activation of MSCs by changing the niche of cells. They form positive feedback loops in maintaining the homeostasis after TBI to relieving the secondary injury and promoting tissue repair. MSC therapies have obtained great achievements in several central nervous system disease clinical trials, which will accelerate the application of MSCs in TBI treatment.
Collapse
Affiliation(s)
- Chao Xu
- a Institute of Traumatic Brain Injury and Neurology, Pingjin Hospital , Logistics University of Chinese People's Armed Police Forces , Tianjin 300162 , China
| | - Feng Fu
- a Institute of Traumatic Brain Injury and Neurology, Pingjin Hospital , Logistics University of Chinese People's Armed Police Forces , Tianjin 300162 , China
| | - Xiaohong Li
- a Institute of Traumatic Brain Injury and Neurology, Pingjin Hospital , Logistics University of Chinese People's Armed Police Forces , Tianjin 300162 , China
| | - Sai Zhang
- a Institute of Traumatic Brain Injury and Neurology, Pingjin Hospital , Logistics University of Chinese People's Armed Police Forces , Tianjin 300162 , China
| |
Collapse
|